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Two diffusion processes with multiplicative noise, able to model the changes in the neuronal

membrane depolarization between two consecutive spikes of a single neuron, are considered and

compared. The processes have the same deterministic part but different stochastic components. The

differences in the state-dependent variabilities, their asymptotic distributions, and the properties of

the first-passage time across a constant threshold are investigated. Closed form expressions for the

mean of the first-passage time of both processes are derived and applied to determine the role

played by the parameters involved in the model. It is shown that for some values of the input

parameters, the higher variability, given by the second moment, does not imply shorter mean first-

passage time. The reason for that can be found in the complete shape of the stationary distribution

of the two processes. Applications outside neuroscience are also mentioned. Published by AIP
Publishing. https://doi.org/10.1063/1.5009574

The first-passage time (FPT) of a stochastic process

through a threshold is a problem with direct application

in the modeling of neural encoding of information. The

membrane depolarization of a neuron fluctuates in

response to synaptic inputs and noise. As soon as the

depolarization reaches a certain firing threshold, due to

chemical reactions taking place in the neuronal mem-

brane, the neuron generates an action potential (spike).

This dynamics of spike generation involves the first-

passage-time (or first-hitting-time) and underlies neural

coding: the information transferred within the nervous

system is encoded by the timing of the spikes. After the

generation of the action potential, the voltage is immedi-

ately reset and the process starts anew, producing a non-

linearity in the dynamics. Among the classical models,

the diffusion leaky integrate-and-fire characterizes a sin-

gle neuron by a stochastic differential equation describ-

ing the evolution in time of the neuronal membrane

depolarization. The equation has a linear deterministic

part and a stochastic component (an additive noise)

expressing the sources of noise. The original models

obtained as diffusion approximations of discontinuous

models have been modified, introducing a multiplicative

noise in the equation, in order to get a better physiologi-

cal insight. Two of these modified models are considered

and compared here using classical and new developed

mathematical tools, focusing on the behavior of the depo-

larization itself and on the random variable first-passage

time through the firing threshold. Computationally easy

expressions of the first moment of the first-passage

time for the two involved processes are derived and

implemented.

I. INTRODUCTION

The role of noise in information transfer within the ner-

vous system has been one of the commonly approached phe-

nomena during the last several decades. Various neuronal

systems as well as their models served as the primary exam-

ple of the stochastic resonance or related effects.1–4 Noise-

induced activities of different types have been investigated

on the neuronal models or their networks of various com-

plexities ranging from simple integrators5–9 to the full

Hodgkin-Huxley schema.10–14 All such endeavors confirm

that the noise, which in the nervous system is an integral part

of the signal,15–18 is primarily important, especially for

weak, subthreshold signals. While there is an ongoing effort

to incorporate detailed biological properties into realistic

computer models and simulations, on the other hand, a com-

promise is usually made and the richness of details is sacri-

ficed for computational or even analytical accessibility. Our

investigation presented in this article aims to contribute to

this effort in clarifying the role of noise, specifically of

the multiplicative noise, on the performance of two simple

neuronal models using the analytical approach.

Stochastic diffusion processes have been extensively

used to model the changes in the membrane depolarization

between two consecutive neuronal spikes (action potentials).

Furthermore, by solving the related first-passage-time (FPT)

problem, the dynamics of the spike generation has been

described.19,20 Among all these models, the Ornstein-

Uhlenbeck process plays a prominent role being the most

extensively studied.21,22 It is characterized by a linear deter-

ministic part and an additive white noise. It can be obtained

as a diffusion approximation of the Stein’s model which

poses interpretable parameters which property is partly lost

during the process of approximation.23 This lack of transpar-

ency of the parameters in the Ornstein-Uhlenbeck model is

compensated by far easier mathematical tractability
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compared to the original Stein’s model. The model was

shown to fit a number of experimentally recorded neuronal

data although some care must be taken.24–26

As noticed already in the early days of stochastic neuro-

nal modeling,27,28 the Ornstein-Uhlenbeck model as well as

its non-continuous counterpart exhibits at least two undesir-

able features. First, their state space is unlimited, i.e., arbi-

trary large hyperpolarization values are possible. Second, it

is a well known fact that the changes in the depolarization of

a nerve cell depend on its actual value which feature is

neglected in the models. For this reason, several modifica-

tions of the Stein’s model which includes a more realistic

description of the synaptic transmission were proposed.

