
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Construction of Numerical Models through a Prime Convolutional Approach / Almhaithawi, Doaa; Bertini,
Massimo; Cuomo, Stefano; Panelli, Francesco; Bellini, Alessandro; Cerquitelli, Tania. - ELETTRONICO. - (2023), pp.
2821-2829. (Intervento presentato al convegno European Safety and Reliability Conference (ESREL 2023) tenutosi a
Southampton (UK) nel 3 -7 September 2023) [10.3850/978-981-18-8071-1_P672-cd].

Original

On the Construction of Numerical Models through a Prime Convolutional Approach

Publisher:

Published
DOI:10.3850/978-981-18-8071-1_P672-cd

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982821 since: 2023-10-06T13:23:03Z

Research Publishing, Singapore

Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P672-cd

On the Construction of Numerical Models through a Prime Convolutional Approach

Doaa Almhaithawi∗,1

E-mail: doaa.almhaithawi@polito.it

Massimo Bertini2

E-mail: mbert@mathema.com

Stefano Cuomo2

E-mail: stefano.cuomo@mathema.com

Francesco Panelli∗,3

E-mail: francesco.panelli@mathema.com

Alessandro Bellini2

E-mail: abel@mathema.com

Tania Cerquitelli1

E-mail: tania.cerquitelli@polito.it

∗Corresponding author.
1Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy.
2Mathema, Italy.
3Independent researcher.

Abstract

In this paper we apply neural network models to a set of natural numbers in order to classify the congruence classes
modulo a given integer m ∈ {2, 3, . . . , 10}. We compare the performances of two kinds of architectures and of
several input data representations. It turns out that these tasks are fully solved using a convolutional architecture and
a special representation for the input data that exploits the prime factor decomposition of numbers.

Keywords: Neural Networks, Natural Numbers, Convolutional Networks, Prime Numbers, Congruence Classes

1. Introduction

Neural Networks are a powerful tool in Machine

Learning that has been successfully used in solv-

ing several kinds of problems; the tasks that can

be addressed with them are extremely diverse in

nature and have a wide spectrum of applicabil-

ity that ranges from image recognition to word

generation, medical diagnosis and much more

(cf. de Rosa and Papa (2021),Gatt and Krahmer

(2018), Hu et al. (2019), Li et al. (2020), Liu et al.

(2019), Papastratis et al. (2020), Richardson et al.

(2021), Sarvamangala and Kulkarni (2022)).

In its simplest form, a Neural Network can be

formalized as a composition N = f1 ◦ · · · ◦ fk of

functions fi : R
ni → R

ni+1 , each linking two real

vector spaces. All of these spaces, except for the

first and the last one, are called latent spaces.

Usefulness of Neural Networks comes from

their applicability in all those problems that re-

quire the approximation of an unknown function

φ. This approximation process can be formal-

ized as follows. We consider families of functions

fi,θi : R
ni → R

ni+1 , i = 1, . . . , k, each de-

pending on a set of parameters θi (whose elements

are called weights), and we consider the family

of Neural Networks NΘ = f1,θ1 ◦ · · · ◦ fk,θk
depending on the set of parameters Θ =

⋃k
i=1 θi.

The set Θ is initialized randomly; then, through

a suitable optimization process, called training,

the best set Θ̂ is found so that the corresponding

network NΘ̂ is an acceptable approximation of φ.

In order to be processed by a network N =

f1 ◦ · · · ◦ fk, the input data has to be given a

vector representation; the vectors representing the

input data are then moved by the functions fi from

one latent space to the next one up to the output

space. In each of the latent spaces the dispositions

of the data can be studied geometrically, and the

emerging geometric properties can be compared

with the semantic features. It has been observed in

several papers (cf. Abdal et al. (2019), Fetty et al.

(2020), Giardina et al. (2022), Shen et al. (2020),

2821

2822 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Vaswani et al. (2007)) that in many remarkable

cases and for several kinds of networks there exist

in fact relationships between the two.

This phenomenon is not fully understood yet

and it appears to be rather complex and multi-

faceted. The study of the geometry of the latent

spaces, in particular, is very challenging and has

been carried out in many different ways by many

authors (cf. Arvanitidis et al. (2017), Connor and

Rozell (2020), Donoho and Grimes (2005), Smith

et al. (2019)).

