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Abstract—In recent years, researchers have oriented their
studies towards new technologies based on quantum physics
that should allow the resolution of complex problems currently
considered to be intractable. This new research area is called
Quantum Computing. What makes Quantum Computing so
attractive is the particular way with which quantum technology
operates and the great potential it can offer to solve real-world
problems. This work focuses on solving combinatorial optimiza-
tion problems, specifically assignment problems, by exploiting
this novel computational approach. A case-study, denoted as
the Seating Arrangement Optimization problem, is considered.
It is modeled through the Quadratic Unconstrained Binary
Optimization (QUBO) paradigm and solved through two tools
made available by the D-Wave Systems company, QBSolv and
a quantum-classical hybrid system. The obtained experimental
results are compared in terms of solution quality and computa-
tional efficiency.

I. INTRODUCTION

Combinatorial Optimization (CO) is one of the most studied
research fields in the area of optimization. The application
of this research area extends to many sectors and more and
more researches are active to model and solve effectively and
efficiently the problems belonging to this category. Among
others, one of the most recent and innovative modelling
approaches allowing to formulate a CO problem is the so-
called Quadratic Unconstrained Binary Optimization (QUBO)
paradigm.

During the last few decades, many studies have been carried
out regarding this mathematical formulation, also known as
Unconstrained Binary Quadratic Programming (UBQP). An
extensive survey on UBQP researches can be found in [14],
in which the authors group in chronological order a good
percentage of works addressing UBQP problems up to 2014.
Given the potential of this quadratic formulation, Anthony et
al. in [2] focus on the quadratization of arbitrary functions, by
reporting a systematic study on the lower and upper bounds
on the number of additional auxiliary variables needed to trace
back to the quadratic pseudo-Boolean optimization case.

The literature contains several works that are dedicated on
the formulation of traditional problems in the QUBO form to
understand the benefits of this formulation; many of them try

to model problems directly in the QUBO form, while others
provide for the re-cast of already studied and implemented
problems from their original formulations to this novel form.
The most famous case in literature is the one conducted
by Lucas [15]. He studies how to rewrite many well-known
problems from their classical form to the QUBO and Ising one
(an equivalent formulation, mainly used in physics). Another
example is proposed by Alidaee et al. in [1], where the
authors show how the QUBO paradigm can effectively be used
to formulate and solve set packing problems. Moreover, the
authors of [19] propose the formulation of the TSP with Time
Windows problem in the QUBO version.

Subsequently, researches have been oriented towards the
identification of efficient methods for solving problems written
in this formulation. For instance, Wang et al. in [22] propose
the first two tabu search with path relinking algorithms for
solving UBQP problems by generating new solutions through
the exploration of trajectories that connect high-quality solu-
tions. Among the various approaches for solving combinatorial
optimization problems in the QUBO form, in recent years
researchers have begun to be oriented towards a new com-
putational frontier, as the Quantum Computing. Borowski et
al. in [5] outline four quantum annealing-based algorithms to
solve Vehicle Routing (VRP) and Capacitated Vehicle Routing
(CVRP) problems and compare their performance with well-
known classical algorithms. A more practical case-study is
Volkswagen’s Traffic Flow Optimization [18], which deals
with a real-world application for managing and minimizing
congestions on-road segments within a particular city. The
authors of this work, by considering the number of cars and
their routes, formulated the problem as QUBO and solved it
using quantum annealing technologies.

This paper focuses on the analysis of this new computa-
tional approach, specifically for the resolution of assignment
problems. We analyzed the Seating Arrangement Optimization
problem as a case-study, which was first formulated as a
QUBO problem and then solved through the use of some
tools made available by D-Wave Systems, a Canadian company
specializing in quantum computing.



The remaining part of this paper is organized as follows.
Section II outlines the basic concepts of the novel compu-
tational approach of quantum computing, and, specifically,
introduces the quantum annealing. Section III reports details of
the quantum technologies offered by D-Wave Systems to solve
combinatorial optimization problems. First, the Quadratic Un-
constrained Binary Optimization (QUBO) paradigm is de-
scribed and, then, the dedicated solvers for problems in this
particular form are shown. Section IV presents the case-study
considered, the Seating Arrangement Optimization problem.
The problem is first described and modeled as a quadratic
problem, then an equivalent QUBO formulation is derived.
Section V describes and compares the computational results
of the experimental analysis. Section VI provides conclusions
and a brief discussion on possible future works.

II. QUANTUM COMPUTING APPROACH

In the recent years, research has been directed towards
studying new technologies that enable a new computational
approach for solving complex problems from different areas.

