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SUCCESSIVE SPIKE TIMES PREDICTED BY A STOCHASTIC

NEURONAL MODEL WITH A VARIABLE INPUT SIGNAL
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Napoli, 80126, Italy

Abstract. Two different stochastic processes are used to model the evolution
of the membrane voltage of a neuron exposed to a time-varying input signal.

The first process is an inhomogeneous Ornstein-Uhlenbeck process and its first

passage time through a constant threshold is used to model the first spike time
after the signal onset. The second process is a Gauss-Markov process identified

by a particular mean function dependent on the first passage time of the first
process. It is shown that the second process is also of a diffusion type. The

probability density function of the maximum between the first passage time of

the first and the second process is considered to approximate the distribution
of the second spike time. Results obtained by simulations are compared with

those following the numerical and asymptotic approximations. A general equa-

tion to model successive spike times is given. Finally, examples with specific
input signals are provided.

1. Introduction. The first passage time (FPT) problem for a stochastic process
through a threshold has numerous applications in the studies on neural information
coding ([1],[8],[13]). Under a common scenario, the membrane voltage of a neuron
fluctuates in response to synaptic input signals and an internal noise. As soon as a
threshold voltage is crossed, the neuron fires a spike (action potential). Therefore,
the generation of the action potential corresponds to the first passage of the fluctu-
ating membrane voltage through the threshold. Most researchers in the field map
the dynamics of a neuronal output to an input signal, internal noise and a specified
threshold voltage (see, for instance, [8], [12], [21], [23]). This kind of models often
relies on the use of the Ornstein-Uhlenbeck (OU) process ([16],[26]), although some-
times shortcomings have been highlighted (for instance, [20]). Having extensively
studied the Gauss-Markov (GM) processes ([2]-[7]), that generalize the OU process,
we model the neuronal activity by using this mathematical abstraction.

In neuronal coding studies the interest is mainly focused on the rate codes, i.e.
the average number of spikes per unit of time, and on the temporal codes, in which
the timing of action potentials is related to the information transmission. The
latter codes are of primary interest when the neuron is subject to a time-varying
input. Indeed, in the models the voltage after a spike is fixed to a reset value,
while the input signal continues without any reset. In this context, some authors
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496 GIUSEPPE D’ONOFRIO AND ENRICA PIROZZI

are interested in the spike times corresponding to the crossings at particular points
of the firing threshold ([21], [22]), while some others study the occurrence of spike
trains that adapt to the action of input signals ([12]) or the generation of temporal
patterns of spikes in response to fluctuating current injections (frozen noise) ([10],
[25]). Stochastic processes different from the OU model are also considered for
neuronal modeling, even if results in closed form are known only in few cases (for
instance, [17] and references therein). Recently, for a Brownian motion driven by
an exponential time-dependent drift in [27] the FPT density was derived as a series
expansion of solutions of recurrence equations. Stimulated by these arguments and
other interesting results ([8],[11]-[15], [18], [20]-[24]), our aim is to show how the
GM processes theory can provide approximations of the firing distributions and, in
particular, to contribute to the modeling of successive spike times. Here, we focus
our attention on the second spike time and we model it by means of the FPT of a
new GM process. This process is constructed ad hoc for embodying the memory of
a spike already occurred while taking into account the ongoing action of the input
signal.

Starting from a Leaky Integrate-and-Fire (LIF) equation ([1]) with a time-varying
input signal, we model the first spike time by using the related FPT random vari-
able through a constant threshold; then, we define another GM process to describe
the behavior of the membrane voltage after the first spike. For this specific process,
we derive the corresponding stochastic differential equation (SDE) and investigate
its FPT. In order to have two (ordered) successive times, we consider the maxi-
mum between the two FPTs and we use the probability density function (PDF) of
this maximum to approximate the PDF of the second spike time. For the general
successive spike times the results can be accordingly generalized.

