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Abstract—Shapley Values are established concepts used to
explain local and global contribution of individual features to
the prediction of AI models. Currently, global Shapley-based
explainers do not consider the co-occurrences of feature-value
pairs in the analyzed data. This paper proposes a novel approach
to leverage the High-Utility Itemset Mining framework to jointly
consider Shapley-based feature-level contributions and feature-
value pair co-occurrences. The results achieved on benchmark
datasets show that the extracted patterns provide actionable
knowledge, complementary to those of global Shapley Values.

Index Terms—Explainable AI, Global Explainer, High-Utility
Itemset Mining, Model-based Explainability

I. INTRODUCTION

The diffusion of AI models has recently fostered the demand
of opening the AI black boxes [1]. Shapley Values [2] (SVs)
are concepts from cooperative game theory that are established
in explainable AI. They can be used to quantify the contribu-
tion of a given feature to both local and global class label
predictions. However, global Shapley-based explainers [3] do
not consider the conjunction of feature-value pairs, providing
feature-level descriptions rather than pattern-level ones.

High-Utility Itemsets [4] (HUIs) are descriptive patterns
representing recurrent conjunctions of highly valued items in
a transactional dataset. In this paper we propose to leverage
HUIs to provide end-users with global model explanations
incorporating instance-level item co-occurrences. To this end,
we define the concepts of item as a feature:value pair and
utility of a feature within a given instance as the corresponding
SV. In such a way, a HUI represents a conjunction of feature-
value pairs where the contribution of the involved features
is averagely high. Thus, the utility of the HUI incorporates
both feature- and pattern-level relevance providing information
complementary to global SVs [3].

We propose GX-HUI, a Global AI model eXplainer lever-
aging the High-Utility Itemset Mining framework [4]. It relies
on a model-based SV approximation [5] producing real-time
SV estimates based on Neural Network model. The per-
class descriptors consist of a shortlist of HUIs capturing both
feature- and pattern-level contributions.
Motivating example. Figure 1 shows the top-20 HUIs ex-
tracted from the Monks dataset [6] separately for each class.

For example, the HUI {a5:1} indicates that feature a5 takes
value 1 with a relevantly high contribution to class positive.
Similarly, HUI {a5:1,a3:2} describes a conjunction of items
associated with highly valued features. Notice that, unlike in
traditional Shapley-based models, a highly influential feature
could be under-represented or even neglected by the HUI
model as none of its feature-value combinations is deemed
as sufficiently influential. For example, according to the plots
shown in Figure 2 feature a4 is missing in the top HUIs for
class negative whereas its global SVs are above zero for both
classes and comparable in magnitude to those of feature a6.
Conversely, for the class positive feature a4 appears to be as
much relevant as all the other features because most of the
top-k itemsets include it. Therefore, the pattern-level analysis
provides information complementary to the established global
Shapley-based models as could reveal interesting occurrence-
level correlations neglected by global explainers. The main
paper contributions are summarized below.

• We leverage the HUI Mining framework to generate
global Shapley-based AI model explanations.

• We present GX-HUI, a global explainer integrating both
efficient SV approximation and HUI mining.

• We evaluate the proposed approach on 4 UCI [6] bench-
mark datasets, highlighting patterns that cannot be easily
identified by relying on Global SVs [3] solely.

II. ESTIMATING THE SHAPLEY VALUES

The Shapley value [2] is a solution concept in cooperative
game theory that assigns a value to each player in a cooperative
game based on the contribution to the total payoff of the group.
Formally speaking, the SV for a player i in a cooperative
game with a set N of players and a characteristic function
v : 2N → R is defined as follows:

ϕ(i) =
∑

S⊆N\i

|S|! (|N |−|S|−1)!

|N |!
[v(S ∪ i)− v(S)]

where the sum is over all possible subsets S of players that
do not contain player i. The term v(S ∪ i) − v(S), hereafter
denoted by ∆(S, i), is the marginal contribution of player i to
the coalition S.