The main problem in relating geometric proper-

ties of the latent spaces with semantic features of

the data relies on the fact that while the former are

objectively determined characteristics of mathe-

matical entities, the latter need not necessarily

be so. Consequently, in many of the situations

analyzed in the literature, understanding whether

it is possible to assign a semantic interpretation to

a geometric parameter − or, conversely, whether

it is possible to characterize a feature of the data

using a geometric parameter − turns out to be a

rather ambiguous task. Furthermore, most of the

examples in this direction usually deal with data

(e.g. images) that possess several features wildly

intertwining with one another, and this makes the

picture still more complex and of difficult inter-

pretation.

In order to overcome these issues, we suggest

the use Neural Networks to address problems re-

lated to a dataset with objective features − a math-

ematical dataset. Our choice falls on the set N of

natural numbers for its intuitiveness, immediacy

and easy implementability. For evident reasons of

finiteness, we take into consideration only the first

one million natural numbers (from 0 to 999 999).

In this paper we train networks so to identify

the congruence classes modulo a given integer

m ∈ {2, 3, . . . , 10}. The networks that we build

have different structures and process input data

with various vector representations. It turns out

that the tasks under consideration are fully solved

using a convolutional architecture and a particular

representation for the input data that exploits the

concept of “Prime Grid”.

The work is organized as follows. In Section 2

we describe the settings of our experiments. In

particular: some modes of vectorial representa-

tion of natural numbers (Subsection 2.1), the ar-

chitectures of the neural networks that we build

(Subsection 2.2), the parameters adopted and the

general functioning of the training process (Sub-

section 2.3). In Section 3 we present the results

of our experiments (cf. also Tables 2, 3 and 4).

Finally, in Section 4 we comment, analyze and

interpret the results.

2. Experiment Setting

2.1. Input Data Representation

Having chosen to work with a dataset of natural

numbers, the first problem to face is how to rep-

resent such numbers so to make them accessible

by a network. In contrast to other kinds of datasets

for which there is a “natural” vector representation

(e.g. images, that may be represented as matrices

of pixels), for natural numbers several equally

pleasurable vector representations are available,

and we shall now briefly describe them.

Given any b ∈ N, b ≥ 2 (called base) it is a

well-known fact from elementary Arithmetic that

every n ∈ N may be uniquely expressed in the

form

n =

k∑

i=0

dib
i (1)

for suitable d0, d1, . . . , dk ∈ {0, 1, . . . , b − 1}
(called digits) and k ∈ N. We can therefore repre-

sent n using the vector

(d0, d1, . . . , dk) ∈ R
k+1

where k = �logb n� and d0, d1, . . . , dk are as in

(1). This will be called the b-adic vector represen-

tation of n.

It is clear that the b-adic representation requires

b distinct symbols to denote the b distinct digits;

for evident computational reasons we shall there-

fore impose the limitations 2 ≤ b ≤ 10 on the

possible values of the base b in our analysis. It

is also clear that the input space for a network

working with our dataset of natural numbers from

0 to 999 999 will be R
N , where

N = 	logb(1 000 000)

2823Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

(a number ranging from N = 6 when b = 10 to

N = 20 when b = 2).

The vector representations described so far de-

pend on the choice of a base b, thus they seem

not to give an intrinsic description of numbers.

This fact suggests to look for a new vector rep-

resentation that, on the contrary, be more closely

related to the arithmetic structure of the set N. We

thus construct a vector representation for natural

numbers based on the concept of “Prime Grid”,

introduced in Kolossváry and Kolossváry (2022).

Let P = {pi | i = 1, 2, . . . } be the sequence

of all prime numbers in ascending order, and call

Prime Grid the set NP of all the infinite sequences

of natural numbers indexed on the set P . Follow-

ing Kolossváry and Kolossváry (2022) we can, in

view of the so-called Fundamental Theorem of

Arithmetic, associate to each n ∈ N an element

(�1, �2, �3 . . .) (2)

of the Prime Grid so that

n =

∞∏

i=1

p�ii . (3)

Observe that (3) is a finite product, since in it

there are only finitely many exponents taking pos-

itive values; the sequence (2) used to identify

the natural number n, called in Kolossváry and

Kolossváry (2022) the prime signature of n, is

therefore eventually zero.

