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Multifidelity Framework for the Efficient Identification of
Damages in Complex Aerospace Systems

F. Di Fiore∗, P. C. Berri † and L. Mainini ‡

Politecnico di Torino, Torino, Italy, 10129

Next generation aircraft require the development and integration of a deal of innovative
technologies to meet the ambitious sustainability goals set for aviation. This transformational
effort is associated with a tremendous increase of the complexity of the onboard systems and
their multiphysics coupled behaviours. A critical aspect relates to the characterization of the
coupled fault modes resulting from the integration of these novel technologies, which introduce
identifiability issues and demand new approaches for the efficient identification of (multimodal)
non-nominal conditions. Model-based fault detection and identification (FDI) has been proven
essential to infer onboard systems’ health from signal acquisitions, but existing methods are
too expensive and fail to capture incipient faults in presence of multimodality which prevent
scaling to complex multiphysics systems. This work introduces a multifidelity framework to
accelerate the identification of fault modes affecting complex systems. An original two-stage
compression computes an optimally informative and highly reduced representation of the
monitoring signals for the minimum demand of onboard resources. A multifidelity scheme for
Bayesian inversion is developed to infer multidomain fault parameters from the compressed
signals: variable cost and fidelity models are optimally queried for a major reduction of the
overall computational expense. The framework is demonstrated and validated for aerospace
electromechanical actuators affected by incipient multimodal faults. Remarkable accelerations
of the FDI procedure are observed and the exact identification of the incipient fault condition
achieved one order of magnitude faster than with standard algorithms.

I. Introduction

Modern aerospace systems require innovative multi-level and multiphysics technologies to meet the ever-increasing
demand for performance and reliability during the operations in extreme environments. In addition, sustainability

goals require the large introduction of novel technologies that further increase the level of complexity and physical
couplings between subsystems [1, 2]. In this scenario, the identification of incipient multiphysics and multimodal faults
constitutes a significant challenge: the growth of complexity hinders the adequate anticipation of this faults to support
the safety-critical decision making procedures during flight operations [3].

Model-based Fault Detection and Identification (FDI) techniques permit to infer the fault condition of a system from
measurements of signals sensitive to damages. The health assessment task is addressed solving an inverse problem:
the actual damages affecting the system minimize the discrepancy between the diagnostic signal measured from the
real system and the same signal simulated with a monitoring model [4–6]. Model-based FDI approaches have been
successfully employed for the health assessment of aerospace systems. Examples include the work of Kolcio [7] where
faults of the attitude control subsystem of a spacecraft are identified comparing real-world measurements with a fast
simplified numerical model. Omata et al. [8] develop a model-based FDI framework for the health monitoring under
uncertainties of reusable rocket engines, and adopt simplified system-level simulations as monitoring model to contain
the overall cost of the procedure. Dalla Vedova et al. [9] address the FDI problem of an aerospace electromechanical
actuator through a genetic algorithm, and use a simplified physics-based monitoring model to reduce the computational
burden associated with the identification of mechanical and electrical faults. Kawatsu et al. [10] propose an FDI
methodology for the health assessment of electromechanical actuators adopted for liquid rocket engines applications,
where the monitoring signals are collected offline through multiphysics simulations.

Model-based FDI approaches show several limitations that affect the inference capabilities of multiphysics and
multimodal incipient faults. Existing methodologies usually require a large amount of monitoring signal evaluations
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through high-fidelity models of the system – e.g. numerical solution of partial differential equations or lumped parameter
numerical models – that prohibitively increase the computational cost for the inference procedure. In practice, standard
model-based techniques rely on low-fidelity monitoring models to relief the computational burden through either
simplified physics assumptions or emulators built on dataset collected offline – e.g. via model reduction and surrogate
modelling techniques. However, these approaches are not suitable for the robust inference of multiphysics incipient
faults: the former simplified models might not be adequate to depict nonlinearities and multiphysics couplings, while
the latter emulators might require massive high-fidelity evaluations to approximate the system dynamics. Further
difficulties arise from the multimodal nature of these faults, which challenges identifiability and requires high-fidelity
data to prevent erroneous health assessments. In addition, this scenario is complicated by the high-dimensionality of the
diagnostic signals, which are measured with an high acquisition frequency to ensure representativeness of the system
health status. These limitations preclude the scalability of model-based FDI methodologies for complex multiphysics
systems, and hinder the reliable identification of complex faults affecting innovative components.

