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Abstract

Continued fractions have been introduced in the field of p-adic numbersQp by several
authors. However, a standard definition is still missing since all the proposed algorithms
are not able to replicate all the properties of continued fractions in R. In particular, an
analogue of the Lagrange’s Theorem is not yet proved for any attempt of generalizing
continued fractions inQp. Thus, it is worth to study the definition of new algorithms for
p-adic continued fractions. The main condition that a new method needs to fulfill is the
convergence inQp of the continued fractions. In this paper we study some
convergence conditions for continued fractions inQp. These results allow to define
many new families of continued fractions whose convergence is guaranteed. Then we
provide some new algorithms exploiting the new convergence condition and we
prove that one of them terminates in a finite number of steps when the input is
rational, as it happens for real continued fractions.

1 Introduction
In 1940, Mahler [11] gave the first idea for introducing continued fractions in the field of
p-adic numbersQp. Starting from this, several authors studied the problem of defining an
algorithm for expanding elements ofQp in continued fractions. The most notable results
were provided by Browkin [4], Ruban [14] and Schneider [15] who defined different p-adic
continued fractions algorithms with the aim of obtaining the same good properties that
hold in the real case. However, all these algorithms fail in the attempt of characterizing
quadratic irrationals by periodic continued fractions, as in the case of R. The study of
the periodicity of these algorithms have been deepened by several authors. Schneider’s
algorithm is not periodic for all quadratic irrationals, but there is an effective criterion
to determine when this happens (see [8,16,17]). Ooto [13] proved that an analogue of
Lagrange’s Theorem does not hold for Ruban’s continued fractions and Capuano et al. [7]
gave an effective condition to check the periodicity. Moreover, Ruban’s and Schneider’s
algorithmsprovide finite or periodic expansion for rationals. Browkin’s algorithm is of par-
ticular interest since it always gives finite representations for rational numbers, but it is not
known if an analogue of the Lagrange’s Theorem holds. In [2,3], the authors proved some
results about the periodicity of this algorithm and Capuano et al. [6] gave some necessary
and sufficient conditions for periodicity, but such conditions do not allow to prove that
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an analogue of Lagrange’s Theorem does not hold. From experimental results, it seems
very unlikely that Browkin’s algorithm provides periodic expansion for any quadratic irra-
tional. For this reason, in 2000, Browkin himself defined a new algorithm [5] and it has
been proved in [1] that also this second algorithm produces a finite continued fraction for
rational numbers. Browkin’s second algorithm works better on quadratic irrationals, but
also in this case they do not always present periodic expansions in continued fractions.
The periodicity of this algorithm has been investigated in [12]. Further studies on p-adic
continued fractions can be found in [9,10,18,19]. Thus, it is worth to study the definition
of new algorithms for p-adic continued fractions.
In this paper, we give a sufficient condition on the partial quotients of a p-adic continued

fractions in order to achieve the convergence in Qp. In particular, we study a condition
that allows to extend the idea of Browkin in [5], giving space to several possible new
definitions of p-adic continued fractions. Exploiting this condition, we then propose a new
p-adic continued fraction algorithm that is a natural generalization of the construction
performed in [5] for the second algorithm of Browkin. Moreover, we also prove that this
new algorithm terminates in a finite number of steps on each α ∈ Q.

2 Preliminaries
Let us denote with vp(·) and | · |p, respectively, the p-adic valuation and the p-adic absolute
value over Q, where p is an odd prime. The Euclidean norm will be denoted as usual by
| · |. We denote a continued fraction of a value α with the usual notation as

α = b0 + 1

b1 + 1

b2 + 1
. . .

= [b0, b1, b2, . . .].

Moreover, we call An
Bn , for all n ∈ N, the convergents of the continued fraction, that may

be defined recursively by using the well-known formulas
⎧
⎪⎪⎨

⎪⎪⎩

A0 = b0,

A1 = b1b0 + 1,

An = bnAn−1 + An−2 for n ≥ 2,

⎧
⎪⎪⎨

⎪⎪⎩

B0 = 1,

B1 = b1,

Bn = bnBn−1 + Bn−2 for n ≥ 2.

The first important requirement when designing an algorithm for p-adic continued frac-
tions is that all the expansions converge to a p-adic number, that is

lim
n→+∞

An
Bn

= α ∈ Qp.

