POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Model for Automated Cybersecurity Threat Remediation and Sharing

Original

A Model for Automated Cybersecurity Threat Remediation and Sharing / Settanni, F; Regano, L; Basile, C; Lioy, A. -
STAMPA. - (2023), pp. 492-497. (Intervento presentato al convegno 2023 IEEE 9th International Conference on
Network Softwarization (NetSoft) tenutosi a Madrid (Spain) nel June 19-23, 2023)
[10.1109/NetSoft57336.2023.10175486].

Availability:
This version is available at: 11583/2982940 since: 2023-10-11T10:14:48Z

Publisher:
IEEE

Published
DOI:10.1109/NetSoft57336.2023.10175486

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

15 May 2024



A Model for Automated Cybersecurity Threat
Remediation and Sharing

Francesco Settanni, Leonardo Regano, Cataldo Basile, and Antonio Lioy
Dipartimento di Automatica e Informatica
Politecnico di Torino
Torino, Italy
name.surname @polito.it

Abstract—This paper presents an approach to the automatic
remediation of threats reported by Cyber Threat Intelligence.
Remediation strategies, named Recipes, are expressed in a close-
to-natural language for easy validation. Thanks to the developed
models, they are interpreted, contextualized, and then translated
into CACAQO Security playbooks, a standard format ready for
automatic enforcement, without human intervention. The pre-
sented approach also allows sharing of remediation procedures on
threat-sharing platforms (e.g. MISP) which improves the overall
security posture. The effectiveness of the approach has been
tested in the context of two EC-funded projects.

Index Terms—Network Functions Virtualization, Automated
Risk Remediation, Threat Sharing

I. INTRODUCTION

The threat landscape has evolved over time, and today’s
threats are far more sophisticated and complex than previously
seen. The number of new threats in the wild is increasing
as never before. Commoditized exploits expand the base of
actors able to use complex techniques and tools to perform
highly targeted attacks. Organizations are quickly transitioning
to full-fledged distributed environments, driven by the advent
of flexible networking paradigms, like cloud computing and
software networks. While offering many management and cost
advantages, this transition expands the attack surface.

In the meanwhile, research has improved the accuracy of
monitoring systems. Threat Intelligence (TI) tools, which are
outside the scope of this paper, monitor the information system
and use advanced Al techniques to detect threats. Discovered
threats are passed as security bulletins, named TI Reports
(TIRs), broadcast to security operators or tools devoted to
mitigating the risks associated with detected threats. Threats
could be constantly monitored, and TI could be used for
establishing security prevention and detection measures, thus
adopting a proactive stance.

However, this information cannot be properly and quickly
consumed because tool support currently lacks [1]. Having
highly skilled security operators handling cybersecurity risks
and TIRs within organizations is imperative. Still, the industry
is plagued by a persistent personnel shortage which hinders
efforts to improve and advance all aspects related to cyberse-
curity management [2], [3].

The need for automation in all IT security management is
underscored from these premises. Many daily security opera-
tions, such as alert detection, triage, and incident response, can

be synthesized as a set of procedures, consisting of repetitive
actions that, once validated and approved, could be easily
automated, thus freeing security operators from specific duties
and guaranteeing human supervision for those operations in
which liability is required.

This research aims to design a Remediation Module (ReM),
a tool that recommends remediation Recipes, which are se-
quences of actions to mitigate risks from network-centred
threats discovered by TI. The actions include:

« information gathering (e.g., discovering the security con-
trols in the operation landscape, exploring network con-
nectivity);

« modifying the operational environment (e.g., adding new
security controls to shield threats, changing the routes to
force inspection of malicious traffic); and

o changing (network) security policies (e.g., adding new
filtering rules to allow or block attackers’ packets).

Recipes and their actions are represented in an abstract
domain-specific language for reuse in different contexts and
operational environments. They use a human-readable syntax
to be easily validated and integrated into low-code settings
while, at the same time, retaining consistency with commonly
used security workflow constructs and unambiguity. The ReM
tool interprets TIRs and proposes recipes based on their
estimated effectiveness. Once selected, automatically or after
explicit approval by security administrators, abstract recipes
are instantiated on the operational environment as a workflow
of concrete security actions. Both abstract recipes and concrete
workflows are suitable for sharing, enhancing the automation
of threat response with respect to classical TI feeds, which are
often limited to basic low-level artifacts,.