To address these limitations, this paper proposes an efficient computational framework for FDI that embeds
high-fidelity models during the inference procedure, and accelerates the accurate identification of incipient faults
affecting complex systems. In particular, our strategy is based on the original combination of i) a two-stage optimal
compression of the diagnostic signal to reduce the dimensionality of the FDI procedure, and ii) a multifidelity Bayesian
scheme for inversion to address the FDI problem and contain the high-fidelity calls. The two-stage compression strategy
computes an optimal reduced representation of the diagnostic signal that retains only the most informative elements
sensitive to faults. Two projection stages are used to compute this encoding map of the signal throught a combination of
Dynamic Mode Decomposition (DMD) and Self Organizing Map (SOM). The inference of faults from the compressed
signal is addressed through a multifidelity Bayesian scheme, which leverages and combines multiple models of the
system at different levels of fidelity to effectively identify the health status of the system. The scheme is developed to
embed high-fidelity simulations during the inference stage and aims at improving the effectiveness of the diagnostics; at
the same time, lower-fidelity models are used to alleviate the computational cost of the procedure and more efficiently
explore potential faults affecting the system.

We demonstrate and validate our FDI computational framework for the health assessment of an Electro-Mechanical
Actuator (EMA) adopted in aircraft flight controls. EMA is an enabling technology toward sustainable aviation and
more/all electric aircraft paradigms [11–13]. However, the fault detection and identification procedure of those systems
represents a challenging task: the multidisciplinary nature of EMAs embeds multiphysics and coupled multimodal
failure modes difficult to be detected in advance. This precludes their adoption for safety critical applications on
board of the future generation of aircraft. We investigate the performance of our algorithm for both numerical and
physical experiments on an EMA affected by mechanical and electrical incipient faults. It is shown that the proposed
methodology provides substantial accelerations of the FDI procedure, and leads to the accurate identification of the
EMA health status in numerical and physical tests.

The remaining of this paper is organized as follows. Section II describes the model-based FDI problem we aim
to address in this work. Section III presents our multifidelity FDI approach in details and Section IV illustrates the
demonstrative health monitoring problem of an aerospace EMA. In Section V, both the numerical and physical results
achieved with our method are discussed. Finally, concluding remarks are drawn in Section VI.

II. Model-Based Fault Detection and Isolation: Problem Setup
Model-based fault detection and isolation targets the identification of the health status k =

[
k1, ...,knk

]
of the system

as the combination of nk faults parameters k that minimizes the discrepancy δ between the output signal of the real
system y and the signal computed with a numerical model of the system yM . Accordingly, the FDI procedure is
formalized as an inverse problem:

k∗ = argmin
k∈K

δ (k,x) (1)

where δ (k,x) = ||y(k∗,x)− yM(k,x)||, and k∗ is the actual health status affecting the system.
The output signal y is ideally sensitive to faults and insensitive to other input, and it is generally high-dimensional

and unpractical to store and process for rapid diagnostic procedures. In addition, the computation of an accurate
monitoring signal yM requires the simulation of the system behaviour through expensive numerical models or real-world
experiments. Those high-fidelity representations further impact the computational burden of monitoring and diagnosis
the health status of complex dynamical system.
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III. Multifidelity Fault Detection and Isolation
The proposed methodology combines two constitutive phases: the first optimizes the informative content of the

diagnostic signals minimizing the computational burden associated with their management through the two-stage
optimal compression strategy (Section III.A); the second efficiently includes high-fidelity models to support the
accurate inference of incipient faults through a multifidelity Bayesian scheme for inference (Section III.B). The original
combination of those elements permits to address the limitations of standard model-based FDI techniques, and enables
the efficient inference of multiphysics and multimodal incipient faults of complex systems.

A. Two-Stage Optimal Informative Compression
The two-stage optimal compression technique is performed during the setting process and consists on two main

ingredients: i) the Dynamic Mode Decomposition (DMD) identifies a set of dominant coherent structures of the system
behaviour, and ii) a Self Organizing Map (SOM) projects these structures into a lower-dimensional space and computes
an efficient encoding map that synthesizes the overall dynamic of the system. The procedure is inspired by the two-stage
compression proposed by Mainini [14] and Mainini and Willcox [15] where Proper Orthogonal Decomposition and Self
Organizing Maps jointly identify the optimal sensor placement in structural health monitoring applications, and applied
by Berri et al. [16] for the FDI of aircraft electromechanical actuators.