The first algorithm proposed by Browkin in [4] works as follows. Starting from an input
α0 ∈ Qp then the partial quotients of the p-adic continued fraction are evaluated by

⎧
⎨

⎩

bn = s(αn)

αn+1 = 1
αn−bn ,

n ≥ 0 (1)

where s : Qp → Q is defined by

s(α) =
0∑

n=−r
anpn ∈ Q,
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for a p-adic number α =
+∞∑
n=−r

anpn ∈ Qp, with r ∈ Z and an ∈ {− p−1
2 , . . . , p−1

2 }. In this

algorithm, the function s plays the same role of the floor function in the classical algorithm
of continued fractions inR. Ruban’s algorithm [14] employs the same function s, with the
only difference that the representatives are taken in {0, . . . , p − 1}. More than 20 years
later, Browkin defines another algorithm in [5], where starting from α0 ∈ Qp, the partial
quotients bn, for n ≥ 0, are evaluated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bn = s(αn) if n even

bn = t(αn) if n odd and vp(αn − t(αn)) = 0

bn = t(αn) − sign(t(αn)) if n odd and vp(αn − t(αn)) �= 0

αn+1 = 1
αn−bn ,

(2)

where t : Qp → Q is another function defined for any p-adic value α =
+∞∑
n=−r

anpn as

t(α) =
−1∑

n=−r
anpn,

with r ∈ Z and an ∈ {− p−1
2 , . . . , p−1

2 }. In the following we will refer to (1) and (2)
respectively as Browkin I and Browkin II.
The convergence in Qp of the continued fractions generated by Browkin I is based on

the following lemma.

Lemma 1 [4, Lemma 1] Let an infinite sequence b0, b1, . . . ∈ Z[ 1p ] such that vp(bn) < 0,
for all n ≥ 1. Then the continued fraction [b0, b1, . . .] is convergent to a p-adic number.

In fact, the partial quotients bn arising from Browkin I, for n ≥ 1, all have negative
valuations.
For what concerns Browkin II, the p-adic convergence relies on the following lemma.

Lemma 2 [5, Lemma 1] Let an infinite sequence b0, b1, . . . ∈ Z[ 1p ] such that, for all n ∈ N,
⎧
⎨

⎩

vp(b2n) = 0

vp(b2n+1) < 0.
(3)

Then the continued fraction [b0, b1, . . .] is convergent to a p-adic number.

Remark 3 The proofs of Lemmas 1 and 2 exploit the strict decrease of the sequence of
valuations vp(BnBn+1). Moreover, requiring the sequence vp(BnBn+1) strictly decreasing
is equivalent to ask that vp(Bn+1) < vp(Bn−1) for all n ≥ 1. Thus, the divergence of the
sequence of valuations implies the convergence of the correspondent p-adic continued
fraction. Indeed, in this way we have that

lim
n→∞ vp

(
An+1
Bn+1

− An
Bn

)

= lim
n→∞ −vp(BnBn+1) = +∞,

and
∣
∣
∣
∣
Am
Bm

− An
Bn

∣
∣
∣
∣
p

=
∣
∣
∣
∣
An+1
Bn+1

− An
Bn

∣
∣
∣
∣
p

=
∣
∣
∣
∣
(−1)n

BnBn+1

∣
∣
∣
∣
p

= pvp(BnBn+1),
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proving that
{
An
Bn

}

n∈N is a Cauchy sequence and therefore convergent in Qp.

3 Convergence of p-adic continued fractions
The reduction of the number of partial quotients having negative valuations shows better
properties in terms of the periods of quadratic irrationals, as pointed out in [5]. Therefore a
promising approach for the definition of a new algorithm should be a furthermodification
of Browkin II : we may define a “3-steps”-algorithm that generates the partial quotients
such that, for all n ∈ N,

⎧
⎪⎪⎨

⎪⎪⎩

vp(b3n+1) < 0

vp(b3n+2) = 0

vp(b3n+3) = 0.

(4)

Such a construction turns out to be more complex than the previous two algorithms
defined by Browkin. In the following example we show that a sequence having these
constraints does not converge without a stronger hypothesis. In particular, for every
prime p, we may construct a suitable continued fraction that does not converge to any
p-adic number.

Example 4 Let p be an odd prime. We are going to show that there exists a sequence
b0, b1, . . . ∈ Qp with, for all n ∈ N,

⎧
⎪⎪⎨

⎪⎪⎩

vp(b3n+1) < 0

vp(b3n+2) = 0

vp(b3n+3) = 0,

such that the sequence vp(BnBn+1) does not diverge to −∞. Let us define b1 = 1
p . The

first denominators of the convergents are

B0 = 1,

B1 = b1 = 1
p
,

B2 = b2B1 + B0 = b2 + p
p

,

B3 = b3B2 + B1 = (b3b2 + 1) + b3p
p

.

Their valuations are

vp(B0) = vp(1) = 0,

vp(B1) = vp
(1
p

)
= −1,

vp(B2) = vp
(b2 + p

p

)
= −1,

vp(B3) = vp
( (b3b2 + 1) + b3p

p

)
.
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Let us choose suitableb2 andb3 such that b3b2+1 = p (for example,b2 = 2 andb3 = p−1
2 ).

Then

vp(B3) = vp
(b3p + p

p

)
= vp(b3 + 1) ≥ 0.

