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Abstract— Early Alzheimer’s disease detection can greatly 
benefit patients, caregivers, and clinicians. Unfortunately, 
current diagnostic procedures are invasive, expensive, and 
not easily portable. To overcome these limitations, microwave 
sensing is emerging as an alternative non-invasive approach 
to distinguish between healthy and pathological conditions, 
based on the variation of permittivity in cerebrospinal fluid in 
Alzheimer’s patients. In this framework, our paper explores 
the use of machine learning applied to microwave sensing 
data, by means of a multilayer perceptron classifier. Different 
architectures have been considered and appraised by relying 
on experimental data collected with controlled experiments 
involving a multi-tissue head phantom that can be filled with 
tissue-mimicking liquids simulating different stages of the 
pathology. The initial results confirm the potential of the 
proposed non-invasive approach to early-stage Alzheimer's 
disease diagnosis. 

Keywords— microwave sensing, machine learning, 
multilayer perceptron, classification, realistic phantom, 
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I. INTRODUCTION 

A. Alzheimer’s Disease 
The World Health Organization estimates that more 

than 55 million people worldwide have dementia. The most 
common form of dementia is Alzheimer’s disease (AD) 
which may contribute to 60-70 % of the cases [1]. AD is a 
progressive neurodegenerative disease whose causes are 
yet to be fully understood, the diagnosis is not currently 
based on a single test, and a lot of effort is put in 

understanding potential causes of dementia [2]. With the 
help of other specialists, physicians use several different 
approaches, including the history of cognitive and 
behavioral changes of the individual, physiological tests, 
and the study of family history to produce a diagnosis. 
Cognitive and physiological symptoms in the early stages 
of AD include memory loss for recent events, depression, 
and apathy. In later stages, patients suffer impaired 
communication, confusion, and behavioral changes, with 
difficulties walking, speaking, and swallowing [2]. The 
cognitive symptoms arise when the illness is already in a 
developed state [3], and early detection of the condition is 
essential both for slowing the course of the disease and for 
offering the person living with dementia more 
opportunities to make decisions about financial and care 
planning. 

The diagnosis is based on the search for AD biomarkers 
in laboratory tests on blood and cerebrospinal fluid (CSF), 
and imaging techniques such as computed tomography 
(CT) scans, positron-emission tomography (PET) and 
functional magnetic resonance imaging (fMRI) to 
investigate the presence of beta-amyloid plaques and tau 
tangles, that are clumps of proteins accumulating in the 
brain of AD patients [4]. 

Imaging techniques such as CT scans and PET 
tomography are considered invasive due to their use of 
ionizing radiation. Similarly, fMRI is expensive and not 
portable. Laboratory tests also have the disadvantage of 



being invasive since the search of AD biomarkers relies on 
the CSF extraction through a lumbar puncture [5]. These 
biomarkers are proteins accumulating in the CSF: amyloid-
beta proteins (Aβ1-40, Aβ1-42), tau and tau-phosphorylated 
[6]. Several studies investigated the correlation between the 
concentrations of these proteins in the CSF and AD [7]-[11] 
and the findings indicate that healthy and pathological 
conditions can be distinguished by the different 
concentrations in the CSF. People suffering from AD 
generally have higher concentrations of Aβ1-40, tau, and tau-
phosphorylated proteins while the concentration of Aβ1-42 
is generally lower.  

B. Microwave Sensing 
Recent studies have shown that concentration variations 

of proteins used as biomarkers are also related to variations 
of the dielectric properties (i.e., permittivity and 
conductivity) of the CSF in the microwave frequency range 
[12], [13]. In particular, the pathological condition is 
related to a decrease in permittivity. These findings open 
the way to the appraisal of AD biomarkers using 
microwave sensing. Thanks to the capability of penetrating 
material bodies, microwaves are indeed capable of non-
invasively sensing the different electromagnetic properties 
of hidden regions, by means of a suitable processing of the 
field backscattered in presence of variations of the tissue 
properties. Such a concept, which has been for instance 
used for stroke detection [14]-[17] and inspection of food 
items [18], [19], is the basis of microwave sensing and 
imaging. Microwave sensing can be suitable for 
pathological CSF detection. The aim is to exploit the 
difference in dielectric properties of human tissues when 
they are illuminated with low-power electromagnetic (EM) 
waves at microwave frequencies, radiated by a set of 
antennas surrounding the tissues. The resulting scattered 
EM waves are recorded by the same sensors and processed 
with suitable algorithms to estimate the corresponding 
dielectric properties. Recent studies investigated the use of 
microwave imaging for AD detection at various stages 
[20], [21] using simulated data and measurements and 
obtaining promising results. They investigated the 
microwave behavior of tissues emulating the presence of 
beta-amyloid plaques and tau tangles in the brain [20] or 
using synthetic data of the physiological changes of the 
brain in AD patients (i.e., brain atrophy) [21]. 