1. Dynamic Mode Decomposition
The first stage of our compression strategy adopts the Dynamic Mode Decomposition (DMD) technique to extract

the dynamical features of the system in the form of dynamic modes [17, 18]. From a general perspective, a dynamical
system affected by damages could be considered as a non-linear system ψ whose output signal y(k,x) ∈ Rne is sensitive
to the health status k of the system and to the measurement locations x. DMD seeks to identify the dynamical properties
of this system as the dominant eigenvalues and eigenvectors of the informative matrix Ã ∈ Rne×ne such that:

ÃỸ = Ỹ′ (2)

where

Ỹ =
[
ỹ(L)(k0,x) ỹ(L)(k1,x) ... ỹ(L)(kns−1,x)

]
∈ Rne×ns

Ỹ′ =
[
ỹ(L)(k1,x) ỹ(L)(k2,x) ... ỹ(L)(kns ,x)

]
∈ Rne×ns

are the snapshot matrices. Those snapshots are computed offline through an high-fidelity representation of the system
ψ(L), and collect a series of ns paired high-fidelity output signals ỹ(L)(k j−1,x) and ỹ(L)(k j,x) computed for incipient
fault conditions {k j} j=ns

j=1 assembled via scaled Latin hypercube sampling scheme [16].
The computation of the informative matrix Ã is usually unfeasible: the direct solution of Equation (2) is hampered

by the significant computational cost required for large snapshot matrices – frequently encountered in many real-world
applications in science and engineering. A popular approach to overcome this issue adopts the Singular Value
Decomposition (SVD) technique [19] to identify a set of nw << ns informative modes B ∈ Cne×ns . This permits to
retain a large fraction of information embedded in the snapshot matrices, and quantifies this informative content as the
cumulative sum ∑

nw
i=1 λi/∑

ns
i=1 λi of the eigenvalues λ associated to the considered modes. This allows to project the

snapshot matrices Ỹ and Ỹ′ onto the first nw modes, and compute the matrices Y and Y′:

Y = B∗Ỹ ∈ Rnw×ns , Y′ = B∗Ỹ′ ∈ Rnw×ns (3)

where B∗ is the Hermitian transpose of B. Thus, the DMD problem (Equation (2)) becomes manageable and the
information matrix can be computed as follows:

A = Y′Y+ (4)

where Y+ is the Moore-Penrose pseudoinverse of Y. The eigendecomposition of the informative matrix A yields the
dominant eigenvalues and eigenvectors that encode the fundamental properties of the underlying dynamical system in
the form of dynamic modes 𝚼= [𝝊1, ...,𝝊nw ].
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2. Self-Organizing Map
In the second stage of compression, a Self Organizing Map (SOM) projects the DMD modes 𝚼 into a lower-

dimensional space, and computes an efficient compression map of the output signal ŷ(k, x̂) that preserves the topological
properties of those modes. This representation retains only the highly informative elements nw << ne of the output
signal, and is used in the online phase to alleviate the computational burden of the FDI procedure.

Self-organizing map (SOM) is a competitive artificial neural network trained with unsupervised learning paradigms
to produce a low-dimensional representation of the input space of the training samples [20, 21]. Considering a non-linear
damaged system ψ , the training set T consists of the dynamic modes of the system 𝚼 and the measurement locations x
of the output signal:

T = [x,𝝊1, ...,𝝊nw ] (5)

During the SOM training process, each row 𝝉i of T is presented to the network and the node that shows greater
similarity to this input is selected to be the winner. This winning node is updated towards the input vector, and the other
nodes are influenced according to their topological distances from the winner. In particular, the winning neuron is
selected as the one that minimizes the distance between the associated weight vector wl and the current training point 𝝉i:

l = argmin
j

(
||𝝉i −w j||

)
(6)

where ||·|| denotes the L2 norm.
In the final layout of a trained SOM, adjacent nodes have an high similarity to each other and are dissimilar to

nodes that are located far apart. This trained net represents a non-linear projection of the training set T to the lower
dimensional space of the neurons, and the weight vectors in the input space encode representative vectors for clusters of
self-similar points [14, 15, 22]. This permits to extract the latent structure of the training input and compute the efficient
compression map ŷ(k, x̂).

B. Multifidelity Bayesian Scheme for Damage Inference
The informative map ŷ(k, x̂) reduces the dimensionality of the FDI problem:

k∗ = argmin
k∈K

δ (k, x̂) (7)

where δ (k, x̂) = ||ŷ(k∗, x̂)− ˆyM(k, x̂)|| is now evaluated only for the nw informative elements of the reference compressed
signal ŷ and monitoring compressed output ˆyM . To address this inverse problem, we adopt a multifidelity Bayesian
scheme to leverage queries of the discrepancy function [δ (1),δ (2), ...,δ (L)] at different levels of fidelity and accelerate
the inference of the damages affecting the system [23–26]. Multifidelity Bayesian frameworks build onto the Bayesian
scheme [27–29] and have been explored in the context of aerospace design optimization [30–32] where it has been
observed major accelerations in the identification of optimal design solutions.