At this point, for a generic n ∈ N for which

vp(B3n+1) = −1, vp(B3n+2) = −1, vp(B3n+3) ≥ 0,

we are going to show that there exists a choice for the partial quotients such that

vp(B3(n+1)+1) = −1, vp(B3(n+1)+2) = −1, vp(B3(n+1)+3) ≥ 0.

We can write

B3n+1 = a1
p
, with vp(a1) = 0,

B3n+2 = a2
p
, with vp(a2) = 0,

B3n+3 = a3, with vp(a3) ≥ 0.

We have two cases:

• In the case that vp(a3 + a2) = 0, we choose b3n+4 = 1
p . Therefore,

B3n+4 = b3n+4B3n+3 + B3n+2 = a3 + a2
p

.

Its valuation is

vp(B3n+4) = vp(a3 + a2) − vp(p) = −1,

so that we can write B3n+4 = a4
p , with vp(a4) = 0. Subsequently,

B3n+5 = b3n+5B3n+4 + B3n+3 = b3n+5
a4
p

+ a3 = b3n+5a4 + a3p
p

,

with vp(b3n+5) = 0, so that vp(B3n+5) = −1. It means that B3n+5 = a5
p , with vp(a5) =

0. At the following step,

B3n+6 = b3n+6B3n+5 + B3n+4 = b3n+6a5 + a4
p

.

Notice that a4 and a5 are arbitrary elements that are nonzero modulo p and we can
choose a suitable b3n+6 such that

b3n+6a5 + a4 ≡ 0 mod p.

We obtain that p divides b3n+6a5 + a4 and so vp(B3n+6) ≥ 0. In this case we have
obtained that, starting from

vp(B3n+1) = −1, vp(B3n+2) = −1, vp(B3n+3) ≥ 0,

then

vp(B3(n+1)+1) = −1, vp(B3(n+1)+2) = −1, vp(B3(n+1)+3) ≥ 0.
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• Let us examine also the case vp(a3 + a2) > 0. Here we choose b3n+4 = 2
p . Since

vp(a2) = 0 and vp(a3 + a2) > 0, necessarily also vp(a3) = 0. The next denominator is

B3n+4 = b3n+4B3n+3 + B3n+2 = 2a3 + a2
p

.

Notice that since p divides a3 + a2 but does not divide a3, it can not divide 2a3 + a2.
In this way vp(2a3 + a2) = 0 and

vp(B3n+4) = vp(2a3 + a2) − vp(p) = −1.

Then we get

vp(B3n+5) = vp(b3n+5B3n+4 + B3n+3) = −1,

where vp(b3n+5) = 0, and so we can write

B3n+4 = a4
p
, with vp(a4) = 0,

B3n+5 = a5
p
, with vp(a5) = 0.

At the next step we have

B3n+6 = b3n+6B3n+5 + B3n+4 = b3n+6a5 + a4
p

.

As before, we choose b3n+6 such

b3n+6a5 + a4 ≡ 0 mod p.

In this way we get vp(B3n+6) ≥ 0. Hence, also in this second case we have obtained
that

vp(B3(n+1)+1) = −1, vp(B3(n+1)+2) = −1, vp(B3(n+1)+3) ≥ 0.

We have just constructed a sequence of denominators Bn such that the sequence of
valuations vp(BnBn+1) = vp(Bn) + vp(Bn+1) can not diverge to −∞. In fact, in particular,
vp(Bn) ≥ −1 for all n ∈ N and the p-adic continued fraction is not convergent.

Starting from the observations of the last example, we would like to characterize the
strict decrease of the sequence vp(BnBn+1) in general. From Remark 3, it is sufficient to
investigate the condition vp(Bn+1) < vp(Bn−1) for all n ≥ 1.
In the following, b0, b1, . . . are elements ofQp such that vp(bn) ≤ 0 for all n ∈ N. In fact,

as we are going to see in the next results, Browkin’s hypothesis of bn ∈ Z[ 1p ] for all n ∈ N,
seen in Lemmas 1 and 2, is not needed.

Lemma 5 For all n ≥ 1, if vp(Bn+1) < vp(Bn−1), then

vp(Bn+1) ≤ vp(Bn).

Proof Let us recall that

vp(Bn+1) = vp(bn+1Bn + Bn−1) ≥ min{vp(bn+1Bn), vp(Bn−1)},
with the equality for vp(bn+1Bn) �= vp(Bn−1).
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If vp(bn+1Bn) < vp(Bn−1), then

vp(Bn+1) = vp(bn+1Bn) = vp(bn+1) + vp(Bn) ≤ vp(Bn),

since vp(bn+1) ≤ 0. Instead, if vp(bn+1Bn) ≥ vp(Bn−1),

vp(Bn+1) ≥ min{vp(bn+1Bn), vp(Bn−1)} = vp(Bn−1),

but it is a contradiction with the hypothesis of vp(Bn+1) < vp(Bn−1), hence this second
case can not occur. 	


