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Abstract. Over the last years, several optimization strategies were conducted to find the optimal shape
minimizing internal stress or total weight (volume) of shell structures. In recent times, this structure
typology gained a great importance among researchers and the scientific community for the renowed in-
terest in the form-findind optimization of column-free space solution for large span roofing constructions.
In the present paper, a form-finding of a shallow grid shells was introduced basing on the multy-body
rope approach (MRA) for the definitions of vault shapes and different hole percentage. In order to obtain
an experimental validation, a physical model was reproduced at the laboratory scale performing ad hoc
measurements to compare the observed respect to the simulated behaviour. A 3D printing procedure
based on the Fuse Deposition Modeling (FDM) technique in polylactide (PLA) material was used to
realise form-works of the cement based blocks of the scaled prototype. Several static and dynamic load
configurations are investigated, collecting into a sensitivity analysis the parameters which mainly affect
the structural behaviour. To simulate earthquake ground motion an assigned frequency range as dynamic
input to the structure was provided by a shaking table. Finally, some preliminary considerations of the
dynamic response of the model were provided testing the robustness of the form-finding approach when
horizontal load are taken into account.

1 INTRODUCTION

In the last two decades, several authors have discovered new ways to use and integrated masonry struc-
tures in the actual architectural and engineering environment experiencing with innovative realisations
and design tools (e.g. [1], [2], [3], [4], [5]). Due to the imminent environmental problem, new struc-
tural solutions which are able to comply the demand of sustainability with the structural efficiency are
required. Moreover, thanks to the emergence of optimisation techniques (e.g. [6], [7], [8], [9], [10]),
generative design and parametric analysis (e.g. [11], [12]), masonry structures has regained their lead-
ing role in the architectural and engineering field. Computer based design and modelling procedures
have revolutionised the structural design concept generating holistic approaches for shape, material and
structures (e.g. [11], [3]). In this field, new form-finding techniques based on automatic tools and dig-
ital fabrication methods played a fundamental role in the realisation of non-conventional and free form
architectures. In order to provide innovative structural and architectural solution, visual representation
(e.g. [1], [5]) and real-time reaction (e.g. [1], [13]) of buildings information have assumed a crucial role.
Therefore the increasing interest to study ancient masonry vaults, erected all over the world, is due to the
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stability condition of this specified structural topology and for their chip extraction operation cost of raw
material.
In the last decades, the problem of doubly-curved shells (e.g. [13]) and either curved surface design,
taking into account the fixed framework of funicular or compression-only vault design, are widely cov-
ered by most authors (e.g. [1], [14], [15], [16]). Moreover, first works in this field have been based on
hanging models and graphic statics for investigating domed structures.
At the beginning of the 20th century, the first to deal hanging scaled reproductions in the design process
of the Crypt of Colònia Güell was Antoni Gaudı́ as widely discussed in [1] and [13]. Then, Frei Otto
approached hanged models to detect the form for the lattice shell in Mannheim [15] or Swiss engineer
Heinz Isler who faced for the first time a compression-only concrete shell realised using hanged cloth
mockups (e.g. [1], [17]).
Recently, new developed optimisation techniques applied on grid shells has been carried out with the
aim to find the optimal configuration in terms of topology, shape and size of the members composing it
(e.g. [18], [19]). Optimisation is the procedure of finding the minimum or maximum value of a function
by choosing a number of variables subject to a number of constraints.
The optimising procedures mentioned above has been applied in several fields as tension and compression-
only trusses [20], high-rise buildings [21] or highway and railway trussed bridge [22] and using different
problem formulations and optimisation statements like truss topology method [23], graph based design
[24], simulated annealing [25] and cut-and-branch methods [26].
One of the most recent techniques that has found wide use in the recent literature is the genetic algo-
rithm belonged to the macro-field of the Evolutionary algorithm. In this approach the principle of natural
selection to evolve a set of solutions towards an optimum solution is used (e.g. [27]). Several investiga-
tion using this efficient population-based algorithm have been provided with the aim to find the optimal
shape configuration of three-dimensional discrete system, such as spatial structures, planar structures and
geodetic domes [28].
Other popular approach for multi-objective optimisation is proposed by Pareto [29]. A solution is Pareto
optimal or non-dominated when no other feasible solution that improves one objective without deteri-
orating at least another one occurs. A popular method based on detecting the best shape and topology
configuration is the Form-finding approach in which force density method [26] and the dynamic relax-
ation (DR) [28] are employed.
Among the last kinds of system mentioned above, Kilian and Ochsendorf [30] developed a shape-finding
tool for statically determined systems based on particle-spring model. Following this new shape-finding
trend, Block and Ochsendorf proposed the thrust network analysis in order to detect the optimal shape
which guaranteed pure compression action on each truss, especially for masonry structures [31]. Each
approach or algorithm proposed above have both advantages and disadvanteges. To overcame the limits
of these models, hybrid approach have been proposed coupling form-finding and grid optimisation as
widely discussed by Richardson et al. in [32].