The damage inference procedure is performed dynamically online through an iterative process and adopts two key
elements: the multifidelity surrogate model and the multifidelity acquisition function. The surrogate approximates the
discrepancy function based on collected information, and provides a predictive framework that synthesizes the data
from multifidelity models into a unique emulator. At each iteration, the acquisition function informed by this predictive
distribution is maximized to select the damage configuration that is likely to actually affect the system together with
the associated fidelity of the representation to query. Meanwhile, the new observation is used to update the posterior
distribution of the emulator, and the above process is repeated until a convergence metric is met.

1. Multifidelity Gaussian Process
Our multifidelity FDI strategy adopts the Gaussian process regression to compute the surrogate model of the

discrepancy function δ (l)(k) at different levels of fidelity, and predicts its distribution over the faults domain K .
Gaussian process (GP) regression constructs a non-parametric kernel-based probabilistic surrogate based on the
observations of the discrepancy at previous evaluated damage configurations, and quantifies the uncertainty associated
with this approximation [33, 34]. This results in a predictive framework completely specified by its mean function
µ(k) : K → R and kernel function κ(k,k′) : K ×K → R.

In the multifidelity scenario, the GP regression synthesizes the simulations from the models at different levels
of fidelity [δ (1),δ (2), ...,δ (L)] into a unique predictive framework. The Multifidelity Gaussian Process (MFGP) is
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formalized through an autoregressive relation between adjacent levels of fidelity. Let us assume we have collected paired
input/output observations in the dataset DN = {kn, f (ln)(kn), ln}N

n=1, where the output f = { f (ln)(kn)}N
n=1 is normally

distributed given 𝚫= {δ
(ln)
n }N

n=1:

f | 𝚫,σ2
ε ∼ N (𝚫,σ2

ε I) (8)

assuming the same variance of the measurement noise σ2
ε for each level of fidelity. The MFGP relies on the linear

autoregressive information fusion proposed by Kennedy and O’Hagan to approximate the discrepancy function [35].
This scheme assigns a GP prior to the lower fidelity model δ (1) ∼ GP(0,κ1

(
k,k′)) with mean function µ(l) = 0 and

kernel function κ1
(
k,k′), and defines recursively the higher-fidelity levels as follows:

δ
(l) = ρ

(l−1)(k)δ (l−1) (k)+ γ
(l) (k) l = 2, ...,L (9)

where the scale factor ρ(l−1)(k) models the correlation between the outputs of adjacent levels of fidelity, and
γ(l) ∼ GP(0,κ(l)

(
k,k′)) represents the modeling discrepancy between two adjacent levels of fidelity as a Gaussian

process with mean function µ(l) = 0 and kernel function κ(l)
(
k,k′).

Following the Bayesian inference principle, the MFGP regression combines the prior belief about the objective
P(δ (l)) with the likelihood function P(DN |δ (l)), and computes the updated posterior distribution of the discrepancy
function P(δ (l)|DN) ∝ P(DN |δ (l))P(δ (l)). This multifidelity posterior is a Gaussian process completely specified by its
mean function µ(l) and variance function σ2(l):

µ
(l)(k) = κ

(l)
N (k)T (K+σεI

)−1 f (10)

σ
2(l)(k) = κ

((
k, l
)
,
(
k, l
))

−κ
(l)
N (k)T (K+σεI

)−1
κ
(l)
N (k) (11)

where κ
(l)
N is defined as κN(k)

.
=
(
κ
((

k, l
)
,
(
k1, l1

))
, · · · ,κ

((
k, l
)
,
(
kN , lN

)))
, and K is the kernel matrix defined as

follows:

K =

(
κ(l−1)(k,k′)K(l−1)

ρκ(l−1)(k,k′)K(l−1)

ρκ(l−1)(k,k′)K(l−1)
ρ2κ(l−1)(k,k′)K(l−1)+κ(l)(k,k′)K(l)

)
(12)

where K(l−1)(i, j) = κ
((

ki, l −1
)
,
(
k j, l −1

))
and K(l)(i, j) = κ

((
ki, l
)
,
(
k j, l

))
.

The mean function µ(l)(k) represents the prediction of the discrepancy δ (l)(k) over the possible combinations
of fault parameters in the domain K , and σ2(l)(k) quantifies the associated uncertainty. In addition, this predictive
framework shows a potential form of intrinsic reliability through the estimated uncertainty σ2(l): the discrepancy
function has bounded norm in the reproducing kernel Hilbert space induced by the kernel function [36]. Thus, the
discrepancy is characterized by reliable confidence intervals that determine the overall reliability of the multifidelity
surrogate model. Within the multifidelity FDI procedure, this posterior distribution informs and assists the multifidelity
acquisition function during the inference stage.