(a) Class Positive (b) Class Negative

Fig. 1: Top-20 HUIs extracted from the Monks dataset

The SV satisfies the following axioms, ensuring fairness and
a reasonable division of the total payoff among the players:

• Efficiency:
∑

i∈N ϕi = v(N).
• Symmetry: ∀S ⊆ N,∆(S, i) = ∆(S, j), then ϕi = ϕj .
• Linearity: ϕv1+v2(i) = ϕv1(i) + ϕv2(i).
• Dummy player: ∀S ⊆ N, v(S ∪ i) = v(S), then ϕi = 0.
Our goal is to exploit the SVs associated with local predic-

tions to generate global explanations of the predictor. Hence,
similar to [3], we leverage the linearity axiom to produce a
linear combination of the local per-instance SV estimates.

A. Computational approaches

Computing the SVs in a real-world scenario is challenging.
The main approaches to SV computation can be classified as
stochastic estimators or model-specific approximations.

a) Stochastic estimators: These models (e.g., [3], [7])
rely either on sampling or generating permutations of the
input features. As a drawback, to achieve good accuracy
performance they require high computational times.

b) Model-specific approximations: these explainers are
mainly based on decision trees (e.g., [8]) or Neural Net-
works (e.g., [9]–[11]). They are commonly more efficient than
stochastic approaches but require ad hoc model evaluations
to configure the model parameters. In the present work we

rely on a state-of-the-art model-based approach, namely Fast-
SHAP [5].

c) FastSHAP: [5] performs real-time estimations of
the SVs. It exploits a surrogate model, that simulates the
original model to be explained by considering different subsets
of features, Based on the outputs of the surrogate model,
FastSHAP returns the SV approximation in a single-forward
pass by minimizing the difference between the surrogate model
output and the local normalized output.

B. Evaluation of the Shapley Value estimates

The main strategies to assess the quality of SV estimates
are application-grounded, human-grounded, and functional-
grounded evaluation [12], our focus as it does not require a
human judgment. Explanation models can be further split in:

• Model-based explanations: the model itself is used as an
explanation (e.g. a decision tree) or a more interpretable
model is generated.

• Attribution-based explanations: it relies on a measure
(e.g. feature importance) of the quality of the explanation.

• Example-based explanations: it explains a model by
selecting specific data instances.

In this work we define specific model-based explainers using
the HUI mining framework (see Section IV for further details).

(a) Estimated Shapley Values (b) Average utility

Fig. 2: Comparison between per Average utility and Shapley Value estimates for each feature and class of the Monks dataset



We also report a comparison with the Mutual Information,
which is commonly used to explain model fidelity [13].

III. HIGH-UTILITY ITEMSET MINING

High-utility Itemset miners are unsupervised algorithms
aimed at extracting highly valued patterns, called High-Utility
Itemsets, from a transactional database [14].

a) Data model: Let D = {T1, T2, . . . , Tn} be a transac-
tional database, where each transaction Ti is a set of distinct
items Ti = {x1, x2, . . . , xk, . . . , xm}∈ X . From now on, we
will focus on structured data where each item xk consists of
a feature-value pair feature:value. Given a transaction Ti,
each item xk ∈ Ti is characterized a internal utility Q(xk, Ti)
quantifying its local value. Each item can be also associated
with an external utility P (xk, D), indicating a global influence
value. The absolute utility of an item xk in a transaction Ti

is denoted as u(xk, Ti)=P (xk, D)·Q(xk, Ti).
b) HUI mining: An itemset I is a set of arbitrary items in

X such that each item in I corresponds to a different feature.
The utility uI of itemset I in a given transaction Ti ∈ D is
defined as the sum of the absolute utilities of its items xk ∈ I:

u(I, Ti) =
∑
xk∈I

u(xk, Ti)

Analogously, the total utility of I in the entire dataset D,
u(I , D)=

∑
Ti∈D u(I, Ti), is the sum of the corresponding per-

transaction utilities. If the total utility of I is above an user-
specified treshold thr (i.e., u(I , D)> thr) then I is a HUI.
Given a transactional database D and an absolute threshold
thr, HUI mining entails extracting all the HUIs in D.

c) Implementation: To efficiently extract HUIs we apply
the Enhanced Frequent Itemset Mining algorithm (EFIM) [15].

