
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays / Ravaglia, Leonardo; Rusci,
Manuele; Nadalini, Davide; Capotondi, Alessandro; Conti, Francesco; Benini, Luca. - In: IEEE JOURNAL ON
EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS. - ISSN 2156-3365. - 11:4(2021), pp. 789-802.
[10.1109/JETCAS.2021.3121554]

Original

A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JETCAS.2021.3121554

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982771 since: 2023-10-05T09:50:04Z

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS



This is the final peer-reviewed accepted manuscript of: 

L. Ravaglia, M. Rusci, D. Nadalini, A. Capotondi, F. Conti and L.
Benini, "A TinyML Platform for On-Device Continual Learning
With Quantized Latent Replays," in IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 11, no. 4, pp.
789-802, Dec. 2021, doi: 10.1109/JETCAS.2021.3121554.

The final published version is available online at: 

https://ieeexplore.ieee.org/document/9580920   

Rights/License: 
The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see 
the publisher’s website. 

This item was downloaded from IRIS Politecnico di Torino (https://iris.polito.it) 
When citing, please refer to the published version. 



1

A TinyML Platform for On-Device Continual
Learning with Quantized Latent Replays

Leonardo Ravaglia, Manuele Rusci, Davide Nadalini, Alessandro Capotondi,
Francesco Conti, Member, IEEE, Luca Benini, Fellow, IEEE

Abstract—In the last few years, research and development on
Deep Learning models & techniques for ultra-low-power devices
– in a word, TinyML – has mainly focused on a train-then-
deploy assumption, with static models that cannot be adapted to
newly collected data without cloud-based data collection and fine-
tuning. Latent Replay-based Continual Learning (CL) techniques
[1] enable online, serverless adaptation in principle, but so far
they have still been too computation- and memory-hungry for
ultra-low-power TinyML devices, which are typically based on
microcontrollers. In this work, we introduce a HW/SW platform
for end-to-end CL based on a 10-core FP32-enabled parallel
ultra-low-power (PULP) processor. We rethink the baseline La-
tent Replay CL algorithm, leveraging quantization of the frozen
stage of the model and Latent Replays (LRs) to reduce their
memory cost with minimal impact on accuracy. In particular,
8-bit compression of the LR memory proves to be almost lossless
(-0.26% with 3000LR) compared to the full-precision baseline
implementation, but requires 4× less memory, while 7-bit can
also be used with an additional minimal accuracy degradation
(up to 5%). We also introduce optimized primitives for forward
and backward propagation on the PULP processor, together
with data tiling strategies to fully exploit its memory hierarchy,
while maximizing efficiency. Our results show that by combining
these techniques, continual learning can be achieved in practice
using less than 64MB of memory – an amount compatible with
embedding in TinyML devices. On an advanced 22nm prototype
of our platform, called VEGA, the proposed solution performs on
average 65× faster than a low-power STM32 L4 microcontroller,
being 37× more energy efficient – enough for a lifetime of 535h
when learning a new mini-batch of data once every minute.

Index Terms—TinyML, Continual Learning, Deep Neural
Networks, Parallel Ultra-Low-Power, Microcontrollers.

I. INTRODUCTION

The internet-of-Things ecosystem is made possible by
miniaturized and smart end-node devices, which can sense the
surrounding environment and take decisions based on the in-
formation inferred from sensor data. Because of their tiny form

L. Ravaglia, M. Rusci, D. Nadalini, F. Conti, and L. Benini are
with the Department of Electrical, Electronic and Information Engineering
(DEI) of the University of Bologna, Viale del Risorgimento 2, 40136
Bologna, Italy (e-mail: {leonardo.ravaglia2, manuele.rusci, d.nadalini, f.conti,
luca.benini}@unibo.it).

A. Capotondi is with the Department of Physics, Informatics and Mathe-
matics of the University of Modena and Reggio Emilia, Via Campi 213/A,
41125 Modena, Italy (e-mail: alessandro.capotondi@unibo.it).

L. Benini is also with the integrated Systems Laboratory (IIS) of
ETH Zürich, ETZ, Gloriastrasse 35, 8092 Zürich, Switzerland (e-mail:
lbenini@iis.ee.ethz.ch).

This work was supported in part by the ECSEL Horizon 2020 project
AI4DI (Artificial intelligence for Digital Industry, g.a. no. 826060); and by EU
Horizon 2020 project BonsAPPs (g.a. no. 101015848). We also acknowledge
CINECA for the availability of high-performance computing resources and
support awarded under the ISCRA initiative through the NAS4NPC project.

Manuscript received May 15, 2021.

factor and the requirement for low cost and battery-operated
nature, these smart networked devices are severely constrained
in terms of memory capacity and maximum performance and
use small Microcontroller Units (MCUs) as their main on-
board computing device [2]. At the same time, there is an ever-
growing interest in deploying more accurate and sophisticated
data analytics pipelines, such as Deep Learning (DL) inference
models, directly on IoT end-nodes. These competing needs
have given rise in the last few years to a specific branch of
machine learning (ML) and DL research called TinyML [3] –
focused on shrinking and compressing top-accurate DL models
with respect to the target device characteristics.

The primary limitation of the current generation of TinyML
hardware and software is that it is mostly focused on inference.
The inference task can be strongly optimized by quantizing [4]
or pruning [5] the trained model. Many vendors of AI-oriented
system-on-chips (SoCs) provide deployment frameworks to
automatically translate DL inference graphs into human-
readable or machine code [6]. This train-then-deploy design
process rigidly separates the learning phase from the runtime
inference, resulting in a static intelligence model design flow,
incapable of adapting to phenomena such as data distribution
shift: a shift in the statistical properties of real incoming data
vs the training set that often impacts applications, causing the
smart sensors platform to be unreliable when deployed in the
field [7].

Even if the algorithms themselves are technically capable
to learn and adapt to new incoming data, the update process
can only be handled from a centralized service, running on
the cloud or host servers [8]. In this regard, the original
training dataset would have to be enriched with the newly
collected dataset, and the model would have to be retrained
from scratch on the enlarged dataset, adapting to the new
data without forgetting the original information [8]. Such an
adaptive mechanism belongs to the rehearsal category and
requires the storage of the full training set, often amounting
to gigabytes of data. Additionally, large amounts of data
have to be collected in a centralized fashion by network
communication, resulting in potential security and privacy
concerns, as well as issues of radio power consumption and
network reliability in non-urban areas.

We argue that a robust and privacy-aware solution to these
challenges is enabling future smart IoT end-nodes to Life-
long Learning, also known as Continual Learning [9](CL):
the capability to autonomously adapt to the ever-changing
surrounding environment by learning continually (only) from
incoming data without forgetting the original knowledge – a

ar
X

iv
:2

11
0.

10
48

6v
1 

 [
cs

.L
G

] 
 2

0 
O

ct
 2

02
1



2

phenomenon known as catastrophic forgetting [10]. Despite
many approaches exists to learn from data [11], recently the
focus has moved to improve the recognition accuracy of DL
models because of their superior capabilities, accounting on
new data belonging to known classes (domain-incremental
CL) or a new classes (class-incremental CL) [12], [13]. The
CL techniques recently proposed are grouped in three cate-
gories: architectural, regularization and memory (or rehearsal)
strategies. The architectural approaches specialize a subset
of parameters for every (new and old) task but require the
task-ID information at inference time, indicating the nature of
current task in a multi-head network, and therefore they are
not suitable for class or domain incremental continual learning.
Concerning these latter scenarios, memory-based approaches,
which preserve samples from previous tasks for replaying,
perform better than regularization techniques, which simply
address catastrophic forgetting by imposing constraints on the
network parameter update at low memory cost [13]–[15]. This
finding was confirmed during the recent CL competition at
CVPR2020 [16], where the best entry leveraged on rehearsal
based strategies.