Finally, alternative models in which the changes in depolari-

zation are state-dependent were suggested as their diffusion

approximation.7,29–33 The limited state space of the model is

a natural consequence of the state-dependency of the input

causing depolarizations.34 Again, all the diffusion variants

keep the linear deterministic part; however, the additive

noise is replaced by a multiplicative one. In some biophysi-

cal models, multiplicative noise emerges from the ion chan-

nel fluctuations that are sources of intrinsic noise and depend

on the state of the membrane voltage,35–37 although this

approach is not considered in this work. Here, we consider

two variants of the diffusion models with multiplicative

noise and compare them. They differ in the shape of variabil-

ity profiles in dependency on the actual values of the mem-

brane depolarization. The comparison is performed not only

with respect to the behavior of the depolarization itself but

first of all with respect to the properties of the first-passage

time across a constant threshold. As mentioned, this quantity

is identified with the interspike interval in the dynamics of

neuronal firing and the importance of the interspike intervals

follows as a consequence of the generally accepted hypothe-

sis that the information transferred within the nervous system

is encoded by the timing of the spikes. Our comparison is

restricted on the first moment of the first-passage times with

possible implications on frequency coding.

Both diffusion models investigated here have, in accor-

dance with the conditions imposed on their parameters, a

lower non-attainable boundary. The boundary differs from

zero due to the physiological applications and interpretations

and all the formulas given in the paper contain its value

explicitly. The same diffusion processes have several other

applications but commonly the lower boundary for them is

set to zero. Obtaining new results within the other fields

based on the current paper is therefore straightforward.

The first model is probably the most common one in this

class, generally denoted as a square-root process.38 Due to

the historical reasons it is also called, in biological context,

the Feller model,39–41 but in the mathematical finance is

known under the name of Cox-Ingersoll-Ross model.42,43 It

is also used in survival analysis,44 in the modeling of nitrous

oxide emission from soil,45 and in other applications in phys-

ics and computer science.46 The second model is closely

related to the Geometric Brownian motion. In the interest

rate field, it is called the Brennan-Schwartz model,43,47

denoted as the GARCH model when used for stochastic vol-

atility and for energy markets,48 as the Lognormal diffusion

process with exogenous factors when used for forecasting

and analysis of growth,49 and in real option literature it goes

under the names of Geometric Brownian motion with affine

drift,50 Geometric Ornstein-Uhlenbeck,51 or mean reverting

Geometric Brownian motion.52 Here, following Refs. 53 and

54, we call it Inhomogeneous Geometric Brownian Motion

(IGBM).

This paper is organized as follows. In the first part, we

introduce the models underlining the common features of the

involved stochastic processes and the mathematical tools

necessary for their analysis. Furthermore, we recall and

develop results on the two stochastic processes under consid-

eration. Particular attention is given to results on the IGBM

process that are rare and fragmentary in the literature.

Section III is devoted to the comparison of the models,

mainly studying the influence of different multiplicative

noise on the asymptotic variability and on the first moment

of the first-passage time. Comments on the obtained results

are given in Sec. IV.

II. DIFFUSION NEURONAL MODELS WITH INHIBITORY
REVERSAL POTENTIALS

The diffusion leaky integrate-and-fire model is described

by an Itô stochastic differential equation of the following type:

dYt ¼ � Yt

h
þ l

� �
dtþ aðYtÞdWt; Y0 ¼ y0; (1)

where l characterizes the neuronal input, h is called mem-

brane time constant and takes into account the spontaneous

voltage decay towards the resting potential (assumed equal

to zero here) in the absence of input, the diffusion coefficient

aðYtÞ determines the amplitude of the noise, W ¼ fWtgt�0 is

a standard Wiener process, and y0 is the starting depolariza-

tion. We note that for aðYtÞ � r constant, the solution of Eq.

(1) is an Ornstein-Uhlenbeck process.

In order to introduce inhibitory reversal potential VI

< y0 in this class of models, we consider model (1) such that

the function að�Þ depends on the process itself and on VI. In

particular, we choose að�Þ such that aðVIÞ ¼ 0 to ensure that

the process cannot take values below VI. The behavior of a

diffusion process near the endpoints of its state space is

determined according to the Feller’s classification of bound-

aries.21,22 We say, that VI is an entrance boundary if Yt can-

not reach VI in finite time and there is no probability flow to

the outside of the interval ½VI;þ1Þ or is an exit boundary if

the process can attain the value VI but cannot return to the

interior of ½VI;þ1Þ. The latter situation is not suitable for

our modeling purpose and is not considered in the following.

An alternative method to the description of diffusion

process (1) consists of the evaluation of the transition proba-

bility density function f ðy; tjz; sÞ ¼ @
@y PðYðtÞ < yjYðsÞ ¼ zÞ.