Quantum computing is an innovative research field for
processing information and algorithms based on a technology
that exploits quantum physics instead of the classical one.
The fundamental element on which quantum technologies are
based is the quantum bit, or qubit. Like a classical computer
bit, a qubit can assume one of the two binary values 0 or 1,
but the novelty of this element lies in the fact that, during
the elaboration process, the qubit finds itself in a third further
state, called superposition. In this part of the process, it can
assume any state, but its final value is established only during
the measurement process, which determines its collapse to one
of the classical states. Nowadays, several companies such as
Google, IBM, NASA, and Rigetti are involved worldwide in the
quantum computing research field. They have been building
and, only in recent years, granting access to quantum technol-
ogy for the resolution of small-to-medium-sized algorithms. In
the next few years, quantum computers are expected to surpass
the traditional ones in solving classical complex algorithms,
which are now intractable or requiring too much time to be
executed.

Research has been conducted in several directions, as
the technologies are different and therefore require different
paradigms. However, we can identify two main categories of
quantum computers, which differ in the type of structure and
the applications for which they are designed [16]. The first
category includes universal or gate-model quantum computers.
The systems belonging to this class of quantum machines
are equipped with a particular circuitry that manipulates the
qubits’ state. Due to the many limitations concerning the
technology they are built with, universal quantum computers
offers only several qubits of the order of dozens, and currently,
they are used to solve small instances of problems in various
areas such as machine learning [20] and chemistry [17]. The
second type of quantum computers, named quantum annealers,
is equipped with hardware with a higher number of qubits (in

the order of thousands) and combinatorial optimization is the
most important type of elaboration they can manage.

Quantum annealers owe their name to the process called
quantum annealing and that physically takes place within
them and which, by exploiting the intrinsic effects of quantum
physics, can be used to solve a specific combinatorial opti-
mization problem. In detail, quantum annealing is a heuristic
way to solve NP-hard problems by finding the global minimum
of a function with many local minima describing a physical
system’s energy. The search process is based on quantum fluc-
tuations. Quantum annealing exploits the physical concept that
everything in nature tends to evolve towards the equilibrium.
Since quantum physics follows this reasoning, the quantum
process is used to find equilibrium states corresponding to
optimal solutions for the problem under observation.

The quantum annealing and the quantum systems im-
plementing it are based on characteristics that make their
computation principle unique and innovative. As previously
introduced, the first and most important is the qubit. At the
beginning of the annealing process, each qubit finds itself
in the superposition state, and its value can assume with
equal probability the 0 or 1 state. This probability can be
modified and directed towards one of the two states following
an external magnetic field, called bias. The second important
concept exploited in quantum annealing is the entanglement,
i.e., a linking process that involves qubits, which do not work
alone but take part of a more complex process. Entanglement
binds qubits together, making the state of each qubit dependent
from one state of some other qubits. At the hardware level,
this linking is done through a procedure called a coupling. The
purpose of this procedure is to create a sort of single entity
formed by pairs of qubits so that these two assume either the
same value (both 0 or 1) or the opposite one (one 0 and the
other 1). Therefore, this unique object has four states (00, 01,
10, 11), whose energies depend on the bias of the two single
qubits that compose it and the coupling strength between them.

What a user of a quantum computer is allowed to do is
programming the biases and the couplers strengths in such a
way as to create an energy landscape which then allows to
be sure to get a solution for the optimization problem when
reaching the equilibrium during the annealing process. Thanks
to this way of acting, quantum annealers’ technologies are ex-
plicitly designed to solve complex combinatorial optimization
problems.

III. QUANTUM COMPUTING SOLVERS

The leader company that work with quantum annealers is
D-Wave Systems Inc.. In particular, this organization deals
with building and studying quantum technologies and, for
some years, has allowed external people to use their quantum
annealers to solve specific commercial problems, especially
combinatorial optimization ones. In this section, we show the
particular type of problems that quantum annealers can solve
(QUBO problems) and, in particular, the tools that the quantum
company makes available for their resolution.



A. Quadratic Unconstrained Binary Optimization (QUBO)

Quantum annealers are designed to solve complex combi-
natorial optimization problems in a particular formulation, the
Quadratic Unconstrained Binary Optimization (QUBO) one.
The goal of a QUBO model is to find an optimal solution by
minimizing an objective function in the form

min
∑
i∈N

Qi,ixi +
∑

i,j∈N |i6=j

Qi,jxixj (1)

where
• N is the set of indexes associated with a variable;
• xi is the i-th binary variable of the problem;
• Qi,i is the diagonal (or linear) cost coefficient for the i-th

variable;
• Qi,j is the off-diagonal (or quadratic) cost coefficient for

the association of the i-th variable with the j-th one.
The first characteristic of a QUBO problem is the kind of
variables that describe it. They are binary and appear in the
objective function both in the linear form, i.e., individually
xi, and in the quadratic form, i.e., one multiplied by the other
xixj . Alternatively, since for binary variables it holds xi = x2i
for any i ∈ N , a QUBO problem can be described in matricial
notation as follows

min
x∈{0,1}|N|

xTQx (2)

where x is a column vector of binary variables of size |N | and
Q an upper-triangular |N |× |N | matrix, called QUBO matrix.