2. Multifidelity Acquisition Function
The multifidelity acquisition function U(k, l) : K → R+ measures the improvement in terms of accuracy of the

damages inference, and wisely uses the computational resources during the search with a continuous trade-off between
the exploration of uncertain locations of the faults domain and exploitation toward the believed health status of the
system. Different formulations of the acquisition function can be used in our framework: those include multifidelity
expected improvement (MFEI) [37], multifidelity entropy search (MFES) [38], multifidelity max-value entropy search
(MFMES) [39], variable-fidelity probability of improvement (VFPI) [40] and Non-Myopic MFEI (NM-MFEI) [41],
which all implement different measures of the evaluation reward. In this work, we adopt the most popular multifidelity
expected improvement [30, 42] (Section III.B.3), and the non-myopic acquisition function (Section III.B.4).
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3. Multifidelity Expected Improvement
Given a new fault combination k and n associated level of fidelity l at which the condition is evaluated, the

multifidelity expected improvement acquisition function quantifies the improvement in expectation with respect to the
best combination of damages k̂∗ computed so far:

UMFEI(k, l) =UEI(k)α1(k, l)α2(k, l)α3(l) (13)

where UEI(k) is the expected improvement acquisition function [43]:

UEI(k) = σ
(L)(k)(I(k)Φ(I(k)))+N (I(k);0,1) (14)

where I(k) = (δ (L)(k̂∗)− µ(L)(k))/σ (L)(k) is the high-fidelity predicted improvement, and Φ(·) is the cumulative
distribution function of a standard normal distribution.

The utility functions α1, α2 and α3 support the search procedure, and balance the selection of the appropriate level
of fidelity to evaluate the generic k:

α1(k, l) = corr
[
δ
(l),δ (L)

]
=

κ((k, l),(k,L))√
σ2(l)σ2(L)

(15)

α2(k, l) = 1− σε√︁
σ2(l)(k)+σ2

ε

(16)

α3(l) =
λ (L)

λ (l)
. (17)

α1 pursues the adoption of the high-fidelity model when lower-fidelity representations might provide an unreliable
estimate of the health status of the system. This awareness is reflected decreasing the MFEI through the posterior
correlation coefficient if the discrepancy computed with the l-th level of fidelity is inaccurate for a specific damage
configuration k. α2 contains the over-exploration of regions of the faults domain K where the uncertainty of the
surrogate model has been already reduced with previous observations. This utility function reflects the stochastic nature
of the objective function and measures the reduction of the surrogate uncertainty achieved through new observations of
the discrepancy function δ (l)(k). α3 includes the computational cost λ (l) required to compute the l-th representation
of the discrepancy compared to the high-fidelity burden λ (L). This term balances the contribution of α1, and solicits
lower-fidelity queries when a similar accuracy is obtained evaluating the health status of the system with the high-fidelity
model.

4. Non-Myopic Multifidelity Expected Improvement
The non-myopic MFEI acquisition function measures the informative gains over future iterations given by a potential

health condition of the system k and associated level of fidelity l. This search scheme is obtained formalizing an optimal
policy as a sequence of decisions that maximizes the cumulative reward over two steps ahead [41]:

UNM(ki+2, li+2) =UMFEI(ki+1, li+1)+E
[
max

(
UMFEI(ki+2, li+2

)]
(18)

where i is the current iteration of the FDI procedure. The non-myopic acquisition function involves intractable nested
expectations and maximizations that require the prediction of future optimization scenario not directly available at the
current iteration. We define a Monte Carlo technique to robustly estimate the prediction µ

(l)
i+1 and uncertainty σ

(l)
i+1 of

the multifidelity surrogate model at the first step ahead [44]:

µ
(l)
i+1(k) = µ

(l)
i (k)+H(l)

i

(
k
)

Z (19)

σ
(l)
i+1(k) = σ

(l)
i (k)−H(l)

i

(
k
)

H(l)
i

(
k
)T (20)

where H(l)
i

(
k
)
= κ

(l)
i

(
k
)

C(l)−1
i (k) and C(l) is the Cholesky decomposition of the kernel matrix K(ki,k j). This

numerical approach samples many replications of an independent standard normal random variable Z, and approximates
UNM averaging many realizations obtained through the predictive framework updated at the first step ahead (Equation
(19) and Equation (20))
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Fig. 1 An aerospace electromechanical actuator