On the other hand it is also possible to prove the following equivalence.

Lemma 6 For all n ≥ 1, vp(Bn+1) < vp(Bn−1) if and only if

vp(bn+1Bn) < vp(Bn−1).

Proof If vp(Bn+1) < vp(Bn−1) and vp(bn+1Bn) ≥ vp(Bn−1), then

vp(Bn+1) ≥ min{vp(bn+1Bn), vp(Bn−1)} = vp(Bn−1),

but this contradicts the hypothesis.
Conversely, if vp(bn+1Bn) < vp(Bn−1), then

vp(Bn+1) = vp(bn+1Bn) < vp(Bn−1),

and the claim is proved. 	


Using the results obtained above, we may prove the following theorem on the charac-
terization of the strict decrease of the sequence vp(BnBn+1).

Theorem 7 The following conditions are equivalent:

(i) vp(bn+1Bn) < vp(Bn−1), for all n ≥ 1,
(ii) vp(bnbn+1) < 0, for all n ≥ 1.

Proof i) ⇒ ii)
Let us suppose that vp(bn+1Bn) < vp(Bn−1) for all n ≥ 1.
If vp(bn+1) < 0, then vp(bn+1bn) = vp(bn+1) + vp(bn) < 0 and the claim is proved.
Therefore, let us assume vp(bn+1) = 0 and we prove that vp(bn) < 0. Since vp(bn+1) = 0
and

vp(bn+1Bn) < vp(Bn−1),

then vp(Bn) < vp(Bn−1). The latter means that:

vp(Bn) = vp(bnBn−1 + Bn−2) < vp(Bn−1).

Moreover, let us recall that, in general,

vp(Bn) ≥ min{vp(bnBn−1), vp(Bn−2)}.
If vp(Bn−2) ≤ vp(bnBn−1), thenwewould have vp(Bn) ≥ vp(Bn−2), which is a contradiction
with the characterization of i) given by Lemma 6. Then vp(Bn−2) > vp(bnBn−1) and it
follows that vp(Bn) = vp(bnBn−1). Hence,

vp(Bn) = vp(bnBn−1) = vp(bn) + vp(Bn−1) < vp(Bn−1),
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where the last inequality implies vp(bn) < 0 and this concludes the proof.
ii) ⇒ i)
Conversely, let us suppose that vp(bnbn+1) < 0 for all n ≥ 1. We prove the claim by
induction on n.
Base step
By hypothesis, we have that vp(b1b2) < 0 and vp(b2b3) < 0. Hence, for n = 1 and n = 2,
we have that:

vp(b2B1) = vp(b2b1) < 0 = v(1) = v(B0),

vp(b3B2) = vp(b3b2b1 + b3) = vp(b3b2b1) = vp(b3b2) + vp(b1)

< vp(b1) = vp(B1).

Induction step
Let us suppose that the thesis is true until a step n ≥ 2 and we show it for n + 1. From
vp(bn+2bn+1) < 0 we get that either vp(bn+2) < 0 or vp(bn+1) < 0 (or both).

• Case vp(bn+2) < 0:
In this case, using inductive hypothesis and Lemma 5 we get that vp(Bn+1) ≤ vp(Bn),
hence:

vp(bn+2Bn+1) = vp(bn+2) + vp(Bn+1) < vp(Bn+1) ≤ vp(Bn).

• Case vp(bn+1) < 0: where the last inequality implies In this case we have

bn+2Bn+1 = bn+2 (bn+1Bn + Bn−1) ,

therefore

vp (bn+2Bn+1) ≤ vp (bn+1Bn + Bn−1) .

The inductive hypothesis ensures that vp (bn+1Bn) < vp(Bn−1), so

vp (bn+2Bn+1) ≤ vp (bn+1Bn) = vp (bn+1) + vp (Bn) < vp(Bn)

and this concludes the proof. 	


We easily obtain the following corollary, fully characterizing the strict decrease of the
sequence of denominators.

Corollary 8 The sequence {vp(BnBn+1)}n∈N is strictly decreasing if andonly if vp(bnbn+1) <

0 for all n ∈ N.

In other words, we have proved that the definition of two consecutive partial quotients
with zero valuation makes us lose the strict decrease of the valuation. Moreover, the
sufficiency of this condition means that every possible definition in this range works.
It would be interesting to study some algorithms that satisfy this hypothesis, different
from Browkin I and Browkin II. For example, it is possible to define 2 negative partial
quotients every 3 steps or partial quotients that are not in Z[ 1p ], as long as the condition,
vp(bnbn+1) < 0 for all n ∈ N, is satisfied.
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4 Design of a new algorithm
In Example 4 we have showed that an algorithm generating the partial quotients as in
(4) never assures the p-adic convergence of the continued fraction. Moreover, we have
characterized the strict decrease of the sequence vp(BnBn+1).
However, for the negative divergence of this sequence, we do not need it to be strictly

decreasing. So wemaywonder in which cases it diverges although it is not strictly decreas-
ing.
What we are going to see here is that adding one additional constraint on the two partial

quotients having null valuation it is possible to avoid the growth of the valuation of the
denominators Bn. In this way we succeed to obtain the convergence of a p-adic continued
fraction with only one partial quotient with negative valuation each three steps, as defined
in (4).