These considerations suggest the possibility of

exploiting the prime signature of numbers to rep-

resent them as vectors: given n ∈ N, we can in

fact cut its prime signature (2) after the k-th entry

if �i = 0 for all i > k, and use the element of

R
k so obtained as a vector representation of n.

This means in particular that our dataset of nat-

ural numbers from 0 to 999 999 can be faithfully

represented by vectors in R
N , where N = 78 498

is the number of primes < 1 000 000. This will be

called the Prime Grid vector representation of the

numbers.

Now, this value N for the dimension of the in-

put space appears excessively big. A quick glance

to the data shows in fact that the prime signatures

of the numbers between 0 and 999 999 are very

sparse sequences with most of the entries equal

to 0 and, furthermore, almost all of their non-zero

entries take only very small values. In order to

make such observations more precise, we conduct

a simple analysis on these prime signatures: for

a few values of p ∈ N we determine how many

natural numbers between 2 and 999 999 can be

factorized using the first p primes only. The re-

Table 1. Number of naturals between 2 and

999 999 that can be factorized with the first p

primes only.

p Number Percentage

100 259 223 ∼ 26%

1000 604 017 ∼ 60%

5 000 785 095 ∼ 79%

sults, shown in Table 1, indicate that about the

80% of them has a prime signature (�1, �2, �3, . . .)

that satisfies �i = 0 for all i > 5 000. This leads us

to reduce our dataset to precisely those numbers

that can be factorized using only the first 5 000

primes. In particular, this means that using the

Prime Grid vector representation the dimension of

the input space is set to N = 5000.

2.2. Architectures

For our experiments we construct networks fol-

lowing two different types of architecture:

• MLP (cf. Figure 1): This is a standard mul-

tilayer perceptron architecture with five fully

connected linear layers, each followed by the

Leaky ReLU function (except for the last one

which is only linear). For the b-adic vector rep-

resentations the dimensions of the layers follow

the scheme:

N → 100 → 50 → 10 → 5 → m (4)

where the input space has dimension

N = 	logb(1 000 000)
.

For the Prime Grid vector representation, whose

input space has a much bigger dimension (N =

5000), we use the following scheme instead:

N → 1000 → 500 → 100 → 50 → m. (5)

2824 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

In both cases, the dimension m of the output

space depends on the task adopted for the train-

ing process.

Fig. 1. MLP architecture

• CNN (cf. Figure 2): This is the standard ar-

chitecture for a convolutional Neural Network

(cf. O’Shea and Nash (2015)). In contrast to

MLP, in this case each element n of the dataset

is organized into a B × N matrix whose rows

contain the vector representations of a sequence

of B consecutive numbers starting with n. This

matrix is then processed in C different chan-

nels, each of which is acted on by a learn-

able k × k kernel. In our model, there are two

convolutional layers, each followed by a max

pooling with a stride of 2. The first one of the

convolutional layers has C = 64 and k = 7,

while the second one has C = 128 and k = 3.

The length B of the sequence of numbers is

set to B = 8 in all of the experiments. After

the convolutional layers there are a flatten layer

and, subsequently, four fully connected linear

layers each followed (with the exception of

the last one) by the Leaky ReLU function. For

the b-adic vector representations the dimensions

of the linear layers are taken according to the

scheme

F → 100 → 50 → 10 → m, (6)

where F is the dimension of the flatten layer

and m is the dimension of the output space.

For the Prime Grid vector representation we use

instead the scheme

F → 1000 → 100 → 10 → m. (7)

Fig. 2. CNN architecture

2.3. Training Process

As mentioned in Section 1, we work with a dataset

of natural numbers so to have the possibility of

dealing with objective features. Among the sev-

eral available choices, we decide to train our net-

works so to identify the congruence classes mod-

ulo a given number m ∈ N.

Recall from the so-called Modular Arithmetic

that, given two integers z1, z2 ∈ Z, we write

z1 ≡ z2 mod m

if and only if m divides the difference z1 − z2; in

this case z1 is said to be congruent to z2 modulo

m. The congruence classes modulo m are the sets

[ρ]m = {ρ+mz | z ∈ Z}, ρ = 0, 1, . . . ,m− 1

and the number ρ ∈ {0, 1, . . . ,m−1} is called the

residue modulo m of the class [ρ]m; evidently an

integer a is in [ρ]m if and only if ρ is the remainder

of the division of a by m.

