
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Navigation Signals Monitoring, Analysis and Recording Tool: Application to Real-Time Interference Detection and
Classification / Mehr, Iman Ebrahimi; Minetto, Alex; Dovis, Fabio. - ELETTRONICO. - (2023), pp. 3878-3887. (Intervento
presentato al convegno The 36th International Technical Meeting of the Satellite Division of The Institute of Navigation
(ION GNSS+ 2023) tenutosi a Denver, Colorado, USA. nel September 11 - 15, 2023) [10.33012/2023.19391].

Original

A Navigation Signals Monitoring, Analysis and Recording Tool: Application to Real-Time Interference
Detection and Classification

GENERICO -- per es. Nature : semplice rinvio dal preprint/submitted, o postprint/AAM [ex default]

Publisher:

Published
DOI:10.33012/2023.19391

Terms of use:

Publisher copyright

The original publication is available at https://www.ion.org/publications/abstract.cfm?articleID=19391 /
http://dx.doi.org/10.33012/2023.19391.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982894 since: 2023-10-16T14:05:37Z

Institute of Navigation (ION)

A Navigation Signals Monitoring, Analysis and
Recording Tool: Application to Real-Time
Interference Detection and Classification

Iman Ebrahimi Mehr , Alex Minetto , Fabio Dovis
Politecnico di Torino, Department of Electronics and Telecommunications, Turin, Italy

BIOGRAPHY
Iman Ebrahimi Mehr received the B.Sc. in electronic engineering from Azad University, Tehran, Iran, and his M.Sc. Degree
in ICT for smart society from Politecnico di Torino, Turin, Italy, in 2012 and 2021, respectively. He is currently working on his
Ph.D. in the Navigation Signal Analysis and Simulation Group, Department of Electronics and Telecommunications, Politecnico
di Torino, Torino, Italy. His research interests include Global Navigation Satellite Systems (GNSS) and artificial intelligence
applied to positioning, navigation and timing as well as to interference detection and mitigation.

Alex Minetto received the B.Sc. and M.Sc. degrees in Telecommunications Engineering from Politecnico di Torino, Turin,
Italy and his Ph.D. degree in Electrical, Electronics and Communications Engineering, in 2020. He joined the Department of
Electronics and Telecommunications of Politecnico di Torino in 2019 as research and teaching assistant and in 2022 as assistant
professor. In 2015, he was an intern at European Organization for the Exploitation of Metereological Satellites (EUMETSAT),
Darmstadt, Germany. His current research interests cover signal processing and advanced Bayesian estimation applied to Global
Navigation Satellite System (GNSS) in space and critical infrastructure.

Fabio Dovis received the M.Sc. and Ph.D. degrees from the Politecnico di Torino, Turin, Italy, in 1996 and 2000, respectively.
In 2004, he joined the Department of Electronics and Telecommunications, Politecnico di Torino as an Assistant Professor
where he has been a full professor since 2021. He coordinates the Navigation Signal Analysis and Simulation Research Group.
His research interests include design of GPS and Galileo receivers and advanced signal processing for interference and multipath
detection and mitigation, and also ionospheric monitoring. Dr. Dovis is a Member of the IEEE Aerospace and Electronics
Systems Society Navigation Systems Panel.

ABSTRACT
Given the extensive dependency on Global Navigation Satellite Systems (GNSS) for several crucial applications, the disruption
caused by intentional or unintentional Radio Frequency Interference (RFI) may dramatically affect reliability and poses potential
threats to various operations dependent on such systems. Recently, these threats have increased, and their detection and mitigation
are of utmost importance in the field. To this aim, this paper presents an architecture for real-time detection and classification
of RFI affecting multi-band GNSS signals based on a machine learning method. This study proposes an architecture combining
an actual GNSS monitoring station for recording GNSS signals (Navigation Signals Monitoring, Analysis, and Recording
Tool (N-SMART) system) with a deep neural network approach to detect and classify different classes of interferences. The
proposed approach enables continuous monitoring, recording, and prompt alerting of RFI occurrences in multi-band GNSS
signals, by leveraging the flexibility of a Software Defined Radio and docker frameworks. The design and deployment aspects
of the proposed architecture are discussed, and the performance of the classification algorithm is evaluated. The results of
the experimental test campaign on real interfered GNSS signals showed an overall accuracy of 85% and they highlighed the
potential for effective, real-time classification of RFIs in GNSS.