IV. GX-HUI

The presented method, namely Global eXplainer based on
High-Utility Itemsets (GX-HUI) produces global explanations
consisting of HUIs. Algorithm 1 enumerates the main steps.

Let D be the dataset under consideration and M be the
AI model to be explained. Our goal is to explain the pre-
dictions made by M on transactions Ti ∈ D. Rather than
explaining each local prediction, we aim at collecting a global
descriptions of the AI model consisting of the HUIs extracted
separately from each class. For the sake of simplicity, we will
focus on explaining a binary classification model M predicting
either the positive (+) or the negative class (−). The multiclass
case can be straightforwardly modeled by picking each class.

The GX-HUI method extracts for each class the top-k HUI
in order of decreasing total utility (where k is a user-specified
parameter). To leverage the SV approximations, we compare
the class labels assigned by M to each transaction Ti ∈ D with
those available in the training set (i.e., the ground truth). Then,
we split the transactions in D into the positive and negative
subsets D+ and D−, respectively, and define the utilities of
an item xk as the corresponding SV estimates:

u(xk,D+) = ϕ+
k ; u(xk,D−) = ϕ−

k (1)

Algorithm 1 GX-HUI pseudo-code

Require: Dataset D, Model M , predictions Pr, Mininum
utility threshold thr

1: Φ = Shapley-Value-Estimate(D, M , Pr)
2: S = ComputeMutualInformation(Φ, Pr)
3: for class in D do
4: Dclass,Φclass= Data-Model(D, Φ)
5: HUIclass = HUI-Mining(Dclass,Φclass, thr)
6: S = S ∪ ComputeHUIMetrics(HUIclass, Φclass)
7: end for
8: return Statistics S

a) HUI model descriptors: We describe the GX-HUI
explanations according to the following statistics derived from
the HUI model.

• Feature Coverage (FCi): percentage of top-k HUIs in-
cluding feature i, i.e. FCi = frequency(i)

k . It quantifies
the pattern-level relevance of feature i.

• Top-k Average utility (AvgUtilki ): average of the absolute
of the estimated SVs1 over the top-k HUIs. Let HUI1, . . .
, HUIk be the the top-k HUIs and let Hi be the set of top-
k HUIs containing feature i, the top-k Average utility is

defined by AvgUtilki =
∑

HUIj∈Hi u(HUIj ,D)

|Hi| . It indicates
the pattern-based importance of feature i in the top-k
HUIs involving both single items and item conjunctions.

• Item Average utility (AvgUtilitemi ): average of the ab-
solute of the estimated SVs1 over the high-utility single
items. It indicates the pattern-based importance of feature
i in the top-k HUIs involving only single items (thus
disregarding any item conjunction). Let HUI1, . . . , HUIn
be the all HUIs and let Hi be the set of HUIs containing
feature i and with size one, the item average utility is

defined by AvgUtilitemi =
∑

HUIj∈Hi u(HUIj ,D)

|Hi| .
• Domain Coverage (DCi): given a feature i, it indicates

the percentage of items xi that occur in the top-k HUIs.
Hereafter, we will also consider the Mutual Information

(MI) between SVs and the class [13] as a baseline indicator.

V. EXPERIMENTS

In this section we analyze the outcomes of GX-HUI on 4
UCI [6] tabular datasets suitable for HUI applications: Monks,
WBC, Hearth and Census. We compare the derived HUI
statistics with the established Global SVs [3].