It is solution of the Fokker-Planck equation

@f ðy; tjy0; 0Þ
@t

¼ � @

@y
� y

h
þ l

� �
f ðy; tjy0; 0Þ

þ 1

2

@2

@y2
a2ðyÞf ðy; tjy0; 0Þ; (2)
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with zero-flux boundary condition at y¼VI (we want VI to

be entrance boundary),

lim
y!VþI

� y

h
þ l

� �
f ðy; tjy0; 0Þ �

@

@y
a2ðyÞf ðy; tjy0; 0Þ

� �
¼ 0

(3)

and initial condition

lim
t!0

f ðy; tjy0; 0Þ ¼ dðy� y0Þ: (4)

If the limit of the transition density f ðy; tjy0; 0Þ as t!1
exists independent of y0, we say, that the process Yt admits a

stationary distribution.

In most cases, the solution of Eq. (2) is non-trivial but at

least some information about the process can be obtained

from its moments. The transient and the asymptotic means of

Yt are

E YtjY0 ¼ y0½ � ¼ lhþ ðy0 � lhÞe�t=h; (5)

lim
t!þ1

E YtjY0 ¼ y0½ � :¼ E Y½ � ¼ lh (6)

and the higher moments of Yt depend on the function aðYtÞ
in Eq. (1).

Equation (1) describes the membrane depolarization

until the occurrence of an action potential (spike). In accor-

dance with the model, the spikes are generated when the pro-

cess Yt crosses a voltage threshold S for the first time, so

called first-passage time (FPT). In the following, we consider

S to be a constant, S > y0. The process is reset to the starting

point y0 after the spike and the evolution starts anew. This

reset condition guarantees that the interspike intervals are

independent and identically distributed, denoted here by T
defined as

T :¼ infft � 0 : Yt � Sjy0 < Sg; (7)

with a probability density function gðtÞ :¼ gðtjy0Þ. The

moments of T can be calculated through its Laplace transform

g�ðbÞ ¼
Ð1

0
e�btgðtÞdt with b > 0: If we denote by PðTjy0Þ

¼
Ð1

0
gðtÞdt the probability of crossing the threshold S and by

E½T� the mean of FPT, we have the following relations:

PðTjy0Þ ¼ g�ðbÞjb¼0; E T½ � ¼ � dg�ðbÞ
db

���
b¼0

: (8)

The distribution of T is often unavailable and the definition

of g�ðbÞ cannot be applied directly, but there exists Siegert’s

equation for the Laplace transform of T

1

2
a2ðy0Þ

@2g�ðbÞ
@y2

0

� y0

h
� l

� �
@g�ðbÞ
@y0

� bg�ðbÞ ¼ 0; (9)

with initial conditions g�ðbÞ ¼ 1 if y0 � S and g�ðbÞ < þ1
for any y0.

Two possible firing regimes can be considered for the

process Yt. If the asymptotic mean depolarization given by

Eq. (6) is larger than the firing threshold S we say that Yt is

in the suprathreshold regime and the firing activity is

relatively regular. When lh < S, we say that Yt is in the sub-

threshold regime and the contribution of the noise to the fir-

ing is crucial.

A. The Feller process

The first model investigated here is given by Eq. (1) with

aðYtÞ ¼ rF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yt � VI

p
: (10)

Let k :¼ 2
r2

F

ðl� VI

h Þ, then VI is an entrance boundary if

k � 1; otherwise, it is attainable and so it is not considered

here.

The conditional mean of Yt is given by Eq. (5), the tran-

sient and asymptotic variances are

Var Ytjy0½ � ¼ 1

2
hr2

Fðlh� VIÞ 1� e�
t
hð Þ2

þ ðy0 � VIÞhr2
F 1� e�

t
hð Þe� t

h; (11)

VarF Y½ � ¼ 1

2
hr2

Fðlh� VIÞ: (12)

The stationary distribution of the Feller process in the

absence of a threshold is a shifted gamma distribution with

the following shape, scale, and location parameters

Y � Gamma k;
1

2
hr2

F;VI

� �
: (13)

The Laplace transform of T in the case of model (1)

with aðYtÞ as in Eq. (10), is

g�ðbÞ ¼
U bh; k;

2ðy0 � VIÞ
hr2

F

 !

