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ABSTRACT
Central Limit Theorems have a fundamental role in statistics and in

a wide range of practical applications. Themost famous formulation

was proposed by Lindeberg–Lévy and it requires the variables to

be independent and identically distributed. In the real setting these

conditions are rarely matched, though. The Lyapunov Central Limit

Theorem overcomes this limitation, since it does not require the

same distribution of the random variables. However, the cost of this

generalization is an increased complexity, moderately limiting its

effective applicability. In this paper, we resume the main results on

the Lyapunov Central Limit Theorem, providing an easy-to-prove

condition to put in practice, and demonstrating its uniform con-

vergence. These theoretical results are supported by some relevant

applications in the field of big data in smart city settings.

CCS CONCEPTS
• Theory of computation → Design and analysis of algorithms;

• Information systems→ Information systems applications; Mo-

bile information processing systems.
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1 INTRODUCTION
Central limit theorems (CLTs) cover a central role in statis-

tics and still attract interest (see [1, 2]). The most used ver-

sion is the Lindeberg–Lévy theorem, which asserts that a se-

quence of independent and identically distributed random vari-

ables {X1, X2, . . . , Xn }, under the conditions of E[Xi ] = µ and
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Var [Xi ] = σ
2 < ∞ then,

√
n

n∑
i=1

( Xi − µ) converges to a normal

distribution N (0, σ 2
), where Xi =

n∑
i=1

Xi/n .

For this theorem, the convergence of the empirical cumulative

distribution function (cdf) to the standard normal cdf (reported as

Φ(x)) is uniform. Thus, the following statement holds:

lim

n→∞
supz∈R

�����Pr

[
√
n

( n∑
i=1

Xi − µ

)
≤ z

]
− ϕ

( z
σ

)����� = 0 (1)

It is worth noting that the Lindeberg–Lévy CLT is valid for both

discrete, continuous, and mixed random variables.

In the literature, there are several central limit theorems that

generalized the Lindeberg–Lévy theorem for non-identically dis-

tributed variables and for non-independent ones. Nevertheless,

they are not widely known and thus less applied. In particular, the

Lyapunov Central Limit Theorem does not require the identical

distribution of the random variables but it requires to check the

difficult Lyapunov’s condition. Therefore, it is mainly used in the-

ory and not in real applications. In this paper, we fill the gap by

summarizing the main results about the Lyapunov counterpart,

providing an easy-to-prove condition for its applicability and by

presenting some real world applications.

The paper is organized as follows. In Section 2, we report the

theoretical development by providing an easy-to-prove sufficient

assertion for the Lyapunov’s condition. Furthermore, we prove that

if such a sufficient condition holds, then the convergence of the

Lyapunov’s theorem is uniform. In Section 3, we apply the analysis

in a real setting, by also including a preliminary experimental eval-

uation that focuses on this setting. Finally, in Section 4 we present

the conclusion of the current work and possible future extensions.

2 THE LYAPUNOV CENTRAL LIMIT
THEOREM: EXTENSIONS TO UNIFORM
CONVERGENCE CONDITION

In this Section, we present the main results about the Lyapunov CLT

[3]. In order to clarify all the definitions, we recall the following

statement.

Definition 1. Fn → F means that for each x , Fn (x) → F (x). In
other words

∀x , ϵ > 0 ∃N such that |Fn (x) − F (x)| ⟨ϵ ∀n⟩ N (2)

For the sake of clarity, for a given ϵ , a value of N , making state-

ment in Eq. (2) true for some x , might not work for some other

x . However, the idea of uniform convergence implies that we can

choose N without any regard to the value of x . Thus, the concept
of uniform convergence is needed.
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Definition 2. Fn (x) converges uniformly to F (x) if for every
ϵ > 0 , there exists N such that |Fn (x) − F (x)| < ϵ for all n > N and
for all x .

It is clear that, in general, point-wise convergence does not imply

uniform convergence. However, the following theorem gives a

special case in which it does.

Theorem 1. If Fn (x) and F (x) are cdf’s and F (x) is continuous,
then the pointwise convergence of Fn to F implies uniform convergence
of Fn to F .

In order to introduce the Lyapunov CLT result we recall the

following definition.