I. INTRODUCTION
One of the crucial infrastructures in the modern world is Global Navigation Satellite Systems (GNSS), which are widely
employed in a growing number of industries and have become essential to everyday life. The GNSS signals are vulnerable
to Radio Frequency Interference (RFI) which can be a source of error for the signal processing stages of receivers, causing
degradation in the estimation of Position, Velocity, and Time (PVT) or even complete losses of signal tracking, up to denials
of service. Recording GNSS signals during instances of RFIs can prove valuable in studying their characteristics and extract
the features that can then be utilized to develop mitigation solutions. Therefore, to ensure GNSS reliability to the users and
mitigate the impact of RFI on GNSS signals, interference monitoring, detection, and classification are fundamental tasks.
Several research studies have recently focused on monitoring interference signals, both from space (Murrian et al., 2019, 2021;
Clements et al., 2023) and on the ground (Miguel et al., 2023; van der Merwe et al., 2023; Ward, 2007).

https://orcid.org/0000-0001-5309-7334
https://orcid.org/0000-0002-0586-7151
https://orcid.org/0000-0001-6078-9099

GNSS signals are not only subject to deliberate or unintentional interferences such as jamming and spoofing but also to
ionosphere scintillation, multipath, and other signal anomalies (Spilker Jr et al., 1996). Storing high-fidelity radio-frequency
signal samples enables a more detailed analysis of GNSS navigation signals, particularly during unique events or peculiar
circumstances (Pica et al., 2023). The use of record and playback (RP) systems in the test and validation of GNSS receivers
is growing due to their capability to replicate previously recorded live signals faithfully. Numerous studies in the literature
have proposed using RP systems to evaluate GNSS receivers (Chu et al., 2010; Ilie et al., 2011, 2009). The utilization of
RP systems is motivated by further several factors. Firstly, while high-end GNSS signal simulators or generators provided
by various companies exist, they tend to be costly and burdensome. Secondly, in strongly constrained environments like city
centers, the variability of urban scenarios may turn analytical models and simulators not representative of the complexity, and
they show limited validity and scalability of the generated signals (Cristodaro et al., 2018; Richter et al., 2013). A cost-effective
approach for deploying monitoring stations involves the utilization of Software Defined Radio (SDR) techniques. This approach
enables the capture of signal samples that can be processed in real-time and subjected to post-processing for more extensive
analysis. Additionally, in certain situations, it allows for replicating the scenario itself (Cristodaro et al., 2018; Linty et al.,
2018; Brown et al., 2013; Mehr et al., 2023). Monitoring GNSS signals has relied on established techniques involving real-time
signal processing using front-ends and dedicated monitoring receivers. Similar architectures can be found in the literature,
where multi-frequency software receivers have been developed specifically for monitoring ionospheric scintillation (Curran
et al., 2014; Peng and Morton, 2013; Linty et al., 2018; Pica et al., 2023).

Machine Learning (ML) methods have gained significant attention in GNSS applications in recent years, offering the potential to
introduce new solutions and services. Limiting our interest to RFI detection and classification, numerous studies have explored
the utilization of ML for this purpose. In certain studies, researchers have investigated features extraction from the time series of
digital samples obtained from the receiver front-end output and applying ML methods like K-nearest neighbor (Qin and Dovis,
2022), Support Vector Machine (SVM) (Nicola et al., 2020), and Random Forest (RF) (Xu et al., 2020). Alternatively, other
research studies have explored the utilization of Time-Frequency Representation (TFR) extracted from raw digital samples of
signals. By leveraging TFR, the classification task can be transformed into an image classification task, enabling the application
of deep learning models in this domain. These research studies (Ferre et al., 2019; Swinney and Woods, 2021; Liu et al., 2021;
van der Merwe et al., 2023; Mehr and Dovis, 2023) demonstrate that Convolutional Neural Networks (CNNs) can be a valuable
tool for RFI classification. Moreover, the research (Brieger et al., 2022) proposed an architecture that handles both time series
and spectrogram data, utilizing CNN architecture and the TS-Transformer.

Despite existing solutions, there is a crucial requirement for a compact and flexible system delivering a reliable and autonomous
collection of GNSS signal data, as well as automated detection and classification of interference.

This research proposes a novel architecture for real-time interference detection and classification of RFI, which can continuously
monitor and record multi-band GNSS signals and provide timely warnings in case of RFI. The proposed architecture utilizes the
Navigation Signals Monitoring, Analysis, and Recording Tool (N-SMART) system to grab and store the GNSS signals, while
detection and classification are implemented based on a deep neural network technique. The basic principle of the suggested
method is to implement a CNN classifier inside a Docker container and runs on top of the N-SMART system. The remainder of
this paper is organized as follows: Section II introduces the N-SMART and the ML model. Section III discusses the proposed
architecture and its deployment, detailing the use of Docker containers and the N-SMART system. Section IV presents the
evaluation of the ML model’s performance, highlighting the accuracy and inference time in real-world scenarios. Finally,
Section V concludes the paper, summarizing our findings and offering insights into future lines of research and improvement.