U bh; k;
2ðS� VIÞ

hr2
F

 ! ; (14)

where U is the confluent hypergeometric function of the first

kind (or Kummer’s function55) Uða; b; zÞ¼1F1ða; b; zÞ, given

in terms of the generalized hypergeometric function pFq

pFqða1;…; ap; b1;…; bq; zÞ :¼
X1
n¼0

ða1Þn � � � ðapÞn
ðb1Þn � � � ðbqÞn

zn

n!
; (15)

with ðaÞn the rising factorial defined by ðaÞn ¼ aðaþ 1Þ � � �
ðaþ n� 1Þ for n 2N; ðaÞ0 ¼ 1. The expressions of the var-

iance (11), the stationary distribution (13), and the Laplace

transform of T (14), in the case V I¼ 0, can be found in Refs.

22 and 40 and generalization for VI 6¼ 0 is straightforward.

The probability of crossing the threshold S is equal to 1

using Eqs. (8) and (14). The mean of T was calculated in

Ref. 56 giving

EF T½ � ¼ h
ðS� y0Þ
lh� VI

þ h
X1
n¼2

knCðkÞ
nCðk þ nÞ

	 ðS� VIÞn � ðy0 � VIÞn
� �

ðlh� VIÞn
; (16)

where CðzÞ ¼
Ð1

0
xz�1e�x dx is the gamma function.
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The convergence of the series on the right-hand side of

Eq. (16) is fast in the suprathreshold regime (see Fig. 1 for

l > 2). Conversely, in the subthreshold regime the sum

depends strongly on the number of terms taken into consider-

ation and this affects the results when the formula is imple-

mented numerically. Therefore, an alternative formula for

the mean FPT is derived (Appendix A)

EF T½ � ¼ h
c

b
ðS� VIÞ2F2ð1; 1; 2; bþ 1; cðS� VIÞÞ
�

� ðy0 � VIÞ2F2ð1; 1; 2; bþ 1; cðy0 � VIÞÞ�; (17)

where

b ¼ 1

2r2
F

l� VI

h

� �
¼ k

4
; c ¼ 1

2hr2
F

:

The relative difference between the formulas (16) and

(17) when the series in Eq. (16) is replaced by a sum of finite

number n of terms is shown in Fig. 1. For increasing n, the

sum converges to the value given by Eq. (17), but for small

l the distance is still considerable. Furthermore, we use Eq.

(17) that is easy to implement with the package hypergeo for

the software R.57

B. The inhomogeneous geometric Brownian motion

The second model investigated here is given by Eq. (1)

with

aðYtÞ ¼ rGðYt � VIÞ: (18)

If l > VI=h, then VI is an entrance boundary; otherwise, it is

an exit one and it is not considered here (cf. Ref. 50 for

VI¼ 0).

The process Yt has the conditional mean given by Eq.

(5) and the conditional variance

Var Ytjy0½ � ¼ hr2
Gðlh� VIÞ2

2� hr2
G

þ 2hr2
G

ðy0 � lhÞðlh� VIÞ
1� hr2

G

e�
t
h

� e�
2t
h ðy0 � lhÞ2 þ eðr

2
G�2

hÞt

	 ðy0 � VIÞ2 � 2
ðy0 � VIÞðlh� VIÞ

1� hr2
G

"

þ2
ðlh� VIÞ2

2� hr2
G

� 	
1� hr2

G

� 	
#
: (19)

Equation (19) must be understood as taking the proper limits

for hr2
G ¼ 1 and hr2

G ¼ 2. If r2
G < 2=h, the asymptotic vari-

ance is

VarG Y½ � ¼ 1

2� hr2
G

hr2
Gðlh� VIÞ2; (20)

otherwise, VarG½Y� ¼ þ1, the case that is not considered

here. The above quantities for VI¼ 0 are given in Ref. 48,

again the generalization for VI 6¼ 0 is straightforward.

The stationary distribution of the IGBM process in the

absence of a threshold is a shifted inverse gamma distribu-

tion with the following shape, scale, and location parameters

Y � Inv-Gamma 1þ 2

hr2
G

;
2ðlh� VIÞ

hr2
G

;VI

 !
: (21)

The expression of the stationary distribution in the case

VI¼ 0 is given in other papers although misprints on the

scale parameter48 or on the form of the distribution50 appear.

