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Abstract—Machine Learning, particularly Deep Learning, is
transforming society in any of its fundamental domains - health-
care, culture, finance, transportation, education, just to mention a
few. However Machine Learning suffers from serious weaknesses
in privacy and security due to the large amount of data
(datasets for training and parameters in trained models) and the
probabilistic approximation inherent in any ML function. Multi-
Party Computation (MPC) is a family of techniques and tactic
with a sound scientific and operative base that can be applied to
mitigate some relevant weaknesses of ML. In particular, privacy
in training may be assured by MPC with federated learning
techniques (these may be considered particular interpretations
and implementation of a general MPC method) and also security
in training and inference may be enforced by continuous model
testing using MPC is a technique that allows multiple parties to
evaluate a machine learning model on their private data without
revealing it to each other. This brief paper is a practical and
essential review on how to use MPC to mitigate privacy and
security issues in ML.

I. INTRODUCTION

Machine Learning (ML), particularly Deep Learning, has
an impressive and an unprecedented success in a wide range
of applications encompassing any crucial domain of human
activity such as healthcare [1], , finance [2], retail [3], trans-
portation [4], education [5], entertainment [6], manufacturing
[7]. However ML poses a serious security menace along
the whole life-cycle from dataset, through training, to infer-
ence. Substantially, ML consists of computing the parameters
(weights) of an approximate function by an optimization
process on a dataset. So evident potential surface of attack
is represented by:

• The approximate nature of ML functions can be intrinsi-
cally fooled (it is an approximation);

• Data are pervasive (dataset and parameters) posing both
privacy and security issues;

• The optimization process if only slightly altered may
compromise the generation of the ML approximate func-
tion.

A. Types of Attack on Machine Learning

ML is subjected to several attacks in the training and in the
inference phases. Among the most relevant are:

• Poisoning: Poisoning attacks involve injecting malicious
data into the training dataset in order to cause the ML
model to make incorrect predictions. This can be done
by an attacker who has access to the training data or
by an attacker who is able to influence the data that is
collected by the ML system. This attack is struck against
the dataset to be use for training.

• Adversarial examples: Adversarial examples are inputs
that have been manipulated to cause an ML model
to make incorrect predictions. They can be crafted to
mislead the model, by adding small perturbations to the
input that are imperceptible to humans but cause the
model to fail. This is an inference phase attack.

• Model inversion: Model inversion attacks involve infer-
ring sensitive information about the training data based
on the predictions made by an ML model. This is an
attack executed in inference phase but the object of the
attack is to steal the model parameters computed in the
training phase.
Poisoning may be avoided inhibiting access to the dataset
and/or encrypting the dataset, for instance using HE. The
other two attacks – adversarial examples and model inver-
sion – are very hard to be prevented or totally neutralized
but Multipart Computation (MPC) may mitigate them
quite effectively.

A perfect technique or a set of techniques to solve all the
privacy and security issues inherent to ML is not currently
available but Multi-Party Computing (MPC) seems to be a
general method that pragmatically may mitigate almost any
ML weaknesses. This paper presents how this mitigation can
be attained applying MPC to the training and inference of
ML model. In fact, Multi-party computation (MPC) can be



considered a promising approach to secure ML by enabling
multiple parties to collaborate on a computation without
revealing their private data to each other. MPC allows parties
to jointly compute a function on their private inputs while
preserving the confidentiality of those inputs. This technique
is particularly useful in scenarios where sensitive data is
involved. In this context, this technology can enable a range
of new and valuable services without requiring parties to trust
each other with sensitive data. With the increasing use of ML
and the growing need for secure data sharing, MPC is poised
to become an essential tool in the development of secure ML
based applications.

II. MULTI-PARTY COMPUTING

Multi-Party Computing (MPC) is a method of securely
computing a function or sharing data among multiple parties
without revealing any information about the inputs of the other
parties [8][9] .

This is typically achieved through the use of cryptographic
techniques such as secret sharing [10] and secure multiparty
computation protocols. MPC is typically useful in scenarios
where multiple parties have private data and want to compute
a function on that data without revealing the private data to
any other party. It can be used for a wide range of appli-
cations, such as secure voting systems and secure financial
transactions.

Multi-Party Computing (MPC) can be used also in Machine
Learning to enable multiple parties to collaboratively train a
machine learning model without revealing their private data to
each other.

A. MPC process

The basic process of MPC can be broken down into a few
key steps:

• Input preparation: Each party starts by preparing their
private input, which they want to use as input to the
function. This input may be encrypted using a secure
encryption scheme such as Paillier (partially homorphic
encryption scheme) [11] or ElGamal (asymmetric key
encryption algorithm) [12].

