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Abstract

Many practical applications require training of seman-
tic segmentation models on unlabelled datasets and their
execution on low-resource hardware. Distillation from a
trained source model may represent a solution for the first
but does not account for the different distribution of the
training data. Unsupervised domain adaptation (UDA)
techniques claim to solve the domain shift, but in most cases
assume the availability of the source data or an accessi-
ble white-box source model, which in practical applica-
tions are often unavailable for commercial and/or safety
reasons. In this paper, we investigate a more challenging
setting in which a lightweight model has to be trained on
a target unlabelled dataset for semantic segmentation, un-
der the assumption that we have access only to black-box
source model predictions. Our method, named CoRTe, con-
sists of (i) a pseudo-labelling function that extracts reliable
knowledge from the black-box source model using its rel-
ative confidence, (ii) a pseudo label refinement method to
retain and enhance the novel information learned by the
student model on the target data, and (iii) a consistent train-
ing of the model using the extracted pseudo labels. We
benchmark CoRTe on two synthetic-to-real settings, demon-
strating remarkable results when using black-box models to
transfer knowledge on lightweight models for a target data
distribution.

1. Introduction
In the last few years, semantic segmentation models have

achieved impressive performances for various applications.

The mainstream approach to increase their performance is

to design deeper and wider neural networks, promoting ac-

curacy at the expense of computational time, memory con-

sumption, and hardware requirements. However, the con-

tinuous development of smart tiny devices, together with

the wide diversity of edge applications has underlined the

need of delivering models suitable for real-world applica-

Unlabeled

Target Data

Black-Box APILabeled

Source Data

CoRTe CoRTe Prediction

Black-Box Model

Prediction

Figure 1: With CoRTe we can train a low-resources model

with unlabelled target data extracting knowledge from a

pre-trained source model accessible via input-output API.

During the knowledge transfer, neither the source data nor

the source model is accessible.

tions: reduced model footprint and limited inference time.

Under these regards, a crucial task is to develop meth-

ods to transfer large pre-trained models into efficient net-

works ready for real-world applications. However, most of

the commercially available architectures are kept as black-

box and secured under APIs running on cloud services to

minimize model misuse and safeguard against white-box at-

tacks. Furthermore, it is reasonable to expect that the source

data used to train the model are confidential or commer-

cially valuable and thus, not released along with the model.

This task entails two major problems: (i) transferring

knowledge from a black-box teacher to an efficient tar-

get model, and (ii) addressing the domain gap that exists

between the pre-training (source) and the application (tar-

get) datasets. Although the two challenges have been al-

ready studied independently, their coupled solution is not

straightforward, since most of the model distillation meth-

ods assume that teacher and student models share the same

data distribution, while unsupervised domain adaptation ap-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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proaches disregard model efficiency and assume to have ac-

cess to the source data during the alignment process.

In this paper, we fill this gap and propose a new set-

ting, illustrated in Fig. 1, for learning a lightweight seman-

tic segmentation model using an unlabelled target dataset

and transferring knowledge from a black-box model trained

on a source dataset that is not provided. The black-box

model only provides the probabilities associated with the

target classes that can be used to supervise the efficient

model within the target domain. However, merely optimiz-

ing the target network using the predictions generated by

the teacher model is vulnerable to inaccuracies that arise

as a result of the domain shift between the source and tar-

get domains. Specifically, the predictions generated by the

source model for the target samples are characterized by a

high degree of noise. This limitation strongly vouches for

the need of a more sophisticated approach to effectively ad-

dress the domain shift and enhance the transfer of knowl-

edge between the black-box predictor and the target model.

Motivated by the hypothesis that (i) trained source mod-

els yield numerous highly confident yet inaccurate predic-

tions within the target domain and (ii) the efficient model

progressively acquires valuable knowledge about the target

domain, we propose CoRTe, that performs a Consistent and

Reliable Transfer from a black-box source model to train

a lightweight semantic segmentation model using unsuper-

vised data. Specifically, CoRTe extracts reliable pseudo-

supervision from the black-box model filtering uncertain

pixels based on their relative confidence. Furthermore, to

exploit the knowledge learned on the target domain, it re-

fines the pseudo-supervision using the target model. Fi-

nally, it trains the student model introducing strong aug-

mentations to improve its generalization abilities.

The contributions of this paper can be summarized as:

• We study the task of learning a lightweight seman-

tic segmentation model using an unsupervised target

dataset and transferring knowledge from a black-box

model without being provided with the source dataset.