To this aim, the contributions of this paper are:

o a meta-model for specifying Recipes and the abstract
actions they entail,

e a playbook model to represent actionable remediation
workflows and actions extending the taxonomy of the
CACAO Security Playbook standard,

o an Interpreter that refines the abstract Recipes and pro-
duces actionable playbooks based on the operational
environment (in our case a network), and

e a Deployment engine that actually applies the concrete
actions according to the playbook, enforcing new policies



and security features, or modifying the landscape,

« then we expand the MISP objects data model with the
Remediation object, allowing for the sharing of actionable
remediation procedures through the MISP platform.

The remainder of this work is organized as follows. In Section
II, we sketch the landscape of threat remediation and sharing,
illustrating some related works. Section III describes formal
models behind the remediations and Section IV shows our ap-
proach for sharing actionable playbooks. Section V describes
the preliminary evaluation. Finally, in Section VI, we draw
conclusions and highlight future works.

II. BACKGROUND

Our work relies on parallel efforts emerging both at the
standardization and research level on collaborative cyber threat
intelligence sharing. The following subsections will expand
upon the concepts on which our research results are based.

A. Cyber Threat Intelligence Sharing

One of the leading efforts on CTI sharing is the MISP threat-
sharing platform [4]. The project’s main objective is fostering
and improving the way in which cyber threat intelligence
is used throughout security activities, from threat hunting,
vulnerability and risk assessments to incident handling.

MISP serves as a hub for gathering and sharing of CTI data,
and its holistic approach includes automated data processing
throughout the entire lifecycle, from creation to utilization for
activities like threat detection, mitigation, and correlation.

Adopting common data schemas is crucial for the successful
implementation of CTI sharing. To this end, MISP provides
a flexible data schema for representing, categorizing, and
contextualizing information stored and shared through the plat-
form. It features multiple data models: Core Format, Objects,
Taxonomies, and Galaxies. The last two can be used to aggre-
gate and model diverse data, for example, based on national
or internal company classifications. The Core Format defines
schemas for events and attributes, for representing individual
threat related data points. MISP Objects expand on this by
allowing the representation of complex relationships between
attributes, providing a detailed and structured description of
CTI information. The data models are flexible since they can
be expanded with external templates.

B. Remediation procedures

Efforts related to the sharing of threat remediation proce-
dures, up until now, remained particularly fragmented. This
is due to the lack of commonly agreed formats and schemas
both for the sharing and for the actual actionability of the
information shared. Big vendors compete on closed solutions
in the field of incident response and have no incentive to stick
to a commonly agreed approach. Many smaller-scale solutions
are beginning to appear, pushing for standardised methods for
the sharing and usage of such information.

Various proposals have been made for effective ways to
document, process, share, and operationalize security pipelines

and incident response. One of those approaches is Play-
books [5]. As Koulouris et al. state [6], playbooks provide
a systematic way to formalize incident response strategies,
removing the guesswork from even seasoned analysts. They
enable strategies to be documented, communicated and shared
between teams and individual analysts in an organized fashion,
facilitating better evaluation (and development) of techniques
and more effective knowledge transfer. Shaked et al. proposed
a formal, model-based approach for the design of cybersecurity
incident response playbooks [7] and provided a tool prototype
demonstrating how it can be leveraged to model and examine
security playbooks. The CACAO Security Playbook standard
is one such step in the right direction. In our view, although
some improvements are still required, it is one of those formats
suitable to the aforementioned requirements. At this end,
Mavroeidis et al. proposed a MISP object template to enable
the sharing of security playbooks and directly maps the meta-
data of the CACAO playbook template [8].

C. Modelling security controls features

This work relies on Security Capability Model (SCM), a
formal model of the features security controls provide for
helping enforce security policies proposed by Basile et al. [9].
This model, which expands the work of the IETF [2NSF WG,
aims to provide a standard way to describe security controls
based on their abstract security capabilities (e.g., the conditions
and actions they provide for writing configurations regardless
of the language syntax). Starting from the security capabilities
associated with security controls, it is possible to generate their
abstract configuration languages. Then, SCM also provides
means to translate policies written in the abstract configuration
language into the actual configuration settings.