2. The model. In order to describe the occurrence of firing times T0,T1,. . .,Tn of
a neuron subject to an input signal, we consider the FPT Tk of a stochastic process
Vk(t) (for k = 1, . . . , n) through a constant threshold S. We model the behavior
of the neuronal membrane potential by diffusion processes {V1(t), V2(t), . . . , Vn(t)}
such that {Vk(t), t ≥ t0} (for k = 1, . . . , n) is solution of the SDE

dVk =

{
−αVk + α

[
Vrest +

I(t)

α

]
P(Tk−1 ≤ t)

}
dt+ σdW, Vk(t0) = v0 < S, (1)

with t0 ≥ 0, P(T0 = t0) = 1. In (1) the parameter 1/α(> 0) is the characteristic
(decay) time of the membrane potential, Vrest is the resting potential, v0 is the
initial value, σ(> 0) represents a constant intensity of the noise and W the stan-
dard Brownian motion. Furthermore, I(t) stands for a time-dependent input signal
never reset. It can be generated by an injected input current or a synaptic current
originated from the surrounding neuronal activity. Here, the P(Tk−1 ≤ t) is the
probability that the previous spike time Tk−1 has already occurred, with reference
to time t. Therefore, we provide evaluations of P(Tk ≤ t) (for k ≥ 1) by using
an approach based on theoretical and numerical results about the FPT Tk of the
processes Vk(t).

For comparison we consider a LIF model with reset which is described by equa-
tion (1) without index k, with P(Tk−1 ≤ t) = 1. Assuming T0 = t0, let T1 be
the FPT through the firing threshold S of the solution process V (t) (= V1(t) for
t0 ≤ t ≤ T1) with reset to v0, i.e. V (T+

1 ) = v0. T1 stands for the first spike (firing)
time. Following the time evolution of the process V (t) for t ≥ T1, the second passage
time T2 occurs and it stands for the second spike time, and so on. It is possible to
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obtain random samples T0, T1, . . . , Tn of successive spike times simulating random
paths of V (t) by applying the well-known Euler discretization method to its SDE
and recording the crossing times of S.

By using our previous results ([2]-[7]), we are able to specify V1(t) and to obtain
approximations for the PDF of its FPT T1, such that P(T1 ≤ t) = P(T1 ≤ t). In
Section 3 we introduce the process V2(t) and its FPT T2 useful to model the second
spike time T2. Finally, assuming Θ1 = T1, we consider Θ2 = max{Θ1, T2} and thus

P(T2 ≤ t) ≈ P(Θ2 ≤ t).
For the k-th spike time, the following approximation can be given: P(Tk ≤ t) ≈
P(Θk ≤ t) where Θk = max{Θk−1, Tk}. In Section 4 we give an exponential approx-
imation valid for the PDF of the first spike and show how it can help for evaluating
the PDF of the second spike. In Section 5 some examples of applications are given.

2.1. Modeling the first spike time. Let us start by considering the process
V1(t) solution of SDE (1) for k = 1 with P(T0 = t0) = 1. According to [2], under
hypotheses of regularity on the function I(t), and due to the form of its infinitesimal

moments: A
(1)
1 (v, t) = −α (v − Vrest)+I(t), A

(1)
2 (t) ≡ σ2, the diffusion process V1(t)

is a Gauss-Diffusion (GD) process. It is also a GM process, i.e. a Gaussian process
identified by the mean and by a special covariance (see, for details, [9]). Denoting,
for τ ≤ t,

M1(t|τ) = Vrest

(
1− e−α(t−τ)

)
+ e−αt

∫ t

τ

I(ξ)eαξdξ, (2)

it is characterized by the mean and covariance functions

mV1
(t|v0, t0) = v0e

−α(t−t0) +M1(t|t0), (3)

cV1
(s, t|t0) =

σ2

2α
e−α(t−t0)

[
eα(s−t0) − e−α(s−t0)

]
(t0 ≤ s ≤ t) (4)

with the following transition PDF, for τ ≤ t,

fV1 [x, t|y, τ ] =

√
α√

πσ2(1− e−2α(t−τ))
exp

{
−α
[
x− ye−α(t−τ) −M1(t|τ)

]2
σ2
(
1− e−2α(t−τ)

) }
. (5)

Note that the above PDF is a normal-type transition function with the conditional
mean E[V1(t)|V1(τ) = y] = mV1

(t|y, τ), and the variance V ar(t|τ) = cV1
(t, t|τ).