• Secret sharing: The parties then share their inputs using a
technique called secret sharing[10]. Secret sharing allows
a value to be split into multiple shares, such that a
certain threshold of shares is required to reconstruct the
value. This allows the parties to share their inputs without
revealing them to the other parties [13].

• Function evaluation: The parties then jointly evaluate the
function on their shared inputs. This is done by first re-
constructing the inputs from the shares, and then applying
the function. The function evaluation is performed in a
way that preserves the privacy of the inputs, by using
techniques such as garbled circuits or Yao’s protocol.

• Output reconstruction: The parties then reconstruct the
output of the function from the shares. This is done by
combining the shares in a way that allows the output to

Fig. 1. General Architecture of the MPC method

be reconstructed without revealing anything beyond the
output.

• Decryption: The final output of the function is then
decrypted by each party to reveal the final result

In general, an MPC is composed of (Fig.1):
• Input Parties (IP) that own their private data and they do

not trust other IPs;
• Computing Parties (CP) that run their private computa-

tions and interact with other CPs to compute a function
and

• Result Parties that are the recipients of the results com-
puted by CPs and that, in general, are different by IPs.

B. The MPC Protocols

A MPC protocol is the set of messages and data exchanged
among CPs to collaboratively compute a function. MPC pro-
tocols may be very complex and of very different types [14].
Some of the most common ones include:

• Secret Sharing: this protocol allows multiple parties to
share a secret value without revealing it to any individual
party. It can be used for MPC tasks such as secure
function evaluation and secure voting [13].

• Secure Multi-Party Computation (sMPC): this protocol
allows multiple parties to jointly compute a function over
their private inputs without revealing them to each other.
It can be used for tasks such as privacy-preserving data
analysis, secure multi-party decision making and secure
federated learning. In particular, secure federate learning
locally trains a model on their individual data, then client
send the parameters(weights) of their local model to the
server using an encryption scheme which still allows
the server to perform computations on the encrypted
data; the server will compute a weighted average of all
the encrypted weights received from clients, but cannot
discover the original weights for any client. Even if
MPC reveals information only about the final result, in
some scenarios, knowing just the result can be enough
to reveal information about the inputs. One solution is
to applying differential privacy on top of MPC. In the
solution which combines MPC and distributed differential
privacy [15][16] [16], the noisy weights sent to the server,



are also encrypted such that the server can only calculate
the result, and cannot infer anything about even the noisy
weights of any particular user.

• Secure Multi-Party Protocols (sMPP): this protocol al-
lows multiple parties to jointly compute a function over
their private inputs with the help of a third party. It can
be used for tasks such as secure data aggregation, secure
multiparty key generation and secure multiparty machine
learning.

According to [17] there are two practical limitations: (i)
standard protocols require many rounds of communication
over private channels between the parties, which makes them
inadequate for low-end devices and unreliable networks. (ii)
current approaches require a per-party communication that
increases linearly in the circuit size (that increases at least
linearly in the number of parties). Hence, this quadratic factor
quickly becomes a bottleneck for large numbers of parties.
Homomorphic encryption (HE) techniques are well-known
for reducing the communication complexity of MPC[18],
especially in their various threshold and multi-key variants that
we generally refer to as multiparty-HE. Thus, the aodpion of
HE allowed the implementaton of two more protocols:

• Secure Multi-Party Computation with Homomorphic En-
cryption (HE-MPC): this protocol uses Homomorphic
Encryption (HE) to allow computations to be performed
on ciphertext, which encrypts data, rather than on plain-
text. It can be used for tasks such as privacy-preserving
data analysis, secure machine learning, and secure multi-
party decision making.

• Fully Homomorphic Encryption (FHE): this protocol al-
lows arbitrary computations to be performed on ciphertext
without the need for decryption. It is considered the
gold standard for privacy-preserving computation, but
currently, it is less practical for real-world use due to
its high computational cost.

III. HOMOMORPHIC ENCRYPTION

Homomorphic encryption allows computations to be per-
formed on encrypted data without the need to decrypt it first.
This means that sensitive data can be processed without being
exposed, which mitigates the risk of data leakage or theft. By
using homomorphic encryption, parties can perform compu-
tations on encrypted data while preserving its confidentiality,
which is particularly useful in scenarios where data privacy is
a critical concern.