The SCM allows the specification of security policies in-
dependently from the target security control languages and at
the same time guarantees the possibility to generate ready-to-
deploy configurations. Therefore, it has been leveraged in the
remediation framework proposed in this paper.

III. REMEDIATION PROCEDURES

The workflow in Fig. 1 summarizes the approach presented
in this paper. It starts from an abstract representation of a
remediation strategy, the Recipe, which is independent of the
operational environment where it will be applied. Recipes
are easy to read and understand for easy validation and
sharing. To be enforced, a Recipe must be transformed into a
representation usable for remediation enforcement. This task
is performed in two steps. First, an Interpreter refines a Recipe
into a Security playbook, a workflow of machine-readable re-
mediation instructions written according to a playbook model
extending CACAQ. Then, a Deployment Engine (DE) refines
the Security playbook into a set of Enforcement instructions.
These instructions include the configurations for the security
controls available in the operational environment. When the
operational environment does not own all the controls for the
proper enforcement of the remediation, the instructions include
directives to change the network topology, e.g., by adding



1
2
3

4

W

10
1

12

777777777777777 i High-level security
) procedure

Recipe meta-model
lIiHHHHHHIII
Playbook model *

. I
i Security playbook !
s ’

Network landscape
Security
capability model

Playbook modeling,
parsing, and
enriching

Internal actionable
representation

Refinement of
security actions

\
Enforcment !

New policies and
landscape changes

instructions | to be deployed

Fig. 1. Remediation workflow

list_paths from impacted_host to 'attacker'
iterate_on path_list
find_node of type 'firewall' in iteration_element with

'level_4_filtering'
if not found
add_firewall behind impacted_host in iteration_element
with 'level 4_filtering'
add_filtering_rules rules_level_4 to
allow_traffic between impacted_host and
'investigation_host' at new_node

new_node

else

add_filtering_rules rules_level_4 to found_node

end_if
end_iteration

Fig. 2. A recipe for enforcing packet filtering policies

a new security control NSF or moving nodes in different
positions. To this end, the DE leverages the description of the
operational environment from a network perspective, the Net-
work Landscape (NL), which in our use cases is a graph-based
representation of an SDN+NFV software network. Moreover,
the DE accesses information about the Security capabilities
available in NL, that is, the security features enforceable with
the security controls available, formally specified according to
the SCM (see Section II).

The persistence of the data is ensured by a Knowledge
Base (KB) that stores the available high-level remediation
in the form of Recipes, which security practitioners can
prepare beforehand, directly actionable security playbooks,
and enforcement instructions. The KB is structured to allow
inferring behaviours and appropriate response strategies for a
given threat. For this reason it also stores information about
threats, attacks, and other CTI, which can originate from
internal threat-hunting activities or, more importantly, from
threat intelligence feeds.

A. Recipes and their meta-model

Remediation procedures are strategic information that can
conceptually be placed at the highest levels of the cyber
threat intelligence pyramid of pain since they increase the
operability of shared CTI by enabling automated exploitation
of it. Recipes, used to represent remediation strategies, are
described using a domain-specific language (DSL), according
to the Recipe meta-model grammar.

Recipe:
statements+x=Statement;

Statement:
(SecurityAction | ConditionFlowConstruct
IterationFlowConstruct | ... );

IterationFlowConstruct:
'iterate_on' iterationExpression=VarReference
statements+=Statement
'end_iteration';

SecurityAction:
(ListPaths | FindNode | AddFirewall | AddFilteringRules |
AllowTraffic | AddDnsPolicy | AddHoneypot | MoveNode |
AddNetworkMonitor | Execute | Shutdown | Isolate | ... );
AllowTraffic:
'allow_traffic'
(('between' firstNodeExpression=VarReferenceOrString)
('and' secondNodeExpression=VarReferenceOrString)
('at' firewallNodeExpression=VarReferenceOrString));

Fig. 3. Recipe meta-model grammar excerpt

The Recipe meta-model adopts a semantic scheme com-
posed of flow constructs and Statements expressing a reme-
diation action (see Fig. 3). Each Statement is declared using
an Action identifier, its unique name, and a set of arguments.
Arguments enrich actions with context instructions like static
values (e.g. *level_4_capability’), or variables whose
value will be concretized by the Interpreter.