The FPT T1 of the process V1(t) through a constant threshold S is defined as:

T1 := inf
t≥t0
{t : V1(t) ≥ S} with V1(t0) = v0 < S

and with the PDF g1(S, t|v0, t0). For input signals I(t) such that the integral∫ t
t0
I(ξ)eαξdξ exists for any t ≥ t0, we are able to provide a numerical approxi-

mation of the PDF g1(S, t|v0, t0) solving, by a numerical procedure ([2],[9]), the
following non singular second kind Volterra integral equation ([9]):

g1(S, t|v0, t0) = −Ψ1[S, t|v0, t0] +

∫ t

t0

Ψ1[S, t|S, τ ]g1(S, τ |v0, t0)dτ (6)

with

Ψ1[S, t|y, τ ] = fV1
[S, t|y, τ ]

×
{
−Sα(1 + e−2α(t−τ))

1− e−2α(t−τ)
+

2αye−α(t−τ)

1− e−2α(t−τ)
− [αVrest + I(t)] +

2αM1(t|τ)

1− e−2α(t−τ)

}
. (7)
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(a) (b)

(c) (d)

Figure 1. Histograms of 104 FPTs T1 of simulated random paths
of V1(t) by discretization of (1) for k = 1 and numerical ĝ1(t) for
S = 1.5 (1(a),1(c)) and S = 2 (1(b),1(d)). I(t) ≡ µ = 0.25, α = 1,
Vrest = 0.2, σ = 1, t0 = 0,v0 = 0 in 1(a),1(b) and v0 = −0.5
in 1(c),1(d). The discretization step for simulations and for the
numerical procedure is 10−3.

We underline that we can provide evaluations of g1(S, t|v0, t0) by means of a
numerical quadrature ([2]) specialized for the case of time-varying input signal I(t).
Then, also P(T1 ≤ t) can be evaluated. In Fig. 1 we compare our numerical approx-
imation ĝ1(t) of g1(S, t|v0, t0) with the histograms of simulated FPTs for different
threshold values and starting points v0. The firing density is represented by his-
tograms of a sample of FPTs T1 (or T1), through a constant threshold, of simulated
random paths obtained from equation (1) for k = 1, discretized by means of the
Euler method.

Now, we can proceed considering a new SDE, i.e. the SDE (1) for k = 2 in order
to model the successive spike time.

3. Modeling the second spike time. We now focus our attention on another
stochastic process by which we describe the evolution of the neuronal membrane
potential in the presence of the threshold S before the spike time T2. We consider
a process V2(t), linked to the process V1(t), starting from the reset value v0 with
covariance (4) and the following mean function

mV2
(t|v0, t0) = v0e

−α(t−t0) +M2(t|t0) (8)

where we define

M2(t|t0) = E {E [M1(t|t1)|T1 = t1]} =

∫ t

t0

M1(t|t1)g1(S, t1|v0, t0)dt1. (9)

Remark 1. The formula (9) takes into account the probability that each time
instant t1 before t could have been an instant of first spike (i.e. a realization of
T1). This specific mathematical condition is motivated by the assumption that the
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average behavior of the neuronal membrane after a spike time (and reset) is almost
the same of the ones before the spike, although in any time t it has to remind
the occurrence of a previous spike and has to continue to be subject to the input
signal which in the meanwhile has never been reset. With these reasons in mind,
we construct the ad hoc process V2(t) as a transformed V1(t) by (9). Moreover, as
will be clear in the next proposition, the (9) leads to set a SDE of type (1) that,
from the mathematical point of view, can be properly handled.