In the present paper, the shape of the vault model is principally obtained by a form-finding method
fine-tuned by one of the authors [14][7]. The peculiarity of this method lies in the adaptability regards
cases of free shapes with standardised constituting elements. One of the purposes of this work, in fact, is
to propose an evaluation not only on the goodness of the form finding method adopted but also consider-
ing the best solution among the different pattern of the pierced configurations (disposition of the holes).
Different funicular structures have been analysed in order to recognise the best shape together with the
most efficient hole pattern configuration.
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The final geometric configuration of the vault is obtained by analysing the effect of some chosen param-
eters such as the lowering degree (defined as the ratio between the maximum span D and h, defined as
the height of the vault), the slack coefficient of the original hanging net and the hole percentage (HP) of
the covering surface. The final shape and the pierced pattern were analysed by the MidasGen©software
under static and seismic load pattern configuration once constraint conditions were fixed.
Manufacturing process, [33], was adopted with the aim to achieving a scaled prototype of the selected
vault typology. Moreover, a geometric survey was necessary to obtain, with a certain level of confi-
dence, the input geometric data for numerical analysis as Mechanical Autocad©3d Model of the scaled-
prototype.
Incremental static and linear dynamic analysis with direct integration of the equations of motion are
performed in order to evaluate, given a starting configuration, the gap between the expected structural
response and the observed one into the laboratory in terms of stress, deflections and natural frequency.
To do that, once the results are obtained by numerical analysis, a target point was selected for either
static and dynamic configuration in order to prepare final comparisons. The same target point will be
investigated in the scaled-prototype vault adopting 3D Digital Image Correlation (DIC) technique under
loading in order to recognize the pattern deformation. DIC technique, in particular, is almost largely used
by researchers and engineers to evaluate the stability and the collapse condition of these kinds of struc-
tures using full-field quantitative measurement of motions and deformations. This measures are based
on a mapping process of the investigated area by image registration and tracking methods for accurate
2D measurements of changes in images. Algorithms working on mutual correlation between different
pictures, it is able to detect dissimilarities before and after deformation and, adopting refined statistical
functions, typical deformation of the vault corresponding to different level of damage or loading condi-
tion are recognized.
Finally, some preliminary results obtained by static and dynamic analysis are discussed.

2 SHAPE OPTIMIZATION USING FORM-FINDING TECNIQUES

At first, numerical analysis were performed with the aim to adopt form finding procedures for each
investigated shape configuration. For a free form compressed vault, a squared geometry (16×16 m2) is
selected with varying suitable parameters:the lowering degree (D/h) and the hole percentage (HP). The
form-finding approach adopted in the paper was originally presented by one of the authors in 2004 [34]
and was successively revised and expanded concerning to the original idea [14].
Adopting the MRA approach, several disparate forms of a hanging lattice constituted by spherical masses
joined by flexible ropes were found when dynamic simulation in the time domain are performed [34].
Hence a step-by-step procedure can be performed considering either different load cases and both 2D
and 3D systems.
The such named multi-bodies rope approach (MRA) mentioned above is capable of making the hanged
mesh, for a precise group of masses, in order to create the final 3D funicular state [14]. The investigated
suspended net with standard MRA is composed by nodes and ropes and in particular a generic node “i”
of the grid with quadrilateral mesh is examined. At this node a number j of ropes (such as 4: a, b, c,
d) are converging. At the same time, s j represents the forces inside them. The node “i” is identified
by the coordinates ui, vi, ni. The investigated load pattern adopted by performing analysis very often
coincident with the self-weight simulated by the mass at each sphere. The equilibrium at each node of
the suspended net is ensured by the following equation 1, Manuello et al. [34], in which velocity and the
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acceleration are in proportional ratio:

Ri =
N

∑
k=1

s j +
N2

∑
k=1

pm + f I + f II = 0 (1)

where, as
• Ri was the resultant in the node i at each step;
• fI was the inertial force with a module equal to the product between the mass of the node and the

amplitude of the acceleration vector with a verse equal to the opposite verse of the acceleration
itself;

• fII was the dissipative force assumed equal to the product of a constant times the velocity vector
with a direction equal to the opposite of the velocity itself;

• s j represented the forces in the ropes converging in the node i;
• The indexes n and n2 are, respectively, the number of the ropes converging in the node and the

external loads applied on the same node.
The convergence of the system was guaranteed thanks to the physical process of the three-dimensional
suspended grid. In this case, a non-linear system of equations depending by local coordinates u, v and n
can be provided and the final solution can be achieved by numerical methods (see [34] and [35]).
Adopting this frame, the solutions are found managing dynamic balance equation which have been solved
trough step-by step analysis [14]. Hence, velocity and acceleration have been expressed in explicit form
as evidenced in [14] and [35]):

u′(x) =
∂u
∂t

; v′(x) =
∂v
∂t

; n′(x) =
∂n
∂t

(2)

u′′(x) =
∂u′

∂t
; v′′(x) =

∂v′

∂t
; n′′(x) =

∂n′

∂t
(3)

The equations are written depending by u, v and n respectively along x, y and z directions. Due to the
large number of variables of the model, the author adopted a numerical approach to solve the system by
a multi-bodies numerical inspired by Runge-Kutta’s solution method.
To overcome the increase due to the large-size research domain, a preliminary design of the grid has
been detected using NURBS (Non Uniform Rational Basis-Splines) surfaces working within the MRA
approaches. At the final stage, the reversed model corresponding to the final step (equilibrium step) of
the hanging net is obtained.
Substantially, the main peculiarity of the method herein adopted (MRA) lies on the inextensibility prop-
erty of the rope elements composing the suspended model. Due to this fact, only tension stress are
supported by the elements thought very complex loading (vertical and horizontal concentrated or dis-
tributed pattern) configuration are acting on the reversed grid. In the overturned configuration, in fact,
compressed-only elements are detected and well-defined length for each beams composing the grid is
defined.
In the present paper, taking into account that the form-finding was used to define compression-only vault
optimal shapes, the geometries obtained by the MRA were also validated by the MidasGen©software
in order to obtain a validation of the funicular shapes. The model used for the numerical simulation in
MidasGen©will be widely discuss in the next section dedicated to the scaled-prototype realization of the
vault 3. The entire model results full-constrained at the four corner points as fixed joints on the ground
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(a) (b)

Figure 1: Final configuration obtained by form-finding technique when maximum pierced area percent-
age of 45.46% is achieved. (a): Axonometric view. (b): top view

supporting the vault. A FEM parametric analysis is conducted with the aim to define the parameters that
most affected the form-finding procedure.
With the aim to fulfill the refurbishment criteria of existing masonry vaults in which the enlarged ne-
cessity to increase openings for natural light occurs, amount of the holes (hole percentage: HP) and the
positions of these openings (pattern) are chosen as main and crucial parameters for subsequent analysis.
Moreover, material saving approach is almost widely adopted in the practice design for several kind of
structures. Specifically, topology optimization, in fact, is increasingly used for pierced vault topology to
minimize the structure’s total self-weight by varying the most relevant parameters selected by a prelimi-
nary sensitivity analysis (see Figure 1).