For example, the firewallNodeExpression variable
indicates the identifier of the firewall, among the ones in the
network, that will enforce the required policy. Furthermore, an
action to determine if a specific network device is present in
a network path will yield a Boolean variable named found.
Variables do not have a strict type, but they can be inferred
from the name and possibly from the context to which they
belong. More structured values can also be handled but should
be declared outside of the Recipe, directly into the memory
store, which we chose to avoid jamming the lightweight syntax
of Recipes with heavy declaration blocks.

Each action is associated with a function invoked to execute
a job by interfacing with certain ReM engine capabilities.
In the previous example, the function gathers information
regarding the network topology by interfacing with the NL.

Some of the action arguments are mandatory for executing
the action function, they are named enabling constraints. For
instance, it is impossible to protect a victim without knowing
its IP address or any reference. Together with the enabling
constraints, other arguments are used to make decisions on
the most appropriate Recipe for a specific threat.

The DSL has been developed leveraging the fextx meta-
language and the Arpeggio PEG parser with ‘no grammar
ambiguities’ and ‘unlimited lookahead’ features [10]. The
minimal syntax allows for expressing remediation workflows
as close as possible to natural language. This is a valuable
feature as an easily readable mechanism to document incident
response measures may shorten the time frames when escala-
tion between security levels is needed.

The meta-model aligns with existing security playbook
description formats, as in the end, Recipes will be translated
into security playbooks that are both machine-readable and



actionable. For instance, providing a way to define sequences
of steps in a security procedure through flow constructs,
implementing branching logic aligned with the CACAO Secu-
rity Playbook specification. Moreover, it also provides a new
declarative pattern for iteration, a “for each” construct that
applies a given list of functions or security operations to each
item of the collection passed to it.

The Recipe meta-model has been completed with pre-
defined security actions, which emerged in our network and
host-based threats use cases. These actions have been designed
to be abstract enough to be deployed in multiple operational
environments as they are irrespective of the vendor-specific
security solutions adopted. They range from those typical of
SDN environments, such as network segmentation, blocking
links, monitoring, quarantining, or isolating hosts [11] [6], to
features and orchestration capabilities of NFV infrastructures,
like instantiating new NSF security controls to dynamically
scale the available security features based on the current secu-
rity needs. New security actions can be easily declared into the
Recipe meta-model. The only requirement is the definition of
corresponding functions that implement the needed behaviour
when the deriving playbook is deployed.

Fig. 2 presents a Recipe that mitigates the risks from an
infected host, recognised by its I[P impacted_host_1IP, as
reported by a Threat Intelligence report. The actions forbid
the infected host to communicate with the attacker host (i.e.,
the C2 of a botnet) and specify that if there are no packet
filters to block this communication, a new one must be added
before the victim. At the same time, it states that the defenders’
host must reach the infected machine for further investigation
(investigation_host), as the current policy or the new
packet filter may prevent them from reaching it.

B. Security playbooks

While Recipes are better abstract, as they need to be written
and understood by humans, our security playbooks are a
machine-readable way to share remediation strategies and
deployment constraints. This approach aligns with the Threat
Intelligence sharing best practices, emphasising the importance
of sharing higher-level information alongside raw artifacts.

The playbooks used in our work are represented according
to a playbook model defined in compliance with the CA-
CAO v1.0 for interoperability. Our playbook model extends
the CACAO “Action” functionality to confer complete ac-
tionability. Indeed, as Shaked et al. report in their analysis
[7], as of now, the CACAO standard falls short of provid-
ing consistent structural atomicity for actions comprising the
workflow steps, thus making it difficult for different engines
to interpret the workflow and deploy the playbook. Hence, to
ensure actionability, each workflow step is associated with two
new attributes that enrich the CACAO open vocabularies.

The first attribute is used for the Target type (target-type-ov),
called recipe—-deployment—engine, which indicates the
actuator to be used for a given command or action of the
workflow, the second one to the Command type (command-
type-ov), called recipe-security—-action, which iden-

tifies the Recipe specification for the individual commands.
To comply with the CACAO standard normative, an Extension
Definition accompanies the playbook, with a correct specifi-
cation of our schema. Finally each element of the playbook
employing it will simply reference the extension by its ID.

