
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enhancing Neural Architecture Search with Multiple Hardware Constraints for Deep Learning Model Deployment on Tiny
IoT Devices / Burrello, Alessio; Risso, Matteo; Motetti, BEATRICE ALESSANDRA; Macii, Enrico; Benini, Luca; JAHIER
PAGLIARI, Daniele. - In: IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. - ISSN 2168-6750. -
ELETTRONICO. - (2023), pp. 1-15. [10.1109/TETC.2023.3322033]

Original

Enhancing Neural Architecture Search with Multiple Hardware Constraints for Deep Learning Model
Deployment on Tiny IoT Devices

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TETC.2023.3322033

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982927 since: 2023-10-11T06:20:36Z

IEEE



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. YY, XXX 1

Enhancing Neural Architecture Search with
Multiple Hardware Constraints for Deep Learning

Model Deployment on Tiny IoT Devices
Alessio Burrello, Member, IEEE, Matteo Risso, Member, IEEE, Beatrice Alessandra Motetti, Enrico Macii,

Fellow, IEEE, Luca Benini, Fellow, IEEE, Daniele Jahier Pagliari, Member, IEEE

Abstract—The rapid proliferation of computing domains rely-
ing on Internet of Things (IoT) devices has created a pressing
need for efficient and accurate deep-learning (DL) models that
can run on low-power devices. However, traditional DL models
tend to be too complex and computationally intensive for typical
IoT end-nodes. To address this challenge, Neural Architecture
Search (NAS) has emerged as a popular design automation
technique for co-optimizing the accuracy and complexity of deep
neural networks. Nevertheless, existing NAS techniques require
many iterations to produce a network that adheres to specific
hardware constraints, such as the maximum memory available
on the hardware or the maximum latency allowed by the target
application.

In this work, we propose a novel approach to incorporate
multiple constraints into so-called Differentiable NAS optimiza-
tion methods, which allows the generation, in a single shot, of a
model that respects user-defined constraints on both memory and
latency in a time comparable to a single standard training. The
proposed approach is evaluated on five IoT-relevant benchmarks,
including the MLPerf Tiny suite and Tiny ImageNet, demonstrat-
ing that, with a single search, it is possible to reduce memory
and latency by 87.4% and 54.2%, respectively (as defined by our
targets), while ensuring non-inferior accuracy on state-of-the-art
hand-tuned deep neural networks for TinyML.

Index Terms—Deep Learning, TinyML, Computing Architec-
tures, Energy-efficiency, Neural Architecture Search, Hardware-
aware NAS, IoT.
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SUPPLEMENTARY MATERIAL

The project’s code is available at: https://github.com/eml-
eda/multi-constraint-nas.

I. INTRODUCTION

Many emerging Internet of Things (IoT) computing appli-
cations are built around Deep Learning (DL) models, ranging
from audio and video classification [1], [2] to biosignal
analysis on wearables [3], natural event prediction [4] or
to industrial assets monitoring [5]. Evidence shows that de-
ploying Deep Neural Networks (DNNs) directly on IoT edge
devices may bring higher energy efficiency, reduced network
pressure, and improved data privacy with respect to a more
traditional cloud-based paradigm [6]. Performing most com-
putations locally would in fact limit the transmissions to the
cloud, through an energy-hungry, high-latency, and potentially
insecure wireless channel, to just the highly compressed model
output (for example, a class label), rather than a large set of
possibly sensitive raw data (such as image pixels or audio
samples).

However, designing effective DL solutions while respecting
the tight and multifaceted constraints of IoT end nodes is a
challenging endeavour. An optimal model should simultane-
ously: i) achieve high accuracy; ii) fit in the limited memory
of the device (down to few MBs of Flash and RAM for
Microcontrollers [7]) and iii) match the real-time latency or
throughput imposed by the application. Besides these global
requirements, models should also be designed in a hardware
(HW) aware fashion to achieve maximum efficiency [8], for
example, trying to ensure that the tensors processed by each
layer fit entirely in the closest levels of the memory hierarchy,
thus avoiding costly data transfers [9]. The solution space
is huge and includes all possible variations of number, type,
and hyper-parameters settings for the DNN layers [10]. Thus,
manual explorations are inevitably tainted by rules of thumb
and traditions, and yield sub-optimal results.

Neural Architecture Search (NAS) tackles this problem
by automating the search process, enabling a much more
extensive exploration of the solution space than it would be
possible by hand [10]–[12]. This emerging approach led to the
discovery of novel efficient DNNs in several domains [10]–
[15]. Unfortunately, NAS algorithms that can accomodate
arbitrary combinations of constraints leverage complex black-
box optimization methods, such as Reinforcement Learning
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Fig. 1. Overview of the proposed approach.

(RL) and Evolutionary Algorithms (EA), which are extremely
time consuming (1000s of GPU hours), as shown for example
in [16]. Therefore, they are not affordable for most IoT
application designers. On the other hand, the so-called One-
Shot or Differentiable NAS (DNAS) methods use gradient-
based optimization to concurrently train a DNN and optimize
its architecture, thus being much more lightweight. However,
most DNAS minimize a loss function that accounts either
for sheer task accuracy (L), or for a linear combination
of accuracy and a cost metric (L + λR), where R may
express the total number of parameters of the model, or the
number of operations (OPs) per prediction [17]–[19], etc.
With this formulation, finding a model with, for instance, a
given number of parameters, involves an iterative tuning of
the coefficient λ, to find the best balance between the two
loss components. Therefore, despite being referred to “one-
shot”, current DNAS methods cannot generate a DNN that
meets multiple hardware-related constraints in a single-shot.

Although recent methods have tried to overcome this is-
sue [20]–[22], going in the direction of a real one-shot search,
they still considered a single cost metric. To the best of our
knowledge, DNAS has not yet been employed in real-world,
multi-constraint settings [10], [12].

In this work, which largely and highly extends [23], we
bridge this gap, by proposing a set of objective formula-
tions and training recipes that collectively enable any DNAS,
regardless of its specific optimization method, to produce
DNNs respecting a complex set of constraints, in a time-
span comparable with a single training. We name our method
DNAS Under Combined Constraints In One-shot (DUCCIO).
An overview of our proposed method is shown in Fig. 1.

Specifically, the following are our main novel contributions:
• We propose DNAS formulations that permit finding, in a

single training run, a DNN that achieves high accuracy
and respects both a total model size constraint and a
maximum latency constraint (relevant for real-time tasks).

• We then extend this approach to finer-grain (layer-level)
constraints, through which the DNN architecture can be
tailored to optimally exploit the memory hierarchy of the
target hardware.

• We identify key components of the search/training recipes
that make DUCCIO effective, such as progressively in-
creasing regularizer strengths and discretized sampling.
Furthermore, we show that DUCCIO can be applied to
both path-based [24] and mask-based [17] DNAS.

• We apply DUCCIO to five IoT-relevant tasks, including

the entire MLPerf Tiny benchmark suite [25] and Tiny
ImageNet [26], using the corresponding reference DNNs
as starting points. As target hardware, we focus on the
ultra-low-power RISC-V-based GAP8 System-on-Chip
(SoC) 1.

• Our results show that DUCCIO finds networks that reach
the same or superior accuracy compared to the seed while
being 55.9% and 87.4% smaller on 2 out of 4 tasks. On
the keyword spotting task, DUCCIO reduces the size of
the seed by 54.78% while incurring only 0.43% accuracy
loss, while on anomaly detection, it reduces the size by
27.59% with a small reduction in AUC of 1.29%. We
then additionally constrain the DNN latency to be 75-
25% that of the initial DUCCIO outputs, obtaining an
additional set of Pareto optimal solutions.

• On our more complex benchmark, Tiny ImageNet, we
show that DUCCIO can refine an already optimized
model to match the HW memory hierarchy at layer-wise
granularity, achieving an additional 54%-61% speedup in
exchange for a 0.35%-2.82% accuracy drop.

• Lastly, we perform a set of ablation studies to demonstrate
the effectiveness of our training recipes and to show
that our one-shot method performs on-par with standard
DNAS formulations while requiring approximately 10x
less search time.

The rest of the paper is organized as follows. Section II
provides the required background, while Section III surveys
related works on NAS for efficient DNNs. Section IV describes
the DUCCIO methodology in detail, and introduces the two
DNAS methods on top of which we apply it in this work.
Lastly, Section V presents experimental results, and Section VI
concludes the paper.