Let m ∈ N be fixed. We train a network so to

determine, for a given natural number, its residue

modulo m. In order to achieve this goal we select

two disjoint subsets of our dataset D: the training

set Dt and the validation set Dv = D\Dt.

2825Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

The training set Dt consists of r randomly se-

lected disjoint batches B1, . . . , Br, each contain-

ing s elements. The training process is split into t

epochs. During each epoch, for i = 1, . . . , r the

model is applied to the batch Bi, the weights are

optimized accordingly and then the new model is

applied to the batch Bi+1.

In the case of b-adic vector representations, the

values of the parameters r, s and t are chosen

depending on the architecture of the network:

• MLP: we take r = 66, s = 10 000 and t = 60.

In this case the cardinality of Dt is 660 000 so

that it occupies about 2/3 of the whole dataset.

• CNN: we take r = 400, s = 256 and t = 10.

In this case the cardinality of Dt is 102 400 so

that it occupies only 10% of the whole dataset.

The case of the Prime Grid vector representa-

tion is treated differently because of its elevated

computational complexity, and we use r = 400,

s = 256 and t = 10 for both kinds of architec-

tures. In this way the cardinality of Dt is 102 400

so that it occupies only 13% of the whole dataset.

As for the optimization step, in the case of b-

adic vector representations we use and compare

the performances of two different optimization al-

gorithms: the Stochastic Gradient Descend (SGD)

and Adam. It turns out that Adam provides more

accurate results than SGD, therefore in the case of

the Prime Grid vector representation we make use

solely of this optimizer.

Since the task of the training process is a mul-

ticlass classification problem, the function to be

optimized will be the Cross Entropy loss func-

tion. The number of classes to be distinguished

is clearly the modulo, m, and therefore this will

be the dimension of the output space in all the

schemes (4), (5), (6) and (7).

The details of the implementation of both the

optimization algorithms, SGD and Adam, and of

the Cross Entropy loss function can be found in

Paszke et al. (2019).

3. Results

After the training process, the trained model is

validated on the validation set Dv. The results of

these validations are analyzed by calculating the

confusion matrix and the accuracy (cf. Pedregosa

et al. (2011) for the implementation). The results

are collected in Tables 2, 3 and 4.

4. Conclusions

A quick glance to Tables 2 and 3 shows that

the problem of classifying the congruence classes

modulo m is fully resolved when the input data

is processed using the b-adic vector representation

with b = m; a fact appearing not that remarkable

since in this case the rightmost entry of the rep-

resenting vector is precisely m and therefore the

answer to the proposed task is furnished by the

input vector representation itself. This seems to

be essentially the sole situation that the network

is able to handle when the MLP architecture and

the SGD optimizer are used. Indeed, from Table 2

we see that the only cases in which the network

does not make completely random choices are

those in which b divides m, that is, in which we

have m = bc for some c ∈ N. More specifically

analyzing the confusion matrices we observe that

if b and c are powers of the same prime then the

task is solved, otherwise the network correctly

assigns to each number in the validation set its

residue modulo b, but it makes random choices

when allocating the residues modulo c. As an

example, we show the confusion matrices of the

cases b = 2, m = 6 and b = 3, m = 6.

⎛
⎜⎜⎜⎜⎜⎜⎝

21594 0 12193 0 21268 0
0 9767 0 28734 0 16694

21661 0 12099 0 21176 0

0 9928 0 28434 0 16833
21681 0 11958 0 21170 0

0 9619 0 28624 0 16567

⎞
⎟⎟⎟⎟⎟⎟⎠

Confusion Matrix b = 2, m = 6.

⎛
⎜⎜⎜⎜⎜⎜⎝

19750 0 0 35305 0 0
0 18723 5 0 36467 0
0 0 45754 0 0 9182

20225 0 0 34970 0 0
0 18258 5 0 36546 0
0 0 45694 0 0 9116

⎞
⎟⎟⎟⎟⎟⎟⎠

Confusion Matrix b = 3, m = 6.