C. Translation and refinement

The Interpreter is tasked with generating a playbook which
complies with the Recipe coming as input according to the
Recipe meta-model and Playbook model (see Section III-B).
The interpreter gathers data to contextualize Recipes from the
internal KB (e.g., victim and attacker data), then use them
to generate the playbook. To this end, the collected data are
organized semantically by means of an object-oriented model
that enriches the CACAO model specification where each
security action and flow construct inherits from generic Action
and Flow classes. For instance in the Recipe shown before,
Fig. 2, the action (1ist_paths from impacted_host
to ‘attacker’) has only one enabling constraint, the
impacted host (impacted_host).

The task of generating ready-to-enforce configurations is
performed by the DE, which is capable of interpreting Play-
books and complementing them with the information from the
target operational environment, gathered from its formal repre-
sentation, to make remediations practical. The DE completes
the information of each workflow step as per the concepts
defined in the Recipe meta-model and then it executes the
functions associated with each action.

Indeed, how the DE carries out a given action in the
Playbook depends on the action itself and on its function.
Some actions may simply query the abstract representation of
the operational environment, looking for edges and nodes (e.g.,
identifying attackers and victims in the network layout and the
paths between them), checking the security features owned by
the security controls, and also instantiating other state variables
used by the next instructions. In other cases, it may run a
branching flow, explore the network graph connectivity, or
enforce a given high-level policy.

The DE exploits the action arguments, which are dynami-
cally typed. Thanks to this feature, playbook behaviour can be
directly specified working on the action class and the DE can
understand argument semantics, e.g., it can match the correct
host regardless of whether the specifier is an IP address, a
DNS hostname, or some other accepted univocal identifier.
We opted for maximum flexibility at the playbook level, as
the CACAO standard is currently lacking a comprehensive
normative coverage for artifact handling and specification as
highlighted in past survey [1].

When playbooks provide instructions to configure security
controls, these are not specified using their actual configuration
languages. Configuration instructions are represented using
abstract configuration languages specified according to the
Security Capability Model. Therefore, the DE exploits the
translation abilities of the SCM for refining abstract configura-
tions into actual configurations for the target security controls.



Directly applicable
to security controls

Low-level
configuration

Requires environment
information

Refinement
process

Fig. 4. Security action refinement

Security playbook

Security action

"security-action": {
"description": "The security action used in the
playbook conforming to the Recipe format",
"disable_correlation": false,
"misp-attribute": "text",
"multiple": true,

}

Fig. 5. Excerpt of an attribute of the MISP Remediation object template

Moreover, the DE accesses the catalogue of VNFs and
NSFs. This catalogue is helpful to identify security controls
that can be deployed on demand on the Network Landscape
when the interpretation of the playbooks highlights that some
features needed for the remediations are missing. Hence, the
result of some of these instructions may produce commands
for the virtualized network environment (add nodes, move
nodes) or abstract representations of the rules that need to
be enforced by the selected security controls, see Fig. 4.

IV. REMEDIATION SHARING AS CTI

Remediation recipes and deriving security playbooks open
up the possibility of sharing threat remediation procedures and
CTI data, conferring actionability alongside them. However,
sharing is only possible if there are standard exchange modal-
ities and formats, and this format is expressive enough to allow
actionability. The next sections present an analysis of the state
of art and the solution adopted in our work.

A. Sharing actionable remediations through MISP

To ensure a strong security posture is imperative to integrate
CTI into the security management pipelines, including threat
response. However, the sharing of CTI is plagued by incon-
sistencies and a lack of quality data, and is often limited to
low-level artifacts, such as IoCs. Actionability of shared CTI is
one fundamental aspect that has been missing, and remediation
sharing in the form of playbooks is one of the efforts in this
direction. In this sense, the MISP platform can be leveraged
to implement and integrate missing features.

The MISP data models currently provide multiple ways to
enable the sharing of such information. Hence, we analysed
them to verify the possibility of properly using them for
sharing remediations in the form of security playbooks.