II. BACKGROUND
1. Navigation Signals Monitoring, Analysis and Recording Tool
N-SMART (Mehr et al., 2023) is an open architecture for GNSS signals monitoring, analysis, and a reliable, high-fidelity
recording of the GNSS signals. It is designed to overcome the limitations of previous systems that struggled with data losses
during the transfer between the front-end and the storage unit, particularly when high sampling frequency and high quantization
depth are required. This system capitalizes on the microservices architecture, which organizes the entire application into a
series of small, autonomous services. Containers are a technology that significantly simplifies the development and deployment
of microservices. This architecture uses Docker containers to package the software components of the system, including the
application for signal analysis and recording and its required dependencies. A Docker container is a lightweight, standalone,
executable package that includes everything needed to run a piece of software, including the code, runtime environment and
variables, libraries, and config files. Figure 1a depicts a high-level of the N-SMART system block diagram, outlining both the
hardware and software components. As depicted in Figure 1a, a specific Docker container is dedicated to the task of GNSS
signal recording. This container communicates with the radio frequency front-end devices to capture the signal through an
ethernet connection. This Docker container hosts the Universal Software Radio Peripheral (USRP) Hardware Driver (UHD),
integral to the front-end (USRP N-210) communication. Additionally, it contains the pipeline for grabbing the signal, which
has been designed using GNU Radio. Moreover, another Docker container is responsible for hosting the web User Interface

(UI) application, which can be accessed over the internet. This UI enables users to monitor the system status, reconfigure
the system settings, analyze recorded signals (spectrum and spectrogram), and control GNSS signals acquisition, providing a
comprehensive and accessible tool for managing and interacting with the system.

The utilization of Docker containers allows the application to be installed on any hardware system without requiring prerequisite
installations. N-SMART is installed on a Network Attached Storage (NAS) unit, which is a standalone data storage system
connected to a network and acts as a central data repository. N-SMART is a fully open-source and configurable system, and
the compact implementation of the data processing in the NAS makes this architecture more suited for in-field implementa-
tion and monitoring operations to be performed in remote regions of the Earth lacking or with minimal power supply and
connectivity resources. N-SMART can capture multi-frequency of GNSS band and provides Intermediate-Frequency (IF),
In-phase/Quadrature (IQ) signal samples. Furthermore, the recorded signals by N-SMART contains the GNSS software-defined
receiver metadata standard (Gunawardena et al., 2021), which defines parameters and schema to express the contents of the
recorded dataset. Figure 1b shows the hardware installation and components of the N-SMART system and its configuration in
operation at the NavSAS laboratories.

The motivation behind utilizing the N-SMART system lies in its dockerization architecture, which is well-suited to recent
advancements in signal analysis and has the capability to host a separate Docker container, such as ML deployment, that are
specialized for on-site monitoring algorithms. Providing direct access to the real-time stream of GNSS signals within the guest
container, eliminates the necessity of transferring large volumes of SDR-captured data to remote processing centers.

NAS

Docker-1

Docker-2

RF front-end (1)

RF front-end (2)

RF front-end (n)

LAN-1

LAN-2

LAN-n

Antenna

RF
 S

ig
na

l

Docker-n

Shared Storage
Docker-1: SMART web Interface
Docker-2: RF signal recording
Docker-n: Signal monitoring and analysis

Internet or
local network

(a)

Mini-Circuits Power Splitter
1-2 GHz

RFX 10 MHz
OCXO

LNA
+5V power line

and DC filter

Radio-Frequency
Front-end

MIMO cable
(for frequency sync)

Network-Attached Storage (NAS)

(b)

Figure 1: High-level hardware and software block diagram (a), and Prototype of an operational GNSS Monitoring and Grabbing Station at
the NavSAS laboratories (b).

2. Applying Machine Learning to the Real World.
ML aims to solve complex tasks and make informed decisions by utilizing algorithms that enable computers to learn patterns
and insights from data. ML models can provide valuable predictions, recommendations, or classifications by analyzing and
processing vast amounts of information, improving problem-solving and decision-making capabilities. In the context of solving
a task or making decisions, the ML pipeline can be broadly divided into two main steps: development and deployment (Raj,
2021). The process of deploying machine learning models into production is illustrated in Figure 2.

• ML Development: The development process of ML begins with the collection and preparation of data. This step involves
gathering the necessary data, cleaning it, addressing missing values, and transforming it into a suitable format. Once
the data is ready, the subsequent step is to select a suitable ML algorithm or model architecture that aligns with the
specific problem being addressed. The chosen model is then trained using the prepared data to identify patterns, establish
relationships, and ultimately make accurate predictions or classifications based on the learned patterns. Following the
model training phase, a crucial step in the ML development process is evaluating the model to measure its performance
and uncover any limitations. Metrics like accuracy, precision, recall, and inference time are utilized to measure its
performance against the desired objectives. If necessary, optimization techniques like hyperparameter tuning are applied
to enhance its performance (Flach, 2012).