• We propose CoRTe, a new method able to extract reli-

able supervision from the black-box source model and

refine it using the knowledge of the target domain.

• Comprehensive experiments demonstrate the effec-

tiveness of our proposed method on two challenging

synthetic-to-real semantic segmentation protocols.

2. Related works

Semantic Segmentation. It aims to classify each im-

age pixel with its category label. FCN [33] was the first

to efficiently learn to make dense predictions by replac-

ing the fully connected layers with convolutional layers.

This approach evolved in the encoder-decoder architecture

[3, 36, 40]. To overcome low spatial resolution at the out-

put, solutions such as dilated convolutions [7, 8, 54] and

skip connections [40] were proposed. Further improve-

ments have been achieved by harnessing context informa-

tion [16, 20, 55, 7, 60, 8, 37]. Recently, with the growing

popularity of attention-based Transformers, they have been

effectively adapted to semantic segmentation [61, 49, 6, 32],

where they have shown promise in capturing long-range

dependencies and context information in images. Moti-

vated by the assumption that traditional frameworks are of-

ten computationally demanding and complicated, [50] de-

signed an efficient framework that combines Transformers

with lightweight multilayer perceptron decoder, and scale

the approach to obtain a range of models with varying lev-

els of complexity. [18] extends [50] by leveraging the con-

text across features from different encoder levels in order

to provide additional information in the decoder, increasing

decoder complexity in favor of performance.

Unsupervised Domain Adaptation (UDA). It is a form of

Transfer Learning that uses labelled source data to execute

new tasks in an unlabelled target domain. In adversarial

learning, a discriminator is introduced to reach domain in-

variance by acting as source-target domain classifier at ei-

ther intermediate feature level [9] or output level [47, 34, 5,

46]. While generative-based approaches aim at learning a

function to map images across domains [53, 62, 26], other

methods minimize the entropy to force the over-confident

source behavior on the target domain [47, 53] or use a cur-

riculum learning approach to gradually infer useful proper-

ties about the target domain [59, 27]. Self-training strate-

gies leverage confident predictions inferred from the target

data to reinforce the training. To regularize the training, ap-

proaches such as confidence thresholding [64, 63], pseudo-

label prototypes [57, 58], prediction ensembling [12], con-

sistency regularization [45, 35, 38] and multi-resolution in-

put fusion [19] have been proposed.

Source-Free DA. Traditional UDA strategies assume the

source data is available during training. The concept of

source-free was introduced by [11], motivated by the belief

that source data are often subject to commercial or confi-

dentiality constraints between data owners and customers.

In the last few years, due to the mounting concerns for

data privacy, the source-free setting for UDA is receiving

increasing attention. Recent works [28, 23, 52] fine-tune

the model trained on the source domain with the unlabelled

target data. Specifically, [28] adapt the source model with

pseudo-labelling and information maximization, which is

extended to multi-source in [1, 14]. Other works leverage

the source knowledge of the network to synthesize target-

style samples [25] or source-like samples [24, 31] based

on the statistics learned by the source model. In the meth-

ods above, the details of the source model are exposed (e.g.
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Figure 2: An overview of the proposed CoRTe framework. Our approach involves using a teacher model S to predict labels

for an unlabelled target image x. To filter the predictions, we introduce a Robust Relative Confidence Pseudo-Labelling
method that preserves pixels where the relative confidence of the model is above a threshold. The resulting pseudo label

M is then further refined using the Label Self-Refinement technique, which leverages the knowledge gained by the student

lightweight model. Finally, the refined pseudo label MR is used as the ground truth for training.

white-box source model). However, the exposition of the

trained source model may be subject to white-box attacks

[29]. Also, the white-box source model could be unavail-

able for commercial or safety reasons [56]. The task of

black-box unsupervised domain adaptation [56], where the

trained model is fixed and accessible only through an API,

has been investigated mostly in image classification. [30]

divides the target data into two portions to perform self-

supervised learning on the uncertain split, while [56] pro-

poses iterative learning with the noisy labels obtained from

the black-box model. [29] reduces the noise through label

smoothing during distillation and fine-tunes the model on

the target domain. Differently from these works, we are the

first to investigate the challenges of transferring the knowl-

edge of a black-box to a lightweight semantic segmentation

model using only an unsupervised target dataset.