Clearly, not all the optimization problems come in this
form. However, many of them can be rewritten as a QUBO
model. The constraints identified for the problem must be
readjusted and converted into penalties to form the actual
objective function (1) that has to be minimized. Specifically,
as in classical Lagrangean relaxations, the purpose of these
penalties is to prevent the optimizer from choosing solutions
that violate the constraints. They involve the addition of a
positive quantity, therefore not favorable to the minimization
objective in the case of infeasible solutions [13]. Some stan-
dard ways of creating this translation from classical constraints
can be found in [13] and are reported in Table I. Starting

TABLE I
SOME KNOWN PENALTY TERMS. ALL THE VARIABLES ARE SUPPOSED TO

BE BINARY AND p IS A POSITIVE SCALAR VALUE (FROM [13])

Classical Constraint Equivalent Penalty
x+ y ≤ 1 p(xy)

x+ y ≥ 1 p(1− x− y + xy)

x+ y = 1 p(1− x− y + 2xy)

x ≤ y p(x− xy)

x1 + x2 + x3 ≤ 1 p(x1x2 + x1x3 + x2x3)

x = y p(x+ y − 2xy)

from the obtained objective function, it is then possible to
construct the QUBO matrix Q. This matrix maintains, in the
form of constant values, the numerical relationships between

all variables, also originating from the constraints to which
the problem must be subjected. This element is also essential
at the computational level since its dimensions impact the
performance of the problem itself in terms of quality and
solution time (see, e.g., [6] or [3]). The QUBO matrix comes
in the form of a square |N | × |N | matrix and can be found
both as symmetric and as upper-triangular matrix [13] (in the
latter case, the second summation of (1) must be restricted to
i < j).

Interesting enough, it is possible to identify a direct corre-
spondence between the physical implementation of a Quantum
Processing Unit (QPU), the hardware processor of a quantum
annealer, and a QUBO problem. Given a generic QUBO
model, each binary variable is represented into the QPU by
a qubit, whose possible states are called spin up and spin
down, while the linear and quadratic coefficients Qi,i, and Qi,j

correspond respectively to the biases and coupling strengths on
a QPU. Despite this correspondence, usually, QUBO problems
cannot be directly mapped to the QPU due to the physical
interconnections between qubits and the number of qubits
available on the hardware (in general, much smaller than the
actual number of binary variables in a realistic-size problem).
So, in practice, they undergo a translation process called Minor
Embedding, which allows the mapping of each logical variable
of the problem into a chain of physical qubits.

B. QBSolv

Over the last few years, D-Wave Systems Inc. has made
available useful tools involving quantum technologies to solve
optimization problems written in the QUBO formulation. In
particular, it has made available a software development kit,
the Ocean SDK, containing a series of open-source Python
tools for solving hard problems with quantum computers [9].
One of these tools, useful in our case, is QBSolv [10]. QBSolv
is an open-source solver released in January 2017, which
runs on the CPU just like the traditional solvers. Its goal
is to solve large QUBO problems with high connectivity.
The solver strategy consists in partitioning significantly-large
QUBO problems into smaller components and applying a
specified sampling method (the classical Tabu Search algo-
rithm, by default) independently to each of these pieces to
find the minimum value required for the optimization. Further
technical details on QBSolv can be found in [4].

C. D-Wave Quantum-Classical Hybrid solver

Another important tool made available by D-Wave Systems
Inc. allows to submit and solve a problem modeled as QUBO
on a remote quantum computer. To do this, in 2018, the
computing company made available to users a cloud service,
the D-Wave’s Leap, and a set of Python APIs, the Solver API
(SAPI), that allow any developer to access and submit any
problem to the D-Wave Quantum System.

At the time of writing this paper, there are two types of
solvers made available by the D-Wave Systems company: a
solver that directly uses a QPU (to be chosen between an
Advantage system and a D-Wave 2000Q lower-noise system)



[11] and one that exploits a quantum-classical hybrid sys-
tem [7]. Both types of sampler accept as input a so-called
Binary Quadratic Model (BQM), a specific format that can
be constructed starting from the Q matrix of a common
QUBO problem. Since quantum technologies are still growing
due to the noise and the limited number of qubits available,
using a hybrid system can be required for solving realistic
and large problems. Specifically, a quantum-classical hybrid
system uses a computational approach that exploits classical
and quantum resources. It analyzes and subdivides significant
BQM problems using classical technology to break them
up into sub-problems and establish which of them should
be solved with classical algorithms and can be effectively
performed on a QPU by interacting directly with it for their
resolution [21].

