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Abstract: We consider the problem of the first passage time T of an inhomogeneous geometric
Brownian motion through a constant threshold, for which only limited results are available in the
literature. In the case of a strong positive drift, we get an approximation of the cumulants of T of
any order using the algebra of formal power series applied to an asymptotic expansion of its Laplace
transform. The interest in the cumulants is due to their connection with moments and the accounting
of some statistical properties of the density of T like skewness and kurtosis. Some case studies
coming from neuronal modeling with reversal potential and mean reversion models of financial
markets show the goodness of the approximation of the first moment of T. However hints on the
evaluation of higher order moments are also given, together with considerations on the numerical
performance of the method.

Keywords: hitting times; Brennan–Schwartz model; formal power series; multiplicative noise

1. Introduction

Stochastic diffusion processes with linear drift and multiplicative noise are often
considered both in theory and applications because they constitute a good compromise
between adherence to reality and mathematical tractability when used as models of real
phenomena. Among these processes, the Geometric Brownian Motion plays a prominent
role in particular in the context of financial modeling. Much is known about this process,
although a lack of results emerges when dealing with its version with non-zero asymptotic
mean, namely the Inhomogeneous Geometric Brownian Motion (IGBM). The IGBM belongs
to the class of Pearson diffusions [1,2] but goes under different names according to the field
of study. In the interest rates field, it is called the Brennan-Schwartz model [3,4], denoted
as the GARCH model when used for stochastic volatility and for energy markets [5],
as Lognormal diffusion process with exogenous factors when used for forecasting and
analysis of growth [6,7], in real option literature, it goes under the names of Geometric
Brownian motion with affine drift [8,9], Geometric Ornstein-Uhlenbeck [10] or mean-
reverting Geometric Brownian motion [11].

Here we want to address the related first-passage-time (FPT) problem that arises in
many applications in which the stochastic process evolves in the presence of a threshold [12].
First-passage properties underlie a wide range of stochastic processes, spanning from
diffusions with limited growth, to the dynamics of the spike generation in neurons or the
triggering of stock options.

The mathematical study of the FPT problem rarely leads to a simple finding of the
distribution of the random variable FPT, since it can be written in a closed-form expression
only in a few cases [13]. Most of the time it consists in the finding of integral equations
involving the FPT density or in the calculation of its Laplace transform ( see [14] for an
extensive review). From these equations, information on the moments of the random
variable or numerical evaluation of its density can be obtained.
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Unlike its simpler version, the IGBM presents some difficulties when using these
mathematical tools. The transition density of the IGBM does not have a practical closed-
form expression [8,15] and this complicates the use of Volterra integral equations involving
the FPT probability density function (pdf). Even the calculation of the moments of FPT is
unpractical, despite the closed-form formula for the Laplace transform of the FPT pdf is
available in the literature [15]. In fact, the computation requires high order derivatives of a
ratio of hypergeometric functions with respect to the first parameter, and to the best of our
knowledge, only the expression of the first moment has been obtained with this strategy
so far.

Moreover, an exact simulation scheme is not available. The classical Euler-Maruyama
and Milstein methods exhibit non-zero probability to cross the entrance or exit boundaries
even for arbitrary small time steps, that is the nature of the boundary is not preserved [16].
For this reason, analytical expressions are of primary importance, but a different strategy
must be undertaken.

Recently an approach that uses cumulants to obtain FPT pdf and related statistics
has been proposed [17,18]. In particular in [18], we propose an approximation of the
FPT pdf of a square-root stochastic process by using cumulants and a Laguerre-Gamma
polynomial approximation. The method is based on the closed-form expressions for
cumulants recovered from the Laplace transform g∗(z) of the FPT random variable T,
thanks to the use of the algebra of formal power series of z. Cumulants encode many of
the statistical properties of a pdf. For example, the third-order cumulant accounts for the
skewness of the FPT pdf while the fourth-order cumulant involves the weight of tails in
causing dispersion, that is the kurtosis. Moreover, from cumulants, moments of any order
can be recovered.

To apply this method, the starting point is the availability of a closed-form expression
of g∗(z) in terms of power series. Unfortunately, this is not the case for the IGBM, but
we exploit a property of the Tricomi function involving an asymptotic expansion. This
expansion allows us to write g∗(z) as a formal series in powers of z which results to be
particularly suited when transformed via the logarithm function. Thus in the case of a
strong positive drift, we are able to get an approximation of the cumulants of T of any
order. In Section 4.2 we stress that a good approximation of the first cumulant is better
achieved when the starting point of the dynamics is close to the threshold suggesting that,
in this case, the approximated cumulants could be used to approximate the FPT pdf even
for small times t.

We check the goodness of the approximation using realistic sets of parameters coming
from two fields of application of the IGBM: neuronal modeling with reversal potential and
mean reversion models of financial markets.

The IGBM has been used to model the changes in the membrane depolarization
between two consecutive neuronal spikes in models in which the changes in depolarization
are state-dependent and an inhibitory reversal potential is present [19–23]. Further, by
solving the related FPT problem, the dynamics of the spike generation have been described
especially through the instantaneous firing rate that is the reciprocal of the first FPT
cumulant [24]. However, it is still undisclosed how the input statistics affect the moments
of order higher than one of the neuronal output [25–27].