Theorem 9 Let b0, b1, . . . ∈ Qp such that, for all n ∈ N:
⎧
⎪⎪⎨

⎪⎪⎩

vp(b3n+1) < 0

vp(b3n+2) = 0

vp(b3n+3) = 0.

If vp(b3n+3b3n+2 + 1) = 0 for all n ∈ N, then,

vp(B3n−2) = vp(B3n−1) = vp(B3n) > vp(B3n+1).

Proof Let us prove the claim by induction on n.
Base step

vp(B0) = vp(1) = 0,

vp(B1) = b1 < 0,

vp(B2) = vp(b2b1 + 1) = vp(b2) + vp(b1) = vp(b1) = vp(B1),

vp(B3) = vp(b3B2 + B1) = vp((b3b2 + 1)B1 + b3B0)

= vp((b3b2 + 1)B1) = vp(B1) = vp(B2),

vp(B4) = vp(b4B3 + B2) = vp(b4) + vp(B3) < vp(B3)

= vp(B1) = vp(B2),

where we employed that vp(b4) < 0 and vp(b3b2 + 1) = 0.
Induction step
Let us suppose that:

vp(B3n−2) = vp(B3n−1) = vp(B3n) > vp(B3n+1).

In fact, the valuation of B3n+1 is:

vp(B3n+1) = vp(b3n+1B3n + B3n−1) = vp(b3n+1) + vp(B3n) < vp(B3n),

since, by induction hypothesis, vp(B3n) = vp(B3n−1) and vp(b3n+1) < 0.
Recalling that vp(b3n+4) < 0 and vp(b3n+3b3n+2 +1) = 0, at the following steps we obtain:

vp(B3n+2) = vp(b3n+2B3n+1 + B3n) = vp(b3n+2) + vp(B3n+1)

= vp(B3n+1) < vp(B3n),
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vp(B3n+3) = vp(b3n+3B3n+2 + B3n+1)

= vp((b3n+3b3n+2 + 1)B3n+1 + b3n+3B3n)

= vp((b3n+3b3n+2 + 1)B3n+1) = vp(B3n+1)

= vp(B3n+2) < vp(B3n),

vp(B3n+4) = vp(b3n+4B3n+3 + B3n+2) = vp(b3n+4) + vp(B3n+3)

< vp(B3n+3) = vp(B3n+1) = vp(B3n+2).

Hence, we have obtained that

vp(B3n+4) < vp(B3n+3) = vp(B3n+2) = vp(B3n+1) < vp(B3n),

and this proves the claim. 	

Theorem 9 easily leads to the following corollary, achieving the convergence of a p-adic

continued fraction generating the partial quotients as in (4).

Corollary 10 Let b0, b1, . . . as in Theorem 9. Then the continued fraction [b0, b1, . . .] is
convergent to a p-adic number.

Proof We know from Remark 3 that the continued fraction [b0, b1, . . .] converges to a
p-adic number if and only if

lim
n→+∞ vp(BnBn+1) = −∞.

Notice that, for all n ∈ N,

vp(B3nB3n+1) > vp(B3n+1B3n+2),

since vp(B3n+1) < vp(B3n) and vp(B3n+1) = vp(B3n+2). Then

vp(B3n+1B3n+2) = vp(B3n+2B3n+3),

since all the three valuations are equal. Moreover,

vp(B3n+2B3n+3) > vp(B3n+3B3n+4),

since vp(B3n+4) < vp(B3n+3) and vp(B3n+3) = vp(B3n+2). So, the sequence vp(BnBn+1) is
decreasing and divergent. 	


5 Some new algorithms
Starting from Theorem 9 and Corollary 10, we propose some new algorithms. We use
three different functions. For

a =
+∞∑

n=−r
anpn ∈ Qp, an ∈

{
0,±1,±2, . . . ,±p − 1

2

}
,

the first two functions are the same s and t of Browkin II, that are

s(a) =
0∑

n=−r
anpn, t(a) =

−1∑

n=−r
anpn,

and then the third is:

u(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1 if a0 ∈
{

+ 2, . . . ,
p − 1
2

}
∪ {−1}

−1 if a0 ∈
{

− p − 1
2

, . . . ,−2
}

∪ {+1}
0 if a0 = 0.