• ML Deployment: This step entails deploying the models into a production environment, making them accessible and
available for end users, and allowing them to be used for real-world applications and decision-making. ML deployment is
essential because it bridges the gap between model development and practical use, enabling organizations to leverage the

ML Framework

Data collection
and preparation

Choose the ML
model

Training the
model

Evaluation the
model

Final model

Development ML

Input Data

Applying the same
preprocessing of data

Production
Environment

ML model

ML monitoring

ML Output

Deployment ML

Analytical ML

Real-Time ML

Figure 2: From ML model to Production

benefits of ML in their day-to-day operations while minimizing costs and maximizing efficiency. During the deployment
phase, it is necessary to establish the required infrastructure, which may involve configuring servers or utilizing cloud
platforms to host and serve the model. Continuing the development process, it is essential to monitor the performance
of the deployed model, ensuring its ongoing accuracy and reliability. Additionally, based on user feedback or changes
in the problem domain, updates or improvements to the model might be necessary ((Bhatt et al., 2020); (Baier et al.,
2019)). Deployment of ML can indeed be categorized into two main types: analytical ML and real-time ML. Analytical
ML typically operates in an ”offline” environment, where the model analyzes historical data and generates insights or
predictions such as data mining or generating reports. Real-time ML integrates models into applications to facilitate
autonomous and continuous decision-making, directly influencing real-time business operations. This deployment
scenario enables applications to dynamically and promptly respond to incoming data, leveraging the output of ML model
to make immediate predictions or take actions (De Bie et al., 2 23).

The selection of appropriate machine learning models, frameworks, and tools is vital, especially in resource-limited areas like
the GNSS domain, where hardware and software resources are scarce. The choice of frameworks and tools for ML deployment
should be based on the target environment’s specific requirements, constraints, and available resources to ensure optimal
performance, efficiency, and compatibility. For instance, if the ML model is intended to run within a GNSS receiver or a mobile
device with limited resources, it may require lightweight frameworks and optimized algorithms to ensure efficient execution.
On the other hand, if the model is intended to run in a more powerful environment, such as a dedicated monitoring station, there
may be more flexibility regarding the frameworks and tools used, allowing for more resource-intensive options. While ML
techniques can be computationally intensive and time-consuming, GNSS applications often demand real-time or near-real-time
processing, particularly for positioning and navigation tasks. Hence, a framework or tool for ML deployment can be deemed
efficient based on its capacity to optimally utilize resources like memory, CPU, and time, enabling seamless integration with
GNSS applications. In addition, the popularity and support of the framework need to be considered, where popularity reflects
the widespread usage, well-regarded, and active support within the developer community, whether the framework is open-source
or closed-source.

3. Deep Neural Network Approach for detection and classification
RFIs, even intentional from jammers or unintentional, can cause disruptions to GNSS receivers within a specific operational
area, potentially rendering them non-functional. In our previous research (Mehr and Dovis, 2023), we introduced an ML
technique, referred to as the feature-aided CNN classifier, which leverages deep neural networks to automatically and accurately
detect and classify instances of interferences in GNSS band. The conceptual block diagram for this method is depicted in Figure
3. The input to this system is the stream of raw samples of the received GNSS signal, which may contain potential interference.
During the preprocessing stage, pertinent information for the model classifier is extracted by analyzing the input signal across
various domains. Initially, the input signal (a window of 100µs) is examined within the time-frequency domain, creating a
TFR that is preserved as an image. Concurrently, additional relevant features, as listed in Table 1 are extracted from both the
time and frequency domains of the same time series of input signals (a window of 200µs) as numerical features. Then the
image generated by the TFR is processed through a CNN to extract the most significant and informative features. Subsequently,
these extracted features are merged with numerical features. This fusion of diverse features forms a combined feature vector,
which is then inputted into the fully connected layers of the CNN for the purpose of classification. The final layer of the

Fully connectedFlatten

Convolution
and Pooling

Feature extraction

Statistical
Feature

extraction

Co
nc

at
en

at
io

n

Classification

O
ut

pu
t

TFR image

Time and Frequency
Domain

GNSS + RFI
digital sample

Time-Frequency
Representation

Pre-processing

Figure 3: Feature-Aided CNN classifier

model is a softmax layer, which provides the probabilities associated with each interference type. TFR can be derived using
several transformations, including the Short-Time Fourier Transform (STFT) and the Wigner-Ville Transform. Our preliminary
investigation (Mehr and Dovis, 2023) revealed that while these TFR methods offer nearly equivalent accuracy, the STFT is more
computationally efficient. Furthermore, it is also shown that ResNet has better accuracy with respect to AlexNet architecture.
As a result, we have chosen to utilize the STFT for generating the TFR and ResNet for the CNN architecture in this context.

Table 1: List of features in time and frequency domains

Domain Features Description

Time Domain

Mean value

Common statistical values of raw sample to measure the dispersion of the samples

Median value
Standard deviation
Mean absolute deviation
Root Mean Square
25th percentile
75th percentile
Inter Percentile Range
Skewness Measure the asymmetry of the probability distribution.
Kurtosis Measure the outlier-prone of the probability distribution.
Entropy Measure the uncertainty and randomness of the samples.