Generalizing the result of Ref. 54, we obtained the

following expression for the Laplace transform of T (see

Appendix B)

g�ðbÞ ¼ y0 � VI

S� VI

� ��a W a; b;
c

y0 � VI

� �

W a; b;
c

S� VI

� � ; (22)

where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4

G þ 4
1

h
þ 2b

� �
r2

G þ
4

h2

s
� 2

h
þ r2

G

� �
2r2

G

;

b ¼ 2

hr2
G

þ 2aþ 2; c ¼ 2

r2
G

l� VI

h

� �
;

and W is the confluent hypergeometric function of the second

kind (or Tricomi’s function55)

Wða; b; zÞ ¼ z�a
2F0ða; 1þ a� b;�1=zÞ: (23)

It follows from Eq. (8) that the crossing of the threshold S is

an event with probability one

PðTjy0Þ ¼
y0 � VI

S� VI

� �0 W 0; b;
c

y0 � VI

� �

W 0; b;
c

S� VI

� � ¼ 1; (24)

FIG. 1. Relative difference between the formulas (16) and (17) in depen-

dency of l for n equal to 5, 10, 15, and 20, y0 ¼ 0 mV, VI ¼ �10 mV,

S¼ 10 mV, rF ¼ 1=
ffiffiffiffiffi
10
p

mV=
ffiffiffiffiffiffi
ms
p

, and h¼ 5 ms. For increasing n, the sum

in Eq. (16) converges to the value given by Eq. (17), but for n¼ 20 and

l ¼ �1:5 mV/ms the difference is still almost 50%. The vertical line sepa-

rates the subthreshold (l < 2) and suprathreshold regimes (l > 2) for

S¼ 10 mV.
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where we have used that Wð0; b; zÞ ¼ 1 for every z> 0.

Moreover using relation (8), analogously to Ref. 54, we

obtained the formula for the mean FPT

EG T½ � ¼ 2h

2þ hr2
G

ln
y0 � VI

S� VI
þ
@W a; b;

c

S� VI

� �
@a

�����
a¼0

0
BBB@

�
@W a; b;

c

y0 � VI

� �
@a

�����
a¼0

1
CCA: ð25Þ

From Eq. (25), the mean FPT can be written as follows

(see Appendix C):

EG T½ � ¼ 2h

2þ hr2
G

ln
y0 � VI

S� VI
� c

bðy0 � VIÞ

(

	 2F2 1; 1; 2; bþ 1;
c

y0 � VI

� �
þ c

bðS� VIÞ

	 2F2 1; 1; 2; bþ 1;
c

S� VI

� �
þ Cðb� 1Þ

	 c

S� VI

� �1�b

1F1 1� b;2� b;
c

S� VI

� �"

� c

y0 � VI

� �1�b

1F1 1� b; 2� b;
c

y0 � VI

� �#)
; (26)

with b ¼ 2
hr2

G

þ 2 and c ¼ 2
r2

G

ðl� VI

h Þ. The expression in Eq.

(26) involves only hypergeometric functions pFq and not

their derivatives and has the advantage of an easier numeri-

cal evaluation than Eq. (25).

III. COMPARISON OF THE MODELS

The Feller model was proved to fit experimental data of

in vitro neurons under different conditions,58,59 while, to our

knowledge, the IGBM model has not been applied in neuro-

science. Here, we stress its existence and suggest its applica-

bility in this context.

The parameters involved in model (1), together with the

threshold S, can be divided into three groups: intrinsic

parameters y0, VI, S; semi-intrinsic parameter h; and parame-

ters characterizing the input l, rF, rG.60 In the following, we

consider the same parameters values used in Refs. 30 and 41,

the resetting potential is equal to zero, i.e., y0 ¼ 0 mV, the

inhibitory reversal potential is fixed to VI ¼ �10 mV, and

the firing threshold to S¼ 10 mV. The parameter of sponta-

neous decay is chosen h¼ 5 or 15 ms. Furthermore, in order

to compare the models, for the choice of rF and rG we

assume the same level of noise at the resting level, i.e.,

rF

ffiffiffiffiffiffiffiffiffi
�VI

p� 	
¼ rGð�VIÞ :¼ r.

The condition rF

ffiffiffiffiffiffiffiffiffi
�VI

p
¼ rGð�VIÞ implies that rFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Yt � VI

p
> rGðYt � VIÞ if and only if VI < Yt < 0. This

behavior is shown in Fig. 2 where the functions aðYtÞ for the

two processes given by Eqs. (10) and (18) are plotted in the

interval ð�10; 10Þ mV and compared with a constant aðYtÞ
characterizing the Ornstein-Uhlenbeck process. Whereas the

effect of the noise is constant for the Ornstein-Uhlenbeck

model, it starts from zero at the state-space boundary and

grows for the studied ones.

Finally, we always choose the values of the parameters

such that the condition

l >
VI

h
� r2

2VI
(27)

holds, which guarantees that VI is an entrance boundary.