Proposition 1. The process V2(t), obtained from the process V1(t) by (9), having
mean defined by (8) and covariance as in (4), is a GM process and is solution of
the following SDE, for t ≥ t0,

dV2 =

{
−αV2 + α

[
Vrest +

I(t)

α

]
P(T1 ≤ t)

}
dt+ σdW, V2(t0) = v0. (10)

Proof. From (2), (8) and (9), the mean function (8) of V2(t) becomes

mV2
(t|v0, t0)=v0e

−α(t−t0)+e−αt
[
αVrest

∫ t

t0

P(T1 ≤ ξ)eαξdξ+

∫ t

t0

I(ξ)P(T1 ≤ ξ)eαξdξ
]
.

(11)
Due to the linearity of relations (8) and (9), or equivalently from (11), and due to
the form of covariance (4), the process V2(t) is a GM process. Moreover, we note
that the specified process V2(t) is characterized by the normal transition PDF

fV2
[x, t|y, τ ] =

√
α√

πσ2(1− e−2α(t−τ))
exp

{
−α
[
x− ye−α(t−τ) −M2(t|τ)

]2
σ2
(
1− e−2α(t−τ)

) }
, (12)

having the same variance of V1(t) and the following conditional mean

E[V2(t)|V2(τ) = y] = ye−α(t−τ) +M2(t|τ) (13)

where

M2(t|τ) = e−αt
[
αVrest

∫ t

τ

P(T1 ≤ ξ)eαξdξ +

∫ t

τ

I(ξ)P(T1 ≤ ξ)eαξdξ
]
, (14)

and, in particular, from (11),

M2(t|τ) = mV2(t|v0, t0)− e−α(t−τ)mV2(τ |v0, t0). (15)

Finally, by using the differentiable mean function (11), recalling (14) and (15), along
the lines of [9], the infinitesimal drift of V2(t) is evaluable in the following way

A
(2)
1 (v, t) = lim

∆t→0

E[V2(t+ ∆t)− V2(t)|V2(t) = v]

∆t

= m′V2
(t|v0, t0)− α [v −mV2

(t|v0, t0)] =M′2(t|τ)− α [v −M2(t|τ)]

= −αv + α

[
Vrest +

I(t)

α

]
P(T1 ≤ t).

The infinitesimal variance is also evaluable and we have A
(2)
2 (t) ≡ σ2. Hence, under

hypotheses of regularity on the functions involved in the infinitesimal drift, V2(t) is
also a diffusion process (i.e. GD) and solves the SDE (10).

Similarly to the previous section, we now consider the FPT for V2(t), i.e.

T2 := inf
t≥t0
{t : V2(t) ≥ S} with V2(t0) = v0 < S. (16)
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Let g2(S, t|v0, t0) be the PDF of T2, i.e. g2(S, t|v0, t0) =
dP(T2 ≤ t)

dt
. It is solution

of

g2(S, t|v0, t0) = −Ψ2[S, t|v0, t0] +

∫ t

t0

Ψ2[S, t|S, τ ]g2(S, τ |v0, t0)dτ (17)

with

Ψ2[S, t|y, τ ] = fV2 [S, t|y, τ ]

×
{
−Sα(1+e−2α(t−τ))

1− e−2α(t−τ) +
2αye−α(t−τ)

1− e−2α(t−τ) −[αVrest+I(t)]P(T1≤ t)+
2αM2(t|τ)

1− e−2α(t−τ)

}
(18)

where fV2 [S, t|y, τ ] and M2(t|τ) are as in (12) and (14), respectively.

Figure 2. Histograms of 104 simulated T2 and numerical ĝ2(t) for
S = 1.5 (on the left) and S = 2 (on the right). I(t) ≡ µ = 0.25,
α = 1, Vrest = 0.2, v0 = 0, σ = 1. The discretization step for the
simulation is 10−3 and for the numerical procedure is 10−2.