The situation slightly improves when using the

CNN architecture and the SGD optimizer. In par-

ticular, in this case the network is also able to

2826 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Table 2. Accuracies of the MLP architecture using the b-adic input representation.

Rep. Optimizer Mod 2 Mod 3 Mod 4 Mod 5 Mod 6 Mod 7 Mod 8 Mod 9 Mod 10

2-adic
Adam 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.99 0.98
SGD 1.00 0.33 1.00 0.20 0.33 0.14 1.00 0.11 0.20

3-adic
Adam 1.00 1.00 1.00 0.82 1.00 0.73 0.70 1.00 1.00
SGD 0.50 1.00 0.25 0.20 0.50 0.14 0.12 1.00 0.10

4-adic
Adam 1.00 0.83 1.00 0.98 0.33 0.24 1.00 0.15 0.78
SGD 0.50 0.33 1.00 0.20 0.17 0.14 0.60 0.11 0.10

5-adic
Adam 0.50 0.36 0.46 1.00 0.35 0.92 0.37 0.92 0.50
SGD 0.50 0.33 0.25 1.00 0.17 0.14 0.13 0.11 0.50

6-adic
Adam 1.00 1.00 1.00 0.51 1.00 0.99 0.92 1.00 0.20
SGD 0.67 0.50 0.29 0.20 0.99 0.14 0.14 0.16 0.12

7-adic
Adam 0.50 0.33 0.91 0.78 0.30 1.00 0.99 0.16 0.25
SGD 0.50 0.33 0.25 0.20 0.17 0.98 0.12 0.11 0.10

8-adic
Adam 1.00 0.33 1.00 0.85 0.33 0.31 1.00 0.98 0.20
SGD 0.51 0.33 0.38 0.20 0.18 0.14 1.00 0.12 0.12

9-adic
Adam 0.50 1.00 0.26 0.93 0.50 0.14 0.59 1.00 0.99
SGD 0.50 0.54 0.25 0.20 0.20 0.14 0.13 1.00 0.10

10-adic
Adam 0.80 0.54 0.40 1.00 0.33 0.16 0.30 0.76 1.00
SGD 0.59 0.33 0.29 0.20 0.19 0.14 0.14 0.11 1.00

Table 3. Accuracies of the CNN architecture (B = 8) using the b-adic input representation.

Rep. Optimizer Mod 2 Mod 3 Mod 4 Mod 5 Mod 6 Mod 7 Mod 8 Mod 9 Mod 10

2-adic
Adam 1.00 0.36 1.00 0.22 0.34 0.13 1.00 0.12 0.18
SGD 1.00 0.33 1.00 0.20 0.36 0.15 1.00 0.10 0.20

3-adic
Adam 0.50 1.00 0.26 0.22 0.50 0.13 0.14 1.00 0.10
SGD 0.50 1.00 0.26 0.20 0.50 0.15 0.12 1.00 0.11

4-adic
Adam 1.00 0.35 1.00 0.22 0.34 0.13 1.00 0.11 0.10
SGD 1.00 0.36 1.00 0.20 0.33 0.14 1.00 0.12 0.20

5-adic
Adam 0.50 0.35 0.25 1.00 0.17 0.13 0.10 0.13 0.47
SGD 0.50 0.35 0.24 1.00 0.17 0.13 0.12 0.10 0.50

6-adic
Adam 1.00 1.00 0.60 0.22 1.00 0.15 0.39 0.15 0.16
SGD 1.00 1.00 0.71 0.16 1.00 0.13 0.33 0.54 0.19

7-adic
Adam 0.50 0.36 0.26 0.22 0.17 1.00 0.13 0.13 0.10
SGD 0.51 0.33 0.24 0.19 0.13 1.00 0.14 0.13 0.10

8-adic
Adam 1.00 0.35 0.42 0.22 0.34 0.13 1.00 0.12 0.18
SGD 1.00 0.34 1.00 0.20 0.35 0.13 1.00 0.12 0.22

9-adic
Adam 0.50 0.36 0.26 0.22 0.50 0.13 0.13 1.00 0.10
SGD 0.48 1.00 0.24 0.20 0.52 0.13 0.12 1.00 0.11

10-adic
Adam 0.91 0.36 0.54 1.00 0.17 0.13 0.14 0.13 1.00
SGD 0.93 0.32 0.53 1.00 0.32 0.14 0.26 0.11 1.00

Table 4. Accuracies of the MLP and CNN architectures using the Prime Grid input representation

and the Adam optimezer.