A. Experimental design

The experiments were run on machines equipped with an
Intel Xeon Gold 6140 and Nvidia Tesla T4.

To estimate the SVs we used the implementation of Fast-
SHAP provided by [5]. To extract HUIs we used the im-
plementation of the EFIM algorithm [15] available in the
SPMF library [16]. To make integer utility values and real SVs
compatible, we rounded the latter up to the 5th decimal digit

1We consider the magnitude of the SV and neglect the sign.



and then multiplied by α = 105. All the computed itemset
utilities were normalized accordingly.

We tested various configurations for the k parameter in-
dicating the number of top-k HUIs included in the global
explanations. As representative k values, we tested 20, 50,
100 and 1000. Considering too low or too large numbers of
HUIs is deemed as weakly informative and hard to manage by
human experts, respectively. To extract a comparable number
of itemsets across different datasets and classes and to limit
computational time we set the utility threshold to 1 for Monks
and WBC, 5 · 104 for Hearth and 4 · 105 for Census.

Feature MI AU+ Pv+ FC+ AU− Pv− FC−

MONKS
a1 ↑ ↑ ✕ 0.25±0.0 ↑ 0.45±0.0
a2 ↑ ↑ ✕ 0.35±0.0 ↑ 0.45±0.0
a3 ∼ ∼ ✕ 0.3±0.0 ∼ ✕ 0.1±0.0
a4 ∼ ∼ ✕ 0.15±0.0 ∼ - 0±0
a5 ↑ ↑ 0.8±0.0 ↑ 0.59±0.03
a6 ∼ ∼ ✕ 0.25±0.0 ∼ - 0.05±0.0

WBC
ClThick ∼ ∼ - 0±0 ↑ ✕ 0.21±0.02
UCSize ↑ ∼ ✕ 1.0±0.0 ∼ ✕ 0.19±0.02

UCShape ↑ ↑ ✕ 0.79±0.07 ↑ ✕ 0.2±0.06
MargAdh ↑ ∼ ✕ 0.52±0.11 ∼ - 0.08±0.03
EpCSize ∼ ∼ ✕ 0.57±0.12 ∼ - 0±0
BareNucl ↑ ↑ ✕ 0.89±0.05 ↑ ✕ 0.61±0.05
BlChrom ∼ ∼ - 0±0 ↑ ✕ 0.18±0.05

NormNucl ↑ ∼ ✕ 0.7±0.06 ↑ ✕ 0.14±0.02
Mitoses ↑ ∼ ✕ 0.65±0.09 ∼ ✕ 0.26±0.02

HEART
age ∼ ∼ - 0±0 ∼ - 0±0
sex ↑ ∼ ✕ 0.47±0.03 ∼ ✕ 0.39±0.02

cstPain ∼ ↑ ✕ 1.0±0.0 ↑ - 0±0
bldPress ↑ ∼ - 0±0 ∼ - 0±0
serChol ∼ ∼ - 0±0 ∼ - 0±0
fBldSug ∼ ∼ - 0.39±0.02 ∼ - 0.45±0.04
rstEleRes ∼ ∼ ✕ 0.16±0.02 ∼ - 0±0
maxHRate ∼ ↑ - 0±0 ∼ - 0±0
exIndAng ↑ ↑ ✕ 0.64±0.02 ∼ ✕ 0.45±0.04
oldpeak ∼ ∼ - 0±0 ∼ - 0±0

slope ↑ ∼ - 0.1±0.04 ∼ ✕ 0.21±0.02
majVess ∼ ↑ - 0±0 ↑ ✕ 0.91±0.07

thal ↑ ↑ ✕ 0.44±0.02 ↑ ✕ 0.69±0.06

CENSUS
Age ∼ ∼ - 0±0 ∼ - 0±0

Wclass ∼ ∼ - 0±0 ∼ - 0±0
Ed-Num ∼ ↑ - 0±0 ↑ - 0±0
MarStat ∼ ∼ ✕ 1.0±0.0 ↑ ✕ 1.0±0.0
Occup ∼ ∼ - 0±0 ∼ - 0±0