The second application deals with models of financial markets with mean reversion
where the study of extreme events, such as defaults, can be studied using the problems of
first-passage time or exit time from a region. In this context the IGBM is better know as
the GARCH diffusion process or Brennan–Schwartz model and it is characterized by the
properties that the changes in the short rate are state-dependent and unlimited excursions
of the process are not allowed (see for instance [3,4,28]).



Mathematics 2021, 9, 956 3 of 17

2. IGBM and the Related First-Passage-Time Problem

The inhomogeneous geometric Brownian motion (IGBM) is the diffusion process with
infinitesimal mean and variance:

M1(x, t) = − x
θ
+ µ, M2(x, t) = σ2(x− v)2. (1)

It is described by the stochastic differential equation

dXt =

(
−Xt

θ
+ µ

)
dt + σ(Xt − v)dWt, t > 0 X0 = x0, (2)

with θ, σ > 0, µ, v ∈ R and (Wt)t≥0 is a standard Wiener process. Equation (2) is a linear
SDE and admits a unique strong solution.

According to the Feller classification of boundaries if µ > v/θ then v is an entrance
boundary, i.e., it cannot be reached by Xt in finite time, and there is no probability flow to
the outside of the interval (c,+∞). We will always consider this case in the following.

We note that, for µ = 0, the solution of Equation (2) corresponds to the well-known Ge-
ometric Brownian motion [29]. Although for this last process a large literature is available,
less is known about the IGBM. The transition density of the IGBM does not have a practical
closed-form expression [8,30] and an exact simulation scheme is not available albeit very
recently a splitting numerical method has been proposed [16]. Explicit expressions of the
IGBM solution of Equation (2) can be found for instance in [5] or [31]. In particular in [31]
the IGBM moments are written in terms of a transformed Brownian motion, obtained using
a change of time method.

We want to address the problem of the evolution of the IGBM process Xt in the
presence of a constant threshold S. In particular, we are interested in the random time T
the process Xt starting in x0 < S crosses S for the first time. This random variable goes
under the name of first-passage time (FPT) and is defined as

T := inf{t ≥ 0 : Xt ≥ S|v ≤ x0 < S}. (3)

An analytical closed-form expression for the probability density function g(t) of T for
the IGBM process is not available but its Laplace transform is known [15]

E
(

e−zT
)
= g∗(z) =

(
y0 − v
S− v

)−a Ψ
(

a, b; c
y0−v

)
Ψ
(
a, b; c

S−v
) , (4)

where

a =

√
σ4 + 4( 1

θ + 2z)σ2 + 4
θ2 − ( 2

θ + σ2)

2σ2 ; b =
2

θσ2 + 2a + 2; c =
2
σ2

(
µ− v

θ

)
(5)

and Ψ is the confluent hypergeometric function of the second kind (or Tricomi’s func-
tion [32]). When evaluated in z = 0, the Laplace transform (4) returns the probability of
crossing S. In principle, moments of T (or equivalently cumulants) of any orders can be
computed using higher derivatives of g∗, when they exist. For the IGBM process, only the
first moment is known to have an explicit analytical expression, due to the cumbersome
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expression of g∗. Indeed, from Equation (4), in Ref. [23] the mean FPT has been written
using hypergeometric functions pFq as follows

E[T] = 2θ

2 + θσ2

{
ln

y0 − v
S− v

− c
b(y0 − v) 2F2

(
1, 1; 2, b + 1;

c
y0 − v

)
+

c
b(S− v) 2F2

(
1, 1; 2, b + 1;

c
S− v

)
+ Γ(b− 1)

[(
c

S− v

)1−b

× 1F1

(
1− b, 2− b;

c
S− v

)
−
(

c
y0 − v

)1−b

1F1

(
1− b, 2− b;

c
y0 − v

)]}
(6)

with b = 2
θσ2 + 2 and c = 2

σ2

(
µ− v

θ

)
. The previous formula holds for b 6∈ Z; if b ∈ Z,

Equation (6) is intended as taking the following limit

Ψ(a, b, z) = lim
ε→0

Ψ(a, b + ε, z).

Asymptotic expansions of the mean first passage time around the starting position x0
or around the boundary points are given in [15].

To the best of our knowledge, explicit expressions for the variance of T or higher-order
moments are not available in the literature for the IGBM process. The derivation from
the Laplace transform is impractical, involving at least second derivatives of the Tricomi
functions with respect to the first parameter.