We provide numerical estimations ĝ2(t) of g2(S, t|v0, t0) by solving numerically
(17) and compare them with simulation results of (10). We remark that in this
case our numerical procedure to solve (17), that involves the function (18), requires
to evaluate in advance g1(S, t|v0, t0) as solution of (6) and then P(T1 ≤ t). Hence,
an iterative numerical strategy has been adequately carried out to evaluate finally
ĝ2(t). Similarly, the simulation algorithm applied to (10) is based on the previous
evaluation of P(T1 ≤ t) as described in Section 2.1. In Fig. 2 the satisfactory
agreement between simulations of V2(t) by discretization of (10) and our numerical
approximations ĝ2(t) highlights the accuracy of our numerical results.

3.1. Comparing the FPT densities. For a constant input I(t) ≡ µ, see Fig. 3
for comparisons between the behaviors of ĝ1(t) and ĝ2(t). The evident difference
between the curves of ĝ1(t) and ĝ2(t) in Fig. 3 motivated the following proposition.

Figure 3. On the left: ĝ1(t) (red dashed) and ĝ2(t) (blue solid)
for S = 1.5; the other parameters are as in Fig. 1(a) and as in the
left side of Fig. 2. On the right: the same for S = 2; the other
parameters are as in Fig. 1(b) and as in the right side of Fig. 2 .
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It is useful for the following Proposition to recall from [19] that the random
variable X is smaller than the random variable Y in the usual stochastic order
(denoted by X ≤st Y ) if and only if

P(X ≥ u) ≤ P(Y ≥ u) ∀u ∈ (−∞,∞).

Proposition 2. The FPT T1 of V1(t) and the FPT T2 of V2(t) are stochastically
ordered as follows

T1 ≤st T2.

Proof. We note that on the basis of (9), from (14), recalling (2),

M2(t|τ) ≤M1(t|τ)P(T1 ≤ t), ∀t > τ ≥ t0 (19)

and from (8) and (2), we have

mV2(t|v0, t0) ≤ mV1(t|v0, t0), ∀t ≥ t0, v0 < S. (20)

(See Fig. 4 for the case of a constant input signal I(t) ≡ µ.) Recalling that V1(t)
and V2(t) are GM processes, it is known ([2],[9]) that both are transformed process
by the Brownian motion W (·) as follows

Vj(t) = mVj (t|v0, t0) + σe−α(t−t0)W

(
e2α(t−t0) − 1

α

)
,∀t ≥ t0, for j = 1, 2. (21)

Hence, taking into account (20) and (21), we can write

P(T1 ≤ t) = P
(

max
t0≤τ≤t

V1(τ) ≥ S
)
≥ P

(
max
t0≤τ≤t

V2(τ) ≥ S
)

= P(T2 ≤ t), ∀t ≥ t0.

Hence,

P(T1 ≥ t) ≤ P(T2 ≥ t), ∀t ≥ t0

i.e. T1 ≤st T2.

Again from [19], if T1 ≤st T2 then E(T1) ≤ E(T2).

Figure 4. Plots of the mV1
(t|v0, t0) (red dashed) and mV2

(t|v0, t0)
(blue solid) for S = 1.5 (on the left) and S = 2 (on the right). The
other parameters are as in Fig. 3.
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3.2. Ordering the FPTs. Since P(T2 < T1) ≥ 0, we assume Θ1 = T1 and consider
the random variable Θ2 = max{Θ1, T2} for which P(Θ2 < T1) = 0, being P(Θ2 ≥
T1) = 1 from its definition, with PDF

gΘ2
(t) = g1(t)P(T2 ≤ t) + g2(t)P(T1 ≤ t) (22)

where for shortness g1(t) = g1(S, t|v0, t0) and g2(t) = g2(S, t|v0, t0).
Following our numerical strategy, evaluations of the functions involved in (22)

are available, and finally also the evaluation of P(Θ2 ≤ t) can be given by means of
a quadrature applied to gΘ2(s) for t0 ≤ s ≤ t.

The random variable Θ2 turns out to be a more suitable tool for modeling the
second spike time. Indeed, in all cases of applications, and how it will be shown
for specified examples in the following, the numerical evaluation of (22) fits the
histogram of the simulated T2 better than the ĝ2(t) (see Fig.8), where T2 is the
second passage time of V (t) through the threshold S.