3 SCALED-PROTOTYPE REALIZATION OF THE VAULT AND GEOMETRIC SURVEY

In order to validate the form-finding procedure using MRA approach a scaled-prototype of the reverse
suspended net was realized.
The total height is equal to 30 cm. The measures previously mentioned have been subjected to a scaling
procedure with a scaling factor equal to 0.0625 (1/16) in order to have the side equal to 1 m. Following
this procedure, the scaled-prototype vault was 469 mm tall with a transverse section of 18.75 mm and
slenderness equal to 80.
The entire vault was divided in suitable bricks composing the rods of the grid structure. As depicted in
2, each form-work corresponds to a specific brick and a sequential numbering of the bricks was adopted
for the final assembling phase. This phase is of crucial importance for success by analizing the global
behaviour of the structure under well-defined load pattern.
Using rapid prototyping tool-kits, the shape of the vault was separated in several dowels. The bricks
have to be realized in mortar cement so a mould system has to be designed. Due to the small scale of the
model, it is very important to ensure the accuracy of the formwork geometry. To achieve this purpose, the
geometry of each formwork was designed into Rhinoceros using the parametric computer aided-design
software Grasshopper. Hence, once the geometric features of the moulds was obtained, they have been
transferred as input data to a 3D Bio-printer with a Fuse Deposition Modeling (FDM) technique in PLA
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(a) (b) (c)

(d)

Figure 2: the step-by-step 3D printing procedure: (a) Formwork printing with FDM. (b) Cardboard spar
was realized as supporting the prototype during the assembling phase of the vault. (c) Removing phase
of the temporary supports. (d) prospective view of the self-supporting structure

material (completely eco-friendly). The most relevant parameters set up for the 3D printing process are:
a filament diameter of 1.75 mm a layer height: 0.2 mm, a fill density of 30% (see 2). At the same time
the print speed was between 80–150 mm/s with a printing temperature of 215 C°. It is remarked that for
the sake of simplicity the four base elements have been fabricated with the FDM technique. All bricks
were cast into the shuttering and made by cement mortar with a 0.4 water to cement ratio. In Figure
2 all the construction stages are reported with a explaining caption for each one. In order to perform a
FEM analysis for detecting in accuracy way the static and seismic global behavior of the real structure
a geometric survey of the scaled prototype was made. All the measures concerning the point of the grid
was associated to x and y coordinates in the plane and z for the height in the vertical plane. All these
geometric and sectional information of each member of the vault was measured using a Leica LASER
DISTO D2 (complying with Standard ISO 16331-1.). An axonometric view of the vault obtained by
geometric survey is reported reported in Figure 3.

4 STATIC AND DYNAMIC ANALYSIS USING MidasGEN ©

In this section, the numerical analysis under static and dynamic loads of the selected vault for the
experimental validation is reported. The accuracy of the adopted modelling strategy will be crucial for
comparison purposes between the numerical model and the experimental one. The entire vault was
modelled adopting 125 beam elements to simulate the structural compression-only membrane state of
the structure. The external boundary constraints are modelled as spherical hinges (see Figure 4). To
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Figure 3: Axonometric view of the 3D Geometrical Model obtained by geometrical survey

(a) (b)

Figure 4: (a) 3D solid model of the vault obtained by MidasGen©. (b) Displacement plot concerning
the critical load configuration corresponding with the last loading step ( Total external load equal to 24
kg)

Table 1: Set-up and results of the numerical analysis

Loading
step

ext. load
[kg]

ext. load/Tot. weight
[%]

Displacement
by numeric analysis
[mm]

Tot. weight
[kg]

1 16 211 0.51 7.59
2 32 422 1.02
3 48 633 1.53
4 64 844 2.04
5 80 1054 2.55
6 96 1265 3.1

perform static analysis, six sequential loading steps were considered and the total load, for each step, is
expressed as percentage of the total weight of the structure as reported in Table 1. The loading procedure
is obtained applying concentrated nodal loads which will be implemented in the experimental model
through water reservoirs. The mechanical properties of the vault and the load patterns (reference to the
Figure 13 in [14] for the application point of loads) are those already described in a previous work of one
of the authors ([36]). Table 1 reports the displacement field for each loading step.
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Table 2: Results of the eigenvalue analysis and modal partecipation masses printout

Mode
Frequency

[Hz]
Transl. - X
[%]

Sum - X
[%]

Transl. - Y
[%]

Sum - Y
[%]

Transl. - Z
[%]

Sum - Z
[%]