Often, where analytical methods are impractical, numerical solutions are sought. In
terms of complexity, difficulties apply as well in the numerical evaluation of moments of T
through the Siegert equation [33],

E[Tn] = n
∫ S

x0

2dz
σ2(z− v)2W(z)

∫ z

−∞
W(x)E[Tn−1]dx, n = 1, 2, . . . (7)

although the stationary distribution W(x) := lim
t→∞

f (x, t|x0, 0) of Xt in the absence of a

threshold is known to be a shifted inverse gamma distribution with the following shape,
scale and location parameters [23]

X∞ ∼ Inv-Gamma
(

1 +
2

θσ2 ,
2(µθ − v)

θσ2 , v
)

. (8)

For all these reasons in the next section we propose a method based on the algebra of
formal power series, to compute approximations of the cumulants of T using an asymptotic
expansion of the Laplace transform g∗. Indeed an important asymptotic expansion of
Ψ(a, b, s) is known when |s| → ∞, namely [34]

Ψ(a, b, s) = s−a lim
|s|→∞

N−1

∑
k=0

(−1)k 〈a〉n〈1 + a− b〉n
skk!

+ εN(a, b, s) (9)

with 〈a〉n = a(a + 1) · · · (a + n− 1), n ∈ N the rising factorial. As lim|s|→∞ |εN(a, b, s)| = 0
for fixed N, a, b, the rhs of (9) returns the hypergeometric series

2F0

(
a, 1 + a− b;−1

s

)
= ∑

k≥0
(−1)k 〈a〉n〈1 + a− b〉n

skk!
. (10)

Note that the 2F0 series is divergent unless a or 1+ a− b are non-positive integers when
it reduces to a polynomial. Nevertheless we might write Ψ(a, b, s) = s−a

2F0

(
a, 1 + a− b;− 1

s

)
by using the Borel summation of the 2F0 series. In the following we deal with 2F0 as it
was an exponential formal power series in a. Indeed Lemma 1 in the subsequent section
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shows that 2F0(a, 1 + a− b;−1/s) ∈ R[[a]], with R[[a]] the ring of formal power series in
the indeterminate a with coefficients in R.

3. Formal Cumulants

Given a sequence {g̃k}k≥0 of real numbers, with g̃0 = 1, the sequence of its formal
cumulants {c̃k}k≥1 is such that

log

(
∑
k≥0

g̃k
zk

k!

)
= ∑

k≥1
c̃k

zk

k!
. (11)

Note that in the ring R[[z]] of formal power series in z, the (exponential) formal power
series log g̃(z) is well defined [35] with

g̃(z) = ∑
k≥0

g̃k
zk

k!
∈ R[[z]]. (12)

Then {c̃k}k≥1 are also said formal cumulants of g̃(z). A polynomial expression of
formal cumulants {c̃k}k≥1 in terms of {g̃k}k≥1 involves the logarithmic (partition) polyno-
mials {Pk}

c̃k = Pk(g̃1, . . . , g̃k) =
k

∑
j=1

(−1)j−1(j− 1)!Bk,j(g̃1, . . . , g̃k−j+1), for k ≥ 1, (13)

where {Bk,j} are the partial exponential Bell polynomials [36]

Bk,j(g̃1, . . . , g̃k−j+1) = ∑
k!

λ1!λ2! · · · λk−j+1!

k−j+1

∏
i=1

(
g̃i
i!

)λi

(14)

with the sum taken over all sequences λ1, λ2, . . . , λk−j+1 of non negative integers such that

λ1 + 2λ2 + · · ·+ (k− j + 1)λk−j+1 = k, λ1 + λ2 + · · ·+ λk−j+1 = j.

In addition, the sequence {g̃k}k≥1 might be recovered from its formal cumulants
{c̃k}k≥1 by using the complete Bell (exponential) polynomials {Yk}

g̃k = Yk(c̃1, . . . , c̃k) =
k

∑
j=1

Bk,j(c̃1, . . . , c̃k−j+1), for k ≥ 1, (15)

with {Bk,j} given in Equation (14) and {g̃k}k≥1 replaced by {c̃k}k≥1.

Remark 1. Both the k-th logarithmic polynomial (13) and the k-th complete Bell polynomial (15)
are special cases of the k-th general partition polynomial [37]

Gk(y1, . . . , yk; x1, . . . , xk) =
k

∑
j=1

yjBk,j(x1, . . . , xk−j+1), for k ≥ 1. (16)

In particular, for yj = (−1)j−1(j − 1)!, xj = g̃j, j ≥ 1, we recover the k-th logarithmic
polynomial as given in (13) whereas for yj = 1, xj = c̃j, j ≥ 1, we recover the the k-th complete
Bell (exponential) polynomials as given in (15). Moreove if {yj}j≥1 and {xj}j≥1 are the coefficients
of two exponential formal power series in z, let’s say

f (z) = 1 + ∑
j≥1

yj
zj

j!
and f̃ (z) = 1 + ∑

j≥1
xj

zj

j!
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then the k-th general partition polynomial Gk gives the k-th coefficient of the exponential formal
power series composition f ( f̃ (z)− 1) [35].