IV. A CASE-STUDY: THE SEATING ARRANGEMENT
OPTIMIZATION PROBLEM

The considered case-study focuses on passenger transport
on high-speed trains considering the Italian Government’s
new regulations on social distancing due to the COVID-19
pandemic.

The railway companies have currently adapted their passen-
ger positioning strategies by embracing a seating arrangement
as a "checkerboard" pattern, i.e., with the allocation of passen-
gers to alternate seats, to counter the spread of the COVID-
19 virus. Nevertheless, with the adoption of this strategy, the
filling capacity of the wagons has dropped to the 50% of the
total capacity, leading to a drastic reduction in the high-speed
rail operators’ earnings due to the mismatch between the costs
necessary for the activation of the railway transport lines and
the revenues obtained from ticket sales. From now on, we will
denote the examined case study as the Seating Arrangement
Optimization problem.

In the research conducted in this paper, we investigate a new
seat allocation criterion for allocating people on high-speed
trains by exploiting the social relationships between them. We
aim to maximize the number of transported passengers, still
complying with the rules for protecting the customers’ health.

The problem has been modeled first as a non-linear pro-
gram, then through the novel QUBO formulation, and finally
solved using the tools provided by D-Wave Systems, i.e., the
QBSolv and the Quantum-Classical Hybrid solver.

A. Problem description

The objective of the Seating Arrangement Optimization
problem is to fill the train wagon as much as possible within
the restrictions on social distancing due to the COVID-19
health emergency. Still, it aims to maximize the number of
passengers belonging to the same family or living group in
adjacent seats. Although the focus of the problem can be
extended to the entire train, the study refers to only one
wagon. Then, for a multi-wagon train the procedure will be run
for each wagon separately. Furthermore, we assumed a static
situation: just one train segment, i.e., trip between two adjacent
stations, is considered so that the number of passengers and

their social relationships are known beforehand without any
changes during the travel.

Some fundamental elements characterize the Seating Ar-
rangement Optimization problem. A set of passengers that has
to be transported on a high-speed train is given. During the
ticket reservation procedure, each passenger is associated with
a unique identifier, the booking ID, which can be shared or
not with other passengers. The important assumption of the
problem is that people with the same booking ID belong to
the same family or living group. This condition, therefore,
assumes they can be excluded from the social distancing
impositions prescribed by the regulations against the spread
of the COVID-19 virus. A high-speed train’s wagon is then
considered. The wagon has a certain number of seats. Each
seat is represented by a pair of coordinates, a row and a column
number, which collocate it into a sort of grid. A graphic
representation of a typical high-speed train’s wagon can be
seen in Fig. 1.

When modeling the problem, it is necessary to consider the
following constraints:
• allocation of one and only one seat to each one of the

considered passengers (avoid that a passenger has more
than one seat assigned to him);

• allocation of one passenger at most to each seat (avoid
different passengers being assigned the same seat);

• allocation of not adjacent (in front/behind/left/right) seats
to people belonging to different families (identified by
different booking IDs).

B. Mathematical programming formulation

In this section, we provide a natural non-linear programming
formulation of the Seating Arrangement Optimization problem
in order to formally define it.

Let us consider the following sets and parameters:
• R = {1, 2, . . . , rmax}: set of seats row numbers;
• C = {1, 2, . . . , cmax}: set of seats column numbers;
• K: set of booking IDs;
• nk: number of passengers with the same booking ID k ∈
K.

Moreover, let us define the variable

x(r,c),k :=


1 if a passenger with booking ID k is

assigned to seat with row and column (r, c)

0 otherwise

for each row r ∈ R, column c ∈ C, and booking ID k ∈ K.
Then, a natural quadratic programming model for the prob-

lem can be stated as:

max
∑
k

∑
(r,c)

x(r,c),k · x(r+1,c),k+

+
∑
k

∑
(r,c)

x(r,c),k · x(r,c+1),k (3)

subject to ∑
(r,c)

x(r,c),k = nk, k ∈ K (4)



Fig. 1. Graphical representation of seats with row and column numbers inside a high-speed train’s wagon

∑
k

x(r,c),k ≤ 1, r ∈ R, c ∈ C (5)

x(r,c),k · x(r+1,c),k′ = 0,

r ∈ R \ {rmax}, c ∈ C, k, k′ ∈ K, k 6= k′ (6)

x(r,c),k · x(r,c+1),k′ = 0,

r ∈ R, c ∈ C \ {cmax}, k, k′ ∈ K, k 6= k′ (7)

x(r,c),k ∈ {0, 1}, r ∈ R, c ∈ C, k ∈ K. (8)

The objective function (3) maximizes the number of pas-
sengers with same booking ID assigned to adjacent seats.
Constraints (4) state that each passenger with a certain booking
ID is assigned to one seat, while constraints (5) state that
each seat is assigned to at most one passenger with a certain
booking ID. Constraints (6) ensure that two seats, one next to
the other (in the same column), are not assigned to passengers
with different booking IDs, while constraints (7) ensure that
two seats, one in front of the other (in the same row), are not
assigned to passengers with different booking IDs. Finally,
binary conditions on the variables are stated in (8).