II. BACKGROUND

A. Neural Architecture Search (NAS)

In the last few years, NAS has appeared as an emerging
technique to automate the design of DL models, with a
strong push from both academia and industry [10]–[12]. The
final objective of this research will be to integrate advanced
NAS techniques in commercial AutoML platforms, which are
currently still based on simpler exhaustive or random hyper-
parameter tuning algorithms [27], [28]. Some recently pub-
lished surveys [10]–[12] have tried to summarize the quickly
changing landscape of existing NAS solutions, organizing
them according to three dimensions: i) the search space, ii)
the search strategy, and iii) the evaluation strategy.

The search space defines the possible architectural alterna-
tives that a NAS can explore. Literature works have considered
various search space definition strategies, including: coarse
spaces with global hyper-parameters decisions (number of
layers, global width-multipliers, etc.) [13], [14]; cell-based
spaces with non-fixed number and type of cells [24], [29]
where a cell is a specific combination of one or more layers;
fine-grain layer-wise tuning of hyper-parameters such as the
number of channels, filter size, dilation, etc. [17], [30]. The

1https://greenwaves-technologies.com/ai processor GAP8/
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number of solutions in the search space can be as high as
1032 [17], and each solution is univocally determined by an
encoding, which is method-specific, and tightly coupled with
the search strategy.

The search strategy is the optimization engine used by
the NAS to select good models from the search space. An
obvious measure of goodness is predictive performance (for
example, classification accuracy). However, modern hardware-
aware NAS also consider non-functional metrics, such as
memory occupation, number of operations per inference, la-
tency, etc. [12].

The way in which each DNN is scored during a search
defines the evaluation strategy. For predictive performance,
the obvious approach is a full training and testing of the
model on a reference dataset. Similarly, non-functional metrics
can be measured most accurately by means of a complete
deployment of each DNN on the hardware [16]. However,
both these strategies are extremely time-consuming, which led
to the development of so-called proxies, detailed below.

Two main families of NAS search strategies can be iden-
tified in literature, referred to as black-box and one-shot,
respectively. Early NAS approaches were mainly based on
black-box engines, such as Reinforcement Learning (RL) [29]
and Evolutionary Algorithms (EA) [31]. In these methods,
one or more architectures are iteratively sampled from the
search space and evaluated in terms of all (functional and
non-functional) metrics of interest. Based on the result of
such evaluation, the sampling policy is updated, and the entire
process is repeated. Black-box solutions are very effective and
flexible, as they can accommodate any set of constraints and
optimization targets. However, due to the repeated sequence
of sampling, training, and evaluation, they do not scale well
with the dimension of the search space, requiring thousands
of GPU hours for a single search [16].

The search complexity of black-box methods can be reduced
thanks to “proxy” evaluation strategies. In particular, predictive
performance can be extrapolated from learning curves, testing
on a single or few minibatches, or epochs [10], [32]. Similarly,
full deployment can be replaced by analytical or simulative
cost models for non-functional metrics [12]. However, accu-
racy extrapolation has been demonstrated to be unreliable,
and even with proxies, black-box techniques remain extremely
computationally demanding, which limits their usability by
most IoT system designers [19].

To alleviate this problem, pursuing the goal of democ-
ratizing DNN optimization, a set of lightweight techniques,
referred to as Differentiable NAS (DNAS) or One-shot NAS
has been proposed [24]. The latter are the main focus of this
work and are discussed in more detail in the next Sec. II-B.

B. Differentiable Neural Architecture Search (DNAS)
DNAS methods use gradient descent as search strategy,

optimizing both the weights and the network architecture
in the same training loop (hence the name one-shot). For
these algorithms, search strategy and evaluation strategy are
therefore strongly linked.

Early DNASes were built upon the concept of supernets,
DNNs with multiple alternative paths, each corresponding to

one candidate in the search space [24]. For example, the
supernet can be constructed replacing each layer of a reference
DNN with a module that includes multiple alternatives (such as
convolutions with different filter sizes). Alternative layers are
combined using a set of architectural weights, which are then
optimized during training. The optimization assigns higher
weights to the alternatives that perform better according to
the metric(s) of interest. At the end of training, a discretization
stage chooses a single path, namely the one formed joining the
alternatives associated with the largest architectural weights in
each supernet module. We refer to these methods as path-based
DNAS.

To find accurate yet efficient architectures, DNAS tools
augment the standard training loss with an additional differ-
entiable regularization term, that encodes the network cost.
Common cost measures are the number of parameters, the
number of Operations (OPs) per inference, or differentiable
estimates of latency or energy consumption [19]. In this case,
the minimization objective of a DNAS training loop becomes:

min
W,θ

L(W ; θ) + λR(θ) (1)

where W is the set of trainable weights of the network, θ is
the set of NAS architectural weights encoding the different
paths in the supernet and λ is a scalar regularization strength
that controls the relative importance between the task-specific
loss and complexity loss.

Although path-based DNAS can discover optimized archi-
tectures significantly faster than black-box approaches, explor-
ing a vast search space requires a very large supernet, which
takes a lot more time and memory to train compared to a
“regular” DNN.

A better alternative in this sense is represented by so-called
mask-based DNAS [17], [18], [30]. In these algorithms, the
large multi-path supernet is replaced by a standard, single-
path neural network, which is referred to as the seed network.
The search space comprises all DNNs that can be obtained
by varying the seed’s hyper-parameters in order to reduce its
complexity (using a smaller kernel-size, a lower number of
features, etc.). Thus, the optimization goal becomes to remove
the unnecessary components from each layer, while preserving
the task performance of the DNN.

The exploration of the different sub-architectures of the seed
network is conducted by coupling the weights and activations
of the DNN with binary architectural masks. More specifically,
each mask element is associated with a specific subset of the
weights or activations (for example a channel or a slice of the
filter). During the forward pass, the binary masks are combined
with their associated weights/activations through a Hadamard
product. In this way, setting a given mask value to zero
effectively simulates the removal of the corresponding part of
the layer from the network. The continuous relaxation of the
binary mask values is then optimized akin to the architectural
weights in path-based DNAS, with the aim of reducing the
network complexity, by removing unnecessary components
from each layer, while maintaining accuracy. In practice,
mask-based DNAS algorithms can learn which weights or
activations are the most important ones, and assign higher
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values to the associated architectural masks to retain them in
the layer. On the contrary, they can assign lower mask values
to the subsets of weights and activations whose contribution
is less important, and can be pruned away. At the end of the
search, the final architecture is obtained by removing all the
portions of the weights or activations that are associated to
zero-elements in the binarized masks.

In comparison to a regular training of the seed, the masks
add very little memory and search-time overheads, thus further
reducing search costs compared to a path-based DNAS. As
only reduced versions of the seed can be explored, one
clear disadvantage of mask-based approaches is that the search
space definition becomes less flexible. Indeed, it is not pos-
sible, with a mask-based approach, to explore DNNs that
differ from the initial architecture by depth or by the type of
layers. However, this is exchanged for a finer-grained search
granularity. For instance, starting from a seed convolution
with 32 output channels, it is possible to explore all reduced
variants (from 1 to 32 channels) with a step of 1, which would
be almost unattainable for replication with many paths in a
supernet [17].

III. RELATED WORKS

Some NAS techniques have as only objective the opti-
mization of the model’s performance, measured as validation
accuracy or error [24], [29]. Such methods are not suited
for resource-constrained IoT end-nodes, for which hardware-
related cost metrics should be taken into account during the
optimization. As mentioned in Sec. I, most often, cost metrics
represent constraints to be respected, rather than objectives.
In other words, the NAS should ensure that the cost metric
value (R) is lower than a target (T ). A summary of the most
relevant cost-aware NAS methods is reported in Table I.