When g̃(z) is the Laplace transform of a pdf g(t), then the logarithmic and the complete
Bell polynomials allow us to deal with cumulants and moments related to g(t). In particular,
if g̃(z) is the Laplace transform of the FPT pdf and the rhs of Equation (12) is its Taylor
expansion about 0, then g̃0 = 1,

g̃k = (−1)kE[Tk], for k ≥ 1

and there exist cumulants of any order {ck(T)}, see for instance [38]. In particular, from
Equations (11) and (13), we have

c̃k = (−1)kPk(E[T], . . . ,E[Tk]) = (−1)kck(T), for k ≥ 1. (17)

Approximations of FPT Cumulants

Set
A1 =

v− y0

c
, A2 =

v− S
c

and B1 =
1
2
+

1
σ2θ

(18)

so that, according to the definitions (5), we have 1 + a− b = −(a + 2B1). From (9) and (10),
in the range of parameters such that the asymptotic expression (9) holds, the ratio

g̃(z) = 2F0(a,−(a + 2B1); A1)

2F0(a,−(a + 2B1); A2)
(19)

gives an approximation of the FPT Laplace transform g∗(z) given in (4). The aim of
the subsequent Theorem 1 is to prove that g̃(z) ∈ R[[z]]. Thus its logarithm has the
exponential formal power series representation (11) whose coefficients {c̃k}k≥1 are the
formal cumulants of g̃(z) in (19). From (17), the sequence {(−1)k c̃k}k≥1 will give an
approximation of the cumulant sequence {ck(T)}k≥1 for the range of parameters such that
the asymptotic expression (9) holds. In particular, an approximation of the mean of T is
given in Corollary 1.

To this aim, let us start by proving that 2F0(a,−(a + 2B1); A) ∈ R[[a]], with A ∈ R.
This result is given in Lemma 1 where [nj ] denotes the unsigned Stirling numbers of first
type and bxc denotes the integer part of x ∈ R+.

Lemma 1. As exponential formal power series in a, the hypergeometric series 2F0(a,−(a +
2B1); A), A ∈ R has the following representation

2F0(a,−(a + 2B1); A) = 1 + ∑
n≥1

fn(A, B1)
an

n!
(20)

where

fn(A, B1) = n!

 ∑
m≥b n+1

2 c
D(m)

n (B1)
Am

m!

 (21)

and

D(n)
j (B1) =

min{j,n}

∑
k=max{j−n,0}

b(n)k C(n)
j−k(B1), j = 0, . . . , 2n (22)

with

b(n)j =

[
n
j

]
and C(n)

j (B1) =
n

∑
k=j

[
n
k

](
k
j

)
(−1)k(2B1)

k−j, j = 0, . . . , n.
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Proof of Lemma 1. From (10), we have

2F0(a,−(a + 2B1); A) = ∑
n≥0
〈a〉n〈−(a + 2B1)〉n

An

n!
. (23)

To recover the expansion of 2F0(a,−(a + 2B1); A) as formal power series in a, we need
to express both 〈a〉n and 〈−(a + 2B1)〉n in powers of a. To this aim, recall that

〈a〉n =
n

∑
j=0

[
n
j

]
aj, (24)

where [nj ] are unsigned Stirling numbers of the first type. Similarly,

〈−(a + 2B1)〉n =
n

∑
j=0

[
n
j

]
(−1)j(a + 2B1)

j. (25)

By expanding the binomial (a + 2B1)
j and grouping with respect to the powers of a,

the rising factorial 〈−(a + 2B1)〉n can be rewritten as

〈−(a + 2B1)〉n =
n

∑
j=0

{
n

∑
k=j

[
n
k

](
k
j

)
(−1)k(2B1)

k−j

}
aj. (26)

Note that both 〈a〉n and 〈−(a + 2B1)〉n are polynomials of degree n in a and, after
some algebra, their product gives the following polynomial of degree 2n in a

〈a〉n〈−(a + 2B1)〉n =
2n

∑
j=0

ajD(n)
j (B1) (27)

with the coefficients {D(n)
j } given in (22). Note that

D(n)
0 (B1) = b(n)0 C(n)

0 (B1) = δn,0 n ≥ 0

as b(n)0 = δn,0 and C(0)
0 (B1) = 1. Therefore, plugging (27) in (23), an expansion of 2F0(a,−(a+

2B1); A) in terms of powers of a is

2F0(a,−(a + 2B1); A) = 1 + ∑
n≥1

{
2n

∑
j=1

ajD(n)
j (B1)

}
An

n!
. (28)

The expression of 2F0(a,−(a + 2B1); A) given in (20) follows after some algebra, ex-
changing the two summations in (28).

From Lemma 1, we have g̃(z) ∈ R[[a]] since g̃(z) in (19) is the ratio of two formal
power series in a = a(z). In the following theorem, we first show that g̃(z) ∈ R[[z]], then
we expand log g̃(z) as given in (11) in order to get a closed form formula of its formal
cumulants {c̃k}k≥1.

Theorem 1. The formal cumulants {c̃k}k≥1 of g̃(z) in (19) are such that

c̃k = c∗k (A1, B1)− c∗k (A2, B1) for k ≥ 1, (29)

where for A = A1, A2 we have

c∗k (A; B1) = Pk[h1(A; B1), . . . , hk(A; B1)], (30)
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with Pk the k-th logarithmic polynomial (13),

hn(A; B1) =

(
−1

σ2B2
1

)n n

∑
k=1

(−B1)
k fk(A; B1) Bn,k

[
ã∗1(B1), . . . , ã∗n−k+1(B1)

]
for n ≥ 1 (31)

with { fn(A; B1)}n≥1 given in (20), {Bn,k} the partial exponential Bell polynomials given in (14) and

ã∗n(B1) =

{
1 n = 1,
(2n− 3)!! n > 1.