C. QUBO formulation

Since the QUBO paradigm asks for an unconstrained model,
as the one in (2), the constraints (4)-(7) and the cost function
(3) are relaxed and aggregated into a single objective function
through non-negative parameters λ’s, to be calibrated (see
later). In particular, we chose to set these parametric coef-
ficients as numerical, and to associate each of them with a
specific group of constraints presented in model (3)–(8). We
decided to adopt this modeling choice in order to minimize
the number of λ parameters needed, as they represent a non-
negligible obstacle during the model calibration.

To do this relaxation, we built a penalty term for each of
the identified constraints by following the approach from [13].
Hence, a QUBO formulation for the Seating Arrangement
Optimization problem becomes:

minλAHA + λBHB + λCHC + λDHD −HE (9)

where

• the penalty term associated with constraints (4) is

HA =
∑
k

(nk −
∑
(r,c)

x(r,c),k)
2

• the penalty term associated with constraints (5) is

HB =
∑
(r,c)

∑
k,k′

x(r,c),k · x(r,c),k′

• the penalty term associated with constraints (6) is

HC =
∑
(r,c)

∑
k,k′

x(r,c),k · x(r+1,c),k′

• the penalty term associated with constraints (7) is

HD =
∑
(r,c)

∑
k,k′

x(r,c),k · x(r,c+1),k′

• the penalty term associated with the objective function
(3) is

HE =
∑
k

∑
(r,c)

x(r,c),k · x(r+1,c),k+∑
k

∑
(r,c)

x(r,c),k · x(r,c+1),k

Note that, unlike the other penalties, a squaring has been
introduced in HA as it is necessary to be able to grasp the
relationship between the values assumed by different variables
within the solution.

Starting from (9), the Q matrix of model (2) has been
derived. To do that, we need to identify the relationship
between the problem’s variables, i.e., the multiplicative co-
efficients of the equation (1). First of all, the single QUBO
terms of the function (9) need to be expanded. Then, after
the coefficients have been found, they are multiplied by the
parametric coefficients λA, λB , λC and λD, whose purpose is
to give more or less weight to each QUBO penalty such that
the constraints are imposed when searching for the solution.

D. Parametric coefficients calibration

We now provide some indications on how the calibration
of the numerical parametric coefficients λA, λB , λC , and λD
has been carried out.

Expressed as pseudo-code, the high-level steps that has been
followed can be found in Algorithm 1.



Algorithm 1 λ’s coefficients calibration
1: Initialize λA, λB , λC , and λD with small real random

values and choose a small-sized instance of the problem;
2: repeat
3: repeat
4: Run the code, get a particular solution from the solver

(QBSolv) and check it
5: if infeasible solution, i.e., solution that does not

respect at least one of the constraints (4)-(7) then
6: Check the solution’s energy
7: if the solution’s energy > the energy of a feasible

solution already found then
8: The solver has failed to find the solution with

the lowest energy
9: else if the solution’s energy < the energy of a

feasible solution already found then
10: The current configuration of the λ parameters is

not working
11: Increase the λ parameter for which the solution

violates the associated constraint
12: end if
13: end if
14: until only feasible solutions for the current instance of

the problem are found
15: Increase the size of the considered instance
16: until only feasible solutions are found

V. COMPUTATIONAL RESULTS

The model has been implemented via software through the
Python programming language.

This section reports the results obtained by executing several
instances of the Seating Arrangement Optimization problem
written as QUBO using the two tools offered by D-Wave Sys-
tems, the QBSolv, and D-Wave Leap’s cloud-based quantum-
classical hybrid solver (from now on referred to as D-Wave
Hybrid Solver). Initially, the problem size in terms of number
of variables is reported. Then, the two solvers are compared
in terms of optimal solutions and computational times.