We can now design the form of two new algorithms.
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Definition 11 (First new algorithm) On input α0 = α, for n ≥ 0, our first new algorithm
works as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bn = s(αn) if n ≡ 0 mod 3

bn = t(αn) if n ≡ 1 mod 3 and vp(αn − t(αn)) = 0

bn = t(αn) − sign(t(αn)) if n ≡ 1 mod 3 and vp(αn − t(αn)) �= 0

bn = u(αn) if n ≡ 2 mod 3

αn+1 = 1
αn−bn .

Definition 12 (Second new algorithm) On input α0 = α, for n ≥ 0, our second new
algorithm works as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bn = s(αn) if n ≡ 0 mod 3

bn = t(αn) if n ≡ 1 mod 3 and vp(αn − t(αn)) = 0

bn = t(αn) − sign(t(αn)) if n ≡ 1 mod 3 and vp(αn − t(αn)) �= 0

bn = s(αn) − u(αn) if n ≡ 2 mod 3

αn+1 = 1
αn−bn .

Remark 13 The choice of the third function u is a little tricky. The function t takes all the
negative powers, leaving out the constant term. The function u needs to act on a p-adic
number with zero valuation, but it has to leave apart another term with zero valuation,
otherwise the third partial quotient will not have null valuation. Clearly, the choice of this
function can be done in several ways. In fact, there are a lot of manners to separate the
constant term a0 ∈ {− p−1

2 , . . . , p−1
2 } in two nonzero parts. Here we have presented two

proposals, but it would surely be interesting to analyze also other options different from
ours.

Both of the constructions in Definitions 11 and 12 produce a sequence of partial quo-
tients b0, b1, . . . ∈ Qp such that, for all n ∈ N,

⎧
⎪⎪⎨

⎪⎪⎩

vp(b3n+1) < 0

vp(b3n+2) = 0

vp(b3n) = 0.

We are going to see that also the additional condition required by Theorem 9, i.e.

vp(b3n+2b3n+3 + 1) = 0, for all n ∈ N,

is satisfied for both algorithm.

Proposition 14 Let α ∈ Qp. Then the partial quotients generated by the new algorithms
in Definitions 11 and 12 satisfy the conditions of Theorem 9.

Proof To prove the claim, we are left to show that

vp(b3n+2b3n+3 + 1) = 0, for all n ∈ N.

We prove it only for the second algorithm, the other proof is similar. First we notice that,
by construction,

vp(b3n+2b3n+3) = vp(b3n+2) + v(b3n+3) = 0,
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so that vp(b3n+2b3n+3 + 1) ≥ min{vp(b3n+2b3n+3), vp(1)} = 0. Let us show that the case
vp(b3n+2b3n+3 + 1) > 0 can not occur. For all n ∈ N,

α3n+2 = 1
α3n+1 − t(α3n+1)

= a0 + a1p + a2p2 + · · · .

and

b3n+2 = s(α3n+2) − u(α3n+2) = a0 ∓ 1,

b3n+3 = s(α3n+3) = s
( 1

α3n+2 − b3n+2

)
= (a0 − b3n+2)−1 = ±1.

Therefore, the condition vp(b3n+2b3n+3 + 1) = 0 is satisfied if and only if

b3n+2(a0 − b3n+2)−1 ≡ (±1)(a0 ∓ 1) ≡ −1 mod p

is not fulfilled. However, this would imply that a0 ≡ 0 mod p, but this cannot happen,
due to the constraints in the algorithm when using the function t. 	

Finally we prove that the second new algorithm succeed in obtaining the finiteness of

the expansion for rational numbers, as it happens for Browkin I and Browkin II. We state
it in the following theorem.

Theorem 15 If α ∈ Q, then the second new algorithm (Definition 12) stops in a finite
number of steps.

Proof Let us consider α ∈ Q. We are going to show that the algorithm from Definition
12 stops in a finite number of steps when the input is α. By construction we have,

vp(α3k+1) < 0, vp(α3k+2) = vp(α3k+3) = 0,

so that we can write

α3k+1 = N3k+1
D3k+1pl

, with (N3k+1, D3k+1) = 1, p � |N3k+1D3k+1, l ≥ 1,

α3k+2 = N3k+2
D3k+2

, with (N3k+2, D3k+2) = 1, p � |N3k+2D3k+2,

α3k+3 = N3k+3
D3k+3

, with (N3k+3, D3k+3) = 1, p � |N3k+3D3k+3.

Let us notice that for this algorithm, for all n ∈ N, the partial quotients are such that
b3n+2 ∈ {− p−1

2 + 1, . . . ,−1, 1, . . . , p−1
2 − 1} and b3n+3 = ±1, so that

|b3n+2| ≤ p − 3
2

, |b3n+3| = 1.

Since vp(b3n+1) < 0, we can write

b3n+1 = c3n+1

pl
, with vp(c3n+1) = 0, l ≥ 1.