Rel ∼ ↑ ✕ 1.0±0.0 ↑ ✕ 1.0±0.0
Race ∼ ∼ ✕ 0.45±0.0 ∼ ✕ 0.5±0.0
Sex ↑ ∼ ✕ 0.8±0.0 ∼ ✕ 0.7±0.0

CapGain ↑ ↑ ✕ 0.6±0.0 ∼ ✕ 0.7±0.0
CapLoss ↑ ∼ ✕ 0.45±0.0 ∼ ✕ 0.6±0.0
Hweek ∼ ∼ - 0±0 ∼ - 0±0
Country ↑ ∼ ✕ 0.45±0.0 ∼ ✕ 0.4±0.0

TABLE I: Feature- and pattern-level statistics. Significance t-
test level: above 95%. − means not applicable/not succeeded
↑ means high value, ∼ indicates other values.

B. Comparison between Mutual Information and Average
Utility statistics

Table I reports the main statistics collected on the datasets.
The MI is one the indicators that are most established for
evaluating the consistency of the SV estimates with the class
labels [13]. For example, for Monks features a1, a2, and a5
have maximal MI as they are the most discriminating ones to
assign the class label. The per-class average utilities computed
on top of the HUIs confirm the prior knowledge.

Columns Pv− and Pv+ respectively report the average p-
values2 of the two-tailed t-test of independence between the
top-20 Average utility and Item Average utility. Overall, all
tests are executed on AvgUtilki and AvgUtilitemi . Their cor-
relation shows how highly contributing features are indirectly
influenced by the presence of other features in the top-k HUIs.
Such an insight is not directly derivable from classical Shapley
models as they neglect item co-occurrences. The outcomes of
t-test achieved on Monks indicate the presence of a correlation
for the feature a5 and the positive class. This is confirmed by
a deeper exploration of the Global SVs (see Figure 2), where
the predominance of a5 compared to a1 and a2 is evident.
By construction, in the Monks dataset when feature a5 takes
value one then the class is always positive. Feature a5 is the
only feature directly influencing the class positive regardless
of the presence of other associated items. Conversely, when
features a1 and a2 take the same value they jointly determine
the class label positive but they are discriminating while
considered one at a time. Thus, the latter can be deemed
as a weaker relationship between a specific feature and a
class label. While setting k to 20, the t-tests succeed only
on Monks, likely because the dataset contains relatively few
rows and features and considering just a small value of HUIs
is adequate. Conversely, as discussed in Section V-C, on larger
datasets a larger number of HUIs is required.

C. Effect of K

The number k of selected HUIs has a relevant impact on the
selectivity of the global explainer. Specifically, Table II reports
the feature coverage and p-values separately for each dataset
and for various values of k. While considering relatively small
itemset-based models (e.g., 20) the selectivity of the model is
quite high thus identifying only a limited subset of high-valued
features. Conversely, by increasing the value of k the statistics
also include less valued patterns thus the outcomes are much
similar to those of existing global explainers (e.g., [3]). The
correlation between Item Average utility and Average utility
is also influenced by the number of considered HUIs. The
larger k the higher the influence of relatively low-utility items
contributing to low-ranked HUIs. For example, by setting k to
50 on the Monks dataset the trends of the considered statistics
appear to be divergent, indicating an anomalous trend likely
due to an improper setting of parameter k. We recommend
end-users to set the value of k to 20 on relatively small
datasets (i.e., few hundreds of rows), whereas setting k to

2computed over several repeated runs to get reliable estimates.