Frequency Domain
Frequency of max power Frequency of the maximum power located.
Maximum Power Maximum power obtained in frequency domain.
Mean Power Mean power obtained in frequency domain.

III. METHODOLOGY
The research introduces an innovative architecture for the real-time detection and classification of RFI in multi-band GNSS
signals. The primary objective of this architecture is to continuously monitor and record the GNSS signals while promptly
alerting potential RFI occurrences. The proposed approach leverages the N-SMART system for capturing and storing the GNSS
signals, while the detection and classification tasks are performed using the feature-aided CNN classifier that operates within
a Docker container. This container is integrated with the N-SMART system, allowing the CNN classifier to get the real-time
GNSS signals as inputs. By combining these two functionalities, the proposed architecture offers a comprehensive solution for
continuous recording and timely warning of RFI in multi-band GNSS signals.

1. Real Data Integration
a) Feature-aided CNN classifier with simulated data
In our previous work (Mehr and Dovis, 2023, 2022), the result of the feature-aided CNN classifier demonstrated its potential as
a robust tool for interference classification. The obtained accuracy was 98% when evaluated on a simulated dataset comprising
17 classes in which one class represented the GNSS signal without interference. While the remaining 16 classes represented
GNSS signals in the presence of various types of interference, including the most common chirp signals used by jammers and
documented in (Pattinson et al., 2017), Frequency Hopping (FH) jammers, Continuous Wave Interference (CWI), narrowband
jammers, Frequency Modulation (FM) and Amplitude Modulation (AM) jammers. In the simulated scenario, the GNSS signals
belong to the L1 band and originate from the GPS constellation. These signals exhibit a carrier-to-noise ratio (C/N0) ranging

from 25 to 50 dBHz, where the background noise level is set to -202 dBW/Hz. An 8th-order Butterworth filter with a bandwidth
of 20.46 MHz is employed to process the GPS signal. The resulting signals are then sampled at a rate of 40 MHz in the I/Q
baseband without considering any quantization bit. To simulate the presence of interferences, various types of interference
signals are combined with the GNSS signals by adding them together. The interference power levels range from -142 dBW to
-107 dBW, increasing in increments of 1 dBW. Consequently, the interference-to-noise ratio spans from -13 dB to 22 dB.

b) Learning the model with dataset from real scenario
To generate a dataset that reflects a real scenario, the recorded signals are obtained from N-SMART in the presence of various
interferences. The L1 band of the GNSS signal is captured using a USRP N-210 device, which operates at a sampling frequency
of 25 MHz and utilizes 16-bit quantization (I/Q). For transmitting the interference signals, another USRP device is employed
and reads the corresponding .bin files containing different interference signals and transmits them within the GNSS L1 band.
The same 16 classes of interferences and range power as in the case of the simulated scenario are used. Figure 4 demonstrates
the configuration of N-SMART integrated into the real interference scenraio.

PC hosting GNU Radio for
transmitting Jammers

N-SMART Packaged in Rack mount

A PC with
internet access

Figure 4: Configuration of N-SMART integrated into Real interference Scenario

Due to the differences in sampling frequency and bit quantization between the simulated and the real scenarios, retraining the
model becomes necessary. Since training the model from scratch can be time-consuming and resource-intensive, a Transfer
Learning (TL) approach is employed to facilitate retraining. TL is a ML technique where knowledge gained from training a
model on one task is applied to a different but related task (Pan and Yang, 2010). This technique leverages the pre-existing
knowledge and parameters of the model learned from the simulated data, reducing the time and computational resources required
for training.

The development framework used for building CNN models is the TensorFlow library in Python. TensorFlow (Abadi et al.,
2015) is an open-source library for ML and artificial intelligence, and it allows for building packages that can be deployed
on various CPU architectures. The model’s training process is performed in the Google Colaboratory (Colab) environment
(Bisong, 2019). The Adam optimization algorithm is employed to train the model, and the initial learning rate used in the
training process is set to 0.001. The epoch number of the training process is 25, and early stopping for termination of training in
case of no improvement in validation loss is utilized. In addition, the adaptive learning rate is implemented to dynamically adjust
the learning rate (Mehr and Dovis, 2023). Figure 5 illustrates the training performance on the validation dataset, demonstrating
the impact of applying TL versus not using TL. It is observed that when TL is applied, the model achieves its lowest loss after
only five epochs. In contrast, the model takes ten epochs without TL to converge and reach the lowest loss. Once the training
process concludes, the optimal model is saved, including the complete model architecture, weights, and parameters, in order to
serve as the model for real-time purposes.