The partial quotients b3n+1 are generated by the function t and it has been shown in [1]
that

|c3n+1| ≤ pl
(

1 − 1
pl

)

.
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For the sake of simplicity, we also write c3k+2 = b3k+2 and c3k+3 = b3k+3, so that the
coefficients cn always have zero valuation.
Exploiting αk+1 = 1

αk−bk
, we get

N3k+1(N3k − c3kD3k ) = plD3kD3k+1,

N3k+2(N3k+1 − c3k+1D3k+1) = plD3k+1D3k+2,

N3k+3(N3k+2 − c3k+2D3k+2) = D3k+2D3k+3.

Since (|Nn|, p|Dn|) = 1 for all n ∈ N, then

|N3k+1| = |D3k |, |N3k+2| = |D3k+1|, |N3k+3| = |D3k+2|,
and

|D3k+1| = |N3k − c3kD3k |
pl

≤ |N3k | + |c3kD3k |
pl

= 1
pl

|N3k | + 1
pl

|D3k |,

|D3k+2| = |N3k+1 − c3k+1D3k+1|
pl

≤ 1
pl

|N3k+1| +
(

1 − 1
pl

)

|D3k+1|,

|D3k+3| = |N3k+2 − c3k+2D3k+2| ≤ |N3k+2| +
(
p − 3
2

)

|D3k+2|.

By using the formulas above we may write

|N3k+3| + |D3k+3| ≤ |D3k+1| + p − 1
2

|D3k+2|

≤ |D3k+1| + p − 1
2

(
1
pl

|N3k+1| + pl − 1
pl

|D3k+1|
)

= p − 1
2pl

|N3k+1| + pl+1 + pl − p + 1
2pl

|D3k+1|

≤ p − 1
2pl

|D3k | + pl+1 + pl − p + 1
2pl

·
(
1
pl

|N3k | + 1
pl

|D3k |
)

=
(
pl+1 + pl − p + 1

2p2l

)

|N3k | +
(
2pl+1 − p + 1

2p2l

)

|D3k |.

We have that 2pl+1 − p + 1 < 2p2l , since p2l ≥ pl for every l ≥ 1 and consequently we
also have pl+1 + pl − p + 1 < 2p2l . Thus, we obtain, for all k ∈ N, that

|N3k+3| + |D3k+3| < |N3k | + |D3k |.
Since the sequence {|N3n|+|D3n|}n∈N is a strictly decreasing sequence of natural numbers
it must be finite and hence α has a finite continued fraction. 	


We conclude this section with an example of the continued fraction expansion of a
rational number obtained using this algorithm.

Example 16 Let us consider p = 7 and let us compute the continued fraction of α0 =
−1
5

∈ Q7. Its expansion is

α0 = −3 − p + 3p2 + · · · ,
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so that b0 = s(α0) = −3 and

α1 = 1
α0 − b0

= 5
14

= −1
p

− 3 − 3p − 3p2 − · · · .

Then the second partial quotient is b1 = t(α1) = − 1
7 and the following complete quotient

is

α2 = 1
α1 − b1

= 2.

Using the third function we get b2 = u(α2) = 1 and then

α3 = 1 = s(α3) = b3.

Hence, the finite continued fraction for −1
5

∈ Q7 using the algorithm of Definition 12 is

−1
5

=
[

−3,−1
7
, 1, 1

]

.

6 Generalization to n steps
The aim of this section is to generalize Theorem 9 to a generic n-step algorithm. On this
purpose, we also need several additional conditions on the valuations, thus we introduce
the following notation for a family of sequences. Let n,m ∈ N, withm ≥ 2, we define the
family of sequences U (n)

m as

U (0)
m = 1, U (1)

m = bm, U (n+1)
m = bm+nU (n)

m + U (n−1)
m .

Lemma 17 For every n ≥ 2, the partial denominators Bn can be obtained as:

Bn = U (n−1)
2 B1 + U (n−2)

3 B0.

Proof Let us prove the claim by induction on n. For n = 2 and n = 3 it holds since:

B2 = b2B1 + B0 = U (1)
2 B1 + U (0)

3 B0,

B3 = b3B2 + B1 = (b3b2 + 1)B1 + b3B0 = U (2)
2 B1 + U (1)

3 B0.

Now let us suppose that the claim holds at the steps n and n + 1, that is:

Bn = U (n−1)
2 B1 + U (n−2)

3 B0,

Bn+1 = U (n)
2 B1 + U (n−1)

3 B0.

We are going to show that it is true also for Bn+2. In fact:

Bn+2 = bn+2Bn+1 + Bn

= bn+2(U (n)
2 B1 + U (n−1)

3 B0) + (U (n−1)
2 B1 + U (n−2)

3 B0)

= (bn+2U (n)
2 + U (n−1)

2 )B1 + (bn+2U (n−1)
3 + U (n−2)

3 )B0

= U (n+1)
2 B1 + U (n)

3 B0.

It follows that the thesis is true for all n ≥ 2. 	
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Remark 18 Notice that Lemma 17 holds also starting from a generic step k . It means that
for all k ∈ N and n ≥ 2,

Bk+n = U (n−1)
k+2 Bk+1 + U (n−2)

k+3 Bk ,

and the proof is similar to the case k = 0 seen in Lemma 17.