(32)

Proof of Theorem 1. From Lemma 1, we have 2F0(a,−(a + 2B1); A) ∈ R[[a]], for A =
A1, A2. Since a = a(z), let us first expand a in (19) as exponential formal power series in z.
Recalling that [39]

(1 + z)α = 1 + ∑
n≥1

(α)n
zn

n!
, (33)

from (5) and (18) we have

a = B1

{
(1 + B3z)

1
2 − 1

}
= B1 ∑

n≥1

(
1
2

)
n
Bn

3
zn

n!
(34)

with

B3 =
2

σ2B2
1

and
(

1
2

)
n
=

{
1
2 n = 1,
(−1)n−1 (2n−3)!!

2n n > 1.
(35)

Thus a has the following formal power series representation in z, namely

a = ∑
n≥1

ãn(B1)
zn

n!
, where ãn(B1) =


1

σ2B1
n = 1,

(−1)n−1 (2n−3)!!
σ2nB2n−1

1
n > 1.

(36)

By using (36), the next step is to compute the coefficients of 2F0(a,−(a + 2B1); A) as
exponential formal power series in z. This follows by observing that 2F0(a,−(a + 2B1); A)
as given in (20) results to be the composition of the two exponential formal power series

f (z; A, B1) = 1 + ∑
n≥1

fn(A, B1)
zn

n!
and f̃ (z; B1) = 1 + ∑

n≥1
ãn(B1)

zn

n!

with coefficients given respectively in (20) and (36). Applying the Faà di Bruno’s formula
(16), we get

2F0(a,−(a + 2B1); A) = f
(

f̃ (z; B1)− 1; A, B1

)
= 1 + ∑

n≥1
hn(A; B1)

zn

n!
(37)

where

hn(A; B1) =
n

∑
k=1

fk(A; B1)Bn,k[ã1(B1), . . . , ãn−k+1(B1)] (38)

and {Bn,k} are the partial exponential Bell polynomials (14). From (11) we recover

log 2F0(a,−(a + 2B1); A) = ∑
k≥1

c∗k (A; B1)
zk

k!
(39)

where c∗k (A; B1) are given in (30). Thus the formal cumulants {c̃k}k≥1 in (29) are obtained
by observing that

log g̃(z) = log 2F0(a,−(a + 2B1); A1)− log 2F0(a,−(a + 2B1); A2), (40)
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using (39) with A replaced respectively by A1 and A2 and using the linearity property of
formal power series. Finally, hn(A; B1) given in (38) can be further simplified as follows.
Observe that from (36)

ãn(B1) = d1dn
2 ã∗n(B1) for n ≥ 1, with d1 = −B1, d2 =

−1
(σB1)2

and ã∗n(B1 f ) given in (32). By recalling a well-known property of Bell’s polynomials (see
for instance [40] page 146), we have

Bn,k[ã1(B1), . . . , ãn−k+1(B1)] = Bn,k

[
d1d2 ã∗1(B1), . . . , d1dn−k+1

2 ã∗n−k+1(B1)
]

= dk
1dn

2 Bn,k
[
ã∗1(B1), . . . , ã∗n−k+1(B1)

]
=

(−1)n−k

σ2nB2n−k
1

Bn,k
[
ã∗1(B1), . . . , ã∗n−k+1(B1)

]
(41)

Thus, Equation (31) follows from (38) using (41).

As corollary, an approximation of the k-th FPT cumulant ck(T) for A1, A2 → 0 is c̄k(T)
such that

c̄k(T)= (−1)k c̃k (42)

with c̃k the k-th formal cumulant as given in Theorem 1.

Corollary 1. For A1, A2 → 0 the mean FPT of T is approximated by

c̄1(T) =
1

σ2B1
∑
j≥1
〈−2B1〉j

(
Aj

2 − Aj
1

j

)
. (43)

Proof of Corollary 1. The first formal cumulant of g̃(z) in (19)

c̃1= c∗1(A1, B1)− c∗1(A2, B1) = P1(h1(A1; B1))− P1(h1(A2; B1)) = h1(A1; B1)− h1(A2; B1)
(44)

where from (31)

h1(A; B1)) =
B1 f1(A; B1)

σ2B2
1

B1,1(1) =
1

σ2B1

(
∑
j≥1

D(j)
1 (B1)

Aj

j!

)
(45)

and from (22)

D(j)
1 (B1) =

1

∑
k=0

b(j)
k C(j)

1−k =

[
j
0

]
C(j)

1 +

[
j
1

]
C(j)

0 . (46)

Since [
j
0

]
= 0,

[
j
1

]
= (j− 1)! and C(j)

0 =
j

∑
m=0

[
j

m

]
(−2B1)

m = 〈−2B1〉j (47)

then

h1(A; B1) =
1

σ2B1
∑
j≥1

(j− 1)!〈−2B1〉j
Aj

j!
(48)

and the thesis follows.