Arch. Mod 2 Mod 3 Mod 4 Mod 5 Mod 6 Mod 7 Mod 8 Mod 9 Mod 10

MLP 1.00 0.76 0.94 0.46 0.86 0.44 0.59 0.37 0.55

CNN

(B = 8)
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2827Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

133820 0 0 130 0 0 0 0 0

6 21410 9104 3 6080 29722 7 33467 5547
2 9253 32568 5 9294 18320 15 25410 10665

137 2 32 84872 0 13 32427 15 4

0 10528 23954 2 18136 14165 10 29745 8329
1 9279 7062 0 2709 50930 12 27542 7792

127 7 22 61215 6 28 55588 19 3

5 13122 7410 1 4375 35692 12 38150 6578
0 7165 16846 0 6352 25402 10 32048 17291

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. Confusion Matrix, Prime Grid, m = 9.

identify the congruence classes modulo m with a

b-adic vector representation of the input data if m

divides b (cf. Table 3).

Tables 2 and 3 also show that the Adam op-

timizer generally behaves better than the SGD

optimizer; there are, however, a few exceptions

when it is used in combination with the CNN

architecture. It is perhaps worth mentioning that

Adam is usually more unstable than SGD: during

the training process the loss function does not

decrease monotonically, but it frequently jumps

up and down making sometimes the convergence

of the network more difficult (cf. Figure 4). For

this reason all the experiments conducted using

this optimizer train the model for t epochs, but

then validate it in correspondence of the one that

presents the minimum value for the loss function.

Fig. 4. Adam optimizer behavior, b = 2, m = 6.

As for the Prime Grid vector representation (cf.

Table 4), when the adopted architecture is the

MLP we observe that the accuracies never reach

very high values, still the choices that the network

makes are not completely random. The analysis

of the confusion matrices suggests the following

pattern:

• If the modulo, m, is a power qk of a prime q,

then the classes are split into groups according

to the exponents of q: for i = 0, 1, . . . , k, group

i contains all the classes that are divisible by

qi but not by qi+1. The classes belonging to

the same group are confused with one another.

As an example, see the confusion matrix in

Figure 3 where we take m = 9 = 32.

• If the modulo, m, is of the form 2q where q is

an odd prime, then class [0]m and class [q]m
are identified correctly, while the others are

split into two groups, those with an odd residue

and those with an even residue. The classes

belonging to the same group are confused with

one another. As an example, see the confusion

matrix of the case m = 6 below.

⎛
⎜⎜⎜⎜⎜⎜⎝

194736 0 48 12 21 0
0 127476 1 0 0 19632
14 0 107181 7 61600 0
12 14 4 172848 1 40
9 6 33259 0 135450 0
0 18789 0 0 0 128840

⎞
⎟⎟⎟⎟⎟⎟⎠

Confusion Matrix, Prime Grid, m = 6.

The most remarkable situation occurs, however,

when the input is processed using the Prime Grid

vector representation and the architecture of the

network is the CNN (cf. Table 4). In this case, in

fact, the network is able to identify correctly all

the congruence classes modulo m, for all m = 2,

3, . . . , 10.

The reason underlying this particularly nice be-

havior appears to be the following. In contrast

to other kinds of input data vector representa-

tions (e.g. the b-adic ones), the Prime Grid vec-

tor representation is able to endow the model

2828 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

with the multiplicative structure of natural num-

bers. This, however, is not sufficient to produce

a network capable of identifying the congruence

classes modulo some m ∈ N (as the first row in

Table 4 shows) since the resolution of this task

requires the comparison of adjacent numbers and

therefore the possibility of analyzing the additive

structure of the set N. In order to overcome this

issue, the choice of the convolutional architecture

has been successful: indeed the input organized

in sequences of B consecutive numbers and the

kernels that move along these sequences allow

the network to learn such an additive structure

and to extract features that globally relate all the

numbers in the sequence rather than considering

them individually.