Homomorphic encryption is a form of encryption that
allows computations to be performed on ciphertext, which
are encrypted data, and produce an encrypted result that can
be decrypted to match the result of the same computations
performed on the plaintext, which is unencrypted data. This is
achieved through the use of mathematical operations that are
homomorphic with respect to the encryption scheme being
used.

One common example of homomorphic encryption is using
a scheme based on the RSA algorithm. The RSA algorithm
uses the properties of large prime numbers to encrypt and

decrypt data, and it has a homomorphic property with respect
to multiplication. This means that if two ciphertexts are
multiplied together, the result can be decrypted to reveal the
product of the corresponding plaintexts.

Another example of homomorphic encryption is the Paillier
cryptosystem [19], based on the difficulty of factoring com-
posite integers. The Paillier cryptosystem has a homomorphic
property with respect to addition, meaning that if two cipher-
texts are added together, the result can be decrypted to reveal
the sum of the corresponding plaintexts.

In general, there are two main types of homomorphic
encryption:

• partially homomorphic
• fully homomorphic encryption.
Partially homomorphic encryption allows the execution of a

limited set of operations (e.g. only addition or only multiplica-
tion) on the ciphertext and get a correct result after decrypting
it.

Fully homomorphic encryption [20] allows the execution of
any computation on the ciphertext and get a correct result
after decrypting it. Fully homomorphic encryption is more
powerful than partially homomorphic encryption but also more
computationally expensive [21].

A. Fully homomorphic encryption

Fully homomorphic encryption (FHE) is a type of encryp-
tion that allows for arbitrary computations to be performed on
ciphertext, producing an encrypted result that can be decrypted
to match the result of the same computations performed on
the plaintext. This is a very powerful property, as it allows
for sensitive data to be processed and analyzed without the
need to decrypt it first. One example of a fully homomor-
phic encryption scheme is the fully homomorphic encryption
(FHE) scheme based on lattices, like the Braverman-Gentry-
Vaikuntanathan (BGV) scheme. This scheme uses the proper-
ties of lattices, which are mathematical structures composed
of discrete points, to encrypt and decrypt data. The encryption
algorithm encodes the plaintext into a lattice point, and the
decryption algorithm extracts the plaintext from a lattice point.
The FHE scheme allows for any computation to be performed
on the encrypted data, as long as the computation can be repre-
sented as a sequence of linear operations on the lattice points.
Another example of FHE is the scheme based on circuit, like
the Fully Homomorphic Encryption (FHE) scheme of Gentry-
Halevi-Smart (GHS)[22]. This scheme allows for any circuit
to be evaluated on the ciphertext, which is represented as a
set of gates on the plaintext, and it is decrypted to the result
of the circuit.

IV. ATTACK MITIGATION WITH MPC

In general Multi-Party Computation (MPC) and Homomor-
phic Encryption (HE) [23] is a combination that can be used
together to protect the privacy of data in machine learning
tasks. Some of the ways MPC and HE can be used together
in machine learning include:



• Secure Multi-Party Computation with Homomorphic En-
cryption (HE-MPC): This approach allows multiple par-
ties to jointly compute a machine learning model over
their private data without revealing their data to each
other. The data is encrypted using an HE scheme, and
the computations are performed on the ciphertext using
an MPC protocol.

• Secure Federated Learning with HE: In this approach,
multiple parties encrypt their data using an HE scheme
and then train a machine learning model locally on the
encrypted data. The parties then share the trained models
with each other without revealing their data.

• Secure Distributed Training with HE: This approach
allows multiple parties to jointly train a machine learning
model on their private data without revealing the data
to each other, by using secure multi-party computation
protocols and HE.

• Secure Data Aggregation with HE: This approach allows
multiple parties to share their encrypted data with a
trusted third party, who then aggregates the data and trains
a machine learning model on the aggregate data, without
revealing the individual data of the parties.

• Model inversion may also benefit from a differential
privacy technique, where the parameter values optimized
in the training process (gradient descent) are obfuscated
with Laplacian or Gaussian noise. This is a sort of soft
encryption, weaker but less intrusive than HE, that is ef-
fective at providing a certain degree of data protection. In
order to test the effectiveness of differential privacy tests
are conducted on the trained model by independent multi-
party actors with their “secret recipes” of techniques
and use cases to test if it is possible to infer sensitive
information about the training data based.

• MPC may also be used to make the model more robust
to the adversarial examples attack. In fact robust model
testing using MPC is a technique that allows multiple
parties to evaluate a machine learning model on their
private data without revealing it to each other. This helps
to ensure that the model is accurate and secure, and
reduces the risk of data breaches or malicious actors
manipulating the model’s outputs.