IV. Aerospace Electromechanical Actuator (EMA)
We demonstrate our methodology on the test case of fault detection and identification for an aerospace Electrome-

chanical Actuator (EMA). These devices convert electrical energy into mechanical motion, and are widely employed
to power secondary flight controls, as well as utilities such as landing gear and cargo bay doors, weapons systems, or
gimbals for electro-optics sensors. The adoption of EMAs for applications traditionally reserved to hydraulic systems,
in particular primary flight controls, is a key step for enabling more-electric and all-electric aircraft designs, with
significant benefist in terms of carbon footprint and operating costs [1, 11–13]. The progressive switch to EMA based
flight control systems is currently underway in upcoming platforms, and will be facilitated by the adoption of reliable
fault detection strategies. The common subsystems of an aerospace EMA (Figure 1) includes a brushless motor with
its power electronics, and a mechanical transmission with a reduction gearbox and a screw device to convert rotary
motion to linear translation of the output. A network of sensors measures positions, speeds, temperatures and electrical
parameters to inform the control electronics and close the feedback loops.

FDI for Aerospace EMAs is a particularly challenging task as the monitored system combines multi-physical
behaviors involving the interaction between electrical, mechanical and thermal subsystems, which can exhibit highly
nonlinear behaviors under different conditions. As a consequence, EMAs may show multiple fault modes that can
interact with each other through causal relationships (i.e. an initial fault can propagate to other components) yielding to
nonlinear combinations of effects on the actuator’s performances. Additional challenges to FDI are posed by the harsh
environment in which aerospace actuators are required to operate: EMAs are often exposed to extreme temperature
changes, high vibration and acceleration levels, and electromagnetic disturbances, all of which can hamper the acquisition
of accurate and reliable sensor data.

We employ as a case study an EMA based on a BrushLess Direct Current (BLDC) motor, installed as an elevator
flight control. The health condition of the system is encoded in 𝒌 ∈ R7. Four different failure modes are considered,
namely friction (k1) and backlash (k2) increases, partial short circuit of the three stator windings (k3,4,5 respectively) and
rotor eccentricity (k6,7 for the eccentricity amplitude and phase). These failure modes are selected for their comparatively
high probability of occurrence and criticality [45]. For each element of 𝒌, a null value represents a nominal condition
without faults, while a unit value is a full failure state. The variable monitored for the FDI task is the equivalent DC
stator current I = 1

2 (|iA|+|iB|+|iC|)sign(Tm), where Tm is the motor torque and iA,B,C are the stator phase currents. This
variable is sensitive to faults and is already measured to close the torque feedback loop. We use two physics-based
numerical models of the EMA at different levels of fidelity to demonstrate the capabilities of our multifidelity FDI
algorithm. In addition, we employ the data acquired from a real-world EMA test-bench to validate the efficiency of the
proposed methodology. The following sections briefly describe the two numerical models and the physical test-bench of
the EMA. Further details are available from [46, 47].
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A. High Fidelity (HF) model
The High Fidelity (HF) model of the actuator is a detailed, physics-based emulator of the EMA’s dynamical behavior.

The model has a high accuracy in simulating the response of a physical system, as validated experimentally in [48].
Figure 2 shows the block diagram of the high-fidelity models. At the core of the HF model is a three-phase simulation
of the stator currents, including the hysteresis closed-loop current control and the resistive-inductive (RL) model of the
stator coils. The electromagnetic coupling between the wound stator and the permanent magnet rotor is mapped as a
function of the rotor angular position and magnetic flux that concatenates with the stator coils. The magnetic flux time
derivative is leveraged to evaluate both the back-EMF and the torque generated by the motor. The magnetic model
is sensitive to asymmetries in the air gap distribution and to unbalances in the windings, therefore faults like rotor
eccentricity and partial short circuits of the stator can be simulated directly.

The mechanical transmission is modelled as a second order dyamical system, that includes the simulation of
several nonlinear effects, namely: backlash, dry friction, mechanical endstops, and the finite stiffness of load-carrying
components. The mechanical load on the actuator is simulated through the linearized longitudinal model of the F-16 jet
aircraft proposed by Stevens [49]. Stator currents iA, iB and iC are measured to close the current/torque control loop; the
velocity and position loops rely on three Hall effect sensors on the motor shaft and a linear displacement sensor (LVDT)
on the actuator output, respectively. The current loop is managed by three individual hysteresis controllers, one for each
phase; the position and velocity loops feature Proportional-Integral-Derivative (PID) regulators with full anti-windup,
derivative filtering and dead-band functions to inhibit limit cycles.