The main drawback of memory-based CL approaches con-
cerns the high memory overhead for the storage of previous
samples: the memory requirement can potentially grows over
time preventing the applicability of these methods at the tiny
scale, e.g. [17]. To address this problem, Pellegrini et al. [1]
have recently introduced Continual Learning based on Latent
Replays (LRs). The idea behind this is to combine a few old
data points taken from the original training set, but encoded
intoa low-dimensional latent space to reduce the memory
cost, with the new data for the incremental learning tasks.
Hence, the previous knowledge is retained by means of Latent
Replays samples, i.e. the intermediate feature maps of the DL
model inference, selected so that they require less space with
respect to the input data (up to 48× smaller compared to raw
images [1]). This strategy also leads to reduced computational
cost: the Latent intermediate layer splits the network in a
frozen stage at the front and an adaptive stage at the back,
and only layers in the latter need to be updated. So far, LR-
based Continual Learning has been successfully prototyped
on high-performance embedded devices such as smartphones,
including a Snapdragon-845 CPU running Android OS in the
power envelope of a few Watts1. On the contrary, in this
work, we focus on IoT applications and TinyML devices, with
100× tighter power constraints and 1000× smaller memories
available.

In our preliminary work [18], we proposed the early design
concept of a HW/SW platform for Continual Learning based
on the Parallel Ultra Low Power (PULP) paradigm [19], and
assessed the computational and memory costs to deploy Latent
Replay-based CL algorithms.

In this paper, we complete and extend that effort by in-
troducing several novel contributions from the software stack,
system integration and algorithm viewpoint. To the best of our
knowledge, we present the first TinyML processing platform

1https://hothardware.com/reviews/qualcomm-snapdragon-845-
performance-benchmarks

and framework capable of on-device CL, together with the
design flow required to sustain learning tasks within a few
tens of mW of power envelope (> 10× lower than state-of-
the-art solutions). The proposed platform is based on VEGA,
a recently introduced end-node System-on-Chip prototype
fabricated in 22nm technology [20]. Unlike traditional low-
power and flexible MCUs design, VEGA exploits explicit
data parallelism, by featuring a multi-core SW programmable
RISC-V cluster with shared Floating Point Units (FPUs), DSP-
oriented ISA and optimized memory management to enable
the learning paradigm on low-end IoT devices. Additionally,
to gain minimum-cost on-device retention of Latent Replays
and better enable deployment on an ultra-low-power platform,
we extend the LR algorithm proposed by Pellegrini et al. [1]
to work with a fully quantized frozen front-end and compress
Latent Replays using quantization down to 7 bits, with a small
accuracy drop (almost lossless for 8-bit) when compared to the
single-precision floating-point datatype (FP32) on the Core50
CL classification benchmark.

In summary, the contributions of this work are:

1) We extend the LR algorithm to work with an 8-bit
quantized and frozen front-end without impact on the
CL process and to support LR compression with quan-
tization, reducing up to 4.5× the memory needed for
rehearsing. We call this extension Quantized Latent
Replay-based Continual Learning or QLR-CL.

2) We propose a set of CL primitives including forward
and backward propagation of common layers such as
convolution, depthwise convolution, and fully connected
layers, fine-tuned for optimized execution on VEGA, a
TinyML platform for Deep Learning based on PULP
[19], fabricated in 22nm technology. We also introduce
a tiling scheme to manage data movement for the CL
primitives.

3) We compare the performance of our CL primitives on
VEGA with that on other devices that could in the future
target on-chip at-edge learning, such as a state-of-the-art
low-power STM32L4 microcontroller.

Our results show that the Quantized Latent Replay based Con-
tinual Learning lead to a minimal accuracy loss on the Core50
dataset compared to the FP32 baseline, when compressing the
Latent Replay memory by 4× by means of 8-bit quantization.
Compression to 7 bit can also be exploited but at the cost of
a slightly lower accuracy, up to 5% wrt the baseline when
retraining one of the intermediate layer. When testing the
QLR-CL pipeline on the proposed VEGA platform, our CL
primitives demonstrated to run up to 65× faster with respect
to the MCUs for TinyML that can be found currently on the
market. Compared against edge devices with a power envelope
of 4W our solution is about 6× more energy-efficient, enough
to operate 317h with a typical battery for embedded devices.
The rest of the paper is organized as follows: Section II
discusses related work in CL, inference and learning at the
edge, and hardware architectures targeted at edge learning.
Section III introduces the proposed methodology for Quan-
tized Continual Learning. Section IV describes the HW/SW
architecture of the proposed TinyML. Section V evaluates and



3

discusses experimental results. Section VI concludes the paper.

II. RELATED WORK

In this section, we first review the recent memory-efficient
Continual Learning approaches before discussing the main
solutions and methods for the TinyML ecosystem, including
the first attempts for on-device learning on embedded systems.

A. Memory-efficient Continual Learning
Differently from Transfer Learning [21], [22], which by

design does not retain the knowledge of the primitive learned
task when learning a new one, Continual Learning (CL) has
recently emerged as a new technique to tackle the acquisition
of new/extended capabilities without losing the original ones
– a phenomenon known as catastrophic forgetting [12], [13].
One of the main causes of this phenomenon is that the newly
acquired set breaks one of the main assumptions underlying
supervised learning – i.e., that training data are statistically
independent and identically distributed (IID). Instead, CL deals
with training data that is organized in non-IID learning events.
Maltoni et al. in [26] sort the main CL techniques intothree
groups: rehearsal, which includes a periodic replay of the past
information; architectural, relying on a specialized architec-
ture, layers, and activation functions to mitigate forgetting;
and regularization-based, where the loss term is extended to
encourage retaining memory of pre-learned tasks.

Among these groups, rehearsal CL strategies have emerged
as the most effective to deal with catastrophic forgetting, at the
cost of an additional replay memory [1], [27], [28]. In the re-
cent CL challenge at CVPR2020 on the Core50 image dataset,
∼90% of the competitors used rehearsal strategies [16]. The
best entry of the more challenging New Instances and Classes
track (the same scenario considered in our work) [17], which
is evaluated in terms of test accuracy but also memory and
computation requirements, scores 91% by replaying image
data. Unfortunately, this strategy results untractable for an
IoT platform because of the expanding replay memory (up
to 78k images) and the usage of a large DenseNet-161 model.
Conversely, the Latent Replay-based approach [1] relies on
a fixed, and relatively small, amount of compressed latent
activations as replay data; it scores 71% if retraining only the
last layer, which presents a peak of 52× lower (compressed)
data points than the winning solution. Additionally, the Jodelet
entry – also employing LR-based CL – achieves 83% thanks
to 3× more replays and a more accurate pre-trained model
(ResNet50) [16]. In our work, we focus on [1] because of the
tunable accuracy-memory setting. Nevertheless, our proposed
platform and compression methodology can be applied to any
replay-based CL approach.

Also related to our work, ExStream [29] clusters in a
streaming fashion the training samples before pushing them
into the replay buffer while [30] uses discrete autoencoders
to compress the input data for rehearsing. In contrast, we
propose low-bitwidth quantization to compress the Latent
Replay memory by >4× and, at the same time, reduce the
inference latency and the memory requirement of the inference
task of the frozen stage if compared to a full-precision FP32
implementation.

B. Deep Learning at the Extreme Edge

Two main trends can be identified for TinyML platforms
targeting the extreme edge. On the one hand, Deep Learning
applications are dominated by linear algebra which is an
ideal target for application-specific HW acceleration [31], [32].
Most efforts in this direction employ a variety of inference-
only acceleration techniques such as pruning [33] and byte
and sub-byte integer quantization [4]; the use of large arrays
of simple MAC units [34] or even mixed-signal techniques
such as in-memory computing [35].