Definition 3. Lyapunov’s Condition. If a sequence of indepen-
dent random variablesXk k = 1, . . . , n is such that E[Xk ] = µk < ∞,
E[(Xk − µk )

2] = σ 2

k < ∞, then for some δ > 0:

lim

n→∞

1

s2+δ
n

n∑
k=1

E
[
|Xk − µk |

2+δ
]
= 0 (3)

where s2

n =
n∑

k=1

σ 2

k > 0 the Lyapunov’s condition holds for

{Xk , k = 1, . . . , n }.

By using the Lyapunov condition it is possible to state the fol-

lowing known results.

Theorem 2. Lyapunov’s Central Limit Theorem. If the Lya-
punov’s condition holds, then for n → ∞,

1

sn

n∑
k=1

Xk − µk
d
→ N (0, 1) (4)

where sn =

√
n∑

k=1

σ 2

k and
d
→ indicates the convergence in distribution.

The proof of Theorem 2 is here omitted since it is out of the

scope of the paper, however the interested reader is referred to [3].

Condition in Eq. (3) is, in general, difficult to prove, hence we

recall an easier sufficient condition that holds for several distribu-

tions.

Theorem 3. Given a sequence of independent random variables
{Xk , k = 1, . . . , n } such that E[(Xk − µk )

2] = σ 2

k ≥ σ 2

k >

0 ∀ k holds and the centered 3-rd moments E[|Xk − µk |
3] = ηk ≤

ψ < ∞, then the Lyapunov condition holds

Proof. By considering the limit in (3) for δ = 1 we have

0 ≤ lim

n→∞

1

s3

n

n∑
k=1

E
[
|Xk − µk |3

]
= lim

n→∞

∑n
k η

3

k[∑n
k σ

2

k

]
2
≤ lim

n→∞

nη∗

n2σ 4

∗

→ 0 (5)

where η∗ = max

k
η3

k and σ 2

∗ = min

k
σ 2

k . Then, the Lyapunov condi-

tion holds.
In order to study the convergence of Theorem (2) we recall

another useful result, namely the Esseen inequality (see [4]).

Theorem 4. Esseen inequality. Let {Xk , k = 1, . . . , n }be in-
dependent random variables with E[Xk ] = 0, Var [Xk ] = σ 2

k > 0

and E[|Xk |3] = ηk < ∞ . Also, let

Sn =
X1 + X2 + · · · + Xn√
σ 2

1
+ σ 2

2
+ · · · + σ 2

n

(6)

Denote Fn the cdf of Sn , and Φ the cdf of the standard normal
distribution, then for all n there exists an absolute constant C0 such
that

supx ∈R |Fn (x) − Φ (x)| ≤
C0

∑n
k=1

vk√
(
∑n
k=1

σ 2

k )
3

(7)

Proof. see [5] and [6].
By using Theorem (5), it is possible to prove the following result.

Theorem 5. If a set of random variables {Xk }nk=1
with means µk ,

variances σ 2

k and 3-rd moments ηk is such that σ 2

k ≥ σ 2 > 0, ∀k and
ηk ≤ η < +∞, ∀k then the cdf of

Z1 + Z2 + · · ·Zn√
σ 2

1
+ σ 2

2
+ · · · + σn

2

(8)

where Zk = Xk − µk , converges uniformly to the standard normal
cdf.

Proof. The convergence to the standard normal distribution is
ensured by verifying the hypothesis of Theorem (3); furthermore, the
uniform convergence can be checked by using the Esseen inequality
to the variables Zk . In fact E[Zk ] = E[Xk − µk ] = 0, Var [Zk ] =
Var [Xk − µk ] = σ 2

k and finally

E
[
|Zk |

3
]
= E

[
|Xk − µk |

3
]
≤ E

[
|Xk |

3
]

+3E
[
|Xk |

2
]
µk + 3E [|Xk |] µ

2

k + µ
3

k < ∞

Remark 1. It is worth noting that the rate of uniform convergence
is 1√

n
. In fact,

supx ∈R
��Fn(x ) − Φ (x)

�� ≤ C0

∑n
k=1

vk√
(
∑n
k=1

σ 2

k )
3

≤
C0maxkvk√

minkσ
3

k

1

√
N

(9)

This rate does not depend by the nature of distributions. Thus, it
also holds for discrete and mixed distributions.

The concept of uniform convergence is important for several

applications. In particular, from 1, we know that the convergence

to the limiting distribution is
1√
n
. Hence, for a N sufficiently high

the simulation of a real case scenario can be done through the

asymptotic case, leading to an estimation of the error.