For black-box NAS, accounting for hardware constraints is
relatively easy due to the flexibility of the search strategy.
Some of the first approaches [33]–[36] tackle this challenge by
exploiting EA or Genetic Algorithms, evolving the population
of architectures in order to form an optimal Pareto front in
the performance-complexity space. In particular, CNAS [36]
models the complexity objective as a sum of terms, one
for each cost metric, computed as the maximum between 0
and the excess cost with respect to a target, multiplied by a
hyper-parameter that controls the penalty magnitude. Among
RL methods, MNASNet [16] tries to enforce a constraint by
multiplying the task quality reward term Qtask (e.g., accu-
racy) by the ratio between the network’s latency, measured
from a complete deployment, and the corresponding target.
A hyper-parameter controls the exponent of such ratio, and
can assume different values whether or not the constraint is
satisfied. Therefore, cost becomes a penalty term (λ ̸= 0)
when R > T , and vice versa, it disappears (λ = 0) when
R ≤ T . TuNAS [37] defines instead the cost term as the
absolute difference of the ratio between the cost and the target
from the ideal value of 1. Latency is estimated by means of
a LUT-based approach, and the cost component is added to
the reward after being scaled by a strength factor λ, always
non-positive. Importantly, with this formulation, a model that

breaks the constraint is penalized as much as a model that
is under the target by the same cost amount. This is based
on the assumption that a model with bigger cost is usually
associated to a higher accuracy [37]. Lastly, AutoTinyML [38],
relies on Bayesian Optimization (BO) to define the subspace
of solutions that satisfy the given constraints, and to optimize
both the architecture and its parameters.

Among DNAS methods, the usual approach to integrate
cost metrics into the search objective uses the formulation of
Eq. 1. In practice, the constrained optimization problem is
transformed into a single-objective optimization by means of
scalarization, that is, by adding all cost terms, each weighted
by a different hyper-parameter, as regularizers to the single
objective function. In this way, architectures which require
a high amount of memory or computation resources are
penalized, and this steers the search direction towards regions
of the search space with better cost vs accuracy trade-offs.

Methods that follow this scheme mainly differ in the specific
cost metric expression, which in order to be optimized with
gradient descent, must be a differentiable function. Mor-
phNet [30], PIT [17] and FBNetV2 [18] are three mask-based
DNAS that estimate memory and time/energy cost respectively
as the network’s size (number of parameters), and its number
of Multiply-and-Accumulate (MAC) operations per prediction
(OPs), expressed as a function of the architectural parameters.
ProxylessNAS [19], instead, is a path-based approach that
regularizes against a LUT-based latency model. As detailed
in Sec. IV, the main issue of these approaches is the fact that
there is no guarantee that the final architecture will satisfy
the cost target T . Thus, to obtain a model which can be
actually deployed on the target hardware, while achieving high
accuracy, different λ values have to be tested (empirically,
approximately 10 distinct runs are required on average [20]).

Recently, there have been some attempts to develop DNAS
approaches which can effectively enforce constraints. Light-
NAS [20], a DNAS+EA hybrid, defines the regularization
term as the distance between a models’ latency and a target,
rescaled by the latter. Latency is estimated through a Multi-
Layer Perceptron (MLP) model trained on measurements from
the hardware, and the hyper-parameter λ is adjusted during
training with gradient ascent to ensure that the constraint is
enforced. In practice, if the achieved latency is higher than the
target, the value of λ will be increased in order to prioritize
the cost loss term during the next search iteration, and vice
versa. Thus, the formulation becomes similar to a Lagrangian
relaxation, although solved with stochastic gradient descent,
given the highly non-convex DNN optimization objective and
cost constraints [39]. UDC [22] adopts a similar regularization
formulation to constrain the number of parameters, using a
constant λ value. HardCoRe-NAS [21] combines DNAS with
Integer Linear Programming (ILP), using Block Coordinate
Stochastic Frank-Wolfe Algorithm to guide the search towards
an optimal architecture while remaining in a feasibility re-
gion where a latency constraint is satisfied. In our previous
work [23] we considered for the first time multiple cost
dimensions in a DNAS optimization, where one dimension
(model size) is treated as a constraint, and another (number of
OPs) as an objective.
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TABLE I
SUMMARY OF STATE-OF-THE-ART COST-AWARE NAS METHODS.

Method Cost Search algorithm Loss / Reward function Target constraint

Lemonade [33] Latency (Deploy), Size, OPs EA - Yes

NSGA-Net [34] OPs EA - Yes

µNAS [35] Size, MACs, Peak memory EA - Yes

CNAS [36] Size, MACs, Memory Genetic algorithm Qtask(W, θ) +
∑

j λj,1 (Rj(θ) + λj,2 max (0, (Rj(θ)− Tj))) Yes

MNASNet [16] Latency (Deploy) RL Qtask(W, θ)
(

R(θ)
T

)λ
Yes

TuNAS [37] Latency (LUT) RL Qtask(W, θ) + λ
∣∣∣R(θ)

T
− 1

∣∣∣ Yes

AutoTinyML [38] Size, Memory BO - Yes

ProxylessNAS [19] Latency (LUT) Gradient-based Ltask(W, θ) + λ1||W ||22 + λ2R(θ) No

MorphNet [30] Size, OPs Gradient-based Ltask(W, θ) + λR(θ) No

PIT [17] Size, OPs Gradient-based Ltask(W, θ) + λR(θ) No

FBNetV2 [18] Size, OPs Gradient-based Ltask(W, θ) + λR(θ) No

LightNAS [20] Latency (MLP) Gradient-based + EA Ltask(W, θ) + λ
(

R(θ)
T
− 1

)
Yes

HardCoRe-NAS [21] Latency (LUT) Gradient-based + ILP Ltask(W, θ) s.t. R(θ) < T Yes

UDC [22] Size Gradient-based Ltask(W, θ) + λ |R(θ)− T | Yes

Multi-complexity loss [23] Size, OPs Gradient-based Ltask(W, θ) + λ1 |R1(θ)− T |+ λ2R2(θ) Yes

DUCCIO (Ours) Multiple Gradient-based Ltask(W, θ) +
∑

j λj max(0,Rj(θ)− Tj) Yes

IV. PROPOSED METHOD

While undoubtedly helpful, DNAS tools based on Eq. 1
have several key limitations. First, the optimization space
for real-world DNNs is constrained on multiple dimensions,
with complex interdependencies, which cannot be captured
by the single cost metric modeled by R. Choosing only one
metric, such as the number of OPs, the memory footprint, or
a differentiable approximation of the energy consumption or
latency [19], [30] implicitly ignores the others, resulting in
sub-optimal explorations.

Furthermore, in Eq. 1, complexity is seen as a secondary
objective to minimize, rather than a constraint. This clashes
with the goal of most designers, who care about obtaining the
most accurate DNN that meets certain cost conditions. In other
words, they want to ensure that all relevant cost metrics are
simultaneously within specificed bounds, so that the DNN can
fit in memory, respect real-time constraints, meet the expected
battery life, etc. At the same time, they are not interested in
further reducing cost below such limits.

Obtaining this with Eq. 1 is burdensome, even in the
simplified case of a single cost metric. In fact, that formulation
does not impose any limit on the value of R, and on the
other hand, the optimizer can freely continue to improve its
loss function by reducing R, at the expense of accuracy, even
after reaching the desired target. In practice, designers have
to repeat the entire search multiple times, while tuning the
regularization strength λ, until a model with the right cost, and
high accuracy, is found. Although recent works have proposed
alternative formulations to embed cost targets in a DNAS
search [20], [22], they still consider a single cost metric, and
try to match it exactly, which might be sub-optimal.

This paper introduces a novel and flexible DNAS formu-
lation and training mechanism to solve the issues above,
which we call DNAS Under Combined Constraints In One-
Shot (DUCCIO). DUCCIO is an agnostic and plug-and-play

methodology that can be built around any DNAS with minor,
yet fundamental, changes, to easily ensure that multiple cost
constraints are simultaneously respected. We analyze different
scenarios where DUCCIO can be applied proficiently to:

1) Search for architectures that simultaneously respect a
maximum storage target and a maximum number of OPs
target, where the latter is a proxy for latency.

2) Refine an architecture with layer-wise size constraints to
fit the fastest memory of the target, trading-off significant
speed-ups for minimal accuracy drops.

We demonstrate DUCCIO’s flexibility by applying it on top
two different state-of-the-art DNAS methods, using radically
different optimization mechanisms [17], [24]. Note that nei-
ther scenario 1) nor scenario 2) were approachable with our
preliminary work of [23], which additionally, was tested only
on mask-based DNAS. In the rest of the manuscript, we focus
on NAS for Convolutional Neural Networks (CNNs) although
DUCCIO is also applicable to other types of DNN.