On the other hand, there are also many reasons for the
alternative approach: running TinyML applications as soft-
ware on top of commercial off-the-shelf (COTS) extreme-
edge platforms, such as MCUs. Extreme-edge TinyML de-
vices need to be very cheap; they have to be flexible due
both to economy of scale and to their need for integration
within larger applications, composed of both neural and non-
neural tasks [36]. For these reasons, there is a strong push
towards squeezing the maximal performance out of platforms
based on COTS ARM Cortex-M class microcontrollers and
DSPs, such as STMicroelectronics STM32 microcontrollers2,
or on multi-core parallel ultra-low-power (PULP) end-nodes,
like GreenWaves Technologies GAP-83. To cope with the
severe constraints in terms of memory and maximum compute
throughput of these platforms, a large number of deploy-
ment tools have been recently proposed. Examples of this
trend include non-vendor-locked tools such as Google TFLite
Micro [6], ARM CMSIS-NN [37], Apache TVM [38], as
well as frameworks that only support specific families of de-
vices, such as STMicroelectronics X-CUBE-AI4, GreenWaves
Technologies NNTOOL5, and DORY [39]. Internally, these
tools employ hardware-independent techniques, such as post-
training compression & quantization [40]–[42], as well as
hardware-dependent ones such as data tiling [43] and loop
unrolling to boost data reuse exploitation [37], coupled with
automated generation of optimized backend code [44].

As previously discussed, all of these efforts are mostly
targeted at extreme edge inference, with little hardware and/or
software dedicated to training. Most of the techniques used to
boost inference efficiency are not as effective for learning.
For example, the vast majority of training is done in full
precision floating-point (FP32) or, with some restrictions,
using half-precision floats (FP16) [45] – whereas inference is
commonly pushed to INT8 or even below [4], [40]. IBM has
recently proposed a specialized 8-bit format for training called
HFP8 [46], but its effectiveness is still under investigation.

Hardware-accelerated on-device learning has so far been
limited to high-performance embedded platforms (e.g.,
NVIDIA TensorCores on Tegra Xavier6 and mobile platforms
such as Qualcomm Snapdragon 845 [1]) or very narrow in
scope. For example, Shin et al. [47] claim to implement an
online adaptable architecture, but this is done using a simple

2https://www.st.com/content/st com/en/ecosystems/stm32-ann.html
3https://greenwaves-technologies.com/gap8 gap9/
4https://www.st.com/en/embedded-software/x-cube-ai.html
5https://greenwaves-technologies.com/sdk-manuals/nn quick start guide
6https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-xavier-nx

https://www.st.com/content/st_com/en/ecosystems/stm32-ann.html
https://greenwaves-technologies.com/gap8_gap9/
https://www.st.com/en/embedded-software/x-cube-ai.html
https://greenwaves-technologies.com/sdk-manuals/nn_quick_start_guide


4

TABLE I
ON-DEVICE LEARNING METHODS ON TINY EMBEDDED SYSTEMS.

Method Learning Problem Proc. Tiny On-Device Compute Memory Continual
Approach Device Device Learning Cost Cost Learning

Transfer Retraining last Image Coral X LOW LOW
Learning [21] layer’s weights Classification Edge TPU
TinyTL Retraining Biases Image EPYC AMD X MEDIUM LOW /
[22] Classification 7302 MEDIUM
TinyOL Add layer for transfer-learning Anomaly Arduino Nano X X LOW LOW
[23] based on streaming data Detection 33 BLE
TinyML CNN backprop. from scracth Linear Camera GAP8 X - - X
Minicar [8] on increasing dataset Class. 7 actions
TML kNN Classifier Audio/Image STM32F7 X X LOW HIGH X
[24] Class. 2 classes (unbounded)
PULP-HD Hyperdimensional EMG 10 gestures Mr. Wolf X X MEDIUM LOW X
[25] Computing Classification
LR-CL CNN backprop. Image Qualcomm X HIGH HIGH / X
[1] w/ LRs Class. 50 classes Snapdragon MEDIUM
QLR-CL CNN backprop. Image VEGA X X HIGH MEDIUM X
[This Work] w/ Quantized LRs Class. 50 classes

LUT to selectively activate parameters, and does not support
more powerful mechanisms based on gradient descent. A
few recently proposed hardware accelerators for low-power
training platforms [48]–[51] enable partial gradient back-
propagation by using selective and compressed weight updates,
but they do not address the large memory footprint required
by training. Finally, several online-learning devices using bio-
inspired algorithms such as Spiking Neural Networks [52] and
High-Dimensional Computing [25] have been proposed [53]–
[55]. Most of these approaches, however, have only been
demonstrated on simple MNIST-like tasks.

In this work, we propose the first, to the best of our
knowledge, MCU-class hardware-software system capable of
continual learning based on gradient back-propagation with
a LR approach. We achieve these results by leveraging on
few key ideas in the state-of-the-art: INT8 inference, FP32
continual learning, and exploitation of linear algebra kernels,
back-propagation, and aggressive parallelization by deploying
them on a multi-core FPU-enhanced PULP cluster.

C. On-Device Learning on low-end platforms

Table I lists the main edge solutions featuring on-device
learning capabilities. Every approach is evaluated by consid-
ering the memory and computational costs for the continual
learning task and the suitability for deployment on highly
resource-constrained (tiny) devices.

A first group of works deals with on-device transfer learn-
ing. The Coral Edge TPU, which presents a power budget
of several Watts, features SW support for on-device fine-
tuning of the parameters of the last fully-connected layer [21].
TinyTL [22] demonstrated on a high-end CPU that the transfer
learning task results more effective (+32% on the target Image
Classification task) by retraining the bias terms and adding lite
residual modules. TinyOL [23] brought the transfer learning
task on a tiny devices, i.e. an Arduino Nano platform featuring
a 64MHz ARM Cortex-M4, by adding a trainable layer on top
of a frozen inference model. Because only the coefficients of
the last layer are updated during the online training process, no

backpropagation of error gradients applies. Compared to these
works, we address a continual learning scenario and therefore
we provide a more capable and optimized HW/SW solution
to match the memory and computational requirements of the
adopted CL method.

Differently from the above works, de Prado et al. [8] pro-
posed a Continual Learning framework for self-driving mini-
cars. The embedded PULP-based MCU engine streams new
data to a remote server, where the inference model is retrained
from scratch on the enhanced dataset to improve the accu-
racy over time. This fully-rehearsal methodology cannot be
migrated to low-end devices because of the unconstrained in-
crease of the memory footprint. In contrast, Disabato et al. [24]
presented an online adaptive scheme based on a kNN classifier
placed on top of a frozen feature extraction CNN model. The
final stage is updated by incrementally adding the labeled
samples to the knowledge memory of the kNN classifier.
This approach has been evaluated on a tiny STM32F76ZI
device but unfortunately has proven the effectiveness only
on limited 2-classes problems and presents an unbounded
memory requirement, which scales linearly with the number of
training samples. PULP-HD [25] showed few-shot continual
learning capabilities on an ultra-low power prototype using
Hyperdimensional Computing. During the training phase the
new data are mapped intoa limited hyperdimensional space
by making use of a complex encoding procedure; at inference
time the incoming samples are compared to the computed
class prototypes. The method has been demonstrated on a
10 gesture classification scenario based on EMG data but
lacks of experimental evidences to be effective on complex
image classification problems. In contrast to the these works,
we demonstrate superior learning capabilities for a TinyML
platform by i) running backpropagation on-device to update in-
termediate layers, and ii) supporting a memory-efficient Latent
Replay-based strategy to address catastrophic forgetting on a
more complex Continual Learning scenario. An initial CNN-
based prototype of a Continual Learning system was presented
in in [1] using Latent Replays. The authors demonstrated the



5

Fig. 1. Continual Learning with Latent Replays. The frozen stage is the
light-blue part (first half) of the network. After the first forward of the inputs
(yellow arrow), activations (namely LRs) are stored apart. After having stored
them, they will be used later mixed with the new images coming through the
frozen stage and used to retrain the adaptive portion of the network.

on-device learning capabilities using a Qualcomm Snapdragon
processor, which features a power envelope 100× higher than
our target and therefore it results not suitable for battery-
operated tiny devices. In contrast to them, we also extend the
LR algorithm by leveraging on quantization to compress the
LR memory requirements.

III. METHODS

In this section, we analyze the memory requirements of the
Latent Replay-based Continual Learning method and present
QLR-CL, our strategy to reduce the memory footprint of the
LR vectors based on a quantization process.