C. Machine Learning Applied to CSF Microwave Sensing  
In this work, we explore the use of microwaves to sense 

the changes in the CSF dielectric properties due to amyloid-
beta accumulation, since these biomarkers of AD disease in 
CSF are the first symptom of the illness, allowing early 
detection. The difference in the scattering phenomena due 
to the difference in the permittivity can allow the 
classification of the CSF as healthy or pathological using a 
binary classifier. Extracting the relevant diagnostic 
information from a remote measurement of CSF is a 
challenging task, due to the non-linear and ill-posed nature 
of the underlying inverse scattering problem. On the other 
hand, an actual assessment of the EM properties values is 
not strictly needed for a diagnosis, being rather more 
important to appraise if the CSF variations sensed by the 

microwave probing signal is diagnostically relevant or not. 
For this reason, in this paper we consider the use of a 
machine-learning based classification approach to perform 
this task. Hence, we propose to use microwave sensing 
technology combined with machine learning (ML) to 
identify these variations of the CSF properties to early 
detect AD non-invasively and using a low-cost and portable 
equipment that could allow any hospital frequent 
acquisitions everywhere with low energy consumption. 

II. METHODS 

A. Measurements Setup 
To have real measurements to train a ML algorithm 

with, we build an anthropomorphic phantom of the human 
head emulating the dielectric behavior of different tissues 
[22]. We use mixtures of rubber and graphite in different 
percentages to mimic the electric behavior of skin, bone, 
fat, white matter, grey matter, cerebellum, and ventricles. 
CSF is realized with a liquid mixture made of Triton X-100, 
water, and salt [23]. To emulate various stages of AD 
severity, we produce five CSFs mimicking compounds. 
The dielectric properties of human tissues are retrieved 
from the IFAC-CNR database [24]. The first CSF has the 
permittivity and conductivity values of the healthy 
condition based on the IFAC-CNR database, for each 
frequency value the difference is less than 1.5 %. 
Pathological CSFs have lower permittivity than healthy 
ones, for this reason to simulate different severities of the 
AD condition we produced compounds with permittivity 
lowered by 7 %, 11 %, 19 %, and 24 % respect to the 
nominal –normal– case changing the ingredients quantities 
accordingly. The liquids permittivity is measured via the 
coaxial probe method aided by the Keysight software suite 
[25] and shown in Fig. 1. The CSFs can be easily inserted 
in the phantom by pouring it in the space between the brain 
and the skull and the phantom can be emptied using a hole 
in the bottom that is opened and closed using a clamp. In 
this way, we can fill and empty the phantom using different 
liquids without altering the phantom itself, creating a 
controlled experiment as shown in Fig. 2. 

To retrieve information about the scattering parameters 
we use a Keysight 4-ports vector network analyzer (VNA) 
obtained using cascaded P9371A and P9375A [26], 
connected to four antennas as shown in Fig. 2 so that each 
antenna acts as transmitter and receiver. The antennas we 
used are circuit-printed low-complexity monopoles, each 
one has a custom layer of dielectric material on top and 
another of a different custom material on the bottom, 
created using a mixture of urethane rubber and graphite 
powder mixture. The bottom layer, in contact with the head, 
has the purpose of reducing the mismatch with the 
phantom, while the top layer is the substrate and supports 
the ground plane. These antennas are flexible to adapt their 
shape and have optimal contact with the object under test 
and have already been used in a previous study [27]. 

  



 

B. Measurements Protocol 
The frequency range chosen for the investigation goes 

from 500 MHz to 6.5 GHz to have a trade-off between 
resolution and penetration depth into the head, as 
penetration is very limited above 6.5 GHz and the 
subarachnoid region has a very small electrical dimension 
below 500 MHz. The objective is to collect a dataset 
suitable for training a binary classification algorithm that 
distinguishes between healthy and AD condition. The 
dataset was built taking 28 measurement subsets in four 
different days. For each measurement subset the phantom 
is filled with the CSF representing the healthy case, then 10 
consecutive measurements of the scattering parameters are 
performed. Then, the phantom is emptied and filled with a 
different CSF, measured 10 times, and the procedure is 
repeated for all the CSFs. Since we have four different 
mixtures representing AD affected CSF and only one 
representing healthy CSF, to have a balanced number of 
healthy and AD representative measurements we also 
performed additional 29 subsets of the healthy case alone. 
The final dataset including all the subsets is composed of 
570 measurements of the CSF representing the healthy case 
and 1120 measurements of the CSF representing the AD 
case (280 measurements for each severity degree).  