1 22.15 34.25 34.25 5.04 5.04 7.08 7.08
2 23.05 10.69 44.94 30.19 35.23 2.56 9.64
3 26.13 1.85 46.78 12.56 47.79 2.87 12.50
4 41.17 7.36 54.14 0.01 47.80 4.34 16.84
5 52.91 0.03 54.17 6.00 53.80 2.08 18.93
6 56.60 0.23 54.40 0.02 53.81 0.96 19.89
7 60.75 1.99 56.39 0.04 53.86 0.79 20.68
8 62.47 1.98 58.37 0.53 54.38 0.03 20.70
9 104.75 0.27 58.64 0.07 54.46 9.22 29.92
10 116.92 2.89 61.53 0.95 55.41 5.51 35.43
11 136.80 2.03 63.56 1.70 57.11 1.23 36.66
12 146.99 2.99 66.55 1.65 58.76 3.88 40.54
13 210.71 0.07 66.62 3.36 62.12 53.16 93.70
14 262.57 0.08 66.70 29.06 95.18 0.04 93.74
15 280.50 28.41 95.11 0.00 95.18 0.62 94.36

In this phase, a Linear Dynamic Analysis with direct integration of the equations of motion has been
performed. Preliminarily, the natural vibration modes of the structure have been computed and the first
15 vibration modes are considered as the more significant. This type analysis is preferred to assess
the seismic effect on a structure when the seismic response of the structure is significantly affected by
superior vibration modes. Moreover, according to the European Standard Regulation, the sum of the
percentage participation mass of the 15 vibration modes, adopted for the analysis, must be higher then
85%. In order to check if the previous requirement is fulfilled by the structure, a Ritz-vector modal
analysis was performed and the first 15 vibration modes are reported in Table 2 for only X, Y and Z
translation vibration mode of the structure. As shown in table 2, the higher modal participation masses
in percentage are reported by mode 1 and 2 for the translation mode along X, Y direction with the
exception of the translation mode along Z in which the higher value is recognized for mode 13. For each
translation and rotation modes the total mass participation obtained as a sum of the participation mass
for each vibration mode is largely higher than 85%.
The seismic input adopted for the numerical analysis is El Centro record (North–south component of
horizontal ground acceleration recorded at the Imperial Valley Irrigation District substation, El Centro,
California, during the Imperial Valley earthquake of May 18, 1940). With the aim to simulate the effect
of the seismic action acting on the scaled-model vault, a scale factor equal to

√
Ls/Lm = 4 (see e.g. [37])

was applied to the unit (Figure 5), where
• Ls is the length in the real structure;
• Lm is the length of the model .

The shaking table that will be used for laboratory experiments is uniaxial and uses two actuators
placed in parallel of electro-mechanical type. Each is capable of developing a peak force of 22 kN.
The vibrating plate is currently under development for the control part, while the mechanical frame is
composed of reinforced steel profiles on which the actuators are installed. Figure 6 shows the 3D model
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(a) (b)

Figure 5: (a) Spectrum Estimate of El Centro record and (b) of the shaking table scale record.

(a) (b)

Figure 6: (a) 3D solid model of the uniaxial shaking table. (b) Shaking table frame in laboratory.

(a) (b)

Figure 7: (a) Displacement Time-History plot of the vault top-target node. (b) Plot of the FFT Spectrum
estimation. It can be observed that the pick value is found in correspondence to the first natural frequency
of the vault calculated by eigenvalue analysis

of the vibrating table design and the frame installed in the laboratory at DISEG of the Politecnico di
Torino (Disaster Resilience Simulation Laboratory - DRSIL).
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5 CONCLUSIONS

In this work, the MRA form-finding approach is adopted and the optimal shape of an only-compression
vault is investigated. Static analysis with successive loading steps and Linear Dynamic Analysis with
direct integration of the equations of motion was performed. Linear static analysis are performed for
different loading levels with the aim to provide a validated FEM model useful for future comparisons
with laboratory results. Subsequently, the dynamic response of the top of the vault in the direction parallel
to the applied ground motion Earthquake component is plotted in either time and frequency domains (see
Figure 7).The frequency domain outcome highlights the first natural vibration frequencies in the range
20-24 Hz accordingly with the results obtained by eigenvalue analysis. The well-know ground motion
adopted for the numerical analysis is El Centro and a scale-factor is applied following the Froude theory.
In future developments, the authors are going to complete the static and dynamic laboratory tests in order
to assess if the form-finding procedure and the modelling strategies adopted are suitable to predict the
seismic response of the scaled-prototype vault.
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