The rest of this section is organized as follows. Sec. IV-A
and Sec. IV-B introduce the two DNASes on top of which we
apply our method. Sec. IV-C presents the multi-regularization
loss approach at the core of DUCCIO, while Sec. IV-D
discusses the key elements of its training procedure.

A. Path-based DNAS

The first DNAS that we consider is inspired by DARTS [24],
and leverages a supernet, thus belonging to the category of
path-based methods.

Fig. 2 summarizes its optimization scheme. The supernet is
built starting from a standard CNN where each convolutional
layer L(n) is replaced with a module made of a set of M

different layer alternatives M(n) = {l(n)i }M−1
m=0 . Within each

module, all layers share the same input, while each output
tensor is coupled with an additional trainable parameter θ(n)i .
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Fig. 2. Target path-based DNAS method

Seed Network Searchable Network

Convolu�onal Kernel Mask Tensor

Masking Examples

Fig. 3. Target mask-based DNAS method.

The set of θ(n)i is used to select among alternatives at the end
of the search. The supernet is inserted in a normal training
loop, where the weights of each layer and the corresponding
θ are trained jointly, with the objective function described in
Sec. IV-C.

With respect to DARTS, there are two key differences in
our path-based DNAS. In accordance to most recent NAS
literature [18], [40], we leverage the Gumbel-Softmax [41]
sampling strategy, as opposed to the standard Softmax used
in [24]. Moreover, we use a discretized sampling strategy,
where only one path is selected in each training iteration. In
practice, the output of the supernet module is built as:

y(n)(x) =

M−1∑
i=0

g(θ
(n)
i ) · l(n)i (x) (2)

where g(θ
(n)
i ) are discretized Gumbel-Softmax coefficients:

g(θ
(n)
i ) = onehoti

(
exp(θ

(n)
i + ϵ)∑

i exp(θ
(n)
i + ϵ)

)
(3)

with ϵ ∼ Gumbel(0, 1) being i.i.d. samples drawn from
the Gumbel distribution [41], and onehot being a function
that discretizes to 1 the maximum sampled value among
the alternatives, and to 0 all the others. We use a Straight-
Through Estimator (STE) [42], replacing onehot with an iden-
tity function during backward passes. This lets gradients flow
through the network despite the non-differentiable function.
As detailed in Sec. IV-D, discretized sampling is fundamental
to respect cost constraints.

At the end of training, the optimized architecture is ex-
ported selecting, for each supernet module, the alternative
corresponding to the largest θ(n)i .

B. Mask-based DNAS
The second DNAS that we consider is a simple yet pow-

erful mask-based approach which, starting from a seed CNN,

performs a fine-grained optimization of the number of output
channels of all its convolutional layers. This DNAS, schema-
tized in Fig. 3 is an extension to 2D CNNs of the channel-
search approach originally proposed in PIT [17].

In this case, a searchable model, that is, one that can be
optimized by the DNAS, is built coupling each convolutional
weight tensor in the seed W (n) with a trainable mask vector
θ(n). The dimension of W (n) is C

(n)
out ×K

(n)
x ×K

(n)
y ×C

(n)
in ,

where C
(n)
in , C

(n)
out are the input/output channels and K

(n)
x ,

K
(n)
y are the horizontal/vertical kernel sizes.
The corresponding θ(n) includes C

(n)
out elements, one per

output channel, and is used to selectively prune the least
important channels during the search. Accordingly, a masked
weight tensor W (n)

Θ is built as:

W
(n)
Θ = W (n) ⊙H(θ(n)) (4)

where ⊙ is the Hadamard product, and H is a Heaviside step
function with a fixed threshold th = 0, which has the effect of
binarizing θ(n) (1 if θ(n)i ≥ th, 0 otherwise). Each binarized
mask element is multiplied with a slice of weights W (n)

i along
the C

(n)
out dimension. The slice contains all weights of the i-th

convolutional filter. Therefore, when H(θ
(n)
i ) = 0, the i=th

output channel is to all effects eliminated from the network.
Conversely, the channel is kept if H(θ

(n)
i ) = 1.

The obtained searchable network is again inserted in a nor-
mal training loop, where W and θ are trained together accord-
ing to DUCCIO’s objective function. As before, binarization
ensures that we sample a single discretized architecture in each
training step (see the examples on the right of Fig. 3). During
backward passes, a STE based on BinaryConnect [42] replaces
the Heaviside step with an identity function to make the search
differentiable.

In this case, the final export of the optimized model perma-
nently eliminates all channels that correspond to a θ

(n)
i < th,

shrinking each Convolutional layer accordingly.

C. Multi-Constraint Loss Formulation

As discussed in Sec. II and III, most state-of-the-art DNAS
tools [18], [19], [30] optimize a variant of Eq. 1, which sums
the task-specific loss L and a regularization term R, where the
latter models a single cost metric as a differentiable function
of the NAS architectural parameters (θ), and is scaled by
a strength coefficient λ. The specific meaning of R varies;
some approaches [18], [30] express it as the total number
of parameters or OPs in target layers (e.g., all Convolutional
layers); others [19] use more direct approximations of the end-
to-end latency or energy consumption of the obtained DNNs.
The limitations of these approaches have been highlighted at
the beginning of this section. Namely:

1) They consider a single cost metric, whereas real systems
are constrained in multiple dimensions.

2) They cannot guarantee that the cost estimate R is lower
than a target value.

3) Even when the target is reached, R remains part of
the objective function, hence the optimizer continues to
prefer lower-cost models, although this is not necessary.
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Therefore, sweeping λ, trying tens of different values at least,
is the only way to generate models with the desired cost and
accuracy characteristics.

Recently, UDC [22], LightNAS [20] and our previous work
of [23] added an explicit cost target T in the regularization
term, and let the optimizer reduce the difference between the
estimated cost and the target, by adding a term proportional
to |R(θ)− T |, or equivalent, to the loss function.

Although making an important step forward, these methods
do not solve completely the issues above. First, except for [23]
they still consider a single cost dimension, thus not solving
issue 1). Similarly, issue 3) is also not eliminated, since once
R(θ) becomes < T , the new loss component starts to have
an opposite effect, favoring more costly models to reduce the
difference from the target. Some papers [37] claim that this
is not a problem, since more complex models tend to also be
more accurate. However, our experiments demonstrate that this
is not always the case, and that letting the NAS freely change
the model’s cost within the boundaries imposed by constraints
yields superior results. In practice, we sometimes find lower-
complexity models that perform equally well with those that
closely match the target.

DUCCIO addresses the limitations of previous DNAS tools
proposing the following objective function formulation:

min
W,θ

L(W ; θ) +

J∑
j=0

λj max(0,Rj(θ)− Tj) (5)

which includes two fundamental new elements. First, we
consider an arbitrary number (J) of cost metrics (Rj) and
corresponding constraints (Tj), each with its own regulariza-
tion strength. Second, we use a max function to ensure that
the loss is penalized only when the cost metric exceeds the
constraint. Vice versa, whenever Rj(θ) < Tj , the j-th cost
component disappears from the loss, thus not impacting the
gradients of NAS parameters. The strength coefficients λj are
scheduled during a DUCCIO search to ensure that, at the end
of training Rj(θ) < Tj , ∀j, as discussed in Sec. IV-D.

Importantly, nothing prevents from adding cost objectives
(in the form of an additive term +λjRj(θ)) to the loss function
of DUCCIO. This can be done similarly to what was presented
in our previous work of [23]. One reason to do so could be
that, for a given cost metric (say energy consumption) there is
not a specific constraint to be matched, but rather, the designer
wishes to explore the entire Pareto front of trade-offs with
accuracy. Then, for that specific dimension, DUCCIO would
become equivalent to a standard DNAS. However, in this work,
we focus on true one-shot DNAS, hence we consider all cost
dimensions as constraints.