A. Background: Continual Learning with Latent Replays

In general, supervised learning aims at fitting an unknown
function by using a set of known examples – the training
dataset. In the case of Deep Neural Networks, the training
procedure returns the values of the network parameters, such
as weights and biases, that minimize a loss function. Among
the used optimization strategies, the mini-batch Stochastic
Gradient Descent (SGD), which is an iterative method applied
over multiple learning step (i.e. the epochs), is widely adopted.
In particular, The SGD algorithm computes the gradient of the
parameters based on the loss function by back-propagating the
error value through the network. This error function compares
the model prediction, i.e. the output of the forward pass, with
the expected outcome (the data label). Parameter gradients
obtained after the backward pass are weighted over a mini-
batch of data before updating the model coefficients.

As introduced at the beginning of this work, the Latent
Replay CL method [1] is a viable solution to gain TinyML
adaptive systems with on-device learning capabilities based
on the availability of new labeled data. In Fig. 1 we illustrate
the CL process with Latent Replays. The new data are injected
into the model to obtain the latent embeddings, which are the
feature maps of a specific intermediate layer. We indicate such
a layer with the index l, where l ∈ [0, L), assuming the tar-
geted model to be composed by L stacked layers. At runtime,
the new latent vectors are combined with the precomputed
NLR Latent Replays vectors to execute the learning algorithm
on the last L− l− 1 layers. More specifically, the coefficient

parameters of the adaptive stage are updated by using a mini-
batch gradient descend algorithm. Every mini-batch includes
both new data (in the latent embedding form) and LR vectors.
The typical ratio of new data over the full mini-batch is 1/6 [1].
The coefficient gradients are computed through forward and
backward passes over the adaptive (learned) layers. Multiple
iterations, i.e. the epochs, of the learning algorithms take place
within the training procedure.

B. Memory Requirements

We model the Latent Replay-based Continual Learning task
as operating on a set of new data coming from a sensor (e.g.,
a camera), which is interfaced with an embedded digital pro-
cessing engine, namely the TinyML Platform, and its memory
subsystem. Given the limited memory capacity of IoT end-
nodes, the quantification of the learning algorithm’s memory
requirements is essential. We distinguish between two different
memory requirements: additional memory necessary for CL,
e.g., the LR memory, and that required to save intermediate
tensors during forward-prop to be used for back-prop – a
requirement common to all algorithms based on gradient
descent, not specific to CL.

Concerning the LR memory, the system has to save a
set of NLR LRs, each one of the size of the feature map
computed at the l-th layer of the network. In our scenario,
LR vectors are represented employing floating-point (FP32)
datatype and typically determine the majority of the memory
requirement [18]. Since LRs are part of the static long-term
memory of the CL system, for their storage, we use non-
volatile memory, e.g., external Flash.

On the other hand, forward- and back-prop of the network
model require to allocate the space for NP network parame-
ters statically. In addition, forward-prop requires dynamically
allocated buffers to store the activation feature maps for all
layers. Up to the l-th layer, these buffers are temporary and
can be released after their usage. Conversely, the system must
keep in memory the feature maps after l to compute the
gradients during back-prop. They can only be released after
the corresponding layer has been back-propagated. Lastly, the
system must also keep in memory the coefficients’ gradients,
demanding a second array of NP elements. To keep accu-
racy on the learning process, every tensor, i.e. coefficients,
gradients, and activations, employ a FP32 format in our
baseline scenario. Different from LRs, these tensors are kept
intovolatile memories, except the frozen weights, which are
stored in a non-volatile memory.

C. Quantized Latent Replay-based Continual Learning

Quantization techniques have been extensively used to re-
duce the data size of model parameters, and activation feature
maps for the inference task, i.e. the forward pass. An effective
quantization strategy reduces the data bitwidth from 32-bit
(FP32) to low bit-precision, 8-bit or less (Q bits, in general)
while paying an almost negligible accuracy loss.

In this paper, we introduce the Quantized Latent Replay-
based Continual Learning method (QLR-CL) relying on low-
bitwidth quantization to speed up the execution of the network



6

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

Logarithmic Interconnect

C
or

e 
0

C
or

e 
1

C
or

e 
2

C
or

e 
3

C
or

e 
4

C
or

e 
5

C
or

e 
6

C
or

e 
7

C
or

e 
8

4x Shared Floating Point Units

I$ I$ I$ I$ I$ I$ I$ I$ Priv
I$Shared I$

D
M

A
Ev

en
t 

U
ni

t

A
XI

 C
lu

st
er

 B
us

H
W

C
E

FPU
FC Core

MCU Interconnect

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

SR
A

M

Tightly Coupled Data Memory 128 KBPrivate L2
64 KB

Interleaved L2
1.5 MB

I/O
 D

M
A

SPI
OctaSPI
UART

I2C
I2S
CPI
MIPI

M
R

A
M

4 
M

B

I$

GPIO APB Bus Peripheral Interconnect

INTC
FLLs
TIM
DBG

CLUSTERMCU

Fig. 2. Architecture outline of the proposed PULP-based System-on-Chip for
Continual Learning.

up to the l-th layer and at the same time reduce the memory
requirement of the LR vectors from the baseline FP32 arrays.
To do so, we split the deep model intotwo sub-networks,
namely the frozen stage and the adaptive stage. The frozen
stage includes the lower layers of the network, up to the
Latent Replay layer l. The coefficients of this sub-network,
including batch normalization statistics, are frozen during the
incremental learning process. On the contrary, the parameters
of the adaptive stage are updated based on the new data
samples.

In QLR-CL, the Latent Replay vectors are generated by
feeding the frozen stage sub-network with a random subset
of training samples from the CL dataset, which we denote
as Xtrain. The frozen stage is initialized using pre-trained
weights from a related problem – in the case of Core50,
we use a network pre-trained on the ImageNet-1k dataset.
Post-Training Quantization of the frozen stage is based on
training samples Xtrain. We apply a standard Post-Training
Quantization process that works by i) determining the dynamic
range of coefficient and activation tensors, ii) dividing the
range intoequal steps, using a uniform affine quantization
scheme [56]. While the statistics of the parameters can be
drawn without relying on data, the dynamic range of the acti-
vation features maps is estimated using Xtrain as a calibration
set. If we denote the dynamic range of the weights at the i-th
layer of the network as [wi,min, wi,max], we can define the
wi,quant INT-Q representation of parameters as

wi,quant =

⌊
wi

Sw,i

⌉
, Sw,i =

wi,max − wi,min

2Q − 1
(1)

where Q is the number of bits, wi is the full-precision output
of the frozen stage. The representation of activations is similar,
but we further restrict (1) for activations ai by considering the
effect of ReLU’s: ai are always positive and ai,quant can be
represented using an unsigned UINT-Q format:

ai,quant =

⌊
ai
Sa,i

⌉
, Sa,i =

ai,max

2Q − 1
(2)

where ai,max is obtained through calibration on Xtrain.
Quantized Latent Replays (QLRs) al,replay are represented

similarly to other quantized activations, setting the layer i to
the LR l. Their value is initialized during the initial setup
of the QLR-CL process using the latent quantized activations
al,quant over the Xtrain set.

During the QLR-CL process, the adaptive stage is fed by
dequantized vectors obtained as Sa,l ·al,replay , along with the
dequantized latent representation of the new data sample Sa,l ·
al,quant. Hence, the single FP32 parameter Sa,l is also stored
in memory as part of the frozen stage. In our experiments, we
set the bitwidth Q of all activations and coefficients to 8-bit,
while the output of the frozen stage is compressed to 8-bit or
less, as further explored in Section V.

IV. HARDWARE/SOFTWARE PLATFORM

In this section, we describe the hardware architecture of
the proposed platform for TinyML learning and the related
software stack.