This is particular important in contexts such as stochastic pro-

gramming (see [7]), where small errors in the distribution can cause

huge economical losses (see [8]).

3 APPLYING THEORETICAL RESUTLS TO
BIG-DATA-POPULATED SMART CITY
SETTINGS

In this Section, we test the result of Section 2 by considering the

problem of approximating the number of people in a mobile phone

cell during a certain time interval. This need comes from the Coiote

project by TIM (Telecom Italia Mobile) and the ICT (Information

and Communication Technology) for City Logistics and Enterprises

Lab of Politecnico di Torino (see [9]). The goal of this project is to

develop a mobile phone application, enabling TIM to ask users to

share their Internet connection with smart sensors installed in the

dumpsters, according to the users’ positions in the mobile phone

cell. In this way, the sensors can transmit to a central server data
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regarding the collect amount of waste, and the company in charge

of the waste collection can plan the operations in an optimal way

(see [10]). In exchange for the Internet connection which users

share with the dumpster, TIM offers a reward. This is an example

of application of the more general social engagement paradigm,

reversing the usual direction of economic transaction in change of

rewards. More and more applications of these new business models

have been assuming central roles: some examples are the so-called

crowd-shipping and the opportunistic Internet of Things (oIoT),

respectively (e.g., [11-13]).

In particular, in crowd shipping, the company asks people to

carry packages from one point to another in the city. By including

enough people, it is possible to make the package reach the final

destination. Using these methods, the company can save part of

the cost of the standard workforce. Furthermore, it is likely that the

participants have already planned to do a similar trip, thus reducing

the environmental impact of travels. Among the several applications

of this business model, it assumes relevance the Walmart (a grocery

retailer) case, that asks in-store customers to carry packages to

on-line customers in exchange for discounts.

IoT aims to establish interactions between sensors-equipped ob-

jects, through Internet networks. Despite its novelty, this paradigm

is reshaping the world by offering a wide array of new applications

and services. Information provided by data gathered by these sen-

sors is of central importance for the development of smart cities,

because they enable both the public administration and private

companies to better provide their services and to more effectively

manage their offers and activities. However, the drawback of this

technology is about the requirements in terms of infrastructures

(i.e., 5G, 6G, etc.), in order to ensure the connection of a consid-

erable number of such items. An alternative approach to building

such network architectures is to ask people to share their internet

connection with the sensors, so that they could send data. This

model is called opportunistic IoT (oIoT).

Those applications have been considered in the stochastic op-

timization framework in [14, 15]. The mathematical model of the

problem deals with a minimization of the total amount of rewards,

while still performing all the needed tasks, statistically modelling

the locations of people in mobile network cells. Thus, a set of ran-

dom variables Xip is defined, for each single person p and each

time instant t such that:

Xip =

{
1, if person p is in cell i,

0, otherwise.
(10)

We assume that Xip ∀i,p are independent. This is due to two main

reasons: firstly, TIM can easily identify people with similar behavior

and exclude them for future calculation; secondly, the set of people

p is not the whole city population but just the people willing to be

involved in the TIM system. From the independence assumption,

θ · ·i (w) =
∑
p
Xip is distributed according to a generalized binomial

distribution (also known as Poisson binomial distribution). The

probability mass function of the generalized binomial distribution

is: ∑
A∈Fk

∏
i ∈A

pi
∏
j ∈Ac

(
1 − pj

)
(11)

where Fk is the set of all the subsets of k integers that can be

selected from 1, . . . ,n and Ac
is the complementary set of the set

A (the distribution of a sum of Bernoulli random variables with

different probabilities).

It is important to notice that we do not require that

I∑
i=1

Xip = 1

because person p can also be outside the city.

In an urban context, such as the one considered in this study, the

number of people can be huge, hence we can apply the Lyapunov

CLT.

Corollary 1. Given a set of Bernoulli’s random variables Xk ∼

B(πk ), k = 1, . . . , n such that 0 < πk < 1 for all k = 1, . . . ,n, then
√
n 1

n
∑n
i=1

(Xk − πk )√∑n
k=1

πk(1−πk )
n

(12)

converges in distribution to the standard normal distribution.

Proof. If each Xk ∼ B(πk ), k = 1, . . . ,n has finite 4-th order
moment and a strictly positive variance, then we can apply ??