Feature Pv+ FC+ Pv− FC− Pv+ FC+ Pv− FC− Pv+ FC+ Pv− FC− Pv+ FC+ Pv− FC−

Monks

TopK=20 TopK=50 TopK=100 TopK=1000

a1 ✕ 0.25±0.0 0.45±0.0 0.35±0.01 0.46±0.01 0.42±0.01 ✕ 0.47±0.01 ✕ 0.57±0.006 ✕ 0.54±0.002
a2 ✕ 0.35±0.0 0.45±0.0 0.42±0.0 0.52±0.01 0.55±0.01 ✕ 0.56±0.02 ✕ 0.67±0.004 ✕ 0.65±0.002
a3 ✕ 0.3±0.0 ✕ 0.10±0.0 ✕ 0.34±0.0 ✕ 0.26±0.02 ✕ 0.37±0.01 ✕ 0.33±0.01 0.59±0.002 0.60±0.002
a4 ✕ 0.15±0.0 - 0±0 ✕ 0.18±0.01 - 0±0 ✕ 0.31±0.01 ✕ 0.07±0.01 0.63±0.001 0.65±0.000
a5 0.8±0.0 0.59±0.03 0.82±0.01 0.58±0.01 0.73±0.0 ✕ 0.58±0.02 ✕ 0.75±0.004 ✕ 0.70±0.001
a6 ✕ 0.25±0.0 - 0.05±0.0 ✕ 0.40±0.01 ✕ 0.18±0.0 ✕ 0.36±0.01 ✕ 0.28±0.01 0.57±0.002 0.58±0.001

WBC

TopK=20 TopK=50 TopK=100 TopK=1000

ClumpThick - 0±0 ✕ 0.22±0.03 - 0±0 ✕ 0.31±0.01 - 0±0 ✕ 0.29±0.01 ✕ 0.48±0.01 0.41±0.03
UCellSize ✕ 1.0±0.0 ✕ 0.19±0.02 ✕ 0.88±0.05 ✕ 0.30±0.02 ✕ 0.59±0.02 ✕ 0.32±0.01 ✕ 0.56±0.01 0.46±0.01

UCellShape ✕ 0.80±0.08 ✕ 0.2±0.06 ✕ 0.69±0.04 ✕ 0.32±0.02 ✕ 0.58±0.01 ✕ 0.33±0.01 ✕ 0.54±0.01 0.45±0.01
MargAdhes ✕ 0.52±0.11 - 0.09±0.02 ✕ 0.53±0.05 ✕ 0.20±0.02 ✕ 0.53±0.02 ✕ 0.22±0.01 ✕ 0.50±0.01 0.37±0.01
EpCellSize ✕ 0.57±0.12 - 0±0 ✕ 0.56±0.07 - 0.02±0.03 ✕ 0.54±0.02 ✕ 0.08±0.01 ✕ 0.51±0.01 ✕ 0.31±0.01
BareNuclei ✕ 0.89±0.05 ✕ 0.63±0.02 ✕ 0.71±0.02 ✕ 0.58±0.02 ✕ 0.60±0.01 0.69±0.01 ✕ 0.55±0.01 0.69±0.03

BlandChrom - 0±0 ✕ 0.17±0.03 - 0±0 ✕ 0.20±0.01 - 0±0 ✕ 0.22±0.01 ✕ 0.58±0.01 0.45±0.03
NormalNucl ✕ 0.7±0.06 ✕ 0.13±0.03 ✕ 0.61±0.07 ✕ 0.17±0.03 ✕ 0.55±0.01 ✕ 0.17±0.01 ✕ 0.52±0.01 0.37±0.01

Mitoses ✕ 0.66±0.10 ✕ 0.22±0.03 ✕ 0.56±0.06 ✕ 0.22±0.0 ✕ 0.54±0.02 ✕ 0.26±0.01 ✕ 0.52±0.01 ✕ 0.41±0.01