3. Methodology

3.1. Problem Definition

The goal of Source-Free Black-Box Unsupervised Do-

main Adaptation for Semantic Segmentation is to learn a

lightweight semantic segmentation model Fθ using only an

unlabelled target dataset DT . To effectively learn from it,

it is possible to exploit a black-box model S that is acces-

sible only through an API, that has been trained to perform

semantic segmentation on a similar yet different source do-

main. Formally, it is given a source model S : XS −→
[0, 1]|Y|×H×W , where S is fixed and only the per-pixel

class probabilities are accessible, XS is the source domain

image space, and Y the label space, with |Y| the num-

ber of classes. In addition, it is provided a target dataset

containing nt unlabelled images from the target domain

DT = {x|x ∈ XT }, where XT is the target domain im-

age space. Our goal is to train a lightweight segmentation

target model Fθ : XT −→ [0, 1]|Y|×H×W to infer pixel-wise

labels {y}H·W
i=1 , where H,W are respectively the height and

width of the images, exploiting the dataset DT and the su-

pervision coming from the source model S.

3.2. Extracting Supervision in the Target Domain

A natural solution to transfer knowledge from a pre-

trained larger model to a smaller one is Knowledge Dis-

tillation (KD) [17], where a small student network is forced

to mimic the teacher’s predictions. A common technique

employed by previous works [29, 48] is to penalize the

Kullback-Leibler divergence between the output predictions

of the target model (the student) and the source model (the

teacher) on the target domain. However, Kim et al. [22] ar-

gue that when the teacher is trained on a dataset with noisy

labels, it may transfer corrupted knowledge to the student.

We posit that employing KD in our setting would cause the

same issue due to the domain shift. Hence, as suggested by

[22], we focus on label matching instead of logit matching,

forcing the student to neglect the noisy information by only

relying on the hard pseudo label produced by the teacher.

However, forcing the student model to perfectly fit the

source predictions may lead to reproducing the same in-

accuracies of the source model on the target domain, lim-

iting its performance. To effectively address the domain

shift between the source and target domain, we argue that

it is essential to filter the noisy information coming from

the source model by retaining only the reliable pixels to su-

pervise the target model. In addition, the pseudo label may
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Figure 3: In this example, we demonstrate the Robust Rel-

ative Confidence Pseudo-Labelling strategy (R2CP) which

begins by extracting the Relative Confidence Map Ix from

the source model’s prediction on the target image S(x).
The Relative Confidence (RC) is computed using Eq. (1)

for each pixel. Finally, we apply Eq. (2) to identify the set

of reliable pixels to be retained in the Pseudo Label M.

be further refined by exploiting the new knowledge learned

by the student model on the target domain.

In the following, we show how to obtain a reliable

pseudo label to supervise the student model. First, we illus-

trate how to filter the noise when extrapolating the pseudo

labels from the source model. Thereafter, we refine the

pseudo labels directly using the knowledge of the target do-

main of the model itself. An illustration of the method is

provided in Fig. 2.

Robust Relative Confidence Pseudo-Labelling. To de-

termine the pixels that are favorable for domain transfer, a

trivial technique involves applying a pixel-level filter to the

pseudo labels on the basis of the model confidence, named

absolute confidence (AC), which serves as an indicator of

the network’s reliability on each prediction. However, in

the case of a noisy teacher model, this approach can pro-

duce several confident but incorrect predictions, resulting

in an unreliable filtering process. This phenomenon is due

to the presence of visually distinct categories in the source

domain that are more difficult to distinguish in the target do-

main, making the teacher highly uncertain between the top

two predicted classes (i.e. indecision between bicycle and

rider or sidewalk and road).

A better way to consider the source model confidence is

to relate the probability of the predicted class with the other

classes. In particular, we consider the relative confidence
(RC) as the difference between the probability associated

with the top-first predicted class and the one associated with

the top-second predicted class. Formally, given a target im-

age x, we first get the source model probabilities q = S(x),

and we then compute the relative confidence Ix as:

Ii
x = top1(q

i)− top2(q
i), (1)

where top1(·) and top2(·) indicate the probability value of

the first and second predicted classes and qi is the proba-

bility distribution for the i-th pixel. Intuitively, the relative
confidence is a measure of the certainty of the prediction of

the teacher network. When top1 prevails over top2 the dif-

ference is high, meaning that the teacher is certain about the

assigned category for the given target pixel i.
Therefore, given a target image x, we obtain a reli-

able pseudo label M through the robust RC-driven Pseudo-
Labelling (R2CP) function:

M(x)ic =

⎧⎨
⎩

1 if Iix ≥ τc and

c = argmaxk∈Y qik,
0 otherwise,

(2)

where qik is the probability of the pixel i for class k, M(x)ic
indicates the value of M for the pixel i and class c. The

threshold τc is the average relative confidence I of the

teacher for each class c on the whole target domain:

τc =
1

N c
T

∑
x∈Dt

H·W∑
i=1

1(c = argmax
k∈Y

qik)Ii
x, (3)

where N c
T is the number of target samples predicted as c

and 1(c = argmaxk∈Y qik) is the indicator function that

equals 1 when the model predicts the class c for the pixel i
and 0 otherwise. Fig. 3 illustrates how the Robust Relative

Confidence Pseudo-Labelling method works, providing an

example of its operation.

Label Self-Refinement. With respect to the source model,

which is static, the target model dynamically evolves as

training proceeds and gradually learns valuable knowledge

about the target domain. Inspired by [21], we propose to use

the target-aware predictions of the target network to refine

the pseudo labels, forcing the student to become the teacher

model itself over the pixels over which the source model is

more uncertain.

In particular, during training, we add the supervision of

a second teacher, named FΘ, with Θ indicating its parame-

ters, which is obtained as the temporal ensemble derived via

exponential moving average (EMA) [43] of the target net-

work Fθ. The EMA model is updated based on Fθ during

training following:

Θt+1 = αΘt + (1− α)θ, (4)

where α is a parameter controlling the update momentum,

Θt e Θt+1 are, respectively, the weight of the EMA model

network before and after the update at the timestep t, and

we recall θ are the target model parameters.
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This secondary teacher is used to refine the pseudo labels

generated in Eq. (2) by including the valuable knowledge

provided on the target domain. Our goal is to refine the

supervision provided by the source model by introducing a

pseudo-supervision on the uncertain pixels by exploiting the

confident pixels extracted from the EMA model. Formally,

given an image x and denoting the predictions of the EMA

model as p̂ = FΘ(x), we refine M as:

MR(x)
i
c =

⎧⎨
⎩

1 if M(x)ic = 1,
λt if p̂ic ≥ β,M(x)ic = 0,
0 otherwise,

(5)

where β is a confidence threshold applied to the EMA

model’s probabilities, MR(x)
i
c and p̂ic indicate respectively

the refined mask and the probability value of the EMA

model at pixel i for class c, λt is a hyper-parameter that

controls the contribution of the loss during the training. In

particular, λt linearly increases during the training as the

reliability of FΘ increases.

3.3. Consistent Training of the Target Model

The refined pseudo labels MR provide direct supervi-

sion and enable the knowledge transfer between source and

target models on the unlabelled target domain. However,

the limited size of the target dataset and the label-matching

objective between source and target models may have an

impact on the generalization capability of the target net-

work. Several works [4, 15, 51, 42, 10, 44, 2] leverage con-

sistency regularization to make predictions on unlabelled

samples invariant to perturbations. Inspired by these works,

we propose to improve the generalization capability of the

student by enforcing consistency regularization between the

prediction of the teacher model on the original target sample

and the prediction of the student on its augmented version.

Specifically, for each training image x, we first compute the

refined pseudo label MR(x) as defined in Eq. (5). Then,

instead of computing the target model’s probability on x,

we augment the image, such that p(aug(x)) = Fθ(aug(x)),
where aug(·) is a function that strongly augments the im-

ages without introducing geometric distortions.

Finally, to train the target segmentation model, we

use the refined pseudo supervision MR(x) and the tar-

get model’s probability obtained on the augmented image

p(aug(x)), and we minimize the following loss function:

�(x) = − 1

H ·W
H·W∑
i=1

C∑
c=1

MR(x)
i
c log p(aug(x))ic, (6)

where p(x)ic indicates the probability of the target model on

the i-th pixel and the c-th class, and H , W are the height and

width of the image. Note that, when MR(x)
i
c = 0 for all c,

the pixel i does not contribute to the loss function. Differ-

ently, if MR(x)
i
c �= 0, the objective reduces to a weighted

cross-entropy loss, where the supervision coming from the

source model is weighted 1, while the supervision coming

from the EMA model is weighted λt.