2. Real-Time Deployment of Interference Detection and Classification
Real-time implementation of ML models has gained significant importance in various domains, enabling timely decision-
making, automation, and intelligent processing of data streams. This section focuses on implementing the feature-aided

0 2 4 6 8 10 12 14
epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

Loss of Validation dataset
Without TL
Applying TL
Best Model
Early Stopping

Figure 5: Training of Feature-Aided CNN classifier

CNN classifier for real-time detection and classification of RFIs. The real-time deployment involves continuously processing
incoming data streams, enabling immediate analysis and decision-making. The implementation framework encompasses several
key components as follows:

• Data acquisition and preprocessing: The process of acquiring data involves the continuous recording of GNSS signals
using the N-SMART system, as explained in Section II.1. The system captures the GNSS signals and produces a continuous
stream of IF, high-fidelity IQ signal samples. The system reads and transfers the most recent 200 microseconds of recorded
signal to the preprocessing stage every second. The decision to perform analysis every second depends on the resource
constraints of NAS device in the N-SMART system. In the data preprocessing step, the TFR (spectrogram) of the received
signal and the corresponding statistical features are derived, serving as the ML model’s input. As a metric of evaluation,
the time needed to complete the preprocessing task, starting from reading data and preparing input of the model, is called
preprocessing time.

• Data processing: The processing phase of model deployment is carried out within a separate and isolated Docker container
which is created using the official TensorFlow Docker image and includes an added API. Through this API, the Docker
container receives input data from the preprocessing step and returns the associated probabilities of the presence of each
interference type. A script is written to perform the processing step, which involves loading the best-trained model
from the training part and passing the input data to the model for inference tasks. It is essential to highlight that the
CPU of the NAS device utilized in this experiment does not support Advanced Vector Extensions (AVX). Consequently,
the precompiled version of the TensorFlow package, which does not support CPUs without AVX, cannot be used. To
overcome this limitation, the TensorFlow package is built and compiled from the source code, ensuring compatibility with
the NAS device’s CPU configuration. Similar to preprocessing time, the time that model takes to apply a trained neural
network to new data is called the inference time.

• Interference Monitoring: To facilitate monitoring, a dedicated webpage is created as part of UI, providing a visual
representation of the ML model’s performance and the corresponding classification results. Additionally, an automatic
alert system is developed to ensure timely awareness of critical situations.

IV. EXPERIMENTAL FINDINGS AND ANALYSIS
This section presents the experimental results of the feature-aided CNN classifier for the detection and classification of
interference. The model is evaluated in a real interference scenario, as explained in section III.1 b), and the obtained results are
summarized in Table 2. The preprocessing, inference, and task completion are measured when the system is performed signals
recording and the real-time classification task while the accuracy and F1-scores are related to the test dataset (offline mode).
To ensure a fair comparison between the simulated and real scenarios, we created a simulation scenario in which we aligned
the simulation parameters with those of the real scenario. Consequently, we employed a 25 MHz sampling rate and 16-bit
quantization for the simulated data. The associated results are shown in Table 2.

The results presented in Table 2 demonstrate the effectiveness of the feature-aided CNN classifier in detecting and classifying
with an overall accuracy of 85.13% across all interference types. It is noteworthy to compare these results with the accuracy
achieved when the model is tested on simulated data. In the simulated scenario experiments, the classifier achieved an accuracy of
95.75%. However, when evaluated on a real dataset, the accuracy decreased to approximately 88%. The decrement in accuracy,
i.e., 7%, when transitioning from simulated to real scenarios can be attributed to several factors. Firstly, while it is accurate that

Table 2: Result of Detection and Classification of Interference

Mode
Accuracy [%]
(Test dataset)

F1-score [%]
(Test dataset)

Pre-processing time
[ms]

Inference time
[ms]

Task completion time
[ms]

Simulated scenario 95.75 95.43 87 77 164
Real scenario 87.76 87.23 412 275 687

the sampling frequency and bit quantization remain consistent across both scenarios, it is important to note that the front-end
architectures differ, and each component within them can influence the data. Consequently, one can infer that, in a real-world
implementation and deployment, the machine learning algorithm should be trained according to the specific front-end hardware,
utilizing signal instances emerging from that particular front-end.. Secondly, real-world interference scenarios often contain
variations and noise that might not be accurately represented in the simulated data. The presence of unmodeled or unknown
factors in real scenarios can pose challenges for the classifier, where the model might not have encountered certain types of
variations that exist in the real dataset, leading to a decrease in accuracy. Despite the decrease in accuracy, the classifier still
maintains a reasonable performance level and indicates the potential of the feature-aided CNN classifier in practical applications
for real-time interference detection and classification.

The preprocessing and inference time metrics are strongly influenced by the available resources on the target platforms. In the
given experiment, the NAS system is equipped equipped by an INTEL Atom C3538-2.1 GHz CPU and 4 GB of RAM, while
the simulation is executed on a personal computer equippedby an Intel Core i5- 3GHz and 4 GB of RAM. It is worth noting that
utilizing a more powerful CPU can potentially reduce the time required to raise an alarm, as it can handle the preprocessing and
inference tasks more efficiently.