Next, we describe two practical applications of DUCCIO’s
loss formulation:

1) Multiple Global Constraints: A first straight-forward
use case is to impose multiple global constraints, relative to
the entire model under optimization. Often, system designers
must ensure that: i) the total DNN size fits the storage space
available on the target and ii) the total inference latency

is below a real-time constraint. In this case, Eq. 5 can be
instantiated as:

min
W,θ

L(W ; θ)+λ0 max(0,O(θ)−To)+λ1 max(0,S(θ)−Ts)

(6)
where S models the size (storage footprint) of the DNN as
a function of the NAS parameters θ, and O is a proxy for
latency. To estimate the total size of the model, we sum the
sizes of all NAS target layers:

S(θ) =
N−1∑
n=0

S(n)(θ) (7)

where the expression for S(n) depends on the chosen DNAS.
For our target path-based method, we estimate it as the number
of weights in each supernet alternative, multiplied with the
corresponding NAS sampling value:

S(n)(θ) =

M−1∑
i=0

g(θ
(n)
i ) · S(n)

i (8)

where for example S(n)
i = C

(n)
in · C(n)

out · K
(n)
x · K(n)

y for a
standard convolution, or S(n)

i = C
(n)
in ·K(n)

x ·K(n)
y +C

(n)
in ·C(n)

out

for a sequence of DepthWise + PointWise convolutions such
as those present in MobileNets [43].

For the mask-based DNAS, instead, we estimate model size
as the number of weights in non-masked filters. Taking a
standard convolution again as an example, we have:

S(n)(θ) = C
(n)
in (θ) · C(n)

out(θ) ·K(n)
x ·K(n)

y (9)

where the dependency of Cout from θ comes from the fact that
channels with θ

(n)
i < th are to all effects eliminated from the

model. Cin also changes indirectly as a result of the shrinking
Cout in previous layers. For instance, for a simple sequential
model C(n)

in = C
(n−1)
out .

For what concerns latency, a basic model can simply count
the number of Multiply-and-Accumulate (MAC) OPs in each
target layer. For convolutions, this can be expressed as:

O(θ) =

N−1∑
n=0

S(n)(θ) ·O(n)
x ·O(n)

y (10)

where O
(n)
x and O

(n)
y are, respectively, the output feature map

width and height of the n-th convolutional layer. Note that
while O and S are linked, optimizing one or the other is not
identical. In particular, for most DNNs, output feature sizes
tend to reduce while going forward in the network, due to the
effect of pooling layers, strided convolution, etc., whereas the
number of channels tends to increase. Thus, initial layers often
contribute more to latency, and final layers more to size.

We use this simplified model in our work, since it correlates
sufficiently well with actual latency for our target platform.
However, DUCCIO is orthogonal to the specific cost expres-
sion, and would work as well with more accurate differentiable
latency estimates, such as those proposed in [19], [20].
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2) Layer-wise Constraints: Another common scenario for
DNN systems’ engineers is to have a DNN model that is not
ideally sized for the available hardware target. For instance, the
DNN might include one or more layers that slightly exceed one
particular memory level (for instance, the L2) thus requiring
costly transfers of input, output, or weights tiles from the
next level (L3) [9]. With DUCCIO, we can perform a one-
shot optimization that shrinks all and only these layers, while
maximizing accuracy, by formulating the objective as:

min
W,θ

L(W ; θ) +
∑

n∈Crit.

λn max(0,M(n)(θ)− Tm) (11)

where Crit. is the set of critical layers, which are those
slightly overflowing a given memory level, and Tm is that
level’s available space (that is, its total size minus a con-
stant offset that accounts for code size, other variables, etc.).
M(n)(θ) is the n-th layer’s total memory which, for a Con-
volution, can be expressed as:

M(n)(θ) = S(n)(θ) + I(n)x I(n)y C
(n)
in (θ) +O(n)

x O(n)
y C

(n)
out(θ)

(12)
where the three addends account for the memory required by
parameters, inputs, and outputs, respectively, and I

(n)
x , I

(n)
y

are the input feature dimensions. The rightmost two addends
depend on θ, through Cin and Cout only in case of a mask-
based DNAS, while they are fixed for the path-based method.

Note that, in Eq. 11, the constraints are imposed on each
layer’s memory, differently from Eq. 6, where the added loss
terms only limit the aggregated metrics values over the entire
DNN. Furthermore, while the equation includes a common
target Tm for all critical layers, for notational simplicity, in
general we could also support different targets, to ensure some
layers fit in L1 memory, while others fit in L2, etc.

To the best of our knowledge, none of the state-of-the-
art DNAS works have considered such type of fine-grain,
hardware-aware constraints. Our results of Sec. V show that
tailoring each layer to the memory hierarchy in this way can
lead to significant speedups, in exchange for minor accuracy
drops.

D. Training Procedure

Alg. 1 reports an overview of a DUCCIO training procedure.
As it is common in DNAS, we have three separate phases
of warmup, search and fine-tuning. We start with a warmup,
which consists of a normal training of the full supernet (for
the path-based DNAS) or seed network (for the mask-based
one). In this phase, only the normal weights W are trained.
NAS parameters θ are frozen at their initialization value (1.0)
to ensure that all paths/channels are trained. Specifically, for
the path-based DNAS, this results in a uniform sampling of
all supernet paths, whereas for the mask-based method, all
channels of the seed model are kept active. In this phase, the
gradients are computed only with respect to the task-dependent
loss function L. Noteworthy, warmup results are independent
from the imposed constraints, thus they can be saved and
reused in case of multiple searches (for example, to target
different hardware).

Algorithm 1
1: for e← 1, . . . ,Epochswu do ▷warmup loop
2: Update W based on ∇WL(W )
3: end for
4: e← 1
5: while e < Epochssr or not converged do ▷search loop
6: Update W, θ based on ∇W,θ(L(W ; θ)+

∑J
j=0 λj max(0,Rj(θ)−

Tj)
7: Schedule λj , ∀j
8: e← e+ 1
9: end while

10: for e← 1, . . . ,Epochsft do ▷fine-tuning loop
11: Update W based on ∇WL(W )
12: end for

The second phase consists of the actual architecture opti-
mization. In this step, the weights W and the NAS parameters
θ are optimized together, to minimize one embodiment of
the DUCCIO objective of Eq. 5. We run this loop for a
minimum number of epochs (Epochssr) and then continue
until convergence, with an early-stop mechanism that monitors
the task loss L on an unseen validation-split, and stops
the search when the loss stops improving. When a default
validation set is not provided by a specific benchmark, we
generate it by randomly sampling 10% of the training set.

At the end of the search phase, we export the model
resulting from the final θ values, as detailed in Sec. IV-A and
IV-B. We then perform a fine-tuning of this model in which,
similarly to warmup, we only train the weights W based on
the task-specific loss L. In all our experiments, we keep the
number of warmup and fine-tuning epochs equal to the ones
reported in the MLPerf Tiny official repository (see Sec. V-A1
for details).

In the rest of this section, we discuss two key aspects that
make the procedure described in Algorithm 1 effective to re-
alize a one-shot DNN optimization under multiple constraints.

1) Discretized Sampling: At the end of a DNAS search,
regardless of the specific method, a single discrete DNN
architecture is sampled from the solution space and returned.
In a multi-constraint setup, we want to force that this archi-
tecture respects Rj(θ) < Tj , ∀j. To this end, we claim that
we shall not apply a continuous relaxation of the sampling
problem during the search, as done in [24] and many other
popular DNAS works. We show this with a simple example,
consisting of a DNN with a single NAS target layer, to which
we impose a maximum storage size target of Tj = 600.
A path-based DNAS might include two alternatives for this
target layer, with S

(1)
0 = 100 and S

(1)
1 = 800, respectively. In

the original formulation of [24], these two would be linearly
combined as in Eq. 8, but using continuous NAS parameters,
produced by a standard SoftMax operation. In this case, at
the end of a search loop, the optimization could produce
g(θ

(n)
0 ) = 0.49 and g(θ

(n)
1 ) = 0.51, which in turn yields:

S(n)(θ) = 0.49 · 100 + 0.51 · 800 ≈ 450 < Tj . This solution
respects the constraints (in the continuous relaxation domain),
thus being optimal with respect to the cost component of the
loss function. However, given that the SoftMax is monotonic,
and that the final architecture is extracted from the supernet
based on the largest θ, the DNAS will eventually select the
second alternative, with a size of 800, which clearly violates
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the constraint.
In DUCCIO, we solve this problem by performing a discrete

sampling (i.e., selecting a single, discrete architecture) in each
training iteration. For the path-based DNAS, this is realized
by the onehot function in Eq. 3, while in the mask-based
case, it is obtained thanks to the Heaviside step in Eq. 4.
We note that this is different from both original papers, since
also [17] used the continuous relaxation for cost (size or
OPs) estimation. However, other works, such as [19], [44]
use discretized sampling, showing that this is also beneficial
to improve the correlation between the accuracy of the model
during search and after the final export.