The asymptotic standard deviations of the two processes

are plotted as functions of the input l for three different val-

ues of r in Fig. 3. The Feller process exhibits a square-root

dependence, while the IGBM process exhibits a linear one,

reproducing the behavior of their infinitesimal variances

shown in Fig. 2. The asymptotic variability of the Feller

FIG. 2. Functions aðYtÞ from Eqs. (10) and (18) in the state space ð�10; 10Þ
mV, for VI ¼ �10 mV, rF ¼ 2=

ffiffiffiffiffi
10
p ffiffiffiffiffiffiffiffi

mV
p

=
ffiffiffiffiffiffi
ms
p

, rG ¼ 0:2
ffiffiffiffiffiffi
ms
p �1

, and

aðYtÞ � r ¼ 2 mV =
ffiffiffiffiffiffi
ms
p

.

FIG. 3. Asymptotic standard deviations of Yt obtained from Eqs. (12) and

(20) as functions of l for y0 ¼ 0 mV, h¼ 5 ms, and VI ¼ �10 mV and for

three different values of r: r¼ 1 (blue), r¼ 2 (red), and r ¼ 2:6 mV =
ffiffiffiffiffiffi
ms
p

(black). The curves intersect for l ¼ l� (black circles l� ¼ �0:05;
l� ¼ �0:2, and l� ¼ �0:338 mV/ms) values obtained from condition (28).

For l < l� the Feller process exhibits higher variability than IGBM, while

for l > l� the situation is the opposite. The vertical line separates the sub-

threshold (l < 2) and suprathreshold regimes (l > 2) for S¼ 10 mV. The

smallest values of l allowed by condition (27) are in the three cases consid-

ered: l ¼ �1:95; l ¼ �1:8, and l ¼ �1:662 mV/ms.
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process is always higher than that of IGBM up to a certain

input value l�. More precisely, starting from Eqs. (12) and

(20) one can prove that since 2=h > r2=V2
I and lh > VI then

VarF Y½ � > VarG Y½ � () l < l� ¼ r2

2VI
: (28)

Thus, l� decreases as r increases. It follows from Eq. (28) that

the intersection of the two curves occurs always for l < 0.

The parameter h controls the rate at which the processes

attain the asymptotic mean depolarization (5), which is the

same for both of them. Looking at the slowest terms of Eqs.

(11) and (19), we can have an indication of how fast the two

processes reach the asymptotic variances given by Eqs. (12)

and (20). We have that if

2

h
� 1

� �
V2

I < r2 <
2

h
V2

I (29)

the variability of the Feller process grows faster than that of

the IGBM and all cases considered in this paper belong to

this situation. Anyway, both processes reach their asymptotic

variance in a relatively short time, approximately 2h (10 ms

for the case considered in Fig. 3).

We now compare the mean FPTs of Feller and IGBM

processes using Eqs. (17) and (26) and we investigate how

sensitive they are to a change in l, r, and h. We show EF½T�
and EG½T� as functions of l for three different values of r in

Fig. 4. The mean FPT decreases as l or r increases for both

models. For l approaching the smallest values allowed by

Eq. (27), the mean FPT tends to infinity in all considered

cases. The reason is the following. For values of l such that

Eq. (27) is not fulfilled, the processes are absorbed at VI and

consequently, they cannot cross S, making the FPT infinite.

For a better insight, we consider the neuron to be silent (not

firing) if its mean FPT is greater than 10 s. We observe that

for some values of r, there exists a range of values of l
(colored in grey in the plots) such that the neuron described

by the Feller process is silent, while the one described by

the IGBM process is not. This range becomes wider for

decreasing values of r (see Fig. 4 for r¼ 2 mV=
ffiffiffiffiffiffi
ms
p

or

r¼ 1 mV=
ffiffiffiffiffiffi
ms
p

). For increasing values of r the situation

starts to get reversed and the corresponding range is colored

in red. In other words, both functions EF½T� and EG½T� grow

for decreasing l but with different speeds and this generates

the gap between the mean FPTs.

To explain better this difference, the relative distance

jEG½T� �EF½T�j=ðEG½T� þEF½T�Þ is plotted in Fig. 5 as a

function of l for the same values of r as in Fig. 4. The values

of l0 for which the relative distance is zero are the points of

intersection in Fig. 4 (not shown for r¼ 1 and 2 mV=
ffiffiffiffiffiffi
ms
p

due

to the limit of 10 s) and are marked by special points in Fig. 5.

For l smaller than l0, the relative distance grows quickly to 1

for all values of r. For l greater than l0, the maximum dis-

tance between the curves decreases as r increases.