A. Hardware architecture

The CL platform we propose is inspired and extends on our
previous work [18]. We build it upon an advanced PULP-based
SoC, called VEGA, which combines parallel programming for
high-performance with ultra-low-power features. An advanced
prototype of this platform has been taped out in Global-
Foundries 22nm technology [20]. The system architecture,
which is outlined in Fig. 2, is based on an I/O-rich MCU
platform coupled with a multi-core cluster of RISC-V ISA
digital signal processing cores which are used to accelerate
data-parallel machine learning & linear algebra code. The
MCU side features a single RISC-V core, namely the Fabric-
Controller (FC), and a large set of peripherals. Besides the
FC core, the MCU-side of the platform includes a large L2
SRAM, organized in an FC-private section of 64kB and a
larger interleaved section of 1.5MB. The interleaved L2 is
shared between the FC core and an autonomous I/O DMA
controller, connected to a broad set of peripherals such as
OctaSPI/HyperBus to access an external Flash or DRAM
of up to 64MB, as well as camera interfaces (CPI, MIPI)
and standard MCU interfaces (SPI, UART, I2C, I2S, and
GPIO). The I/O DMA controller is connected to an on-chip
magnetoresistive RAM (MRAM) of 4MB, which resides in its
power and clock domain and can be accessed through the I/O
DMA to move data to/from the L2 SRAM.

The multi-core cluster features nine processing elements
(PE) that share data on a 128kB multi-banked L1 tightly
coupled data memory (TCDM) through a 1-cycle latency
logarithmic interconnect. All cores are identical, using
an in-order 4-stage architecture implementing the RISC-V
RV32IMCFXpulpv2 ISA. The cluster includes a set of four
highly flexible FPUs shared between all nine cores, capable
of FP32 and FP16 computation [57]. Eight cores are meant
to execute primarily data-parallel code, and therefore they
use a hierarchical Instruction cache (I$) with a small private
part (512B) plus 4kB of shared I$ [58]. The ninth core is
meant to be used as a cluster controller for control-heavy
data tiling & marshaling operations; it has a private I$ of
1kB. The cluster also features a multi-channel DMA engine
that autonomously handles data transfers between the shared
L1 and the external memories through a 64-bit AXI4 cluster
bus. The DMA can transfer up to 8B/cycle between L2 and
L1 TCDM in both directions simultaneously and perform 2D



7

FW

BW errorBW grad

im2col transform 

K

K

Cin
K × K × Cin K

 × K
 × C

in

1 × 1 × C
out

1 × 1 × C
out

output weight input

K × K × Cin K
 × K

 × C
in 1 × 1 × Cout

1 × 1 × C
out

grad_weight
L

input grad_output
L

1 × 1 × Cout

K
 × K

 × C
in

1 × 1 × C
out

K
 × K

 × C
in

weightgrad_input grad_output

K
 × K

 × C
in

= .

== ..

Fig. 3. Clockwise from top-left: im2col transform, Forward and Backward
propagation for error and gradient calculation for a K ×K Conv layer.

Fig. 4. Tiling scheme between L2 and L1 memories exploiting double-
buffering. Two equal buffers are filled with the matrix multiplication terms
that fit intohalf the size of L1. The second buffer is filled with the next terms
of the convolution that have to be matrix-multiplied.

strided access on the L2 side by generating multiple AXI4
bursts. The cluster can be switched on and off at runtime
by the FC core employing clock-gating; it also resides on a
separate power domain than the MCU, making it possible to
completely turn it off and to tune its Vdd using an embedded
DC-DC regulator.

B. Software stack

To execute the CL algorithm, the workload is largely
dominated by the execution of convolutional layers, such as
pointwise, and depthwise, or fully connected layers (∼98% of
operations in MobileNet-V1). Consequently, the main load on
computations is due to variants of matrix multiplications dur-
ing the forward and backward steps, which can be efficiently
parallelized on the 8 compute PEs of the cluster, leaving one
core out to manage tiling and program data transfers. Thus,
to enable the learning paradigm on the PULP platform, we
propose a SW stack composed of parallel layer-wise primitives
that realize the forward step and the back-propagation. The
latter concerns either the computation of the activation gradi-
ents (backward error step) and coefficient gradients (backward

gradient step). Fig. 3 depicts the dataflow of the forward and
backward for commonly used convolutional kernels such as
pointwise (PW), depthwise (DW), and linear (L) layers. To
reshape all convolution operations intomatrix multiplications,
the im2col transformation is applied to the activation tensors to
reshape them into2D matrix operands [37]. The FP32 matrix
multiplication kernel is parallelized over the eight cores of the
cluster according to a data-parallelism strategy, making use of
fmadd.s (floating multiply-add) instructions made available by
the shared FPU engines.

The cores must operate on data from arrays located in
the low-latency L1 TCDM to maximize throughput and com-
putational efficiency (i.e., IPC). However, the operands of a
layer function may not entirely fit into the lower memory
level because of the limited space (128kB). For instance, the
tensors of the PW layer #22 of the used MobileNet-V1 occupy
1.25MB. Hence, the operands have to be sliced intoreduced-
size blocks that can fit intothe available L1 memory and
convolutional functions are applied on L1 tensor slices to
increase the computational efficiency.

This approach is generally referred to as tiling [39], which
is schematized in Fig. 4. By locating layer-wise data on the
larger L2 memory (1.5MB), the DMA firstly copies individual
slices of operand data, also referred to as tiles, intoL1 buffers,
to be later fetched by the cores. Since the cluster DMA engine
is capable of 2D-strided access on the L2 side, this operation
can also be designed to perform im2col, without any manual
data marshaling overhead on L1.

To increase the computation efficiency, we implement a
software flow that interleaves DMA transfers between L2 and
L1 and calls to parallel primitives, e.g. forward, backward
error, or backward gradient steps, which operate on individual
tiles of data. Hence, every layer is expected to load and
process all the tiles of any operand tensor. To reduce the
overhead due to the data copy, the DMA transfers take place
in the background of the multi-core computation: the copy
of the next tile is launched before invoking the computation
on loaded tiles. On the other side, this optimization requires
doubling the L1 memory requirement: while one L1 buffer is
used for computation, an equally-sized buffer is used by the
data movement task. From a different viewpoint, the maximum
tile size must not exceed half of the available memory. At
runtime, layer-wise tiled kernels are invoked sequentially to
run the learning algorithm with respect to the input data. To
this aim, LRs are loaded from external embedded memory, if
not fitting the internal memory, and copied to the on-chip L2
memory thanks to the I/O DMA.

V. EXPERIMENTAL RESULTS

In this section, we provide the experimental evidence about
our proposed TinyML platform for on-device Continual Learn-
ing. First, we evaluate the impact of quantization of the frozen
stage and the LR vectors upon the overall accuracy, and we
analyze the memory-accuracy trade-off.

Secondly, we study the efficiency of the proposed SW ar-
chitecture with respect to multiple HW configurations, namely
#cores, L1 size and DMA bandwidth, introducing the tiling



8

Fig. 5. Accuracy plots for NLR = {375, 750, 1500, 3000} and different
levels of quantization. From these plots it is visible that below UINT-7
accuracy degrades rapidly.

requirements and evaluating the latency for each kernel of
computation. Then, we measure performance on an advanced
PULP prototype, VEGA, fabricated in GlobalFoundries 22nm
technology with 4 FPUs shared among all cores. We analyze
the latency results for individual layers forward and backward
and estimate the overall energy consumption to perform a CL
task on our platform. Finally, we compare the efficiency of our
TinyML platform to other devices used for on-device learning.

A. Experimental Setup

We benchmark the compression technique for the Latent
Replay memory on the image-classification Core50 dataset,
which includes 120k 128×128 RGB images of 50 objects
for the training and about 40k images for the testing. On the
Core50 dataset, the CL setting is regulated by the NICv2-
391 protocol [59]. According to this protocol, 3000 images
belonging to ten classes are made available during the initial
phase to fine-tune the targeted deep model on the Core50
problem. Afterward, the remaining 40 classes are introduced at
training time in 390 learning events. Each event, as described
more in detail in Section III-A, comprises iterations over mini-
batches of 128 samples each: 21 coming from actual images,
all from the same class and typically not independent (e.g.,
coming from a video), and 107 latent replays. After each
learning event, the accuracy is measured on the test set, which
includes samples from the complete set of classes.