An ad-hoc data-set containing simulated test instances about
seats, passengers, and bookings was created for the performed
experiments. The input that we provided to our QUBO model
has been created based on indicative estimate of realistic data
of a high-speed train. In particular, it was decided to use
a wagon consisting of 80 seats, which have been placed in
a 4 × 20 grid, made up of 4 horizontal (the rows) and 20
vertical (the columns) rows. Taking as a reference a credible
number of passengers for a high-speed train, 1000 passengers
have been created, but only a small subset of them was used
for our restricted experimental analysis. In particular, for the
experiments reported in Table II, the maximum number of
people that has been tested is 52. Since it was necessary
to associate a specific booking ID to each passenger, we
decided to use 300 distinct booking IDs to make a reasonably
homogeneous assignment. The final range of assigned booking

Fig. 2. Number of variables in the QUBO model

IDs is as follows:
• 290 booking IDs
• minimum number of passengers with the same booking

ID: 1
• maximum number of passengers with the same booking

ID: 8
All the experiments have been carried out on a desktop

computer with a 1.8 GHz Intel Core i7-8550U processor.

A. QUBO model size

The QUBO formulation involves a not-so-high number
of variables, thus effectively modeling complex optimization
problems. In Fig. 2 we can see the number of variables vs. the
number of booking IDs of the considered problem instance.
It can be noted that, by maintaining the number of available
seats fixed at 80, the total number of variables increases almost
linearly as the number of considered booking IDs grows.

B. Quality of the solutions

The quality of the D-Wave Systems solvers is now analyzed.
The numerical results for the Seating Arrangement Optimiza-
tion problem’s various instances can be seen in Table II. For
each problem instance ("Seats", "Passengers", "Distinct book-
ing IDs" columns), the optimal solution with the minimum
energy (i.e., the minimum value of the expression (9), reported
in the "Total minimum energy" column) that each solver
("Solver" column) was able to find is indicated. Specifically,
for each solution, the number of passengers allocated to seats
inside the train wagon (fifth column) and the number of people
with the same booking ID correctly assigned to adjacent seats
(sixth column) are reported.

After having calibrated the λ parameters in model (9), by
using the Python APIs of the Ocean SDK, the two solvers were
used to solve different instances of the analyzed problem.

The two optimizers seem to perform well, most of the
time reaching the goal of allocating people with the same
booking ID to adjacent seats. Furthermore, an improvement
compared to the passenger transport’s current situation has
been achieved. Both solvers manage to find at least an accept-
able seating arrangement up to 15 booking IDs for a total of
51 passengers, bringing therefore to have a filling percentage
of the seats up to 63,75% (instead of the classical 50%).



TABLE II
OPTIMAL SOLUTIONS OBTAINED BY RUNNING THE QUBO MODEL INSTANCES WITH THE D-Wave Systems SOLVERS

Seats Passengers Distinct Solver Nb. of Nb. of passengers Total minimum
booking IDs passengers with an with same booking energy

assigned seat ID assigned to
adjacent seats

80 11 3 QBSolv 11 10 -464.300
D-Wave Hybrid 10 11 -464.300

80 16 4 QBSolv 16 15 -682.800
D-Wave Hybrid 16 15 -682.800

80 19 5 QBSolv 19 18 -762.000
D-Wave Hybrid 19 18 -762.000

80 23 7 QBSolv 23 21 -849.400
D-Wave Hybrid 23 21 -849.400

80 28 8 QBSolv 28 26 -1067.900
D-Wave Hybrid 28 26 -1067.900

80 34 9 QBSolv 34 32 -1382.000
D-Wave Hybrid 34 32 -1382.000

80 39 11 QBSolv 39 37 -1496.700
D-Wave Hybrid 39 37 -1496.700

80 44 13 QBSolv 44 41 -1646.900
D-Wave Hybrid 44 41 -1646.900

80 50 14 QBSolv 50 45 -1947.500
D-Wave Hybrid 50 47 -1958.300

80 51 15 QBSolv 51 46 -1953.000
D-Wave Hybrid 51 47 -1961.100

For most of the instances, the D-Wave Hybrid Solver finds
solutions with the same energy as those found by QBSolv
optimizer. This means that the solver running on the CPU per-
forms well in terms of solution quality, even without quantum
hardware usage. However, there are two cases, i.e., the ones
corresponding to the instances with 14 and 15 distinct booking
IDs (respectively 50 and 51 passengers) where D-Wave Hybrid
Solver finds two lower energy and better solutions than those
found by the QBSolv sampler.

C. Efficiency of the solvers

The last comparison refers to the computational times of
the two solvers.