We also provide a scatter plot to give some indications about the joint distribution
of the pairs of the two spike times (see Fig. 5).

Figure 5. Scatter plots of 5 · 103 pairs (T1, T2) on the left, and
of (T1,Θ2) on the right. (T1, T2) are simulated first and second
passage times of V (t). (T1,Θ2) are pairs with simulated FPT T1(=
T1) of V1(t) and simulated Θ2 = max{T1, T2}, with simulated FPTs
T2 of V2(t). All parameters are specified in the caption of Fig. 8.

Furthermore, the satisfactory agreement between the numerical evaluation of (22)
and the histogram of the maximum of simulated FPTs T1 and T2 will be shown. For
examples specified in Section 5 these features are highlighted in Fig.7 and Fig.8.

4. An asymptotic approximation. At first, we specify an asymptotic approxi-
mation valid for the PDF g1(S, t|v0, t0). For asymptotically constant input signals
such that I = lim

t→+∞
I(t) from (2), (3) and (4) we have

lim
t→∞

mV1(t|v0, t0) = Vrest +
I

α
, lim

t→∞
V ar(t|τ) = lim

t→∞

σ2

2α

(
1− e−2α(t−τ)

)
=
σ2

2α
.

Hence, we obtain the stationary transition density function W1(x), i.e

W1(x) = lim
t→∞

fV1
[x, t|y, τ ] =

√
α

πσ2
exp

{
− α

σ2

[
x−

(
Vrest +

I

α

)]2
}
. (23)
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From (7) and (23), we also obtain that

hV1
= − lim

t→∞
Ψ1(S, t|y, τ) =

{
α

[
S −

(
Vrest +

I

α

)]}
W1(S) =

= α

√
α

πσ2

[
S −

(
Vrest +

I

α

)]
exp

{
− α

σ2

[
S −

(
Vrest +

I

α

)]2
}
. (24)

Along the lines of [2], for t− t0 > 1/α and S −

Vrest +

max
t0≤t

I(t)

α

 >
√
σ2α, then

the following exponential approximation for g1(S, t|v0, t0) holds:

g1[S, t|v0, t0] ≈ g̃1(t) = hV1
e−hV1

(t−t0). (25)

Using the approximation g̃1(t) as in (25), we can also write that, ∀t ≥ t0,

P(T1 ≤ t) ≈ P̃(T1 ≤ t) = 1− e−hV1
(t−t0). (26)

Then, we adopt the closed form expression of P̃(T1 ≤ t) in (11) in place of P(T1 ≤ t)
and we finally obtain

m̃V2
(t|v0, t0) = v0e

−α(t−t0) + M̃2(t|t0) (27)

with

M̃2(t|t0) = Vrest

(
1− e−α(t−t0)

)[
1 +

αe−hV1
(t−t0)

hV1
− α

]
+ e−αt

∫ t

t0

I(ξ)eαξdξ − e−αt
∫ t

t0

I(ξ)e−(hV1
−α)(ξ−t0)dξ. (28)

We point out that now we have the closed form expressions P̃(T1 ≤ t) and

M̃2(t|τ) useful in place of P(T1 ≤ t) and M2(t|τ) in (10) and (18), respectively.
An immediate benefit is that we can again exploit all the results of Section 3:
indeed, our numerical quadrature to solve (17), and the simulation strategy of (10),
for evaluating the PDF g2(S, t|v0, t0), can be now directly applied without any
previous numerical evaluations of g1(S, t|v0, t0) and P(T1 ≤ t), but using the closed

form expressions g̃1(t) and P̃(T1 ≤ t) of (25) and (26), respectively.

