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Abstract—This paper presents a novel approach based on
electromagnetic waves (EM) to classify food packages that hold
water as one of the main ingredients from the inside into contam-
inated or uncontaminated products. A non-destructive technique
that can handle a real-time food production line is proposed to
achieve this goal. This technique combines the operation of a
microwave sensing system (MW) with a machine learning (ML)
classifier. An accuracy of 100% has been obtained from training
the aforementioned ML tool on a dataset constructed from the
retrieved scattering parameters of about 500 measuring samples.

I. INTRODUCTION

As the food industry is growing enormously over the years,
food processing companies maintain adherence to rigorous
production systems and require increasing quality standards
for their products. Physical contamination occurs when small
objects of a few millimeters in size contaminate the food
during the production process, especially in the packaging
phase. For this reason, the detection of these contaminants
before sending the products to the market has become of great
interest to food manufacturers. During the past few years,
many technologies have been developed and investigated to
achieve this goal like X-rays [1], metal detectors, and other
methods such as near-infrared [2], terahertz spectroscopy [3]
or hyperspectral imaging [4]. The first in particular, is consid-
ered to be the most effective, capable of detecting even sub-
millimeter intrusions, and whose detection principle is based
on density contrast between the product and the contaminant.
So, this may lead to undetected contaminants if their density
is lower than the product one.

Recently, the MW sensing technology assisted by ML tools
has been investigated by the authors [5]–[7] for this purpose
and it appears to be one of the most effective techniques in
terms of data acquisition speed, implementation, cost, safety,
and penetration depth, overcoming intrinsic limitations of
existing devices. The fundamental concept of our approach
is based on the interaction of the emitted MW with the
materials that compose the sample under test. The scattering
behavior of these waves depends on the permittivity and
the geometry of these materials. Thus, the dielectric contrast
causes a modification in the back-scattering behavior of the
EM waves. These reflected waves, if collected and processed

appropriately, can lead to the detection of intrusions inside the
food package.

The scope of this work is to show how the retrieved EM
waves can be used to detect products to be rejected by means
of ML tools, through the development of appropriate algo-
rithm, processing the acquired scattering matrix, to classify the
samples as contaminated or not. In our previous works [8], [9],
we focused on the food of low-loss materials like oil and cocoa
cream. Really promising results were obtained using different
types of ML classifiers, or even solving an inverse problem and
providing a tomographic scan of the volume under test. In this
work, we deal with food packages containing lossy materials,
harder to penetrate by microwaves, mainly composed of water.

II. EXPERIMENTAL SETUP

The MW sensing system, shown in Fig. 1, consists of
an antenna array of 6 elements mounted on an arch-shaped
support allowing the sample to pass through it without any
obstruction. The antennas are connected to a six-port VNA
that acquires in parallel both magnitude and phase of radiated
signal from the transmitting antenna at multiple frequencies.
The speed of the conveyor belt that carries the food bottles was
set up to 20 m/min. A photocell is used to trigger the VNA to
start the measurement when the item approaches the antenna
array. The measurement system has been modified for being
suited to the measurement of lossy medium. For this, we used
a wideband antenna shown in Fig. 1 and derived from [10]
which can operate at low frequencies for better penetration
depth.

The physical dimensions of the jars, like the one shown in
Fig. 1 are 6.6 cm in diameter and 7.5 cm in height. We used
four different jars for the measurement phase, two of them
filled with water only, and the remaining two contaminated
with intrusions. The measurements were recorded for 500
samples: 300 uncontaminated, and 200 contaminated.

The intrusions employed in the procedure are 2-millimeter-
radius spherical samples made up of two different materials,
soda–lime glass and nylon respectively. We carried out our
measurements in a frequency band ranging from 1.5 GHz and
3.5 GHz with a step of 0.2 GHz. At each frequency point,
the antennas radiated in a sequence form, and when a single
antenna transmits all the other antennas receive in parallel.



By this, we obtain a matrix Si j formed of 6× 6 entries at
each frequency point, resulting in a three-dimensional structure
whose size is 6×6×11. The elements of the matrices obtained
from the measurements are of complex nature, and thus each
acquisition carries 792 features.

Fig. 1. (a). A jar full of water and placed directly under the arch-shaped
antenna array, which forms the MW sensing system. (b). The size of the 2
used spherical contaminants compared to the dimension of a 1 euro coin.

Fig. 2 shows the S-parameters magnitudes matrices one
sample free of contamination (left) and one contaminated with
soda-lime glass (right). The comparative analysis of the two
images shows that the recognition of the small variation in the
magnitude of the S-parameters is challenging, and then the
classification process is out of reach without assistance tools,
rather than simple thresholding methods. ML classification
models are very powerful in pattern recognition applications
and they are used in a wide diversity of classification applica-
tions. We chose the non-linear support vector machine (SVM)
algorithm based on the authors’ previous works in [5].

Fig. 2. The magnitude plot of two scattering matrices, obtained for two
different samples under test, one is free of any contaminants, and the other
is contaminated by SLG sphere.

III. EXPERIMENTAL RESULTS

As a first trial, we split our data into training and test sets
as follows, 60%–40% (300–200 samples) respectively. In the

learning phase, 90% of the training dataset is used for training
and 10% for validation. We used the Grey Wolf Optimizer
(GWO) [11] to determine the hyperparameters for the opti-
mal hyperplane that can separate the classes of the training
dataset. The validation and test sets produced perfect results,
achieving 100% accuracy. Even after partitioning the dataset
into different percentages, such as 40%–60% for training and
testing, the results remained perfect at 100%. The objective of
reducing the samples in the training phase was to investigate if
the same level of performance could be achieved with lighter
training sets and to ensure that more samples were available
for testing. Finally, we succeed in achieving the main purpose
of this paper, and bringing out a complete workflow for an
example of a non-destructive evaluation application in the food
industry field.
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