4. Experiments
4.1. Dataset and Evaluation Protocols

Following [45, 19, 53, 63], we demonstrate the efficacy

of the proposed method on the synthetic-to-real unsuper-

vised domain adaptation tasks, where the synthetic source

labelled data comes from either GTA5 [39] or SYNTHIA

[41], and the unlabelled target data from Cityscapes [13].

GTA5: consists of 24,966 training images captured in a

video game with resolution 1914×1052. We resize the im-

ages to 1280×720 and randomly crop them to 512×512.

SYNTHIA: we use the SYNTHIA-RAND-CITYSCAPES

subset consisting of 9,400 training images with resolution

1280×760. We randomly crop the images to 512×512.

Cityscapes: consists of real-world images collected from

a car in urban environments. We use the 2,975 images

from the training set as target data during training. Pre-

vious works resize the training images to 1024×512. To

maintain higher resolution, we resize the training images to

1280×640 and randomly crop them to 512×512. For a fair

comparison, we test on the 500 annotated images from the

validation set resized to 1024×512.

We evaluate our method using the standard segmenta-

tion evaluation metrics: classwise Intersection over Union

scores (IoU) and mean IoU (mIoU).

4.2. Baselines

Black-box unsupervised domain adaptation for Seman-

tic Segmentation is fairly new. Therefore, we implemented

several baselines. Source only: evaluates the performance

of the trained source model on the target images. No
adapt: the target network is trained on the annotated source

domain without any adaptation. DACS [45] and HRDA
[19]: provide adaptation during the target network train-

ing. Naive transfer: the target images are pseudo-labelled

by the source model and used to train the target network.

KL-DIV: we train the target model by penalizing the KL-

divergence between the output predictions of the student

and the teacher. Target-only: the target network is directly

trained with the annotated target domain.

Implementation Details We employ the Transformers-

based architectures tailored for semantic segmentation pro-

posed in [50]. The source model is based on DAFormer

[18]. It consists of a MiT-B5 encoder [50] and a context-

aware feature fusion decoder [18]. As the target model we

employ the lightweight SegFormer-B0 [50]. We pre-train

the target network on the ImageNet-1K and randomly ini-

tialize the decoder. Following [18], we train the network
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Source-only � � 78.6 22.2 80.0 34.6 27.0 36.8 45.7 27.0 86.5 37.2 84.2 67.2 36.1 80.0 47.8 50.4 42.4 38.7 25.6 49.9

No adapt � � 4.9 12.2 62.6 9.0 10.8 11.3 12.8 8.2 83.1 28.0 61.6 44.7 1.5 54.0 30.2 14.1 0.0 4.9 1.8 24.0

DACS[45] � � 85.4 0.0 83.7 5.5 4.0 26.5 25.9 40.3 85.7 39.9 87.9 45.5 0.1 80.5 28.7 21.4 0.0 0.1 1.0 34.9

HRDA[19] � � 94.0 63.7 85.8 40.8 14.2 31.2 36.1 46.0 89.4 46.0 92.4 58.7 2.7 85.6 33.1 44.2 0.0 39.7 57.3 50.6

Naive Transfer � � 82.0 26.7 81.2 37.0 25.8 32.6 43.5 23.2 87.6 45.0 83.3 65.4 34.7 84.2 44.0 49.2 34.1 37.0 32.6 49.9

KL-DIV � � 81.5 26.2 80.8 36.7 25.0 32.4 43.1 23.5 87.6 45.0 83.5 65.3 34.7 84.1 44.6 49.8 33.8 37.8 32.9 49.9

CoRTe � � 87.0 37.5 84.6 44.6 29.0 31.0 41.5 25.4 88.0 46.4 88.3 62.2 33.9 86.4 54.2 61.6 52.0 44.2 56.5 55.5

Target-only � � 97.6 80.9 90.4 54.7 53.4 50.9 58.4 68.6 90.3 58.6 93.0 73.9 52.8 92.3 60.3 76.1 53.6 52.4 69.1 69.9

Table 1: mIoU for GTA5−→Cityscapes. SF denotes the Source-Free methods, whereas T−→S refers to the methods that

leverage the black-box model for training the target network. All methods use B0 as encoder, while Source-only uses B5.
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Source-only � � 58.9 22.2 79.3 22.9 1.0 40.6 34.7 21.2 81.8 80.5 58.2 20.8 78.5 28.6 16.8 20.5 41.6