In Table III, each row reports the times required by the
QBSolv ("QBSolv" column) and by the D-Wave Hybrid ("Lea-
pHybridSampler" column) optimizers to solve a specific prob-
lem instance formed by a certain number of seats, passengers
and booking IDs ("Seats", "Passengers", "Distinct booking
IDs" columns). As we can see in this table, the time increases
as the size of the considered instance of the Seating Arrange-
ment Optimization problem grows. Moreover, both solvers
require a very limited amount of time (just some seconds)
to solve the problem. The difference between them lies in the
way in which they work. The first optimizer, QBSolv, works
locally on the CPU. The second one, D-Wave Hybrid Solver,
requires remote access via the Internet to a physically remote
system shared between multiple users. For this reason, the

usage of this type of systems provides for additional time-
consuming steps. First of all, the internet latency required to
access the remote machine, then the problem management time
by the classic resources of the solver, and finally the wait
for execution on QPU due to the presence of instructions of
other users which must be run on the same quantum processor.
More details on QPU access times can be found in the D-Wave
Systems documentation [12].

Therefore, all these conditions lead to an overall time more
significant than that employed by the solver, which uses the
CPU locally. The real advantage of the system that uses
quantum technology is the speed with which its quantum
elaboration element works. The column of Table III called
"QPU access time" [8] shows the actual QPU usage time. The
QPU executes instructions in microseconds instead of seconds.
Still, such computational advantage cannot be fully exploited
yet since it is obscured by the additional time needed to resolve
the problem on the remote system.

VI. CONCLUSIONS

In this paper, we have analyzed how combinatorial opti-
mization problems can be effectively solved through quantum
technology tools. Specifically, we aimed to investigate this
innovative computation technique, quantum computing, and
analyze the advantages and disadvantages that derive from it.

For this reason, a brief overview of quantum computing’s
branch of interest was exposed. First, quantum annealers, i.e.,
quantum systems suitable for solving optimization problems,



TABLE III
COMPARISON OF COMPUTATIONAL TIMES IN SECONDS OF THE D-WAVE SYSTEMS SOLVERS

Seats Passengers
Distinct QBSolv LeapHybridSampler QPU access time

booking IDs (D-Wave CPU solver) (D-Wave quantum-classical (D-Wave quantum-classical
hybrid solver) hybrid solver)

80 11 3 1.267 6.505 0.040579

80 16 4 1.567 7.792 0.041579

80 19 5 1.801 9.865 0.041494

80 23 7 4.561 15.776 0.042629

80 28 8 5.327 18.214 0.042623

80 34 9 5.976 18.525 0.042694

80 39 11 8.680 19.593 0.042617

80 44 13 10.560 20.819 0.042623

80 50 14 17.527 20.968 0.042624

80 51 15 18.848 22.041 0.042695

were presented. We then described quantum annealing, i.e., the
process through which problems are solved on quantum an-
nealers, its key elements, qubits, and entanglement’s quantum
property. We, therefore, presented the Quadratic Unconstrained
Binary Optimization (QUBO) formulation. Moreover, we in-
troduced two solvers offered by D-Wave Systems for solving
this kind of problems on Central Processing Unit (CPU) and
on quantum-classical hybrid remote systems which make use
of a Quantum Processing Unit (QPU).

We then considered a specific case-study concerning the
allocation of passengers to seats on high-speed trains with the
recent hygiene and health regulations on social distancing due
to the COVID-19 pandemic. We modeled the problem through
the QUBO paradigm. Then, we compared the results obtained
through the use of the D-Wave Systems’ tools, QBSolv and
Leap’s cloud-based quantum-classical hybrid solvers on sev-
eral instances of the analyzed problem.

In our future work, we intend to use the same case-study,
the Seating Arrangement Optimization problem, to compare
this novel computational approach to a more classical one. In
particular, we aim to model the problem through a Mixed-
Integer Linear Programming (MILP) formulation and to solve
it through the use of a state-of-the-art solver, such as Gurobi
or CPLEX. A noteworthy aspect that could also be explored
in the future could be to set the λ coefficients as vector
parameters, in order to be able to weigh each constraint in
a different way. A last interesting development could be the
study of the QUBO model with the introduction of an addi-
tional α parameter to determine the weight that the HE term
has within the objective function (9). With the introduction of
this factor and with the addition of a multiplicative coefficient
(1− α) in front of the remaining part of (9), we could study
the relationships and the weights that the constraints and the
objective function have within the QUBO model.

ACKNOWLEDGMENTS

This study was derived from a proposal and with the contri-
bution of the Quantum Computing Team of Data Reply S.r.l.,
Torino (Italy).

REFERENCES

[1] Alidaee B., Kochenberger G., Lewis K., Lewis M., Wang H., "A new
approach for modeling and solving set packing problems", European
Journal of Operational Research (2008), Volume 186, Issue 2, Pages
504-512, https://doi.org/10.1016/j.ejor.2006.12.068.