Remark 2. The approximation of the mean FPT can be rewritten in terms of generalized hypergeo-
metric functions as follows:

c̄1(T) =
2B1 − 1

σ2B1
[3F1(1, 1,−2B1 + 1; 2; A2)− 3F1(1, 1,−2B1 + 1; 2; A1)]. (49)
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Corollary 2. For A1, A2 → 0 the FPT variance is approximated by

c̄2(T) = h2(A1; B1) + h2
1(A2; B1)− [h2(A2; B1) + h2

1(A1; B1)] (50)

where

hi(A; B1) =
1

σ2iB2i−1
1

∑
j≥i

hi,j(B1)
Aj

j
, i = 1, 2 (51)

with

hi,j(B1) =

{
〈−2B1〉j i = 1
〈−2B1〉j(2B1Hj−1 − 1) + ∑

j
k=1 [

j
k]k(−2B1)

k i = 2
(52)

Proof of Corollary 2. The second formal cumulant of g̃(z) in (19) is

c̃2 = c∗2(A1, B1)− c∗2(A2, B1) = P2
(
h1(A1; B1), h2(A1; B1)

)
− P2

(
h1(A2; B1), h2(A2; B1)

)
(53)

with hi(A; B1) given in (31) for i = 1, 2. Thus (50) follows from (53) taking into account that
P2(x1, x2) = x2 − x2

1. Recall that h1(A; B1) has been given in (45), from which (51) follows
with h1,j(B1) as given in (52). From (31), we have

h2(A; B1) =
1

σ4B3
1
(B1 f2(A; B1)− f1(A; B1)) (54)

since ã∗1(B1) = ã∗2(B1) = 1 from (32) and B2,1(1, 1) = B2,2(1) = 1. As in the proof of
Corollary 1, we have

f1(A; B1) = ∑
j≥1
〈−2B1〉j

Aj

j
. (55)

From (20) we recover

f2(A, B1) = 2

(
b(1)1 C(1)

1 (B1)A + ∑
j≥2

[b(j)
1 C(j)

1 (B1) + b(j)
2 C(j)

0 (B1)]
Aj

j!

)
(56)

Observe that b(1)1 C(1)
1 (B1) = −1 and

b(j)
1 C(j)

1 (B1) = (j− 1)!
j

∑
k=1

[
j
k

]
k(−1)k(2B1)

k−1 b(j)
2 C(j)

0 (B1) = (j− 1)!Hj−1〈−2B1〉j (57)

where Hj−1 are the generalized harmonic numbers. Therefore from (58) we have

f2(A, B1) = 2

(
−A + ∑

j≥2

[
j

∑
k=1

[
j
k

]
(−1)kk(2B1)

k−1 + Hj−1〈−2B1〉j

]
Aj

j

)
(58)

Replacing (58) and (55) in (54), after some algebra the result follows.

4. Applications

In this section we consider two case studies coming from different areas of research to
show how the problem of the FPT for the IGBM can arise in applied mathematical modeling
and how the proposed methodology can be implemented. We limit to the case of the first
moment of T mainly for two reasons. The first one is that in this case, we can compare our
results with the one existing in the literature. The second one is that this case is simpler
from a numerical point of view and the main scope of the present paper is to propose
a mathematical approach rather than perform a complete study of the computational
properties of the numerical routine. However, we stress that cumulants of any order can
be evaluated numerically by implementing a symbolic–numeric procedure using the R
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package kStatistics [41]. Indeed the computation of the k-th formal cumulant c∗k in (30)
involves the computation of the k-th logarithmic polynomial (13), which is a special case of
the general partition polynomial (16). The routine GCBellPol in the package kStatistics

generates general partition polynomials. Thus the k-th logarithmic polynomial as given in
(30) can be recovered by using the routine eGCBellPol in the package kStatistics with

yj = (−1)j−1(j− 1)! and xj = hj(A; B1) for j ≥ 1 (59)

where hj(A; B1) and B1 are given in (31) and (18) respectively. The computation of hj(A; B1)
in (59) can be traced back to general partition polynomials by setting

yj = (−B1)
j f j(A; B1) and xj = ã∗j (B1) for j ≥ 1

with ã∗j (B1) and f j(A; B1) given in (32) and (21) respectively. As f j(A; B1) is the sum of a
numerical series, we have performed its computation by truncating the contribution of the
remainder term when smaller of a fixed tolerance.