Theorem 19 Let us consider r ∈ N+ and b0, b1, . . . ∈ Qp such that, for all n ∈ N:
⎧
⎨

⎩

vp(brn+1) < 0

vp(brn+i) = 0, ∀i ∈ {2, . . . , r}.
.

Moreover let us suppose that, for all n ∈ N,

vp(U (i)
rn+2) = 0 for all i ∈ {2, . . . , r − 1} and for r ≥ 3,

vp(U (i)
rn+3) = 0 for all i ∈ {2, . . . , r − 2} and for r ≥ 4.

Then we have, for all n ∈ N,

vp(Brn+1) = vp(Brn+2) = · · · = vp(Brn+r) > vp(Brn+r+1).

Proof Let us prove the claim by induction on n.
Base step
We prove the thesis for n = 0. The valuation of the first denominator is:

vp(B1) = vp(b1) < 0.

By Lemma 17, for i ∈ {2, . . . , r},

vp(Bi) = vp(U (i−1)
2 B1 + U (i−2)

3 B0) = vp(U (i−1)
2 B1) = vp(b2B1) = vp(B1).

At the following step, since vp(br+1) < 0, we get:

vp(Br+1) = vp(br+1Br + Br−1) = vp(br+1) + vp(Br) < vp(Br).

Hence, the claim is true for n = 0.
Induction step
Let us suppose that the thesis holds for a generic n ∈ N, that is:

vp(Brn+1) = vp(Brn+2) = · · · = vp(Brn+r) > vp(Brn+r+1).

We want to prove the claim for n + 1.
Here we use Remark 18 with k = r(n + 1). Now, for i ∈ {2, . . . , r},

vp(Br(n+1)+i) = vp(U (i−1)
r(n+1)+2Br(n+1)+1 + U (i−2)

r(n+1)+3Br(n+1))

= vp(U (i−1)
r(n+1)+2Br(n+1)+1)

= vp(U (i−1)
r(n+1)+2) + vp(Br(n+1)+1) = vp(Br(n+1)+1).

At the following step, since vp(br(n+2)+1) < 0, then:

vp(Br(n+2)+1) = vp(br(n+2)+1Br(n+2) + Br(n+2)−1)

= vp(br(n+2)+1Br(n+2)) < vp(Br(n+2)).

The induction is then complete and the claim holds for all n ∈ N. 	
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Corollary 20 Let r ∈ N+ and b0, b1, . . . as in Theorem 19. Then the continued fraction
[b0, b1, . . .] is convergent to a p-adic number.

Proof Using Remark 3, the continued fraction [b0, b1, . . .] converges in Qp if and only if

lim
n→+∞ vp(BnBn+1) = −∞.

By Theorem 19 we have that, for all n ∈ N,

vp(Brn+1Brn+2) = · · · = vp(Brn+r−1Brn+r) > vp(Brn+rBrn+r+1),

so that the sequence vp(BnBn+1) is decreasing and divergent to −∞. 	


By Corollary 20, we obtain the convergence of a p-adic continued fractions algorithm
generating the partial quotients as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vp(brn+1) < 0

vp(brn+2) = 0

vp(brn+3) = 0

. . .

vp(brn+r) = 0.

(5)

With a construction similar to the one made in Example 4, it can be proved that the
conditions of Theorem 19 are necessary for the p-adic convergence.

7 Conclusions
In this paper we have analyzed the convergence of p-adic continued fractions in order to
give a better understanding for the design of an algorithm that enjoys someproperties sim-
ilar to those holding for classical continued fractions inR. At the present moment such an
algorithm does not exist, because an analogue of Lagrange’s Theoremhas not been proved
yet. In Theorem 7, we have characterized the strict decrease of the valuations vp(BnBn+1),
used by Browkin in [4] and [5]. This characterization guarantees the p-adic convergence
of all the algorithms generating partial quotients such that vp(bn) + vp(bn+1) < 0 for all
n ∈ N. Outside from this hypothesis, we have also obtained some effective conditions for
the convergence of a p-adic continued fractions with only one negative partial quotient
each r steps. In particular, Browkin’s continued fractions in [4] and [5] are respectively the
cases when r = 1 and r = 2. For the case r = 3 we have proposed some actual algorithms,
proving that one of them terminates in a finite number of steps when processing a rational
number.
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