Furthermore, for Θ2 we proceed as follows. Let ĝ2[t; g̃1(t)] (P̂[T2 ≤ t; g̃1(t)]) be
the numerical evaluation of g2(t) (P(T2 ≤ t)) obtained by using the asymptotic
expression g̃1(t) of g1(t), we give the following approximation γΘ2

(t) for gΘ2
(t) :

γΘ2(t) = hV1e
−hV1

(t−t0)P̂[T2 ≤ t; g̃1(t)] + ĝ2[t; g̃1(t)]
(

1− e−hV1
(t−t0)

)
. (29)

At the end of the next section, we will give an example in which the asymptotic
approximations can be used.

5. Examples of application: Exponential and constant input signals. We
consider the following exponential form to represent an input signal:

I(t) = µ+ λe−βt with β > 0, µ, λ ∈ R, t ≥ t0 = 0. (30)

Now, the SDE for V1(t) is the following one:

dV1 = [−α(V1 − Vrest) + µ+ λe−βt]dt+ σdW, V1(t0) = v0 t ≥ t0. (31)
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In this case, we find

M1(t|τ) =
(
Vrest +

µ

α

)(
1− e−α(t−τ)

)
+

λ

α− β

(
e−βt − e−α(t−τ)−βτ

)
(32)

by which we are able to specify the mean, the covariance, the conditional mo-
ments and the transition PDF of the process V1(t) as in Section 2.1. In particular,
for evaluating g1(S, t|v0, t0), in the corresponding integral equation we can specify
Ψ1[S, t|y, τ ] as in (7) with I(t) as in (30) and M1(t|τ) as in (32). Furthermore,
from (9), we can specify the process V2(t) with

M2(t|τ) = e−αt
[
(αVrest + µ)

∫ t

τ

P(T1 ≤ ξ)eαξdξ + λ

∫ t

τ

e(α−β)ξP(T1 ≤ ξ)dξ
]
. (33)

From Proposition 1, the mean, the covariance, the conditional moments, the tran-
sition PDF of the process V2(t) are available and V2(t), for the input signal (30),
satisfies the following SDE:

dV2 =

[
−αV2+α

(
Vrest+

µ+ λe−βt

α

)
P(T1 ≤ t)

]
dt+σdW, V2(t0) = v0, t ≥ t0. (34)

Finally, for evaluating g2(S, t|v0, t0), from (17) we can specify Ψ2[S, t|y, τ ] of (18)
with I(t) as in (30), M2(t|τ) as in (33) and P(T1 ≤ t) as the numerical evaluation

P̂(T1 ≤ t), having already obtained ĝ1(t) for g1(S, t|v0, t0). See in Fig. 6 (left)
the comparison between histograms of T1 by simulations of (31) and numerical
approximations ĝ1(t). See in Fig. 6 (right) the comparison between histograms of
T2 by simulations of (34) and numerical approximations ĝ2(t).

Figure 6. Left: histograms of 104 simulated T1 and numerical
ĝ1(t). Right: histograms of 104 simulated T2 and numerical ĝ2(t)
for exponential input signal with λ = 0.25, β = 1.5(> α), µ = 0,
α = 1, Vrest = 0.2, v0 = 0, σ = 1 and S = 1.5. The discretization
step for the simulation is 10−3 and for the numerical procedure is
10−3 on the left and is 10−2 on the right.

To validate the accuracy of numerical approximations of gΘ2
(t), on the left of

figures 7-8 we show the satisfactory agreement between the numerical evaluation of
gΘ2(t) (22) and the histogram of the maximum of simulated FPTs T1 and T2. On
the right of figures 7-8 we provide a comparison between the numerical evaluation
of gΘ2

(t) (22) and the histogram of simulated T2, i.e. the second passage time of
V (t) through the threshold S. Specifically, T2 is obtained by simulating the SDE
of V (t) for t ≥ T1 with V (T+

1 ) = v0; the first time t(≥ T1) such that V (t) ≥ S
is recorded as the simulated value of T2. In particular, on the right of Fig. 8 also
ĝ2(t) is plotted. Note that while Fig. 7 refers to the case β > α, Fig. 8 refers to
the case β < α; in particular, the case β < α corresponds to the case in which
the time-varying effect of the input signal persists beyond the time of decay to the
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Figure 7. Left: histograms of the simulated Θ2 = max{T1, T2}
and the numerical evaluation of gΘ2(t) (22) for an exponential input
signal. Right: histograms of 104 simulated T2 and the numerical
evaluation of gΘ2

(t). The values of parameters are the same of
Fig. 6. The discretization step for the numerical procedure is 10−2

and for simulations is 10−2 on the left and 10−4 on the right.