Following [1], we use a MobileNet-V1 model with an
input resolution of 128×128 and width multiplier 1, pre-
trained on ImageNet; we start from their public released
code7 and use PyTorch 1.5. In our experiments, we replace
BatchReNormalization with BatchNormalization layers and
we freeze the statistics of the frozen stage after fine-tuning.

B. QLR-CL memory usage and accuracy

To evaluate the proposed QLR-CL setting, we quantize the
frozen stage of the model using the PyTorch-based NEMO
library [60] after fine-tuning the MobileNet-V1 model with

7Available at https://github.com/vlomonaco/ar1-pytorch/. While Pelle-
grini et al. [1] report lower accuracies in their paper, our FP32 baseline results
are aligned with their released code.

the initially available 3000 images. We set the activation and
parameters bitwidth of the frozen stage to Q = 8 bit while we
vary the bitwidth QLR of the latent replay layer. The quantized
frozen stage is used to generate a set of NLR Latent Replays,
as sampled from the initial images.

The plots in Fig. 5 show the test accuracy on the Core50
that is achieved at the end of the NICv2-391 training protocol
for a varying NLR = {375, 750, 1500, 3000} while sweeping
the LR layer l. Depending on the selected layer type, the size
of the LR vector varies as reported in Table III.

Each subplot of Fig. 5 compares the baseline FP32 ver-
sion with our 8-bit fully-quantized solutions with a varying
QLR = {8, 7, 6}, denoted in the figures, respectively, as UINT-
8, UINT-7 and UINT-6. For a QLR < 6, we observe the
Continual Learning process to not converge on the Core50
dataset.

From the obtained results, we can observe the UINT-8
compressed solution featuring a small accuracy drop with
respect to the full-precision FP32 baseline. When increasing
the number of latent replays NLR to 3000, the UINT-8
quantized version results almost lossless (-0.26%), if LR= 19.
On the contrary, if the LR layer is moved towards the last
layer (LR=27), the accuracy drop increases up to 3.4%. The
same effect is observed when reducing NLR to 1500, 750 or
375. In particular, when NLR = 1500, the UINT-8 quantatized
version presents an accuracy drop from 1.2% (LR= 19) to
2.9% (LR= 27). On the other hand, lowering the bit precision
to UINT-7, the accuracy reduces on average of up to 5.2%, if
compared to the FP32 baseline. Bringing this further down to
UINT-6 largely degrades the accuracy by more than 10%.

To deeply investigate the impact of the quantization process
on the overall accuracy, we perform an ablation study to
distinguish the individual effects of i) the quantization of
the front-end and ii) the quantization of the LRs. In case
of NLR = 1500, Table II compares the accuracy on the
Core50 dataset for different LR layers, if applying quantization
to both the LR memory and the frozen stage or only to
the LR memory. The accuracy statistics are averaged over
5 experiments; we report in the table the mean and the
std deviation of the obtained results. In particular, we see
that quantizing the LRs has a larger effect on the accuracy
than quantizing the frozen graph. By quantizing only the LR
memory to UINT-8, the accuracy drops by up to 1.2-2.6%
(higher in case of larger adaptive stages) with respect to the
FP32 baseline. On the contrary, the UINT-8 quantized frozen
graph brings only an additional 0.5-1% of accuracy drop.
With UINT-7 LRs, the accuracy drop is mainly due to the
LR quantization: when compressing also the frozen stage to
8-bit the accuracy drop is up to -1%, which is small compared
to the total 4-7% of accuracy degradation.

To facilitate the interpretation of the results, Fig. 6 reports
the test accuracy for multiple quantization settings compared
to the size (in MB) of the Latent Replay Memory. In red,
we highlight a Pareto frontier of non-dominated points, to
have a range of options to maximize accuracy and minimize
the memory footprint. Among the best solutions, we detect
two clusters of points on the frontier. The first cluster (A),
corresponding to the low-memory side of the frontier, is



9

TABLE II
ACCURACY ON CORE50 DATASET WITH MULTIPLE QUANTIZATION

SETTINGS A+B, WHERE A DENOTES THE QUANTIZATION OF THE FROZEN
STAGE (FP32 OR UINT-8) AND B INDICATES THE QUANTIZATION SCHEME
OF THE LR VECTORS (FP32, UINT-8, UINT-7). THE BASELINE IS FP32.

LR FP32 FP32 + UINT-8 + FP32 + UINT-8 +
layer baseline UINT-8 UINT-8 UINT-7 UINT-7
27 72.7 ± 0.34 70.1 ± 0.54 69.2 ± 0.48 68.0 ± 0.63 67.8 ± 1.14
25 73.3 ± 0.58 70.9 ± 0.65 70.2 ± 0.67 66.2 ± 0.75 66.1 ± 0.94
23 75.0 ± 0.83 73.2 ± 0.46 73.4 ± 0.66 71.1 ± 0.63 69.9 ± 1.25
21 76.5 ± 0.63 74.9 ± 0.51 73.9 ± 1.67 72.7 ± 0.74 72.6 ± 1.30
19 77.7 ± 0.73 76.5 ± 0.48 76.0 ± 0.80 74.0 ± 0.57 75.2 ± 1.10

TABLE III
SIZE OF TILES FOR THE MOBILENET-V1 LAYERS.

LR Layer LR Dim. LR Size
Layer l Type (H ×W × C) (#elements)

19 DW 8×8×512 32k
20 PW 8×8×512 32k
21 DW 8×8×512 32k
22 PW 8×8×512 32k
23 DW 4×4×512 8k
24 PW 4×4×1024 16k
25 DW 4×4×1024 16k
26 PW 4×4×1024 16k
27 Linear 1×1×1024 1k

constituted by experiments that use l = 27 with 1500 or 3000
LRs and UINT-7 or UINT-8 representation. On the other hand,
if we aim at the highest accuracy possible for our QLR-CL
classification algorithm, we can follow the Pareto frontier to
the right towards higher accuracies at steeper memory cost,
reaching cluster B. All points in cluster B features l = 23
as Latent Replay layer, which is a bottleneck layer of the
network and allows to store more compact tensors as LR (refer
to Table III). Adopting LR layers within B leads accuracy to
an average of 76%, gaining ∼5% on average with respect to
the layers within cluster A. A single point C1 is shown further
to the right, but still below 128MB.

For a deeper analysis of the Pareto frontier, in Fig. 7, we
detail the memory requirements when analyzing the points
into the two clusters A and B, as well as C1. We make two
observations: first, in all A points, it would be possible to
fit entirely within the on-chip memory available on VEGA,
exploiting the 4MB of non-volatile MRAM. This would allow
avoiding any external memory access, increasing the energy
efficiency of the algorithm by a factor of up to ∼3× [20].
Moreover, considering that the maximization of accuracy is
often the primary objective in CL, we observe that accumu-
lating features at l = 19 with 1500 UINT-8 LRs (point C1)
enables accuracy to grow above 77%, almost 10% more than
the compact solutions in A (Fig. 7). This analysis allows us to
also speculate over possible future architectural explorations to
design optimized bottleneck layers that could facilitate better
memory accuracy trade-off for QLR-CL.

C. Hardware/Software Efficiency

To assess the performance of the proposed solution, we
study the efficiency of the CL Software primitives on the target
platform and the sensitivity to some of the HW architectural

parameters, namely the #cores, the L1 memory size and the
cluster DMA Bandwidth.

Single-tile performance on L1 TCDM: Based on the tiling
strategy described in Section IV-B, we run experiments con-
cerning the CL primitives of the software stack that operates
on individual tiles of data placed in the L1 memory. Figure 8
shows the latency performance, expressed as MAC/cyc, i.e.
the ratio between Multiply-Accumulate operations (MAC) and
elapsed clock cycles (cyc), for each of the main FP32 compu-
tation kernels in case of single-core (1-CORE) or multi-core
(2-4-8-CORES) execution. We highlight that a higher value of
MAC/cyc denotes a more efficient processing scheme, leading
to lower latency for a given computation workload, i.e. fixed
MAC. More specifically, in this plot, we evaluate the forward
(FW), backward error (BW ERR), and backward gradient (BW
GRAD) for each of the considered layer for a varying size of
the L1 TCDM memory, i.e. 128, 256 or 512kB. The shapes
of the tiles for PointWise (PW), DepthWise (DW), and Linear
(Lin) layers used for the experiments are reported in the tables
on the left of the figure. Such dimensions are defined to fit
three different sizes of the TCDM, considering buffers of size
64kB, 128kB and 256kB.