A possible alternative method to reduce the mismatch
between the cost estimated during search and the one of
the final model in path-based DNAS, while maintaining the
continuous relaxation, is to polarize the θ arrays, ensuring that
their values are not close to each other. This can be achieved
with an additional loss component proportional to the Inverse
Coefficient of Variation (ICV) [45]: µ(g(θ))/σ(g(θ)) where µ and
σ are the mean and standard deviation respectively, and g() is a
standard SoftMax or Gumbel SoftMax, without discretization.
We tested this approach as well, but our results show that
discretized sampling produces higher quality results.

2) Regularization Strength Scheduling: In our previous
work of [23], we showed that a size target (expressed through
the absolute value difference formulation) could be enforced
by imposing a large and constant regularization strength λ,
thus removing the need for an iterative tuning of this coef-
ficient. While this remains true, in this work we show that
setting a large λ at the beginning of a search might yield
sub-optimal results in terms of accuracy, partly due to our
new formulation based on a max() function. In fact, for some
benchmarks, we empirically verified that the search converges
too fast towards architectures with a cost lower than the
constraint, but possibly corresponding to a sub-optimal local
minimum in terms of accuracy.

To solve this issue, we implement a scheduling of the λj

of Eq. 5, identical for all considered constraints. Namely, we
set the target strength as in our previous work:

λj,target =
L̂

|R̂j − Tj |
(13)

where L̂ and R̂ are the task loss and cost at the end of
warmup. This ensures that, for cost metrics that are above
their corresponding target, the values of the addends in the
summation of Eq. 5 eventually become comparable with the
task-loss term. However, rather than setting this value from
the beginning, we increase it linearly during the initial fixed
number of epochs of the search phase. In practice, at each
epoch, we have:

λj = min

(
e · λj,target

Epochssr
, λj,target

)
(14)

Our results show that this scheduling yields more stable
results compared to a fixed λj , in varying combinations of
task, DNAS method, and cost targets.

V. RESULTS

A. Experimental Setup
We implemented DUCCIO in Python 3.10.9 and PyTorch

1.13.1, on top of the open-source PLiNIO library2. To bench-
mark it, we considered five edge-relevant tasks, including
the four tasks of the MLPerf Tiny suite [25] and image
classification on the Tiny ImageNet [26] dataset. For each
task, a reference DNN is identified, which is used as seed
architecture for the mask-based DNAS of Sec. IV-B and as
blueprint to construct the supernet for the path-based DNAS
of Sec. IV-A. In particular, the supernet is built by substituting
all convolutional layers of the reference DNN with a selection
among four alternatives: i) convolution with a 3 × 3 filter,
ii) convolution with a 5 × 5 filter, iii) depthwise-separable
convolution, i.e., the sequence of a 3×3 depthwise convolution
and a 1 × 1 pointwise convolution [43], and iv) identity
operation. The fourth option is only included for layers that
have stride = 1 and Cin = Cout.

On the MLPerf Tiny suite tasks, we tested DUCCIO with
global memory and OPs constraints, using both mask-based
and path-based DNAS on each benchmark, with the exception
of the Anomaly Detection one, since the reference architecture
is a fully-connected (FC) autoencoder, which does not support
the choice of different layer alternatives. Furthermore, we used
Tiny ImageNet to test the layer-wise memory-aware refine-
ment procedure discussed in Sec. IV-C2 with the mask-based
DNAS, since it permits finer-grain memory optimizations.

1) Benchmarks: The Image Classification (ICL) task targets
the CIFAR-10 dataset [46], which includes 60,000 32x32x3
RGB images divided into 10 classes. We used the full CIFAR-
10 test set in our experiments, rather than the reduced set
proposed by the MLPerf Tiny suite, to have more stable
results. The seed DNN is a ResNet-like [1] architecture with
a backbone of 8 convolutional layers. The number of training
epochs (which is also used for warmup and fine-tuning during
NAS) is 500. Visual Wake Words (VWW) is a binary classifi-
cation task where the goal is to determine if there is at least one
person in the input image. It is based on the MSCOCO 2014
dataset [47], which contains more than 100k 96x96x3 RGB
images. The reference CNN is a MobileNetV1 [43] with a
width multiplier of 0.25, which is trained for 20 epochs. The
KeyWord Spotting (KWS) benchmark considers the Speech
Commands v2 dataset [48], with 105,829 utterances, to be
classified into 12 classes, 10 words and two special labels
(“unknown” and “silence”). The reference architecture is the
Depthwise Separable CNN (DS-CNN) presented in [2]. The
number of training epochs is set to 36. The last MLPerf Tiny
benchmark is Anomaly Detection (AMD), which targets the
Toy-car data fold included in the DCASE2020 dataset [49],
to detect anomalies based on machine operating sounds. The
reference model is a simple FC Autoencoder. In this case,
the number of training epochs is 100. Lastly, we consider
a more challenging image classification task based on Tiny
ImageNet [26], with 100k 64x64x3 RGB images to be classi-
fied into 200 classes with a ResNet18 [1] reference network,
trained for 50 epochs.

2https://github.com/eml-eda/plinio
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Fig. 4. Accuracy versus OPs results for different size targets. In the top row, the results obtained by applying a mask-based DNAS algorithm. In the bottom
one, the results obtained by using a path-based approach.

2) Hardware Platform: GAP8: A subset of the architectures
found by DUCCIO has been deployed on the GreenWaves
Technologies’ GAP8 IoT multi-core System-on-Chip (SoC),
in order to extract real HW metrics such as memory footprint
and latency. The two main functional units of GAP8 are a
single 32bits RISC-V core, known as the fabric controller,
and a computational cluster made of 8 RISC-V cores. The
fabric controller acts as a microcontroller (MCU) and controls
the cluster and other peripherals. The octa-core cluster runs
computationally-intensive tasks, such as DNNs’ inference, in a
vectorized and parallelized fashion, also thanks to customized
instruction set extensions [9]. GAP8 features an internal two-
level memory hierarchy. All cores can reach the 512 kB L2
memory, whereas the L1 memory is divided into two sections:
a 64 kB shared memory for the cluster and 16 kB dedicated
to the fabric controller. If needed a third larger but slower L3
off-chip memory can be reached via a HyperBus interface or
a quad-SPI. To deal with such a complex and heterogeneous
memory hierarchy, GAP8 additionally features two Direct
Memory Access (DMA) co-processors, that can help hiding L2
and L3 memory latency by efficiently moving data within the
hierarchy with a double-buffering strategy, while the RISC-V
cores perform computations on previously transferred data. To
deploy our networks on GAP8, we converted ONNX graphs
exported from PyTorch into C code using the DORY [9]
compilation toolchain. Since GAP8 lacks an FPU, the de-
ployed models are quantized to 8-bit, which causes negligible
accuracy drops. All results are reported on test sets.

B. Global Constraints

Fig. 4 reports the results obtained applying DUCCIO to both
DNAS methods on the MLPerf Tiny tasks. Each plot reports
the reference DNN (black square) and the found architectures
(coloured dots) in the Accuracy versus OPs space, using the

global constraints formulation of Eq. 6. Each colour denotes
a different storage space constraint Ts. We benchmarked our
approach by setting Ts to be respectively 25%, 50% and 75%
of the original size of each reference architecture (we included
also 6.25% and 12.5% for VWW and AMD, since their
reference models are highly over-parametrized, as observed
in our previous work [23]). This setup simulates a real-
world deployment scenario with three different MCUs with
progressively less available memory. Within the curve relative
to each Ts constraint, the right-most point is obtained without
any OPs constraint To. The other points are obtained by
setting To to 25%, 50% and 75% of the OPs of that network.
Importantly, each colored point in Fig. 4 is generated, starting
from the seed/supernet, with a single DNAS training, given
the desired (Ts, To) combination.