Heart

TopK=20 TopK=50 TopK=100 TopK=1000

age - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0.008±0.003 - 0±0
sex ✕ 0.47±0.03 ✕ 0.39±0.03 ✕ 0.49±0.01 ✕ 0.34±0.01 ✕ 0.53±0.02 ✕ 0.36±0.02 0.51±0.007 0.51±0.005

chestPain ✕ 1.0±0.0 - 0±0 ✕ 0.88±0.02 ✕ 0.12±0.02 ✕ 0.72±0.02 ✕ 0.14±0.01 0.62±0.01 0.47±0.01
bloodPress - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0.04±0.002 - 0.001±0.001
serumCholl - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0±0
fBloodSug - 0.39±0.03 - 0.45±0.04 - 0.40±0.02 - 0.47±0.04 - 0.44±0.01 - 0.47±0.01 - 0.48±0.01 - 0.46±0.004
ElectrRe ✕ 0.16±0.03 - 0±0 ✕ 0.37±0.01 ✕ 0.09±0.03 ✕ 0.40±0.01 ✕ 0.14±0.01 0.43±0.01 ✕ 0.42±0.005

MHeartRate - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0±0 - 0±0
exerIndAng ✕ 0.64±0.03 ✕ 0.45±0.04 - 0.54±0.02 ✕ 0.38±0.02 ✕ 0.55±0.02 ✕ 0.43±0.02 0.49±0.005 0.49±0.005

oldpeak - 0±0 - 0±0 - 0±0 - 0.03±0.01 - 0±0 - 0.10±0.01 - 0.10±0.008 - 0.28±0.001
slope ✕ 0.13±0.04 ✕ 0.21±0.03 ✕ 0.30±0.02 ✕ 0.24±0.07 ✕ 0.44±0.02 ✕ 0.36±0.01 0.47±0.005 0.48±0.01

majorVess - 0±0 ✕ 0.92±0.07 - 0±0 ✕ 0.81±0.08 ✕ 0.09±0.02 ✕ 0.80±0.03 0.55±0.002 0.61±0.01
thal ✕ 0.44±0.03 ✕ 0.69±0.07 ✕ 0.42±0.02 ✕ 0.59±0.07 ✕ 0.51±0.02 0.67±0.04 0.58±0.004 0.58±0.01

TABLE II: P-values varying k. Monks, WBC, and Hearth datasets. − means not applicable/ succeeded.

1000 on datasets consisting of thousands of rows. Due to space
limitations and similar results w.r.t. Heart, results on Census
are neglected in Table II and Figure 3.

D. Comparison between feature and domain coverage

Figure 3 shows how the domain coverage values vary across
datasets, features, and number k of shortlisted HUIs. On most
of the analyzed datasets few items are predominant and tend to
over-influence the pattern utility. For example, on most of the
features of the Heart dataset the feature coverage is quite high
whereas the domain coverage quite low (see Figure 3). This
is due to the fact that some item combinations are biased by
the presence of (few) highly valued items. More specifically,
when the feature coverage is high, that specific feature likely
appears in most of the HUIs. Whether the domain coverage
of the same feature is low it is a strong clue of the presence
of highly valued items in the HUI shortlist.

VI. CONCLUSIONS AND FUTURE WORK

The paper presented a global AI model explainer that
combines the SVs and the HUI Mining framework. The global
model consists of HUIs providing pattern-level view of the

most contributing features and items. The experiments show
that:

• The feature coverage values are in line with the expecta-
tion (as long as proper values of k and thr are used).

• The average item and feature utilties can be divergent
when either the contributions of other high-valued items
are significant or a particular item is linked with many
low-valued items.

• The comparison between pattern-based models allows us
to identify peculiar cases in which the contributions of
various feature combinations are diversified.

• The selection of an excessive number of top-k HUIs can
be prevented via statistical tests (t-tests).

As future work, we plan to explore to use HUIs for local
explainability, a quantitative metric to assess the performance,
the integration of the concepts of Coalition Interval and the
development of more efficient SV estimators.
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