Focusing firstly on the PW layers (histograms at the top
of the figure), we observe a peak performance in the 8-cores
FW step, achieving up to 1.91 MAC/cyc for a L1 memory
size of 512kB. We observe also a performance improvement
of up to 11% by increasing the L1 size from 128kB to 512kB,
which is is motivated by the higher computational density of
the kernel: if L1= 512kB the inner loop features 4× iterations
than a scenario with 128kB of L1 size. Moreover, the parallel
speedup scales almost linearly with respect to the number of
cores and archives 7.2× in case of 8 cores. With respect to
the theoretical maximum of 8×, the parallel implementation
presents some overheads mainly due to increased L1 TCDM
contentions and cluster’s cache misses.

If we look at DW convolutions, their performance is lower
with respect to the others. The main reason is that it requires
a software-based im2col data layout transformation, which
increase the amount of data marshaling operations and adds an
extra L1 buffer, thus reducing the size of matrices in the matrix

Fig. 6. Accuracy achieved by considering NLR = {750, 1500, 3000} and
different precision, highlighting the Pareto frontier.



10

Fig. 7. Memory requirements for the points highlighted in Fig. 6. Each layer
belongs to the Pareto frontier and accounts for all the memory components.
Going deeper into the network, LRs (gray) dominate memory consumption.
The other components are the parameters of the frozen stage, the gradient and
the activations needed during the training.

multiplication, leading to increased overheads. Specifically, we
measure the workload of the im2col to achieve up to 70%
of the FW kernel’s latency. As mentioned in Section IV, the
primitives we introduce also support performing the im2col
directly when moving the data tile from L2 via DMA transfer –
in that case, this source of performance loss is not present, and
the MAC/cyc necessary for depthwise convolutions increases
up to 1 MAC/cycles for depthwise forward-prop, depending
also on the L1 size selected. The remaining overhead with
respect to pointwise convolutions is justified by the fact that
depthwise convolutions can only exploit filter reuse (of size
3×3, for example, in MobileNet-V1 DW layers) and no input
channel data-reuse, resulting in much shorter inner loops and
more visible effect of overheads. This latter effect cannot be
counteracted by efficient DMA usage; on the other hand, since
depthwise convolutions account for less than 1.5% of the
computation, their impact on the overall latency is limited,
as we further explore in the following section.

Moving our analysis towards the different performance
between forward- and backward-prop layers (particularly BW
grad), we observe that this effect is again due to different
data re-use between the matrix multiplication kernels. The
reduction in re-use in the backward-prop is due to the tiling
strategy adopted (see Fig. 3) has a grad output vector which
is shorter than the input in the forward matrix multiplication.
Specifically, the input to the matrix multiplication has size
8x1x1 in backward, while the input shape in forward changes
accordingly with the L1 memory: 512x1x1 for 128kB L1,
1024x1x1 for 256kB L1 and 2048 for 512kB L1. In this
scenario, the inner loop of the matrix multiplication of a
forward computation is 64×, 128× or 256× larger with
respect to the backward kernels’ cases. This fact motivates the
lower MAC/cyc of the BW ERR step (22%) and BW GRAD
step (-46%) if compared to the FW kernel.

L2-L1 DMA Bandwidth effects on performance: Next we
analyze the impact of L2-L1 DMA Bandwidth variations, due
to the Cluster DMA, on the overall performance of the learning
task. In particular, we monitor the latency and the MAC/cyc
for multiple values of L2-L1 bandwidth ranging from 8 to
128 bits per clock cycle (bit/cyc) and different configurations
of #cores and L1 size. We remark that a higher value of
MAC/cyc indicates a better performing HW configuration. Our

analysis assumes a single half-duplex DMA channel, hence the
bandwidth value accounts for either read or write transfers.

Fig. 9 reports the average MAC/cyc when running the
forward and backward steps with respect to the L2-L1 cluster’s
DMA bandwidth. As a benchmark, we consider the adaptive
stage of the MobileNetV1 model when the LR layer is set to
the 19th layer. Hence, we adopt our tiling strategy and double-
buffering scheme to realize the training. When increasing
the L1 size, the tensor tiles feature a larger size, therefore
demanding a higher transfer time to copy data between the
L1 memory (used for computation) and L2 memory (used for
storage). Thanks to the adopted double-buffering technique,
such transfer time can be hidden by the computation time
because the DMA works in the background of CPU operation
(compute-bound). On the contrary, if the transfer time results
dominating, the computation becomes DMA transfer-bound,
with lower benefits from the multi-core acceleration.

In case of single core execution, the measured MAC/cyc
does not vary with respect to the L1 size (128kB, 256kB or
512kB) as can be seen from the plot. In this scenario, the CPU
time results as the dominant contribution with respect to the
transfer time: the execution is compute-bound and a higher
L2-L1 bandwidth does not impact the overall performance.
Differently, in a multi-core execution (2, 4 or 8 cores), the
average MAC/cyc increases and therefore the ratio between
transfer time and the computation time decreases: from the plot
we can observe higher performance if the DMA bandwidth is
increased. If featuring a L1 size of 128kB, the sweet spots
between DMA and compute bound are observed when the
L2-L1 DMA bandwidth is 16 (2 cores), 32 (4 cores) and 64
(8 cores) bit/cyc, respectively, as highlighted by the red circles
in the plot. These configurations denote the sweet spots to tune
the DMA requirements with respect to the chosen L1 memory
size and #cores.

If focusing more on the impact of the L1 memory size to
the multi-core performance, we observe up to 2× efficiency
gain with 8 cores with a larger L1 memory, increasing from
0.25 MAC/cyc for a 128kB L1 memory to 0.4MAC/cyc at
L1=256kB and to 0.53MAC/cyc for 512kB of L1. At 64
bit/cyc of L2-L1 DMA bandwidth, the execution, which is
dominated by the computation, reaches 0.52MAC/cyc, 2.12×
faster than the low-bandwidth configuration.

From this analysis we can conclude that the best design
point for the learning task on a low-end multi-core architecture
can be pinpointed leveraging the L2-L1 DMA Bandwidth and
the L1 memory size tuning: when using 8 cores, 128kB of
L1 memory, which is typically the main expensive resource
for the system, can lead already to the highest performance as
long as the DMA features a bandwidth of 64 bit/cyc. On the
contrary, if the DMA’s bandwidth is as low as 8 bit/cyc, a 512
kB L1 memory is needed to gain maximum performance. The
target chip VEGA includes a L1 memory of 128 kB; the DMA
follows a full-duplex scheme and can provide up to 64 bit/cyc
for read transactions and 64 bit/cyc for write transactions.
Therefore the VEGA HW architecture can fully exploit the
presented SW architecture and optimization schemes to reach
the optimal utilization and performance for the learning task.



11

Fig. 8. Efficiency, expressed in MAC/cyc, of the proposed CL primitives for forward and backward pass: PointWise, DepthWise, and Linear layers. The
analysis concerns a varying number of cores (1, 2, 4 or 8) and L1 memory size (128, 256 or 512 kB), which impacts on the dimension of the layer’s tensor
tiles as reported in the tables on the left.

Fig. 9. SW efficiency, expressed as average MAC/cyc, when running forward
and backward steps with respect to a varying L1-L2 bandwidth. Every line
corresponds to a configuration of #cores (1, 2, 4 or 8 cores) and L1 memory
size (128, 256 or 512kB).

D. Latency Evaluation on VEGA SoC

We run experiments on the VEGA SoC to assess the on-
device learning performance, in terms of latency and energy
consumption, of the proposed QLR-CL framework. Specifi-
cally, we report the computation time, i.e. the latency, at the
running frequency of 375MHz and the power consumption by
measuring the current absorbed by the chip when powered at
1.8V. To measure the full layer latency, we profile forward
and backward tiled kernels, which include DMA transfers
of data, initially stored in L2, and calls to low-level kernel
primitives, introduced above. On average, we observe a 7% of
tiling overhead with respect to the single-tile execution on L1.
This is not surprising, due to the large bandwidth availability
between L1 and L2 and the presence of compute-bound matrix
multiplication operations.