V. SECURE MPC IMPLEMENTATION

There are several librarises and tools available for imple-
menting multi-party computation to secure artificial intelli-
gence. These platforms use a range of cryptographic tech-
niques, including secret-sharing, HE, and garbled circuits, to
ensure that computations are performed securely and without
revealing sensitive data. Even if there are sweveral tools
available online, we avoided to include ptrojects that are
officially disconinuetd as SCALE-MAMBA or

• HElib [24]: HElib is an open-source library for HE,
that provides efficient and optimized implementations of
various homomorphic encryption schemes, such as BGV,
Gentry’s and CKKS. It is written in C++ and provides
a high-level API for users to write their own protocols.

HElib is widely used in both academia and industry and
has been used in several research projects and real-world
applications.

• SEAL[25]: Simple Encrypted Arithmetic Library, is an
open-source library for HE, that provides efficient and
optimized implementations of various HE schemes, such
as BFV. It is written in C++ and provides a high-level API
for users to write their own protocols. SEAL is widely
used in industry and in research projects.

• PALISADE[26]: is another open-source library for HE
that provides implementations of various homomorphic
encryption schemes, such as BFV, CKKS and BGV. It is
written in C++ and provides a high-level API for users
to write their own protocols.

• Sharemind [27]: Sharemind uses a secret-sharing scheme
to distribute data across multiple parties, ensuring that
no single party has access to the full data set. Sharemind
also provides a programming language for implementing
computations in a secure and efficient manner.

• SecureML: SecureML is an MPC platform developed
by Google. It uses a combination of HE and secret-
sharing to enable secure collaborative training of machine
learning models. SecureML is built on top of TensorFlow,
a popular machine learning framework, and provides an
API that allows developers to easily implement secure
computations.

• HE-Transformer [28]: HE-Transformer is an MPC plat-
form developed by Intel. It uses HE to enable secure com-
putation of machine learning models. HE-Transformer is
designed to be compatible with popular machine learning
frameworks such as TensorFlow and PyTorch, making it
easy to integrate into existing workflows.

• ABY [29]: ABY is an MPC platform developed by the
University of California, Berkeley. It uses a combination
of secret-sharing and garbled circuits to enable secure
computation of arbitrary functions. ABY is designed to
be highly scalable, making it suitable for large-scale
computations.

• PySyft[30]: This is a library that provides a framework
for secure and private machine learning. It implements a
wide range of MPC protocols, including secret sharing
and homomorphic encryption, and it can be used in
conjunction with popular machine learning libraries such
as PyTorch and TensorFlow.

• SecureNN[31]: This is a library that provides an imple-
mentation of secure multi-party computation (MPC) for
neural networks. It uses secure aggregation and secure
function evaluation techniques to preserve the privacy of
the inputs and intermediate computations.

• PyMPC: This is a library that provides an implementation
of various MPC protocols, including secret sharing and
homomorphic encryption. It is built on top of the PyTorch
library and allows for the evaluation of circuits on shared
inputs.

• MPyC[32]: This is a library that provides a wide range of
MPC protocols, including secret sharing, homomorphic



encryption, and secure function evaluation. It is written
in Python and it is based on the GMP library for big
number arithmetic. MPyC utilizes secret sharing-based
protocols,including Shamir’s secret sharing, to enable
secure computations among multiple parties.

• EMP-Toolkit[33]: The Efficient Multi-Party Computation
(EMP) Toolkit is a library that implements secure multi-
party computation protocols. It supports both arithmetic
and Boolean circuits and provides efficient implemen-
tations of various cryptographic protocols. The EMP-
Toolkit is designed for high-performance MPC appli-
cations and provides flexible APIs for defining secure
computations.

VI. DISCUSSIONS

From the analysis in I it is possible to highlight some
relevant trends. In particular it is worth to notice that C++ is
mostly used for cryptography. The reasons why modules for
Cryptography as HElib and SEAL are often written in C++
resepct to the modules for MPC that are written in Python,
can be here summarised:

• Performance: C++ is known for its efficiency and low-
level control, making it suitable for implementing com-
putationally intensive tasks like cryptography. C++ al-
lows developers to fine-tune memory management and
optimize code execution, resulting in high-performance
cryptographic operations sidorov2022comprehensive.

• Portability: C++ is a widely supported language across
various platforms and architectures. Cryptographic li-
braries need to be compatible with different operating
systems and hardware configurations. By using C++,
developers can achieve better portability and reach a
broader user base.