We utilize this HF model as an emulator of a real-world actuator to evaluate the proposed FDI strategy and gather
ground truth data for our two-step compression methodology. However, the high computational cost required to estimate
the dynamic of the EMA system is nearly two orders of magnitude higher than the simulated time interval, making the
FDI task with the high-fidelity model alone impractical with limited computational resources. As a result, we aim to
develop a low-fidelity model of the EMA system that introduces approximations to alleviate the computational burden
while maintaining an acceptable level of accuracy in simulating the actuator’s dynamics.

B. Low Fidelity (LF) model
The Low Fidelity model of the actuator introduces simplifications to the physical representation of the EMA in

order to reduce the computational cost in evaluation while retaining an acceptable accuracy. The block diagram of
the LF model is shown in Figure 3. The main simplification with respect to the HF model is the replacement of the
three-phase RL stator simulation with a single-phase equation:
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Fig. 3 Block diagram of the LF EMA model

V = RI +κvω (21)

where κv is the motor’s back-EMF coefficient and ω is the rotor’s angular speed. This approach enables to speed up
computations significantly, as the stator circuit is pre-solved and does not require to run an iterative solver at each
timestep. This approach requires to introduce the sensitivity to fault modes empirically through modulating functions
for the motor parameters, as proposed by Berri et al. [50]. In addition, the control logic only includes a linear PID for
the speed and position loops, and a simplified hysteresis controller – consisting in a single sign function – manages
the current loop. The aerodynamic load is estimated from the aircraft attitude with a proportional gain, neglecting the
longitudinal dynamics of the entire vehicle. In this work, the LF model is used alongside with the HF one as a source of
information to compute the monitoring current signal of the EMA system.

C. Physical test bench
The proposed FDI strategy is validated experimentally with data from a real-world EMA test-bench capable to

simulate the presence of mechanical faults in the transmission. The setup, shown in Figure 4, includes a permanent
magnet brushless motor connected to a planetary reduction gearbox. The motor is driven by a current-controlled, 400
V three-phase inverter. A separate 24 VDC bus drives the control logic. A pair of high resolution encoders measure
the position of the motor shaft and the position of the gearbox output shaft: the former is used for phase commutation
and speed feedback while the latter closes the position control loop. A repeatable mechanical load is provided by a
servo-actuated brake module, whose torque is measured by a loadcell and controlled in closed loop. This permits to
simulate different load profiles and include the effect of a friction increase fault. Moreover, the last gear pair driving the
output shaft is adjustable, and allows to simulate the backlash fault through a controlled variation of the mechanical play.
Acquisitions from the test bench were initially used to validate the HF and LF models in nominal conditions and in
presence of mechanical faults [51]. In addition, the measurements of current signals from the EMA test-bench are used
as the reference signal to validate the performance of the proposed multifidelity FDI strategy.

V. Experiments and Discussion
In this section, we illustrate and discuss the results achieved with the proposed multifidelity FDI (MFDI) approach

for the EMA diagnostic problem (Section IV). We compare our framework with the state-of-the-art Efficient Global
Optimization (EGO) algorithm, a popular Bayesian algorithm where the expected improvement works as the acquisition
function and only the high-fidelity EMA model is available during the FDI procedure [43].

For our method, we assemble offline a reference dataset of the EMA current signal over 100 incipient fault conditions,
and use the two-stage compression strategy (Section III.A) to compute the informative map of the EMA on these
reference information. Online, the multifidelity Bayesian procedure (Section III.B) implements both the multifidelity
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Fig. 4 (a) EMA test-bench and (b) the corresponding block diagram

expected improvement (MFEI) and the non-myopic MFEI (NM-MFEI). We conduct numerical and physical experimental
campaigns to assess the capabilities of our framework. In the numerical experiments, the high-fidelity EMA model
computes the reference current signal and is available jointly with the low-fidelity model to compute the monitoring
current signal during the FDI procedure. In the physical tests, the reference current signal is measured through the
EMA test-bench, and both the high- and low-fidelity EMA models are used to simulate the monitoring output. All the
algorithms are implemented in the Matlab environment and the experiments are conducted on a laptop PC with Intel
Core i7-6700HQ and 32GB memory.