Table 3 presents a Class-Wise analysis of the model’s performance, offering insights into precision, recall, and F1-score.
Precision measures correct positive predictions relative to all positive predictions, indicating the model’s accuracy in positive
classifications. Recall is the measure of correct positive predictions relative to all actual positives, reflecting the model’s ability
to capture all relevant instances, and the F1-score is a balanced metric that combines precision and recall and interference types
with high F1-scores demonstrate good overall classification performance.

Table 3: Model performance metrics for various interference types

Interference type Precision [%] Recall [%] F1-score [%]
GNSS (No interference) 81 83 82
CWI 85 77 81
DME (pulsed) interference 83 81 82
FH jammer 82 73 77
FMI 87 83 85
Hooked sawtooth 94 93 93
Multitone narrow 90 92 91
NarrowBnad Jammer 80 74 77
Linear narrow 92 88 90
Linear wide fast 91 90 90
Linear wide medium 94 95 94
Linear wide rapid 93 89 91
Linear wide slow 95 94 94
Sawtooth 93 89 91
Tick 96 94 95
Triangular wave 88 87 87
Triangular 85 82 83

V. CONCLUSION
In conclusion, this research effectively addressed the deployment of ML models for RFI detection and classification in GNSS.
The proposed architecture demonstrates an overall accuracy of 88% for classification in a real scenario of interference signals
and provides reliable, real-time monitoring and prompt alerts. In future work, there is potential to optimize the model or explore
new architectures of CNN to enhance accuracy and reduce task completion time. Additionally, efforts can be made to expand
the application of the model across a wider range of interferences.

ACKNOWLEDGEMENTS
The authors acknowledge the support from INGV and LINKS researchers and their contribution to its conceptualization. The
Ph.D. work of I. Ebrahimi Mehr is supported by the grant DOT1332092 CUP E11B21006430005 funded within the Italian
Programma Operativo Nazionale (PON) Ricerca e Innovazione 2014-2020, Asse IV “Istruzione e ricerca per il recupero”
con riferimento all’Azione IV.4 “Dottorati e contratti di ricerca su tematiche dell’innovazione” e all’Azione IV.5 “Dottorati
su tematiche green” DM 1061/2021. A. Minetto acknowledges funding from the research contract no. 32-G-13427-5 DM
1062/2021 funded within the PON Ricerca e Innovazione of the Italian Ministry of University and Research.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

Baier, L., Jöhren, F., and Seebacher, S. (2019). Challenges in the deployment and operation of machine learning in practice. In
European Conference on Information Systems.

Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura, J. M. F., and Eckersley, P. (2020).
Explainable machine learning in deployment. In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, page 648–657, New York, NY, USA. Association for Computing Machinery.

Bisong, E. (2019). Google Colaboratory, pages 59–64. Apress.

Brieger, T., Raichur, N., Jdidi, D., Ott, F., Feigl, T., van der Merwe, J., Rügamer, A., and Felber, W. (2022). Multimodal learning
for reliable interference classification in gnss signals. Proceedings of the 35th International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS+ 2022), Denver, Colorado,, pages 3210–3234.

Brown, A., Redd, J., and Dix, M. (2013). Open source software defined radio platform for gnss recording, simulation. In
Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+
2013), pages 1508–1516, Nashville, TN.

Chu, T., Vinande, E., Akos, D., and Weinstein, B. (2010). Gnss receiver evaluation : record-and-playback test methods. GPS
World, 21(1):28–34.

Clements, Z., Humphreys, T. E., and Ellis, P. (2023). Dual-satellite geolocation of terrestrial gnss jammers from low earth orbit.
In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), pages 458–469.

Cristodaro, C., Ruotsalainen, L., and Dovis, F. (2018). Benefits and limitations of the record and replay approach for GNSS
receiver performance assessment in harsh scenarios. Sensors (Switzerland), 18(7).

Curran, J. T., Bavaro, M., Morrison, A., and Fortuny, J. (2014). Developing a multi-frequency GNSS-based scintillation
monitoring receiver. In 27th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION
GNSS 2014, volume 2, pages 1142–1152.

De Bie, T., De Raedt, L., Hernández-Orallo, J., Hoos, H. H., Smyth, P., and Williams, C. K. (2022-02-23). Automating data
science: Prospects and challenges.

Ferre, R., Fuente, A., and Lohan, E. S. (2019). Jammer classification in gnss bands via machine learning algorithms. Sensors,
19:4841.

Flach, P. (2012). Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press.

Gunawardena, S., Pany, T., and Curran, J. (2021). Ion gnss software-defined radio metadata standard. NAVIGATION: Journal
of the Institute of Navigation, 68(1):11–20.

Ilie, I., Fortin, D., and Fortin, M.-A. (2009). Multi-channel record and playback system for gnss rf/if receivers’ design validation
and fine-tuning. In Proceedings of the 22nd International Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS 2009), pages 2265–2275, Savannah, GA.

Ilie, I., Hini, R., Cardinal, J.-S., Blood, P., and Fortin, D. (2011). Record and playback system for gnss: What you need to know
for successful testing. In Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS 2011), pages 2009–2021, Portland, OR.