It is now evident that the length B of the se-

quence of numbers must play a fundamental role

in the subject. Indeed, if B is too small in compar-

ison to m, then the network is expected to exhibit

issues in classifying the congruence classes mod-

ulo m. A complete investigation of this kind of

phenomena goes beyond the scope of this paper,

and it constitutes an interesting subject for further

analysis.

Acknowledgement

This research project has been supported by a Marie
Skłodowska-Curie Innovative Training Network Fel-
lowship of the European Commission’s Horizon 2020
Programme under contract number 955901 CISC.

References
Abdal, R., Y. Qin, and P. Wonka (2019). Im-

age2stylegan: How to embed images into the style-
gan latent space? In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp.
4432–4441.

Arvanitidis, G., L. K. Hansen, and S. Hauberg (2017).
Latent space oddity: on the curvature of deep gener-
ative models. arXiv preprint arXiv:1710.11379.

Connor, M. and C. Rozell (2020). Representing
closed transformation paths in encoded network la-
tent space. In Proceedings of the AAAI Conference
on Artificial Intelligence, Volume 34, pp. 3666–3675.

de Rosa, G. H. and J. P. Papa (2021). A survey on text
generation using generative adversarial networks.
Pattern Recognition 119, 108098.

Donoho, D. L. and C. Grimes (2005). Image manifolds
which are isometric to euclidean space. Journal of
mathematical imaging and vision 23(1), 5–24.

Fetty, L., M. Bylund, P. Kuess, G. Heilemann, T. Ny-
holm, D. Georg, and T. Löfstedt (2020). Latent space
manipulation for high-resolution medical image syn-
thesis via the stylegan. Zeitschrift für Medizinische
Physik 30(4), 305–314.

Gatt, A. and E. Krahmer (2018). Survey of the state
of the art in natural language generation: Core tasks,
applications and evaluation. Journal of Artificial
Intelligence Research 61, 65–170.

Giardina, A., S. S. Paria, and A. Kaustubh (2022). A
naive method to discover directions in the stylegan2
latent space. arXiv preprint arXiv:2203.10373.

Hu, X., P. Ma, Z. Mai, S. Peng, Z. Yang, and L. Wang
(2019). Face hallucination from low quality images
using definition-scalable inference. Pattern Recogni-
tion 94, 110–121.

Kolossváry, I. B. and I. T. Kolossváry (2022). Distance
between natural numbers based on their prime signa-
ture. Journal of Number Theory 234, 120–139.

Li, D., C. Du, and H. He (2020). Semi-supervised cross-
modal image generation with generative adversarial
networks. Pattern Recognition 100, 107085.

Liu, L., H. Zhang, X. Xu, Z. Zhang, and S. Yan (2019).
Collocating clothes with generative adversarial net-
works cosupervised by categories and attributes: a
multidiscriminator framework. IEEE transactions on
neural networks and learning systems 31(9), 3540–
3554.

O’Shea, K. and R. Nash (2015). An introduction
to convolutional neural networks. arXiv preprint
arXiv:1511.08458.

Papastratis, I., K. Dimitropoulos, D. Konstantinidis, and
P. Daras (2020). Continuous sign language recogni-
tion through cross-modal alignment of video and text
embeddings in a joint-latent space. IEEE Access 8,
91170–91180.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala (2019).
Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems 32, pp. 8024–8035. Curran As-
sociates, Inc.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12,
2825–2830.

Richardson, E., Y. Alaluf, O. Patashnik, Y. Nitzan,
Y. Azar, S. Shapiro, and D. Cohen-Or (2021). Encod-
ing in style: a stylegan encoder for image-to-image

2829Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

translation. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp.
2287–2296.

Sarvamangala, D. and R. V. Kulkarni (2022). Convolu-
tional neural networks in medical image understand-
ing: a survey. Evolutionary intelligence 15(1), 1–22.

Shen, Y., C. Yang, X. Tang, and B. Zhou (2020). Inter-
facegan: Interpreting the disentangled face represen-
tation learned by gans. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 2004–2018.

Smith, A. L., D. M. Asta, and C. A. Calder (2019).
The geometry of continuous latent space models for
network data. Statistical science: a review journal of
the Institute of Mathematical Statistics 34(3), 428.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. Gomez, Ł. Kaiser, and I. Polosukhin
(2007). Attention is all you need. in advances in
neural information processing systems. In Proc.
NIPS, pp. 5998–6008.