The FDI performance are evaluated using two assessment metrics: the percentage relative inference error e(ki) of
the ki fault, and the minimum of the discrepancy function δ ∗ between the reference and monitoring signal:

e(ki) =
||k∗i − k̃i||

k∗i
·100 (22)

δ
∗ = min(δ (k∗, x̂)) (23)

where k∗i is the actual damage affecting the EMA system and k̃i is the damage inferred by the FDI algorithm. For both
numerical and physical experiments, these metrics are measured over a statistics of, respectively, 50 and 10 different
incipient damage conditions sampled through a scaled Latin hypercube scheme [16]. This sampling procedure increases
the probability distribution of damages near the nominal condition, and expands the amount of small incipient faults
without completely excluding more serious damages. The goal is to investigate the capabilities of the FDI algorithm to
identify the health status of the EMA system before the damages become severe – and easily assessed. In the following,
the outcomes of the experimental campaigns are reported in terms of median values of the assessment metrics together
with the statistics in between the 25-th and 75-th percentiles.

Figure 5 and Figure 6 show the results of the competing algorithms for the numerical and physical experiments,
respectively. We make the following empirical observations: i) our MFDI algorithm consistently converges much faster
than the baseline EGO algorithm with all the formulations of the multifidelity acquisition function – both MFEI and
NM-MFEI. In particular, the multifidelity paradigm achieves remarkable accelerations and reduces the identification
time by more than one order of magnitude. ii) The rate of convergence of NM-MFEI is moderately higher that the MFEI
acquisition function. However, in all the experimental campaign the proposed MFDI outperforms the single-fidelity
EGO algorithm. iii) The proposed algorithm provides the exact inference of the incipient faults affecting the EMA
system (e(ki) = 0). These results demonstrate and validate the performance of our framework, which provides a fast and
robust inference of incipient multiphysics and multimodal faults affecting the EMA. In numerical experiments, the
average runtime of NM-MFEI and MFEI is within 32 seconds and 39 seconds, respectively, which is notably lower if
compared with the 691 seconds runtime of EGO. Similarly, the diagnosis of the real-world EMA takes 26 seconds for
NM-MFEI and 42 seconds for MFEI on average, while EGO increases the duration of the FDI process to 273 seconds.

The convergence of the minimum discrepancy in both the settings is not strictly related to the continuous decrease of
the inference error over the runtime. This can be justified with the ill-posedness of the EMA inverse problem: the FDI
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Fig. 5 Results of our MFDI algorithm and EGO on numerical experiments.
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Fig. 6 Results of our MFDI algorithm and EGO on physical experiments.

procedure is subject to instability caused by the joint decrease of the discrepancy function and increase of the inference
error. As highlighted by [52], this behaviour results from the opposite effects of heterogeneous damages on the EMA
dynamics: the increase of the mechanical friction k1 decreases the actuation speed while the increase of the partial short
circuit k3:5 increases the speed of the motor shaft. As a consequence, the discrepancy function is characterized by a
strong multimodality that stresses the FDI framework.

The remarkable accelerations achieved in the experimental campaigns demonstrate and validate the efficiency and
robustness of our multifidelity FDI framework even in presence of incipient faults and marked multimodality. These
outcomes emerge from the original combination of two distinguishing features: i) the optimal two-stage compression
reduces the signals into highly informative representations that reduces the dimensionality of the FDI problem, and
ii) the multifidelity Bayesian scheme for inference wisely queries high-fidelity models to enhance the identification
procedure while contains the overall computational expenditure through low-fidelity evaluations.
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VI. Concluding Remarks
The proposed multifidelity fault detection and identification (FDI) framework permits to accelerate the identification

of multiphysics and multimodal incipient faults of complex systems. Our algorithm relies on the original combination
of a two-stage optimal compression strategy to reduce the dimensionality of the diagnostic signals, and a multifidelity
Bayesian scheme to infer incipient failure modes through the combination of multiple models with variable fidelities and
costs. We demonstrate and validate the proposed methodology for the FDI of an aerospace electromechanical actuator
affected by incipient mechanical and electrical faults. We conducted both numerical and physical experiments where
our multifidelity scheme is compared with the standard single-fidelity efficient global optimization algorithm.

The results show that our multifidelity FDI outperforms standard single-fidelity algorithms in terms of accuracy and
acceleration of the inference. In particular, numerical experiments reveal that the proposed methodology equipped with
the non-myopic scheme achieves the exact identification of the EMA health status 95.4 % faster than the single-fidelity
approach. The physical experiments confirm and validate the efficiency of the proposed framework: our strategy
identifies with the non-myopic search the exact damage condition of the real-world EMA reducing the computational
cost by 90.5 % if compared with the single-fidelity algorithm. The remarkable accelerations and accuracy of the FDI
procedure are enabled by the combination of the efficient compression of the diagnostic signals through the encoding
map, and the effective use of high-fidelity responses to accurately identify multiphysics damages. These achievements
encourage the adoption of multifidelity FDI schemes as enabling techniques to monitor the health status of novel
technologies on board of the next generation of aircraft.
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