Once the measurement phase is completed, we create 
four different training sets to gain insights into how 
different subsets affect the learning process and to check 
how different data distributions affect robustness and 
generalization: 

• Training set 1: measurement sets widely spread 
among all 4 days. 

• Training set 2: measurement sets taken at the 
beginning and at the end of each day. 

• Training set 3: measurement sets of days 1, 2, 4. 

• Training set 4: measurement sets of days 1, 3. 

For each training set, the measurements subsets not used to 
train the algorithm are used to test the classification 
performance. The details of healthy and pathological data 
belonging to each dataset are summarized in Table 1. 

TABLE 1 
TRAINING SETS COMPOSITION 

 
Number of measurements 

Healthy AD Total 

Training set 1 370 480 850 

Training set 2 290 600 890 

Training set 3 430 800 1230 

Training set 4 260 600 860 

 

C. Machine Learning Implementation 
For the classification problem we chose to use 

multilayer perceptron (MLP) for its non-linear modeling 
capabilities and for its robustness [28], [29]. We used three 
different methods of searching for the optimized network 
for our classification purpose:  

• Method 1: We started using a two-layer feed-forward 
network suited for classification problems using a 
MATLAB ML toolbox[30]. We used random data 
division, scaled conjugate gradient as training function 

Fig. 1: Measured relative permittivity values of the compounds used to 
emulate human CSF. Five different compounds are present, one for the 
healthy and four for the pathological case; the dashed line represents the 

reference value used for healthy human CSF [16]. 

Fig. 2: (A) experimental setup; (a): synthetic CSFs; (b) multi-tissue 
phantom representing human head, 4 sensors are placed on one side, the 
phantom can be filled with different compounds and emptied through the 
tube on its bottom that can be opened and closed through a clamp fixed to 

the table; (c) 4-ports VNA; (d) central processing unit. 
(B) phantom details; it is possible to fill using liquids, the port number 

that each sensor is connected to is displayed. 



and cross-entropy error as loss function for 
performance evaluation. We split the training set so 
that 70 % of the data is used as training for the 
algorithm, 15 % is used as validation, and the 
remaining 15 % as testing. Training was performed 
varying the number of neurons in the hidden layer from 
1 to 100, with sigmoid activation function. The second 
layer is the output layer, consisting of one neuron with 
softmax activation function. This method is the one 
with the least number of degrees of freedom and the 
starting point in our hyperparameters exploration. 

• Method 2: Using the same toolbox [30] we performed 
a design space exploration of MLP, varying: the 
number of hidden layers from 1 to 20, the number of 
neurons for each layer from 1 to 40 (all hidden layers 
having the same number of neurons), the maximum 
number of iterations (or epochs) between 150 and 
1000, the learning rate value, the training function 
responsible for updating the network parameters, and 
the perform function (or loss function) used to 
calculate performance during learning. The training 
functions explored are resilient backpropagation, 
scaled conjugate gradient, conjugate gradient with 
Powell/Beale restarts, one step secant, and gradient 
descent. As perform functions we explored cross-
entropy and mean squared error, typically used for 
binary classification problems [31]. The output layer is 
the same as method 1. Random data division was 
always used. 

• Method 3: Some parameters, as the activation 
function of neurons in the hidden and output layers, 
cannot be changed using earlier methods. For this 
reason, we also used python ML development tools 
belonging to the scikit-learn library to get the 
optimized hyperparameters [32]. We implemented the 
GridSeachCV tool to systematically search through a 
set of hyperparameters to find the combination with 
the best performance. The explored parameters are 
hidden layer sizes and maximum number of iterations 
as in method 2, activation function for the hidden layer 
neurons, training function for weight optimization, and 
alpha parameter (strength of the L2 regularization 
term). The explored activation functions are logistic 
sigmoid function, hyperbolic tangent function, and 
rectified linear unit function. Three training functions 
were implemented: limited-memory BFGS [33], 
stochastic gradient descent, and the Adam solver [34]. 
In the case of stochastic gradient descent, the learning 
rate types explored were constant learning rate, inverse 
scaling learning rate that decreases at each time step, 
and adaptive learning rate that is lowered when 
training loss does not decrease by a certain amount for 
two consecutive epochs. The output layer is a neuron 
with logistic sigmoid activation function. 