The asymptotic variabilities alone cannot explain all the

features of the mean FPTs. First of all, the points l0 and l�

do not coincide; the values of l0 are smaller than those of

l�. Moreover, the values of l0 increase with r, while the val-

ues of l� decrease (cf. colored points in Fig. 5). In contradic-

tion with the intuitive expectation that higher variability

implies shorter FPT, we see values of l such that the mean

FPT of IGBM is smaller than Feller’s one although the corre-

sponding Feller’s asymptotic variance is higher (for instance

compare Figs. 3 and 4 in the case r¼ 2 mV=
ffiffiffiffiffiffi
ms
p

and

l ¼ �0:6 mV/ms). The explanation can be found in the pro-

file of the stationary distribution of Yt from Eqs. (13) and

(21) (Fig. 6). We see that the probability that the IGBM pro-

cess reaches depolarization 10 mV or more is higher than

that of the Feller process, even if the Feller process has

higher asymptotic variance (top right of Fig. 6).

Finally, the role of h is investigated showing EF½T�
and EG½T� as functions of l for two different values of h in

Fig. 7. For both processes, the mean FPT is bigger if h is

smaller. VarF½Y� and VarG½Y� are small for small h and the

processes do not move far away from the asymptotic mean

FIG. 4. Mean FPT as function of l for Feller (dashed lines) and IGBM (solid

lines) processes for y0 ¼ 0 mV, VI ¼ �10 mV, S¼ 10 mV, h¼ 5 ms, r¼ 1; 2

and 2.6 mV=
ffiffiffiffiffiffi
ms
p

. The regime is subthreshold if l < 2 mV/ms. We consider

only times smaller than 104 ms (4 in the log-10 scale). The range of l such that

the neuron described by the IGBM process fires in mean within 10 s and the

one described by Feller does not is colored in grey. For r ¼ 2:6 mV=
ffiffiffiffiffiffi
ms
p

, the

situation is the opposite and the corresponding range of l is colored in red.

FIG. 5. Relative distance jEG½T� �EF½T�j=ðEG½T� þEF½T�Þ as a function

of l for y0 ¼ 0 mV, VI ¼ �10 mV, S¼ 10 mV, h¼ 5 ms, and three different

values of r: 2.6 (dotted black line), 2 (dashed red line), and r¼ 1 mV=
ffiffiffiffiffiffi
ms
p

(solid blue line). In order to compare the values l0 and the values l�

obtained in Fig. 3, we use points with different shapes and colors.
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level (lh). This implies that if the regime is subthreshold the

crossings are more rare, asymptotically for h! 0 the mean

FPT is þ1. The width of the range of l such that the Feller

process is silent while the IGBM is not decreases as h
increases, similarly to what happen for increasing r.

We conclude stressing that the formulas of the asymp-

totic variances of the voltage and the mean FPTs of the two

models were compared with the corresponding quantities

obtained via simulations, confirming the validity of the ana-

lytical expressions. To simulate Eq. (1), we used the follow-

ing Milstein’s scheme of discretization61

Yn ¼ Yn�1 þ �Yn�1

h
þ l

� �
Dtþ aðYn�1ÞDWn�1

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðYn�1Þ

p
ðaðYn�1ÞÞ0 ðDWn�1Þ2 � Dt

h i

that is a generalization of the Euler-Marayuma discretization

scheme used when the function að�Þ depends on Yt.

IV. CONCLUSION

Two stochastic models describing the membrane depo-

larization and spike generation were compared. Both are

driven by the same deterministic force but differ in the form

of multiplicative noise. If the deterministic part of the model

dominates, in the suprathreshold regime, both models

exhibit similar behavior. The differences appear to be sub-

stantial in the subthreshold regime. There we observe that

due to the different tails of the asymptotic distributions of

the two processes, higher variability reflected by the second

statistical moment does not always imply shorter mean FPT.

The novel formulas were proposed for the precise evaluation

of the mean FPT of the two processes. These expressions

constitute a general result and can be used in other applica-

tions beyond that considered in this paper. Generalization to

other forms of the multiplicative noise and investigation of

the higher FPT moments will be the subject of our future

work.
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APPENDIX A: THE EXPRESSION OF THE MEAN OF T
FOR THE FELLER PROCESS

In order to use Eq. (8), we need to calculate the deriva-

tive of g�ðbÞ given by

g�ðbÞ ¼ Uða; b; cðy0 � VIÞÞ
Uða; b; cðS� VIÞÞ

; (A1)

where

a ¼ bh; b ¼ 1

2r2
F

l� VI

h

� �
; c ¼ 1

2hr2
F

:

Since b¼ 0 implies a¼ 0 and Uð0; b; cðy0 � VIÞÞ ¼ 1, then

@g�ðbÞ
@b

���
b¼0
¼ g�ðbÞ

���
b¼0

@ ln g�ðbÞ
@b

���
b¼0
¼ @ ln g�ðbÞ

@b

���
a¼0

¼ @Uða; b; cðy0 � VIÞÞ
@a

@a

@b

�

� @Uða; b; cðS� VIÞÞ
@a

@a

@b

����
a¼0

¼ h
@Uða; b; cðy0 � VIÞÞ

@a

�����
a¼0

0
@

� @Uða; b; cðS� VIÞÞ
@a

�����
a¼0

1
A: (A2)

Moreover, the derivative of the Kummer’s function

Uða; b; zÞ with respect to a is such that62

FIG. 6. The stationary distribution of Yt from Eqs. (13) and (21) for y0 ¼ 0

mV, VI ¼ �10 mV, r¼ 2 mV =
ffiffiffiffiffiffi
ms
p

, h¼ 5 ms, and l ¼ �0:6 mV/ms. The

processes have the same asymptotic mean lh ¼ �3 mV, but the Feller pro-

cess has larger asymptotic variance than the IGBM process. In the zoomed

plot on the top right of the figure, we see that the probability that the IGBM

process reaches depolarization 10 mV or more is higher than that of the

Feller model.

FIG. 7. Mean FPT as a function of l for Feller (dashed lines) and IGBM

(solid lines) processes for y0 ¼ 0 mV, VI ¼ �10 mV, S¼ 10 mV, r¼ 1 mV=ffiffiffiffiffiffi
ms
p

, h¼ 5 (blue lines), and 15 ms (red lines) in the subthreshold regime

for h¼ 5 ms, while the two regimes are separated by the black vertical line

for h¼ 15 ms. The value b ¼ 2V2
I

hr þ 2 2 Z for r¼ 1 or r¼ 2 mV=
ffiffiffiffiffiffi
ms
p

and

h¼ 5 ms and thus some care must be taken (see Appendix C).
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@Uða; b; zÞ
@a

���
a¼0
¼ z

b
2F2ð1; 1; 2; bþ 1; zÞ: (A3)

Equations (A2), (A3), and (8) taken together imply Eq. (17).

APPENDIX B: THE LAPLACE TRANSFORM OF T FOR
THE IGBM PROCESS

The general solution of the Siegert’s equation (9) with

aðy0Þ ¼ rGðy0 � VIÞ is given by

g�ðbÞ ¼ Aðy0 � VIÞ�aU a; b;
c

y0 � VI

� �

þ Bðy0 � VIÞ�aW a; b;
c

y0 � VI

� �
; (B1)

with

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4

G þ 4
1

h
þ 2b

� �
r2

G þ
4

h2

s
� 2

h
þ r2

G

� �
2r2

G

;

b ¼ 2

hr2
G

þ 2aþ 2; c ¼ 2

r2
G

l� VI

h

� �
;

and A;B 2 R. Moreover, the condition g�ðbÞ < þ1 for any

y0 implies that g�ðbÞ < þ1 also for y0 ! VþI . The term

c=ðy0 � VIÞ ! 1 for y0 ! VþI and since the asymptotic

behaviors of U and W are such that63

Uðu; v; xÞ ¼ CðvÞ
CðuÞ e

xxu�vð1þ Oðx�1ÞÞ

Wðu; v; xÞ ¼ x�uð1þ Oðx�1ÞÞ;

the coefficient A must be equal to zero. Finally, the condition

g�ðbÞ ¼ 1 for y0 � S implies that

B ¼ ðS� VIÞa
1

W a; b;
c

S� VI

� � :

Applying the above considerations on the coefficients A and

B to Eq. (B1), one obtains Eq. (22).

APPENDIX C: THE EXPRESSION OF THE MEAN OF T
FOR THE IGBM PROCESS

The Tricomi’s function Wða; b; zÞ can be represented in

terms of the Kummer’s function Uða; b; zÞ for b 62 Z and

their derivatives with respect to a are in the following

relation:55

@Wða;b;zÞ
@a

���
a¼0
¼�wð1�bÞþCðb�1Þz1�b

	Uð1�b;2�b;zÞþ@Uða;b;zÞ
@a

���
a¼0

; (C1)

where wðxÞ ¼ C0ðxÞ=CðxÞ is the digamma function. Taking

together Eqs. (C1) and (A3) and the definition of Kummer’s

function, from Eq. (25), one obtains Eq. (26). The relation

formula between Uða; b; zÞ and Wða; b; zÞ holds only for

b 62 Z; if b 2 Z, Eq. (26) is intended as taking the following

limit:

Wða; b; zÞ ¼ lim
�!0

Wða; bþ �; zÞ:
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