The leftmost graphs show the results obtained on ICL. For
all the memory and OPs targets, the mask-based DNAS is
able to perfectly match the constraints by spanning almost one
order of magnitude in OPs, 1.07M-10.0M, and achieving an
accuracy between 71.72% and 85.74%. The highest reduction
in terms of OPs with a network that matches the accuracy of
the baseline (84.31% vs 84.03%) is obtained with the path-
based approach under the 50% size constraint and 75% OPs
constraint. This model has 33.3k parameters and 5.68M OPs,
55.9% and 54.6% lower than the baseline, respectively. The
path-based DNAS also achieves the best accuracy of 85.7%
while still reducing the number of OPs compared to the seed
network by 20%.

The middle-left graphs report the Pareto fronts for VWW.
For the mask-based NAS, DUCCIO finds networks with sim-
ilar accuracies and latencies for all constraints, demonstrating
that even 6.25% of the reference size is enough to maximize
the network accuracy. In particular, the found architectures
have OPs spanning from 602k to 3.42M and accuracies in the
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interval 76.1% - 85.83%. Noteworthy, many of them Pareto-
dominate the seed: compared to the seed, we achieved the
highest accuracy gain of 2.07% (85.83% vs 83.76%) while
reducing operations by 54.2% and memory by 87.4%. With
the path-based DNAS, in this case, our results span a thinner
space, because the reference DNN is mainly composed of
depthwise-separable convolutions. Therefore, given the 4 layer
alternatives included in our supernets, we can further reduce
the memory occupation only by substituting some layers
with identities (eliminating them completely). Comparing the
graphs, it can be seen that removing layers is not beneficial for
this particular task, since the networks found are all Pareto-
dominated by the ones found with the mask-based approach.
We do not report lower size constraints since they are not
achievable within the search space of this second DNAS (the
identity layer cannot be selected when the number of channels
changes or the stride is > 1).

The middle-right plots show the results on KWS. With
the mask-based DNAS, DUCCIO finds many Pareto optimal
solutions for each size constraint. Notably, with the 75% size
target and without To, we reach the best accuracy of 92.82%,
only 0.43% lower compared to the seed, reducing the OPs by
61.37%. On the other hand, the path-based DNAS can only
find 3 different DNNs, obtained by substituting one, two or
three of the four depthwise separable layers of the reference
network with identities. Once again, the networks found by
the path-based DNAS are outperformed by the mask-based
outputs, demonstrating that a finer-grain search is more useful
for this particular task.

Lastly, on the rightmost part of Fig. 4, we report the
results on AMD. As discussed before, due to the nature
of the reference network, we present only results with the
mask-based DNAS. Moreover, since the reference is made
of FC layers, model size and OPs are directly proportional,
making two separate constraints (Ts and To) redundant. For
this reason, the plot is composed only of single points and
not curves. Nonetheless, also in this case, DUCCIO is able
to find Pareto optimal solutions that fit different deployment
scenarios, with limited accuracy drops.

The DUCCIO formulation is orthogonal to the selected
DNAS method, hence being applicable to slower/faster algo-
rithms with equal effectiveness. However, since one of the
main objectives of our work is to reduce search times, making
them effectively comparable to a single training, it is also
relevant to report the time costs associated with obtaining the
results of Fig. 4. As a representative example, we measured
the average time overhead for a single training step on the ICL
benchmark, with respect to a vanilla training of the reference
ResNet architecture. Our training setup is composed of a single
NVIDIA GeForce GTX 1080 Ti GPU, and a full ICL reference
training requires ≈ 2 hours to complete. We obtained that
the path-based DNAS has a 2.59x time overhead on average,
whereas the mask-based DNAS increases the iteration time by
1.97x. Both values are expected, and motivated respectively by
larger supernet size, and by the additional masking operations.
Together, they show that the complexity of DUCCIO is easily
manageable, even with limited training resources.

C. Layer-wise Constraints

This section describes the application of DUCCIO to find a
network tailored to the memory hierarchy of our HW target,
the GAP8 platform. For this use case, we focus on Tiny
ImageNet, since the ResNet18 reference architecture is large
enough to show the benefits of layer-wise memory constraints.
The target NAS is the mask-based one, which allows for a
finer-grain control of the layer sizes.

The seed has 11.28M parameters and obtains a top-1
accuracy of 71.97%. First, we search for three smaller models
with Ts equal to 25%, 50%, and 75% of the seed (rightmost
points in the red, orange, and yellow curves in Fig. 5),
corresponding to the availability of a L3 external memory that
can store 3M, 6M, and 9M parameters, respectively. Then, we
apply progressively stricter constraints on the layer-wise total
memory occupation (Eq. 11). In particular, we consider as
critical layers all those layers with M(n) < (1+C)Tm, where
Tm is the available L2 memory space, and C ∈ {0.3, 0.6, 0.9}.
As a result, we obtain the Pareto frontiers of Fig. 5. On the
x-axis, we report the total L2 memory violation, computed as
L2V =

∑
n∈layers(M(n)(θ)− Tm).

Fig. 5. Accuracy vs L2 memory violation, i.e., the difference between layer
effective memory and L2 dimension.

From this search, we can draw two important conclusions:
first, increasing C leads to including more layers in the critical
set and, therefore, to reduce L2V. Second, for the same size
constraint (for instance, the orange curve), we can reduce the
L2V without sacrificing much accuracy. For instance, with the
constraint Ts of 50%, we indeed observe a reduction of only
0.38% accuracy for an L2V reduction of 38.9%, between the
rightmost network and the one obtained by setting C = 0.3. In
the next section, we will show that the networks with a lower
L2V also achieve, in most cases, lower latency and higher
efficiency. Noteworthy, this correlation does not always hold
since the efficiency also depends on i) the number of layers
that violate the constraint and ii) to the nature of the layers,
which can influence the efficiency (for example, depthwise
layers have lower efficiency on GAP8 with respect to normal
convolutions [9]).

D. Embedded Deployment

Table II and Table III summarize deployment results on the
GAP8 SoC for the ICL and Tiny ImageNet benchmarks. For
sake of space, we focus only on these two benchmarks.

Table II reports ICL models obtained by DUCCIO with
the two DNAS methods. For each method, we report two
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TABLE II
DEPLOYMENT OF MODELS FROM ICL ON THE GAP8 PLATFORM.

Model MOPs Constraint Memory [kB] MOPs Latency [ms] GOPs/s Accuracy Drop w.r.t Ref
Reference None 75.5 12.50 21.42 0.58 84.0 % 0 %
Mask-Based-L None 43.4 9.18 21.26 0.43 85.0 % +1.0 %
Mask-Based-L 6.88 35.6 6.42 15.10 0.43 83.7 % -0.3 %
Mask-Based-M 6.05 32.5 5.68 15.51 0.37 84.3 % +0.3 %
Mask-Based-M 4.03 24.7 3.80 10.68 0.36 82.8 % -1.2 %
Mask-Based-S None 18.7 5.21 11.66 0.45 81.4 % -2.6 %
Mask-Based-S 2.61 17.6 2.60 9.40 0.28 79.0 % -5.0 %
Path-Based-L 10.0 54.8 10.0 17.50 0.57 85.7 % +1.7 %
Path-Based-L 6.68 51.8 7.55 21.76 0.35 84.1 % +0.1 %
Path-Based-M 8.19 28.2 7.53 17.56 0.43 83.8 % -0.2 %
Path-Based-M 5.46 16.4 4.42 14.11 0.31 83.7 % -0.3 %
Path-Based-S None 16.4 4.42 14.11 0.31 83.3 % -0.7 %
Path-Based-S 2.14 14.6 2.48 12.59 0.20 83.1 % -0.9 %

TABLE III
DEPLOYMENT OF MODELS FROM TINY IMAGENET ON THE GAP8 PLATFORM AFTER LAYER-WISE MEMORY REDUCTION.