Linty, N., Dovis, F., and Alfonsi, L. (2018). Software-defined radio technology for GNSS scintillation analysis: bring Antarctica
to the lab. GPS Solutions, 22(4).

Liu, Z., Lo, S., and Walter, T. (2021). Gnss interference detection using machine learning algorithms on ads-b data. In
Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+
2021), pages 4305–4315.

Mehr, I. E. and Dovis, F. (2022). Detection and classification of gnss jammers using convolutional neural networks. In 2022
International Conference on Localization and GNSS (ICL-GNSS), pages 01–06.

Mehr, I. E. and Dovis, F. (2023). A deep neural network approach for detection and classification of gnss interference and
jammer. doi: 10.36227/techrxiv.22212121.

Mehr, I. E., Minetto, A., Dovis, F., Pica, E., Cesaroni, C., and Romano, V. (2023). An open architecture for signal monitoring
and recording based on sdr and docker containers: A gnss use case. In IEEE EUROCON 2022 - 20th International Conference
on Smart Technologies,. doi: 10.36227/techrxiv.22212142.

Miguel, N. R. S., Chen, Y.-H., Lo, S., Walter, T., and Akos, D. (2023). Calibration of rfi detection levels in a low-cost gnss
monitor. In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), pages 520–535.

Murrian, M., Narula, L., and Humphreys, T. (2019). Characterizing terrestrial gnss interference from low earth orbit. pages
3239–3253.

Murrian, M. J., Narula, L., Iannucci, P. A., Budzien, S., O’Hanlon, B. W., Psiaki, M. L., and Humphreys, T. E. (2021). First
results from three years of gnss interference monitoring from low earth orbit. NAVIGATION, Journal of the Institute of
Navigation, 68(4):673–685.

Nicola, M., Falco, G., Morales Ferre, R., Lohan, E.-S., de la Fuente, A., and Falletti, E. (2020). Collaborative solutions for
interference management in gnss-based aircraft navigation. Sensors, 20(15).

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering,
22(10):1345–1359.

Pattinson, M., Lee, S., Bhuiyan, Z., Thombre, S., Manikundalam, V., and Hill, S. (2017). D4.2: Draft standards for receiver
testing against threats. Technical report, STRIKE3 (European GNSS Agency).

Peng, S. and Morton, Y. (2013). A USRP2-based reconfigurable multi-constellation multi-frequency GNSS software receiver
front end. GPS Solutions, 17.

Pica, E., Minetto, A., Cesaroni, C., and Dovis, F. (2023). Analysis and characterization of an unclassified rfi affecting ionospheric
amplitude scintillation index over the mediterranean area. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, pages 1–20.

Qin, W. and Dovis, F. (2022). Situational awareness of chirp jamming threats to gnss based on supervised machine learning.
IEEE Transactions on Aerospace and Electronic Systems, 58(3):1707–1720.

Raj, E. (2021). Engineering MLOps: Rapidly build, test, and manage production-ready machine learning life cycles at scale.
Packt Publishing.

Richter, R., Wolf, B., and Michler, O. (2013). Evaluation of gnss rf signal simulators and receivers based on recorded multi gnss
signals in scenarios of traffic telematics. In Proceedings of the 26th International Technical Meeting of the Satellite Division
of The Institute of Navigation (ION GNSS+ 2013), pages 1881–1889, Nashville, TN.

Spilker Jr, J. J., Axelrad, P., Parkinson, B. W., and Enge, P. (1996). Global positioning system: theory and applications, volume
I. American Institute of Aeronautics and Astronautics.

Swinney, C. J. and Woods, J. C. (2021). Gnss jamming classification via cnn, transfer learning & the novel concatenation of
signal representations. In 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment
(CyberSA), pages 1–9.

van der Merwe, J. R., Contreras Franco, D., Hansen, J., Brieger, T., Feigl, T., Ott, F., Jdidi, D., Rügamer, A., and Felber, W.
(2023). Low-cost cots gnss interference monitoring, detection, and classification system. Sensors, 23(7).

Ward, P. (2007). What’s going on?: Rfi situational awareness in gnss receivers. InsideGNSS, 2(6):35–42.

Xu, J., Ying, S., and Li, H. (2020). Gps interference signal recognition based on machine learning. Mobile Networks and
Applications, 25.

10.36227/techrxiv.22212121
10.36227/techrxiv.22212142

	INTRODUCTION
	BACKGROUND
	Navigation Signals Monitoring, Analysis and Recording Tool
	Applying Machine Learning to the Real World.
	Deep Neural Network Approach for detection and classification

	METHODOLOGY
	Real Data Integration
	Feature-aided CNN classifier with simulated data
	Learning the model with dataset from real scenario

	Real-Time Deployment of Interference Detection and Classification

	Experimental Findings and Analysis
	Conclusion