4.1. Stochastic Neuronal Model with Inhibitory Reversal Potential

Stochastic diffusion processes have been extensively used to model the evolution in
time of the potential across the membrane of neuronal cells [42]. They describe the changes
in the membrane depolarization between two consecutive neuronal spikes. The reason
why they are so important is that it is generally agreed that neurons transmit information
about their synaptic inputs through these spikes. A spike occurs if the membrane voltage
reaches a certain threshold value. From a mathematical point of view, this dynamics
is studied by solving the related first-passage-time problem [43]. The classical leaky
integrate-and-fire model is described by a linear stochastic differential equation of Ornstein–
Uhlenbeck type. However several modifications of the model were proposed to include
more realistic features like the state-dependence of the the changes in depolarization and
to avoid unrealistic properties like the unlimited state space of the process [19–22]. These
alternative diffusion models maintain the linear drift while the additive noise is replaced
by a multiplicative one. Among these diffusion processes, also the IGBM was proposed as
a model of the neuronal activity to include the presence of an inhibitory reversal potential
VI [23,44].

The IGBM leaky integrate-and-fire model is described by an Itô stochastic differential
equation of the following type

dXt =

(
−Xt

θ
+ µ

)
dt + σ(Xt −VI)dWt, t > 0 X0 = x0, (60)

where µ characterizes the synaptic input, θ is called membrane time constant and takes
into account the spontaneous voltage decay towards the resting potential (assumed equal
to zero here) in the absence of input, W = {Wt}t≥0 is a standard Wiener process and x0 is
the starting depolarization. The diffusion coefficient σ(Xt −VI), where VI represents the
inhibitory reversal potential, determines the amplitude of the noise and guarantees at the
same time that the changes in the membrane potential are smaller if Xt approaches VI .

It is assumed that neurons express information about their input mainly by means of
the average frequency of spikes described usually by the reciprocal value of the interval
between consecutive spikes [24,45]. For this reason, the study of the first moment of the
FPT is of primary importance.

The range of parameters such that the proposed asymptotic approximation (43) holds
can be interpreted in the neuronal modeling context as the presence of a strong excitatory
input. This intuition is confirmed in the following figures where we plot the mean FPT for
increasing values of µ.
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In Figure 1 we compare the mean FPT of the IGBM process obtained with the asymp-
totic expression (43) (red dashed line) and that given by the exact expression (6) (blue solid
line) for S = 1, σ = 0.8, θ = 1.1, x0 = 0.2, VI = 0.

Figure 1. Mean FPT of the IGBM process from the asymptotic expression (43) (red dashed line) and
from the analytic expression (6) (blue solid line) as a function of µ, for S = 1, σ = 0.8, θ = 1.1,
x0 = 0.2, VI = 0. The time step used for the analytical expression is 10−3.

We note that the proposed approximation slightly underestimates the value of E(T),
but the agreement of the two curves improves for larger µ. Moreover for values of µ
corresponding to strong external inputs the exact expression (6) is unstable, while the
approximation is not.

In the following, we consider physiologically realistic parameter values as suggested
in [19] and [46], with their unit measures. The resetting potential is chosen equal to zero,
i.e., x0 = 0 mV, the inhibitory reversal potential is VI = −10 mV, and the firing threshold
S = 10 mV. The parameter of spontaneous decay towards the resting potential is chosen
θ = 5 ms.

To check how sensitive is the asymptotic expression (43) to a change in µ or σ, we show
the mean FPT as functions of the input for three different values of the noise amplitude in
Figure 2.

Figure 2. Asymptotic mean FPT as a function of µ for three different values of σ, given in the legend
in ms−1/2. The curves are obtained from Equation (43) for x0 = 0 mV, VI = −10 mV, S = 10 mV and
θ = 5 ms.

As expected the mean waiting time before the first spike decreases as µ increases.
Moreover, for fixed µ, the mean FPT decreases for increasing σ (see the plot from the
top downwards).

The measure units of the neuronal membrane potential are usually expressed in
millivolt, while here we use centivolt. It is just a simple rescale of the SDE (60) and does
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not affect the dynamics. The change of variable is used here as a numerical trick. In fact
the series (43) is more computationally stable for small parameter Ai.

Finally, we observe that for the same computational accuracy, although non-optimal
for small values of µ, the approximated expression (43) is way more stable than the exact
expression (6). For instance, in Figure 3 we compare the mean FPT obtained via the two
formulas for σ = 0.2 ms−1/2 and other parameters as in Figure 2.

Figure 3. Mean FPT of the IGBM process from the asymptotic expression (43) (red dashed line) and
from the analytic expression (6) (black solid line) as a function of µ, for the same computational
accuracy using the software environment R. In this plot σ is chosen equal to 0.2 ms−1/2 and other
parameters as in Figure 2.

Using the software environment R, for equal time and accuracy of the computation
we observe that the asymptotic expression (43), for µ sufficiently large, is a more reliable
tool for a numerical study of the firing rate.

4.2. Mean Reversion Models of Financial Markets

Mean reverting stochastic processes are often used in models of financial markets (see
for instance [3–5,8,10,11,15,28]). The mean reversion property implies that the process
tends to drive the short rate value towards the long term average level favoring upward
(downward) movements if the short rate is too low (high). Among these processes the
IGBM plays a relevant role: as GARCH diffusion process or Brennan and Schwartz model
it is adopted to describe the value of real options, to study interest rates and to describe the
underlying asset in the study of option prices in stochastic volatility models.