Model L2V Constraint Mem. [kB] MOPs MCycles GOPs/s L2 Violation [kB] Accuracy
TinyI-L None 7770 1956,8 1002.6 0.19 5301 68.59 %
TinyI-L-60 60 % × L2 6765 1361,2 644.4 (-36%) 0.21 (+8%) 3648 67.94 %
TinyI-L-90 90 % × L2 6615 1344,3 601.1 (-40%) 0.21 (+15%) 3446 67.43 %
TinyI-M None 5342 1607,6 637.3 0.25 2875 65.44 %
TinyI-M-30 30 % × L2 4932 1368,1 293.9 (-54%) 0.47 (+84%) 2313 65.09 %
TinyI-M-60 60 % × L2 4706 1164,8 291.5 (-55%) 0.40 (+58%) 1758 65.06 %
TinyI-M-90 90 % × L2 3742 1136,0 252.1 (-61%) 0.45 (+79%) 861 62.72 %
TinyI-S None 2738 1022,3 334.5 0.31 681 60.40 %
TinyI-S-60 60 % × L2 2264 731,0 178.8 (-46%) 0.41 (+34%) 0 58.84 %

DNNs per size target (75%, indicated by a -H suffix, 50%,
indicated by -M, and 25%, indicated by -L). Namely, we
deploy the two rightmost points of each Pareto front of
Fig. 4 which correspond to the Mega OPs (MOPs) constraints
detailed in the table. Additionally, for comparison, we also
deploy the reference DNN. The Mem. column reports the
memory occupation of each model. The first thing to notice is
that all DNNs satisfy the imposed memory target and MOPs
constraints. Regarding latency, we find solutions that span
from 9.40ms to 21.26ms and 12.59ms to 27.86ms, respectively,
for the mask-based DNAS and the path-based DNAS. For
DNNs obtained under the same size constraint, we notice
that a higher number of OPs implies also a higher latency,
showing that the OPs are a sufficiently good latency proxy for
our target, when comparing similar networks with the same
topology and type of layers. The only exception is represented
by the first Path-Based-L model, which has a higher number
of MOPs than the second but is faster (-4.26ms). This is due
to the fact that the second solution includes a higher number
of depthwise layers with lower arithmetic intensity, which is
not taken into account by the OPs metric.

Compared to the reference, we find two interesting “ex-
treme” solutions. With the path-based DNAS, the first -L DNN
improves accuracy by 1.7% while still reducing latency by
1.22× and memory by 27%. Conversely, the second Mask-
Based-S network trades an accuracy drop of 5% with a latency
reduction of 2.28× and a memory footprint reduction of
76.7%. These two solutions show that DUCCIO is able to
either maximize the accuracy or slightly sacrifice it to fit
tighter constraints, depending on the targets provided by the

designer. Furthermore, we observe that almost all the deployed
architectures (with the exception of the one described above)
incur in an accuracy drop lower than 2.6% while reducing the
latency of up to 2.01×.

Table III reports the deployment results of the networks
obtained on Tiny ImageNet using the DUCCIO’s layer-wise
size refinement strategy. We deployed all the DNNs from
Fig. 5. First, we observe that for each network, applying
our layer-wise size refinement strategy improves the network
efficiency in terms of GOPs/s, from +8% to +84%, by reducing
expensive accesses to L3. We also observe that, as expected,
the L2V metric is correlated to the efficiency, even if not
perfectly, for the aforementioned reasons. Lastly, a tighter
constraint (considering more layers as critical) always leads
to an improvement in terms of latency, as can be observed in
the MCycles column, with reductions from 36% to 61%. Note-
worthy, TinyI-M-30 requires 54% fewer cycles than TinyI-M,
improves the GMAC/s efficiency by +84%, while incurring a
negligible accuracy drop (-0.35%).

E. Ablation Study

1) Constraint vs Objective: In Fig. 6, we show the main
advantage of DUCCIO, that is, the possibility to find a DNN
with desired characteristics in one-shot. For this experiment,
we run the mask-based NAS on ICL, both with DUCCIO’s
formulation and with the classical DNAS formulation of Eq. 1.
In both cases, we consider only the model size as cost metric.
For DUCCIO, we set the same size targets as Sec. V-B and
no OPs target, hence the results correspond to the rightmost
points of the corresponding curves in Fig. 4.
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Fig. 6. Model size as objective (classical) vs constraint (DUCCIO).

With the classical formulation, using twelve different λ,
we find a Pareto curve which spans almost one order of
magnitude in memory, with accuracies ranging from 20.64%
up to 87.25%. This shows once again that finding a point
satisfying a particular memory constraint is not trivial and
requires many iterations of the DNAS search. On the other
hand, using DUCCIO, each of the three points is found in a
single search, with a different memory target Ts. The networks
found by DUCCIO not only respect the constraint but are also
Pareto optimal since they all sit on the curve found swiping
the classic DNAS’s λ. This shows that our formulation does
not degrade the quality of results compared to a classic DNAS.

Fig. 7. Comparison of max() and absolute value constraints for different size
targets.

2) Max vs Absolute Value: Fig. 7 shows the benefits of
using the max function instead of the absolute value differ-
ence from the target in the loss formulation, as discussed in
Sec. IV-C. This experiment is performed on KWS with the
mask-based NAS, since the reference network includes an
excessive number of channels, making the difference between
the two formulations more evident. The circles in the figure
correspond to the results of Fig. 4, while the diamonds are
obtained replacing the max with absolute values in Eq. 6.

Overall, we observe that architectures obtained with the
max function Pareto-dominate the others for relevant accura-
cies (> 80%). The phenomenon is particularly evident in the
two most complex architectures for Ts = 75% and 50%. With
the max function, DUCCIO finds two DNNs with an accuracy
of 91.06% and 92.82%, and 9.4k and 9.96k parameters,
respectively, whereas for the absolute value formulation, under
the same Ts, the two models achieve 88.30% and 91.92%
accuracy, with 12.1k and 16.7k parameters.

In this case, it is evident that forcing the DNAS to produce
a model that closely matches the target (using the absolute
value formulation) results in two DNNs that are still too over-
parametrized for the task, and generalize worse compared to
the two counterparts obtained with the max function.

3) Increasing vs Constant λ: In Fig. 8, we show that the
λ scheduling proposed in Sec. IV-D is superior to using a
constant regularization strength. To this end, we perform a
search on ICL with the mask-based NAS using DUCCIO with
six different constant strengths, both lower and higher than the
λtarget of Eq. 13. We set once again Ts to 25%, 50%, and
75% of the seed size, and no OPs constraint.

Fig. 8. Comparison between the scheduling of λ proposed in Sec. IV-D and
a constant λ for DUCCIO’s training.

Two critical behaviours can be observed. First, when the
constant λ is too small, the constraint is not respected, leading
to networks whose sizes are not reduced at all (e.g., yellow and
orange rightmost points). Second, with too large λ, the shrink-
ing of the networks is too fast, leading to the elimination of
channels which are not the least important ones for accuracy.
This behaviour is clearly evident on the set of architectures
generated with Ts = 50%, where the output obtained with the
largest λconst has a loss in accuracy of 6.5% compared to the
one obtained with the scheduling. Noteworthy, for all Ts, the
networks found with the scheduling of λ reach comparable or
superior accuracy compared to solutions found with different
constant λ, while always respecting the imposed constraint.

4) Discretized Sampling vs θ Polarization: In Fig. 9, we
motivate the last choice of our training recipe, that is, using
the Gumbel Softmax trick with discretized sampling to choose
one of the alternative layers in the path-based DNAS, rather
than a soft sampling with θ coefficients polarized through an
ICV loss. The experiment is run again on ICL, with the same
targets of Fig. 4.

The difference between the two approaches is evident. The
main downside of using the ICV loss is that all alternative
layers’ outputs are still contributing to the global output of
a supernet module, although each with different magnitude,
due to the polarized coefficients. This leads to weights co-
adaptation [10], which means that the weights adapt to the
fact that the output of the module depends on all alternatives
simultaneously, leading to a very poor accuracy when the
architecture is discretized at the end of search, despite the
following finetuning.
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Fig. 9. Comparison between using ICV Loss to polarize θ coefficients and
discretized Gumbel Softmax sampling.

VI. CONCLUSION

In this work, we proposed DUCCIO, a new DNAS for-
mulation that allows employing multiple hardware-related
constraints to find the desired network in one shot. We applied
DUCCIO to two different DNAS methods, one mask-based
and one path-based, testing on five benchmarks. We found
networks that reach the baseline accuracy while reducing
the number of parameters and OPs by 55.9% and 54.6%
on ICL, or that outperform the baseline model by 2.07%
accuracy on VWW, while reducing OPs by 54.2% and memory
by 87.4%. Deploying ICL models, we have shown that our
results are well correlated to the final performance, showing
an improvement in accuracy of 1.7%, while reducing latency
by 1.22× and memory by 27%.
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