No adapt � � 12.9 14.8 55.9 3.6 0.0 20.8 3.8 6.2 66.1 63.5 46.7 8.9 37.4 5.9 1.6 9.6 22.3

DACS[45] � � 69.2 14.3 72.8 3.5 0.2 32.2 7.2 29.6 84.4 83.4 58.0 12.3 78.2 0.3 0.1 10.0 34.7

HRDA[19] � � 70.2 29.0 83.3 0.8 0.2 39.0 34.8 41.6 85.6 92.4 66.8 5.6 80.0 0.0 0.0 59.7 43.1

Naive transfer � � 65.2 25.1 80.8 10.0 1.3 40.5 36.5 19.1 83.7 83.1 57.6 20.6 80.5 40.2 19.5 31.4 44.0

KL-DIV � � 65.2 25.1 80.6 17.8 1.3 40.0 35.0 19.0 83.7 83.0 57.5 21.0 79.4 39.5 20.0 31.5 43.7

CoRTe � � 68.4 26.7 83.1 22.9 1.7 38.7 38.3 20.3 85.8 85.4 56.7 18.9 85.0 47.9 21.7 31.3 45.8

Target-only � � 97.6 80.9 90.4 54.7 53.4 50.9 58.4 68.7 90.3 93.0 73.9 52.8 92.2 60.3 52.4 69.1 71.2

Table 2: mIoU for SYNTHIA−→Cityscapes. SF denotes the Source-Free methods, whereas T−→S refers to the methods that

leverage the black-box model for training the target network. All methods use B0 as encoder, while Source-only uses B5.

with AdamW optimizer using a learning rate of 6 × 10−5

for the encoder and 6 × 10−4 for the decoder, weight de-

cay of 0.01, and linear learning rate warm up. We use a

batch size of 8 and train the model for 80k iterations. We set

α = 0.99, β = 0.60, λ in the range [0,5]. To enforce con-

sistency regularization, we apply Color jittering, Gaussian

blur, and random flipping. Following previous works [18],

the source network is optimized in a supervised manner by

minimizing the cross-entropy loss on the source domain for

40k iterations using batches of 2 images.

4.3. Results

GTA5 −→ Cityscapes
In Tab. 1 we show the results of our proposed framework

when the source model is trained on GTA5. When eval-

uated on the target domain, the source model achieves an

overall mIoU of 49.9%, performing well on simple classes

(car, sky, road), but failing on other classes (sidewalk, bi-

cycle) where the discrepancy between the source and target

domains has a significant impact. The domain shift is more

pronounced on the lightweight target model, which achieves

an overall mIoU of 24% (No adapt) indicating lower gen-

eralization capability on the new domain. Moreover, the

Target-only upper bound demonstrates a high domain shift

between GTA5 and Cityscapes: it achieves 69.9%, which

is 45.9% higher than No adapt. Standard UDA techniques

improve the model’s performance significantly, with DACS

[45] achieving 34.9% and HRDA [19] achieving 50.6%.

These results show that UDA techniques help in adapting

the network, improving its performance. However, they rely

on source data, which are not available in our setting.

When directly trained with the knowledge generated by

the source model (Naive transfer and KL-DIV), the student

converges to the performance of the teacher (Source-only),

obtaining very similar results. The target network achieves

satisfying results on the unlabelled target domain (-20%

w.r.t. Target-only), yet it copies the source model behavior,
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(a) target image (b) ground truth (c) source model prediction

(d) source model filtered pseudo label (e) target model self-refinement (f) refined pseudo label

Figure 4: Graphical interpretation of the label generation process. At the top left, a target image from Cityscapes (a) and its

corresponding label (b). We query the teacher model and obtain its prediction for the target image (c). Our robust pseudo-

labelling module exploits the relative confidence of the teacher model to filter out the uncertain pixels (black in d). During

the training process, the increasing knowledge of the student on the target data is used to automatically refine the pseudo

label (e) resulting in the final label for training the model (f).

fitting also its noisy predictions. CoRTe outperforms them

by nearly +5.6%, obtaining a gain in almost all the classes.

Significant improvements are observed particularly in the

classes over which the teacher is more uncertain, namely

sidewalk (+11%) which is typically misclassified as road,

and bicycle (+24%) which is often confused with rider.

Additionally, a substantial improvement is obtained for the

typically hard-to-transfer class train (+18%), where it al-

most reaches the Target-only upper bound (52% vs. 53.6%).