[2] Anthony, M., Boros, E., Crama, Y. et al. "Quadratic reformulations of
nonlinear binary optimization problems." Math. Program. 162, 115–144
(2017). https://doi.org/10.1007/s10107-016-1032-4

[3] Asproni, L., Caputo, D., Silva, B. et al. Accuracy and minor embedding
in subqubo decomposition with fully connected large problems: a case
study about the number partitioning problem. Quantum Mach. Intell. 2,
4 (2020). https://doi.org/10.1007/s42484-020-00014-w

[4] Booth, M. & Reinhardt, S.P. "Partitioning Optimization Problems for
Hybrid Classical / Quantum Execution", Technical Report (2017)

[5] Borowski M. et al. (2020) "New Hybrid Quantum Annealing Algo-
rithms for Solving Vehicle Routing Problem." In: Krzhizhanovskaya
V. et al. (eds) Computational Science – ICCS 2020. ICCS 2020.
Lecture Notes in Computer Science, vol 12142. Springer, Cham.
https://doi.org/10.1007/978-3-030-50433-5_42

[6] Lewis, M. & Glover, F. “Quadratic unconstrained binary optimization
problem preprocessing: Theory and empirical analysis”, Networks 70
(2017): 79-97, arXiv:1705.09844 [cs.AI]

[7] D-Wave Hybrid Solvers, D-Wave Documentation, https://docs.ocean.d
wavesys.com/en/stable/overview/hybrid.html#dwave-hybrid-solvers

[8] D-Wave Leap’s Hybrid Solvers’ Timing Information, D-Wave Documen-
tation, https://docs.dwavesys.com/docs/latest/timing_hybrid.html#timin
g-hybrid

[9] D-Wave Ocean SDK Documentation, https://docs.ocean.dwavesys.com/
en/stable/getting_started.html

[10] D-Wave QBSolv function, docs: https://docs.ocean.dwavesys.com/proj
ects/qbsolv/en/latest/index.html, source code: https://github.com/dwave
systems/qbsolv

[11] D-Wave Quantum Solvers, D-Wave Documentation, https://docs.ocean
.dwavesys.com/en/stable/overview/qpu.html

[12] D-Wave Solver Computation Time, D-Wave Documentation, https://do
cs.dwavesys.com/docs/latest/doc_timing.html

[13] Glover, F., Kochenberger, G. & Du, Y. "Quantum Bridge Analytics I: a
tutorial on formulating and using QUBO models." 4OR-Q J Oper Res
17, 335–371 (2019). https://doi.org/10.1007/s10288-019-00424-y

[14] Kochenberger, G., Hao, JK., Glover, F. et al. "The unconstrained binary
quadratic programming problem: A survey", Journal of Combinatorial
Optimization (2014), 28, doi:10.1007/s10878-014-9734-0

[15] Lucas A. "Ising formulations of many NP problems", Frontiers in Physics
(2014), vol.2, p.5, doi: 10.3389/fphy.2014.00005

[16] Marchenkova A., "What’s the difference between quantum annealing
and universal gate quantum computers?", https://medium.com/quantum
-bits/what-s-the-difference-between-quantum-annealing-and-universal-
gate-quantum-computers-c5e5099175a1



[17] Nam, Y., Chen, J., Pisenti, N.C., Wright, K., Delaney, C., Maslov,
D., Brown, K., Allen, S., Amini, J., Apisdorf, J., Beck, K., Blinov,
A., Chaplin, V., Chmielewski, M., Collins, C., Debnath, S., Ducore,
A.M., Hudek, K., Keesan, M., Kreikemeier, S., Mizrahi, J., Solomon,
P., Williams, M., Wong-Campos, J.D., Monroe, C., & Kim, J. "Ground-
state energy estimation of the water molecule on a trapped-ion quantum
computer", npj Quantum Information (2019), vol.6, pag.1-6

[18] Neukart F., Compostella G., Seidel C., von Dollen D., Yarkoni S., Parney
B. "Traffic Flow Optimization Using a Quantum Annealer", Frontiers in
ICT (2017), vol.4, doi:10.3389/fict.2017.00029

[19] Papalitsas, C.; Andronikos, T.; Giannakis, K.; Theocharopoulou,
G.; Fanarioti, S. "A QUBO Model for the Traveling Sales-
man Problem with Time Windows." Algorithms 2019, 12, 224.
https://doi.org/10.3390/a12110224

[20] Schuld, M., Sinayskiy, I., & Petruccione, F. "An introduction to quantum
machine learning", Contemporary Physics (2014), vol.56, pag.172 - 185

[21] Three Truths and the Advent of Hybrid Quantum Computing, https:
//medium.com/d-wave/three-truths-and-the-advent-of-hybrid-quantum-
computing-1941ba46ff8c

[22] Wang Y., Lü Z., Glover F., Hao J., "Path relinking for uncon-
strained binary quadratic programming", European Journal of Op-
erational Research (2012), Volume 223, Issue 3, Pages 595-604,
https://doi.org/10.1016/j.ejor.2012.07.012.