By using Theorem 4, it is possible to prove the following corol-

lary:

Corollary 2. Given a set of Bernoulli’s random variables Xk ∼

B(πk ), k = 1, . . . ,n such that 0 < πk < 1 for all k = 1, . . . ,n, then�������
√
n 1

n
∑n
i=1

(Xk − πk )√∑n
k=1

πk(1−πk )
n

− Φ (x)

������� ≤ C1

√
n

(13)

where Φ(x) is the standard normal distribution.

Proof. Let us consider variables Xl − πk , k = 1, . . . ,n; they are
such that E[Xk − πk ] = 0, σ 2 = Var [Xk − πk ] = Var [Xk ] =
πk (1 − πk ) < ∞ and ηk = E[|Xk − πk |

3] = πl −3π 2

k +4π 3

k −2π 4

k <

∞. Furthermore,
√
n 1

n
∑n
i=1

(Xk − πk )√∑n
k=1

πk(1−πk )
n

=

∑n
k=1

(Xk − πk )√∑n
k=1

σk

(14)

Hence, by applying Theorem (5) we have that (15) holds.

supx ∈R
��Fn(x ) − Φ (x)

�� ≤ C0

∑n
k=1

vk√
(
∑n
k=1

σ 2

k )
3

(15)

The right hand side of the inequality can be reduced to (16).

C0

∑n
k=1

vk√
(
∑n
k=1

σ 2

k )
3

≤
C0n ρ∗√
n3σ 6

∗

(16)

where η∗ = maxk=1, ...,nηiand σ 2

∗ = mink=1, ...,nσ
2

k . Since we
assume that πk , 0, 1 ∀k = 1, . . . , n, then σ 2

∗ , 0. . Finally, we
obtain Eq (17).

supx ∈R
��Fn(x ) − Φ (x)

�� ≤ C0

∑n
k=1

vk√
(
∑n
k=1

σ 2

k )
3

≤
C0n ρ∗√
n3σ 6

∗

=
C1

√
n

(17)

Remark 2. It is worth noting that Corollary (2) proves that the
convergence of the statistics in (12) to the standard normal cdf is
uniform.
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Figure 1: The figure shows the decrease of e norm | |F̃n − Φ(x)| |∞with respect to the number of observations. In blue the empir-
ical curve and in red the theoretical oneC/

√
n

In Corollary 1, the assumption that πk , 0, 1 ∀k is not strict

because in the application that we are considering, means that

person p is certainly in cell k , while if πk = 0 person p is certainly

not in cell k . Both cases are not good model choices because of

Cromwell’s rule (see [16]).

Owing Corollary 1 and since we are considering a crowded

environment, we can simulate the number of people in a node by

using a normal distribution. This result gives us a distribution to

use for the simulation of the number of people in a network node.

Furthermore, given data about the number of people in a cell in a

certain hour, we can fit these values by using a normal distribution.

In order to further prove our results, we perform some examples

in order to verify the theorems stated in Section 2. We consider the

speed of convergence of the sum of Bernoulli random variables with

different probabilities (i.e.,Xi ∼ B(pi )). We simulate the probability

for each random variable from a uniform distribution between 0

and 1, i.e., pi ∼ U[0, 1]. Then, for several numbers of observations

(n), we compute the maximum error between the empirical cdf

of random variable in Eq. (10) (we call it F̃n (x)) and the standard

normal cdf (Φ(x)). In Figure 1 we report the results.

As the reader can notice, the theoretical curve (in red) is really

close to the empirical one and, in particular, for big values of n, the
empirical error is bounded above by the theoretical one (

1√
n
).

4 CONCLUSIONS AND FUTUREWORK
In this paper we resume a set of useful properties for the application

of the Lyapunov CLT in the practical field. Furthermore, we prove

that the convergence to a normal distribution is uniform for every

type of distributions and we provide some easy-to-prove conditions

to ensure the applicability of the Lyapunov CLT in the real setting.

We hope that the results in this paper will lead more researchers

to use this CLT, thus exploiting the possible range of applications

that this variant encompasses. A final contribution of the paper is

to show that the Lyapunov CLT has several applications relevant

to the economic and social sciences and, in particular, in the Smart

City and Gig Economy branches. Future work is mainly oriented

on the enrichment of our framework with special features of big

data management and analytics (e.g., [17-25]).
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