We applied these three approaches to all training sets, 
all parameters that have not been reference have been left 
at their default value. The optimized number of neurons 
found for each training set using method 1 is shown in 
Table 2. 

TABLE 2 
OPTIMIZED NUMBER OF NEURONS FOR METHOD 1 

 Training 
set 1 

Training  
set 2 

Training  
set 3 

Training  
set 4 

Number 
of neurons 20 20 14 17 

 

The optimized combinations of hyperparameters found 
using method 2 for each training set is shown in Table 3. 
While the optimized combination of hyperparameters 
found using method 3 for each training set is shown in 
Table 4. 

TABLE 3 
OPTIMIZED PARAMETERS FOR METHOD 2 

 Training 
set 1 

Training  
set 2 

Training  
set 3 

Training  
set 4 

Number of 
hidden 
layers 

2 3 3 1 

Neurons 
per hidden 

layer 
30 19 17 19 

Maximum 
iterations 1000 1000 1000 1000 

Learning 
rate value 3×10-4 4.2×10-2 4×10-2 1×10-3 

Training 
function 

One step 
secant 

Scaled 
conjugate 
gradient 

Scaled 
conjugate 
gradient 

Scaled 
conjugate 
gradient 

Peform 
function 

Cross-
entropy 

Mean 
squared 

error 

Mean 
squared 

error 

Cross-
entropy 

 

TABLE 4 
OPTIMIZED PARAMETERS FOR METHOD 3 

 
Training 

set 1 
Training  

set 2 
Training  

set 3 
Training  

set 4 

Number of 
hidden 
layers 

20 10 1 1 

Neurons 
per hidden 

layer 
40 20 19 19 

Maximum 
iterations 1000 1000 1000 1000 

Training 
function LBFGSa LBFGSa SGDb SGDb 

Alpha 
parameter 7.5×10-3 1×10-2 1.5×10-4 1×10-4 

Activation 
function 

Hyperbolic 
tangent 

Hyperbolic 
tangent 

Logistic 
sigmoid 

Logistic 
sigmoid 

a.Limited-memory BFGS [34]. 
b.Stochastic gradient descent with adaptive learning rate. 

 



III. PRELIMINARY RESULTS AND DISCUSSION 
The accuracy scores of all datasets are shown in Table 

5. All methods applied to all datasets produce high 
accuracy scores. The highest accuracy is obtained using 
training set 4, with all methods reaching over 90 % 
accuracy on test data. The classification results of training 
set 4 on test data using the three methods are shown in 
Table 6. Training set 4, that includes only 2 days out of 4 
and has the lowest number of healthy subjects, gave the 
best results in terms of classification on data that was not 
part of the training set. Moreover, all data used for testing 
is from different days than the measurements used for 
training. The best network architecture for this training set 
always had a single hidden layer. Method 3 applied to 
training set 1, however, gives similar results using a 
different hidden layer configuration and a different 
activation function for the hidden layer neurons, and this 
may indicate that the decision boundaries of the problem 
are relatively smooth. 
 

TABLE 5 
CLASSIFICATION RESULTS ON ALL TRAINING SETS 

 

TABLE 6 
CLASSIFICATION RESULTS ON TEST DATA USING TRAINING SET 4 

 

IV. CONCLUSION AND PERSPECTIVES 
In this paper, we presented a novel approach to early 

non-invasive AD detection using ML classification of 
microwave sensing data. In particular, the binary 
classification (presence of the pathology or not) is based on 
difference in the measured scattering parameters due to the 
lower permittivity of pathological CSF. We gathered 
measurements using a realistic phantom and we trained 
several classifiers. The best network obtained in terms of 

accuracy on test data classification was a multilayer 
perceptron with a single hidden layer, trained using data 
collected during two of the four days of measurements and 
it reached a classification accuracy of 90.8 % when given 
as input all data belonging to the remaining two days. 

One of the next steps will be improving the 
measurements quality. This improvement can be achieved 
in many ways, for example increasing the number of 
antennas and increasing the number of performed 
measurement sets. With a larger data pool, it is also 
possible to try a multiclass classification to distinguish the 
AD severity. To improve ML we can implement a different 
algorithm such as a convolutional neural network and we 
can also enlarge the search space of hyperparameters 
during the tuning phase. 
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