Two MISP objects are the most suitable for sharing security
procedures. The first, named Course of action, comes with a
limited set of parameters reported in Table I, which can be
used to attach some high-level metrics and labels to a text-
based description of the security procedure. From a thorough
assessment of the two models, the Course of Action appeared
inappropriate for our needs as it is too generic, is not intended

to specify structured procedures, and is unsuitable for carrying
specific formats, e.g., JSON for the CACAO standard.

The second, named Security playbook [8], has been only
recently added and accurately mirrors the CACAO standard
metadata specification. It comes with several fields that specify
temporal information related to the playbook (see Table I),
such as the validity, creation, and modification time. Moreover,
it also provides two fields to embed the actual playbook
in its original format as a Base64 encoded string or as a
MISP attachment attribute (i.e., playbook-base64 and
playboook-file).

B. Adding the MISP Remediation object

The MISP Security playbook object perfectly matches the
schema of the playbooks we intend to use. However, our play-
books conforming to (and extending) the CACAO standard
come with additional requirements to provide complete ac-
tionability. For instance, the enforcement of security policies,
configurations, and landscape changes is bound to a particular
Security action. This behaviour is currently missing from the
CACAO standard, which simply permits the declaration of
command types. Consequently, such parameters also miss in
the MISP Security Playbook. Hence, we proposed a new
object template for the MISP data model named Remediation,
extending the Security Playbook object, to include a set of
attributes that allow the sharing of more precise information
and correlation of different types of security procedures.

The attributes in this object can be used to enrich the MISP
object envelope with information from the inner playbook,
enabling native event correlations at the MISP level. For
instance, the security—action attribute, in Fig. 5, reports
the playbook actions, while the enabling-constraints
attribute the minimal required parameters for playbook de-
ployment. Table I presents the format of this object, report-
ing only some relevant additional fields against the Secu-
rity Playbook object. One of the most relevant attributes is
security-capability which reports the security fea-
tures required by an actuator, also security control, aimed
at enforcing the security actions in the playbook, according
to SCM [9]. Moreover, we allow inserting auxiliary infor-
mation regarding the playbook, such as the number of steps
composing it, expected enforcement time, impacted services,
etc. In this way, we facilitate the integration and ingestion of
actionable playbook-based remediations into existing sharing
and security orchestration platforms and frameworks.

V. EVALUATION

The proposed approach has been evaluated in the context
of the Palantir and Fishy EC-funded projects. These projects
aim to develop unified cyber resilience frameworks, ensuring
security features across heterogeneous and often insecure ICT
infrastructures. Combining incident detection, recovery, and
knowledge sharing provides Security-as-a-Service (SECaaS)
for large enterprises and SMEs/ME:s.

Their use cases cover a broad range of realistic scenar-
ios, including a cloud-based infrastructure for autonomous



TABLE I
MISP CANDIDATE OBJECTS’ TEMPLATES

Security playbook

description, labels, organization-type, playbook-impact, playbook-base64,
playbook-creation-time, playbook-creator, playbook-type, playbook-id,
playbook-abstraction, playbook-modification-time, playbook-priority,
playbook-severity, playbook-standard, playbook-file, playbook-valid-from,
playbook-valid-until, revoke

Course of Action

description, cost, efficacy, impact, name, stage, type

Remediation (some relevant extension attributes)

recipe-version, security-actions, enabling-constraints,
deployment-parameters, security-capabilities, security-controls

vehicles, an agriculture-based supply chain, a hospital, and
industrial control systems. Moreover, to test the integration
and new features, both projects have developed synthetic
reference networks that are larger and more sophisticated than
the implemented test beds.

The projects have selected a set of threats detected by inter-
nally developed threat intelligence tools. We have discussed,
also with the test bed owners, potential remediation strategies
and transformed them into a set of Recipes added to the ReM
knowledge base. The Recipes have been presented to and
approved by the project experts.

Recipes were shared between the two projects for analogous
threats. Despite not being a complete validation of remediation
sharing, it proves that Recipes, being abstract and landscape-
independent, can be applied in an automated way to different
test beds from different projects where threats are discovered
with different means.

The validation tested the correctness of the entire ReM
workflow. Starting from a knowledge base containing several
recipes, the ReM received TIRs broadcast through brokers
(RabbitMQ and Kafka) and then orchestrated the entire in-
cident handling life cycle in an automated way.