Compared with HRDA[19] for UDA, CoRTe enables com-

petitive performance (+4.9%), while training with images

at lower resolution (512×512 vs. 1024×1024) and with no

access to the annotated source dataset.

SYNTHIA −→ Cityscapes
In Tab. 2 we report the results of training the source model

on SYNTHIA. Following the protocol of UDA, we report

mIoU on the 16 classes in common with Cityscapes.

The results are remarkably coherent with the previous

setting. Specifically, the source model achieves an over-

all mIoU of 41.6%, yet it suffers from the domain shift

on hard classes such as bicycle or motorbike. In compar-

ison, the B0 model trained on the source data (No adapt)
achieves largely worse performance (22.3%), showing the

larger model has better generalization capabilities. More-

over, the Target-only upper bound performance confirms

the domain shift between SYNTHIA and Cityscapes: it

achieves 71.2%, which is 48.9% higher than the No Adapt
baseline. Employing standard UDA techniques, the per-

formances improve sensibly: DACS [45] achieves 34.7%

and HRDA [19] 43.1%. Differently, methods relying on

the knowledge of the source model do not use source im-

ages while achieving comparable performance. In partic-

ular, Naive Transfer and KL-DIV achieve results slightly

better than HRDA [19] (respectively 44% and 43.7%). Fi-

nally, we show that CoRTe outperforms all the baselines,

achieving an overall IoU of 45.8%. Specifically, it improves

HRDA [19] of +2.7%. In addition, it outperforms the Naive
transfer baseline of 1.8%, showing the benefits of filtering

the pseudo labels coming from the source model and refin-

ing them using the target model knowledge.

4.4. Ablation Study

Influence of each component. In this paragraph, we dis-

sect the contributions of each component to the overall per-

formance. In Tab. 3, we report the results when the source

model is trained on GTA5. We initially show the base-

line performance of the target model (line 1) trained under

the supervision of the noisy pseudo labels produced by the

source model (Naive Transfer). The addition of our Robust

RC Pseudo-Labelling module (line 2) yields an improve-

ment in terms of performance of 1.5%. Combined with

Consistency Regularization (line 4), the mIoU increases up

to 52%, enabling a further gain of 0.6%. The most signif-

icant contribution, however, is granted by the Label Self-

Refinement (line 5), which ensures a further improvement

of 3.5% in the final mIoU. In addition, we also evaluate

the contribution of our Robust RC Pseudo-Labelling func-

tion with respect to the filtering function based on Absolute

Confidence (AC Filtering* in Tab. 3) (line 3), proving the

effectiveness of our certainty-driven filtering approach.
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Figure 5: Self-label refinement. Visual representation of our refined pseudo label used at different steps of the training (from

left to right at 0, 1.5k, 5k, and 80k steps respectively). Intuitively, at the very beginning of the training, the teacher’s prediction

is filtered from the uncertain pixels ad used to train the student. During training, this latter gradually increases its confidence

and its own predictions can be used to refine the pseudo label with our Label Self-Refinement module.

Figure 6: Parameters selection for λt and β.

Parameter Sensitivity Analysis. Our student-driven label

refinement involves two hyperparameters β and λt. To in-

vestigate their impact on the training process, we conduct

experiments on GTA5−→ Cityscapes. In Fig. 6 we report the

resulting mIoU while changing λt and β. The experimental

results demonstrate that our proposed model achieves the

highest mIoU with the values of λt = 5 and β = 0.60.

The performance of the model is comparatively lower

when β is set to 0.80 as a substantial number of pixels

are filtered out. The model’s performance is observed to

improve upon decreasing the threshold value, as a greater

number of informative pixels are included in the supervi-

sion process. When increasing the parameter λt, the mIoU

rapidly increases until it reaches a plateau within the range

[5, 6, 7]. This result proves that increasing the contribution

of the target network in the training process significantly

enhances the final performance of the network.

Qualitative Analysis. In Fig. 4 we report a qualitative in-

terpretation of the label generation process. A comparison

between the refined pseudo label (Fig. 4f) and the prediction

obtained from the source model (Fig. 4c) reveals the bene-

fit of the self-refinement process, which enables a higher

level of detail (e.g. the traffic light in the foreground) and

even the identification of entire objects (e.g. the bicycle in

the background). The process of self-refinement gradually

includes valuable knowledge during training, as shown in

Fig. 5, where progressively larger portions of images are

added to the supervision.