• Existing Ecosystem: C++ has a rich ecosystem of li-
braries, tools, and frameworks that can aid in crypto-
graphic development. Many cryptographic algorithms and
protocols have existing C++ implementations, allowing
developers to leverage and integrate them into their
modules easily.

• Low-level Control: Cryptographic algorithms often re-
quire low-level control over memory, data structures, and
hardware features. C++ provides this level of control
through features like manual memory management, direct
hardware access, and inline assembly code, which can
be crucial for implementing secure and efficient crypto-
graphic operations.

• Legacy Considerations: Some cryptographic libraries
have been in development for many years and may have
started in C or C++. Over time, they have evolved and
maintained compatibility with existing codebases, making
it more practical to continue using C++ for consistency
and backward compatibility.

Another major trend identified is related to the open source
approach. Software modules implementing multi-party compu-
tation (MPC) are often open source. Apart the typical reasons

that inspire open source initiatives as fostering collaboration,
innovation and community creation to ensure ongoing main-
tenance and improvement of the software over time, other
specific reasons can be identified as:

• Transparency: MPC protocols are used to enable secure
computations among multiple parties while preserving
privacy. Open source software allows interested parties
to review the source code and understand how the cryp-
tographic protocols are implemented. This transparency
helps build trust by allowing the community to verify the
correctness and security of the implementation.

• Peer Review: Open source projects encourage collab-
oration and peer review from a wide range of ex-
perts. By making the source code accessible, developers
and researchers worldwide can contribute improvements,
identify vulnerabilities, and propose fixes. The collective
effort of the open source community can lead to higher-
quality code and stronger security.

• Adoption and Standardization: By providing open source
implementations, MPC protocols can gain wider adoption
and become de facto standards. This allows different
parties to use compatible software, promoting interoper-
ability and enabling secure computations across different
systems and platforms.

Moreover, all the modules implement APis with security
and privacy features with secret sharing schemes to protect
the privacy of individual inputs by distributing them across
multiple parties.

VII. CONCLUSION

Making ML models that are completely secure is difficult,
as they are designed to process and store large amounts of
data and make predictions based on that data.

This means that there is always some risk of data breaches
or malicious actors manipulating the model’s inputs or outputs.

However, it is possible to reduce these risks by implement-
ing best practices in data protection, such as encryption, secure
storage, access controls and MPC.

MPC enforces the use of secure training procedures and
frequent testing that can help ensure that the model behaves
as intended and is resistant to tampering or attacks.

MPC is still a relatively new area of research, and its
full potential for improving machine learning has yet to be
realized. However, it has the potential to address some of the
key challenges facing ML, such as data privacy and security,
and to enable new applications that were previously impossible
due to data sharing and privacy concerns.

A. Limitations and Challenges

While MPC offers new possibilities for securing AI, it also
has some limitations and challenges. MPC can be compu-
tationally intensive and may require significant resources to
implement. Additionally, the performance of MPC can be
affected by the number of parties involved and the complexity
of the function being computed. Finally, ensuring the security



TABLE I
LIBRARIES EVALUATION

Tool Purpose Domain Programming Language API Available Licence
HElib Homomorphic Encryption Cryptography C++ Yes Open-Source
SEAL Homomorphic Encryption Cryptography C++ Yes Open-Source
PALISADE Homomorphic Encryption Cryptography C++ Yes Open-Source
HE-Transformer Homomorphic Encryption Cryptography Python Yes Open-Source
Sharemind Secure Multi-Party Computation Privacy-Preserving Computation Java, C++ No Proprietary (Cybernetica)

SecureML Machine Learning with Privacy Privacy-Preserving Computation
Machine Learning Python Yes Open-Source

ABY Secure Multi-Party Computation Privacy-Preserving Computation C++ Yes Open-Source

PySyft Privacy-Preserving Machine Learning,
Federated Learning

Privacy-Preserving Computation
Machine Learning Python Yes Open-Source

SecureNN Privacy-Preserving Machine Learning,
Neural Networks

Privacy-Preserving Computation,
Machine Learning Python Yes Open-Source

PyMPC Secure Multi-Party Computation Privacy-Preserving Computation Python Yes Open-Source
MPyC Secure Multi-Party Computation Privacy-Preserving Computation Python Yes Open-Source
EMP-Toolkit Secure Multi-Party Computation Privacy-Preserving Computation Python Yes Open-Source

of the MPC protocol itself is essential, as any vulnerabilities
could compromise the privacy of the data being processed.
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