Figure 8. Left: histograms of the simulated Θ2 = max{T1, T2}
and the numerical evaluation of gΘ2

(t) (22) for an exponential in-
put signal are shown. Right: histograms of 104 simulated T2, the
numerical evaluation of gΘ2(t) (in black) and ĝ2(t) (in blue). The
values of parameters are: λ = 0.2, β = 0.01(< α), µ = 0.1, α = 1,
Vrest = 0.2, v0 = −0.5, σ = 1 and S = 1.5 . The discretization
steps are as in Fig. 7.

resting level of the potential, whereas the case β > α corresponds to the case in
which the time-varying effect of the signal is short and vanishes before than the
potential attains the resting level.

Alternatively, it also possible to use the approximation P̃(T1 ≤ t) for P(T1 ≤ t)
as in (26). Indeed, following the lines of Section 4, in this case from (30) and (32)
we have

I ≡ lim
t→+∞

I(t) = µ, lim
t→∞

M1(t|y, τ) = Vrest +
µ

α
, (35)

and, from (23),

W1(x) =

√
α

πσ2
exp

{
− α

σ2

[
x−

(
Vrest +

µ

α

)]2}
. (36)

Therefore, for t− t0 > 1/α and S−
(
Vrest + µ+λ

α

)
>
√
σ2α the asymptotic approxi-

mation (26) is valid with hV1 as in (24) with µ in place of I. Finally, it is possible to
use for the process V2(t) the approximated mean function m̃V2

(t|v0, t0) from (27),
evaluated with the signal I(t) as in (30).

From our simulations and numerical evaluations, we can see that it is possible

to exploit the asymptotic approximation P̃(T1 ≤ t) for threshold S = 2 and the
values of other parameters as in Fig. 1 (for the constant signal) and in Fig. 6 (for
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the exponential signal). An example of application is considered for values of the
parameters specified as in the caption of Fig. 9. In this case, it is possible to evaluate
ĝ2[t; g̃1(t)], by using the asymptotic g̃1(t), and finally γΘ2

(t) as in (29).

Figure 9. Left: histograms of 104 simulated T1, compared to the
numerical ĝ1(t) (in red) and the asymptotic approximation g̃1(t) (in
blue) for an exponential input signal with λ = 0.1, β = 0.1(< α),
µ = 0.1, α = 1, Vrest = 0.1, v0 = −0.5, σ = 1 and S = 2. Right:
histograms of 104 simulated T2 and the numerical evaluation of
γΘ2

(t) (29) for the same choice of parameters. The discretization
step for the numerical procedure is 10−3, for simulations is 10−4.

Finally, we give some indications about a quantitative error analysis: the L1-
norm of the difference between two interpolating densities of histograms from two
independent samples of T2 is about 0.08, while the L1-norm of the difference between
one of these densities and the numerical evaluation of gΘ2(t) is about 0.54 for the
case of Fig. 7. The L1-norm of the difference related to independent histograms of
T2 is about 0.12 for the case of Fig. 8 (0.1 for Fig. 9), while the L1-norm of the
difference between the histogram of T2 and the numerical gΘ2

(t) is about 1.2 for
Fig. 8 (1.02 for Fig. 9).

6. Conclusion. The present paper introduces a new model which extends our
theoretical approach for particular GM processes and their applications in neuronal
modeling, in particular for the case of the first and the second spike time. In
summary, the main innovative point is the introduction of the model for the second
spike generation by which we provide approximations for the PDF of the second
spike time. Our results aim to contribute to the theory of the temporal (or timing)
codes. They can be extended to the case of special input signals, for instance, to
those of [21].
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