Here we want to investigate the sensitivity of the approximated mean FPT to a change
in the threshold value S and in the instantaneous volatility σ. To avoid cumbersome calcu-
lations involving derivatives of hypergeometric functions with respect to the parameters,
we display the main features of the approximated FPT through figures, using realistic
parameters coming from the option-pricing literature.

We consider the model described by the following stochastic differential equation

dXt = λ(µ− Xt)dt + σXtdWt, t > 0 X0 = x0, (61)

where µ > 0 represents the long-run mean, σ is the instantaneous volatility, Wt is a standard
Wiener process and λ is related to the speed of reversion towards the mean level. If λ is
large, on average it takes less time for the process to move around the long-run mean and
more time to move towards points far from it, i.e., more likely the process will not move
far away from the long-run mean level.

In the following, we consider realistic parameters values as suggested in [15] for
Perpetual American Put Options: µ = 3.25, λ = 0.25, x0 = 3, σ2 ∈ [0.08, 0.2].

In Figure 4 we show for Xt in Equation (61) the asymptotic first FPT cumulant given
by Equation (43) as a function of S. The mean FPT for S = 3 is equal to zero being, in this
case, S = x0, whereas, as expected, the mean time before the first crossing of S increases if
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the threshold moves away from x0. Moreover, we observe that the mean FPT decreases for
increasing values of the instantaneous volatility σ. In particular, if the long-run mean level
is below S and λ is large, σ is the main factor that can favor the threshold crossing.

Figure 4. Asymptotic first FPT cumulant (43) for Xt in Equation (61) as a function of S for three
different values of σ, given in the legend. The curves are obtained for µ = 3.25, λ = 0.25, x0 = 3.

In Table 1 we show the relative error

|E(T)− c̄1(T)|
E(T)

between the asymptotic expression (43) and the mean FPT given by (6) in the case σ2 = 0.2
for five different choices of S. We observe that the asymptotic approximation underes-
timates slightly the waiting time before the first crossing. The error increases with S,
although the relative error grows slowly. We note that the error is smaller for S close to x0.
The reason is that our approximation performs better for A1, A2 → 0 condition that, for
fixed µ, is better fulfilled if x0 ' S.

Table 1. Relative error between the asymptotic expression (43) and the mean FPT given by (6) for
the same choices of parameters of Figure 4 and σ2 = 0.2.

S E(T) c̄1(T) Relative Error

3.1 0.314 0.198 0.368
3.5 1.664 1.019 0.387
4.0 3.579 2.107 0.411
4.5 5.770 3.264 0.434
5.0 8.265 4.491 0.456

4.3. Conclusions and Open Problems

We addressed the problem of the first passage time T of the IGBM through a constant
threshold, giving approximations of the cumulants of T of any order obtained from an
asymptotic expansion of the Laplace transform of T using the algebra of formal power
series. Moreover from the expression of the cumulants, {ck(T)}, moments of T might be
computed by using the recursion formula

E[Tk] = ck(T) +
k−1

∑
i=1

(
k− 1
i− 1

)
ci(T)E[Tk−i]. (62)

We have shown that the approximations work better if the IGBM has a large positive
drift or if the starting position of the dynamics is close to the threshold. Due to the lack of
results in the literature about moments of T of order higher than 1, even though they hold
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only in a certain parameters range the cumulants approximations constitute a novel result
and a step forward in the comprehension of the FPT problem for this diffusion process.
The first two approximated cumulants are given explicitly in Corollaries 1 and 2. The
higher-order cumulants can be obtained from Theorem 1 analytically or by means of the
R symbolic-numeric procedure sketched at the beginning of Section 4 and based on the
package kStatistics. We stress that the computational cost of this procedure is lighter
than the one for the classical approach with the integro-differential equations, although a
more in-depth numerical analysis should be carried out.

These results can be used in many applications ranging from neuronal modeling with
reversal potential to mean reversion models of financial markets both for understanding
the underlying dynamics of extreme events and possibly for the simultaneous estima-
tion of parameters involved in the model. The examples we have given show that this
approximation works better when µ is large or x0 is close to S.

These last observations suggest using the cumulants (29) and the Laguerre-Gamma
polynomial approximation proposed in [18] to get an estimation of the FPT pdf g(t) for
the range of parameters for which expression (9) holds. For large t, the asymptotic results
from [47] can be applied to obtain information on g(t). Instead, for small-time t, the
approximation obtained through the expansion with Laguerre–Gamma polynomials and
the cumulants (29) should result to be competitive when compared with the Monte Carlo
methods and when traced back to µ large or x0 close to S. Indeed, the classical simulation
schemes like Euler–Maruyama or Milstein method often provide uncorrected values of
g(t) around zero and so the approximation of g(t) for small t turns out to be particularly
relevant. This is on the agenda of our future research.

As the last remark, we stress that the methodology itself is not limited to the IGBM.
As future work, we plan to extend this approach to other processes belonging to the class
of Pearson’s diffusions, since the expression of the Laplace transform of the FPT pdf for
these processes is often written as a ratio of two hypergeometric functions.
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