All the remediations were evaluated according to the data
in the knowledge base; the ones with satisfied enabling con-
straints were scored according to an estimated mitigation im-
pact. Once the remediation is selected (in Fishy, this decision
is made manually by an operator evaluating a set with best
remediations, in Palantir, the decision is automatic), the Recipe
is first converted in a Security Playbook that is later refined
into configurations and landscape changes. The final CACAO-
compliant security playbook is encapsulated in a MISP event
as a MISP Remediation object, to be shared as CTL

Experts have manually validated the effectiveness scores.
Moreover, after applying the remediation actions, the test
bed owners (manually) checked that the threats were actually
mitigated, hence proving the correctness of the transformation
process and the effectiveness of the proposed Recipe.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a model for describing, enforcing, and
sharing remediation procedures. Remediations abstract from

the actual infrastructure and available security controls. They
can hence be applied to generic operational environments like
SDN-enabled software networks. Remediations can also be
shared as part of CTI feeds, enhancing the actionability of
shared information and promoting the adoption of threat in-
telligence and response automation in security-sensitive envi-
ronments. Future research will focus on integrating frequently
handled CTI artifacts into the Recipe and playbook model
using an ontology, transitioning our KB to a STIX-compliant
graph-based taxonomy. This will require extending the ReM’s
custom formats with tailored custom STIX objects. Moreover,
a reasoner that accesses the MITRE ATT&CK framework data
can help select (and build) more tailored remediation strategies
on a per-alert basis, and also adapt pre-existing solutions
using Large Language Models. This work presents difficult
challenges, including modelling remediation objectives and
when they have been met as well as potentially unwanted
behaviours that deviate from the desired course of action.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme, under
projects PALANTIR (Grant Agreement No. 883335) and
FISHY (Grant Agreement No. 952644).

REFERENCES

[1] D. Schlette, M. Caselli, and G. Pernul, “A comparative study on cyber
threat intelligence: The security incident response perspective,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2525-2556,
2021.

[2] B. J. Blazi¢, “The cybersecurity labour shortage in europe: Moving

to a new concept for education and training,” Technology

in Society, vol. 67, p. 101769, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0160791X2100244X

(ISC)2, “Cybersecurity workforce study,” 2022. [Online]. Avail-

able:  https://www.isc2.org//-/media/ISC2/Research/2022-WorkForce-

Study/ISC2-Cybersecurity-Workforce-Study.ashx

[4] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “Misp: The
design and implementation of a collaborative threat intelligence sharing
platform,” Proceedings of the 2016 ACM on Workshop on Information
Sharing and Collaborative Security, 2016.

[5] A. Applebaum, S. Johnson, M. Limiero, and M. Smith, “Playbook
oriented cyber response,” in 2018 National Cyber Summit (NCS), 2018,
pp. 8-15.

[6] T. Koulouris and M. Casassa-Mont, “Sdn 4 s :

networking for security,” 2017.

A. Shaked, Y. Cherdantseva, and P. Burnap, “Model-based incident

response playbooks,” in Proceedings of the 17th Int. Conf. on

Availability, Reliability and Security, ser. ARES °22. New York, NY,

USA: Association for Computing Machinery, 2022. [Online]. Available:

https://doi.org/10.1145/3538969.3538976

[8] V. Mavroeidis, P. Eis, M. Zadnik, M. Caselli, and B. Jordan, “On the

integration of course of action playbooks into shareable cyber threat

intelligence,” in 2021 IEEE Int. Conf. on Big Data (Big Data), 2021,

pp. 2104-2108.

C. Basile, D. Canavese, L. Regano, I. Pedone, and A. Lioy, “A model of

capabilities of network security functions,” in 2022 IEEE S8th Int. Conf.

on Network Softwarization (NetSoft), 2022, pp. 474-479.

[10] I. Dejanov¢, R. Vaderna, G. Milosavljevi¢, and 7. Vukovid,
“Textx: A python tool for domain-specific languages implementation,”
Knowledge-Based Systems, vol. 115, pp. 1-4, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705116304178

[11] F. Patzer, A. P. Meshram, and M. Hess, “Automated incident response
for industrial control systems leveraging software-defined networking,”
in Int. Conf. on Information Systems Security and Privacy, 2019.

[3

=

Software defined

[7

—

[9