R2CP
AC

Filtering*

Consistency

Regularization

Label self-

Refinement
mIoU

� � � � 49.9

� � � � 51.4

� � � � 50.5

� � � � 52.0

� � � � 55.5

Table 3: Ablation study on GTA5−→Cityscapes.

5. Conclusion

In this paper, we explore the challenging scenario of

learning a compact and efficient neural network for seman-

tic segmentation by leveraging a black-box model without

access to any source data or target annotations. To address

this novel setting, we propose CoRTe that reliably trans-

fers the knowledge from the black-box predictor and pro-

vides valuable pseudo-supervision from the target model it-

self during training. We assess the benefits of CoRTe on two

synthetic-to-real benchmarks, showing it is able to outper-

form all the considered transfer learning baselines.

Limitations CoRTe enables efficient knowledge transfer

between a black-box source predictor and a lightweight tar-

get model, allowing it to operate on unlabelled target do-

mains. However, it has limitations in dealing with unknown

classes present in the target domain that were not learned

by the source model. Additionally, to reach state-of-the-art

results, CoRTe requires a robust pre-trained source model.
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Cord, and Patrick Pérez. Advent: Adversarial entropy min-

imization for domain adaptation in semantic segmentation.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2517–2526, 2019. 2

1421



[48] Liu X, Yoo C, Xing F, Kuo CJ, El Fakhri G, Kang JW, and

Woo J. Unsupervised domain adaptation for segmentation

with black-box source model. In Proc SPIE Int Soc Opt Eng.
2022 Feb-Mar;12032:1203210., April 2022. 3

[49] Enze Xie, Wenjia Wang, Wenhai Wang, Peize Sun, Hang Xu,

Ding Liang, and Ping Luo. Segmenting transparent object in

the wild with transformer. arXiv preprint arXiv:2101.08461,

2021. 2

[50] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,

Jose M. Alvarez, and Ping Luo. Segformer: Simple and

efficient design for semantic segmentation with transform-

ers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,

and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, volume 34, pages 12077–12090.

Curran Associates, Inc., 2021. 2, 5

[51] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and

Quoc Le. Unsupervised data augmentation for consistency

training. Advances in neural information processing systems,

33:6256–6268, 2020. 5

[52] Shiqi Yang, Yaxing Wang, Joost Van De Weijer, Luis Her-

ranz, and Shangling Jui. Unsupervised domain adapta-

tion without source data by casting a bait. arXiv preprint
arXiv:2010.12427, 1(2):5, 2020. 2

[53] Yanchao Yang and Stefano Soatto. Fda: Fourier domain

adaptation for semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4085–4095, 2020. 2, 5

[54] Fisher Yu and Vladlen Koltun. Multi-scale context

aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015. 2

[55] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,

Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-

text encoding for semantic segmentation. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 7151–7160, 2018. 2

[56] Haojian Zhang, Yabin Zhang, Kui Jia, and Lei Zhang. Un-

supervised domain adaptation of black-box source models.

arXiv preprint arXiv:2101.02839, 2021. 3

[57] Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang,

and Fang Wen. Prototypical pseudo label denoising and tar-

get structure learning for domain adaptive semantic segmen-

tation. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 12414–12424,

2021. 2

[58] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Cat-

egory anchor-guided unsupervised domain adaptation for se-

mantic segmentation. Advances in neural information pro-
cessing systems, 32, 2019. 2

[59] Yang Zhang, Philip David, and Boqing Gong. Curricu-

lum domain adaptation for semantic segmentation of urban

scenes. In Proceedings of the IEEE international conference
on computer vision, pages 2020–2030, 2017. 2

[60] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 2

[61] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,

Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao

Xiang, Philip HS Torr, et al. Rethinking semantic segmen-

tation from a sequence-to-sequence perspective with trans-

formers. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6881–6890,

2021. 2

[62] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–

2232, 2017. 2

[63] Yang Zou, Zhiding Yu, BVK Kumar, and Jinsong Wang.

Unsupervised domain adaptation for semantic segmentation

via class-balanced self-training. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 289–

305, 2018. 2, 5

[64] Yang Zou, Zhiding Yu, Xiaofeng Liu, B.V.K. Vijaya Kumar,

and Jinsong Wang. Confidence regularized self-training. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019. 2

1422