TABLE IV
CUMULATIVE LATENCY VALUES PER LEARNING EVENT FOR VEGA,

STM32, AND SNAPDRAGON845.

LR VEGA @ 375 MHz STM32L4 @ 80 MHz Snapdragon
Layer Adaptive Frozen Cumul. Total Cumul. Total

l [s] [s] En. [J] [s] En. [J] [s]
20 2.49 · 103 0.87 154 1.65 · 105 5688 n.a.
21 1.73 · 103 0.94 107 1.15 · 105 3981 n.a.
22 1.64 · 103 0.95 101 1.08 · 105 3728 n.a.
23 8.77 · 102 1.03 54.3 5.86 · 104 2020 n.a.
24 7.81 · 102 1.03 48.4 5.12 · 104 1769 n.a.
25 4.01 · 102 1.09 24.9 2.65 · 104 915 n.a.
26 3.81 · 102 1.10 23.5 2.49 · 104 859 n.a.
27 2.07 1.25 0.13 1.39 · 102 4.80 0.50

Based on the implemented tiled functions, we report the
layer-wise performance in Table IV for any of the layers of
the MobileNet-V1 model. We consider as complete time for
the execution of a layer the cumulated time for frozen stage
and adaptive stage. The latency of the frozen stage is obtained
using DORY [39] to deploy the network, as this operation is
performed as pure 8-bit quantized inference. We compute the
full latency of the adaptive stage as the time needed to execute
the forward and backward phases of each layer. Since we have
multiple configurations, latencies for retraining start growing
from the last layer (#27) up to layer #20, where retraining
comprises a total of eight layers.

First of all, we note that frozen stage latencies are utterly
dominated by the adaptive stage. Apart from the faster infer-
ence backend, which can rely on 8-bit SIMD vectorization,
this is because only 21 images per mini-batch pass through
the frozen stage, while the adaptive stage has to be executed
on 128 latent inputs (107 LRs and the 21 dequantized outputs
from the frozen stage), and it has to run for multiple epochs
(by default, 4) in order to work.

When l = 27, the adaptive stage is very fast thanks to



12

its very small number of parameters (it produces just the 50
output classes). This is the only case in which the frozen
stage is non-negligible (∼ 1/6 of the overall time). Progressing
upward in the table, the frozen stage becomes negligible. The
cumulative impact of forward and backward passes through
all the other layers we take intoaccount (l from #20 to #26) is
in the range between 0.3h and 1.5h. In particular, l = 23
corresponds to ∼14 min per learning event; this LR layer
corresponds to high accuracy (>75% in Core50, see Fig. 6),
which means that in this time the proposed system is capable
of acquiring a very significant new capability (e.g., a new
task/object to classify) while retaining previous knowledge to
a high degree.

Having the basic mini-batch measurements, we can estimate
any scenario, by considering that to train with 1500 LR and
l = 27, we will need 300 new images, thus we need 14 mini-
batches (300/21), which leads to 3.30 seconds to learn a new
set of images, with an accuracy of 69.2%. If we push back
the LR layer l, this leads to an increase of accuracy 76.5%,
at the expense of much larger latency, up to 42 minutes for
layer #20 (see Table IV).

E. Energy Evaluation on CL Use-Cases and Comparison with
other Solutions

To understand the performance of our system and its real-
world applicability, we study two use-cases: a single mini-
batch of the Core50 training we used, and the simplified sce-
nario presented by Pellegrini et al. [1] in their demonstration
video. We compare our results with another MCU targeting
ultra-power consumption: a NUCLEO-64 board based on the
STM32L476RG MCU, on which we ran a direct port of the
same code we use on the PULP-based platforms. It has two on-
chip SRAMs with 1-cycle access time and an overall capacity
of 96kB. Performance results, in terms of latency, are reported
in Table IV, where we take intoaccount the cumulative latency
values both for VEGA and STM32 implementations, along
with the cumulative energy consumption. Cumulative latency
is computed by adding from the linear layer of the network
the latencies of the preceding layers.

On average, execution on VEGA’s 8-cores on performs
65× faster with respect to the STM32 solution thanks to
three main factors. Firstly, the clock frequency of VEGA is
4.7× higher than the max clock frequency of the STM32L4
(375MHz vs 80MHz), also thanks to the superior technology
node. Secondly, VEGA presents a parallel speed-up of up
to 7.2×. Lastly, thanks to the more optimized ISA and the
core microarchitecture, VEGA performs less operations while
executing the same learning task. For example, the inner
loop of the matrix multiplication on VEGA requires only 4
instructions while the STM32L4 takes 9 instructions, resulting
2.25× faster, mainly thanks to the HW loop extension and the
fmadd.s instruction.

The latency speed up, leads to an energy gain of around
37×, because the average power consumption of VEGA is
2× higher than the STM32L4 at full load.

Notice that the latency measurement of the STM32L4 does
not account for possible overheads due to the tiling data

Fig. 10. Battery Lifetime of the VEGA SoC and the STM32L4 devices when
handling multiple learning events per hour.

between the small on-chip SRAM banks and off-chip memory.
Even then, our results show that fine-tuning from any layer
above the last one results in too large a latency to be realistic
on STM32L4 – in the order of a day per learning event with
l = 23. On the contrary, CL on VEGA can be completed in
∼ 14 minutes if selecting l = 23 or as fast as 3.3 seconds if
retraining only the last layer.

Given the reported energy consumption, we estimated the
battery lifetime of our device when adapting the inference
model by means of multiple learning events per hour; we
assumed no extra energy consumption for the remaining
time. In particular, Fig. 10 shows the battery lifetime (in
hours) depending on the selected Latent Replay layer and the
adaptation rate, expressed as the amount of learning events
per hour. We considered a 3300 mAh battery as the only
energy source for the device. By retraining only the last layer
(LR= 27), an intelligent node featuring our device can perform
more than 1080 continual learning events per hour, leading
to a lifetime of about 175h. On the contrary, if retraining
larger portions of the network, the training time increases
and the maximum rate of the learning events reduces to less
than 10/hour, with a lifetime in the range 200-1000h. In
comparison, on a STM32L4, if retraining the coefficients of
the last layer, the maximum learning rate per hour is limited to
750, with a lifetime of about 10h. This latter can be increased
up to 10000h but retraining only once in one hour. At the
same learning event rate, the battery lifetime of VEGA is 20x
higher.

Lastly, we compare with the use-case presented by Pel-
legrini et al. [1], where they developed a mobile phone
application that performs CL with LRs on a OnePlus6 with
Snapdragon845. For this scenario, they consider only 500 LRs
before the linear layer, these will be shuffled with 100 new
images. Then, by construction the mini-batch is composed of
100 LRs and 20 new images, thus, for each of the 8 training
epochs, the network will process 5 times over the 20 new
images and the 100 LRs. This scenario leads them to obtain
an average latency of 502 ms for a single learning event. On
the other hand, considering our measurements on VEGA we
obtain a forward latency of 1.25s and a training time of 2.07s
for a whole learning event.

Considering the power envelope of a Snapdragon845 of



13

about 4W, and the average power consumption of VEGA of
62mW, this implies that our solution is 9.7× more efficient in
terms of energy. We additionally assess the energy consump-
tion and the duration of a battery in the mobile application
scenario, provided the energy measurements on VEGA, when
using a 3300mAh battery. Thus, if we consider performing
learning over a mini-batch of images once every minute in
the ultra-fast scenario (just retraining the linear layer) and
to perform an inference each second, we obtain an energy
consumption of 0.25J per minute. This leads the accuracy of
the model to achieve an average of 69.2%, with an overall
lifetime of about 108 days.

VI. CONCLUSION

In this work, we presented what, to the best of our knowl-
edge, is the first HW/SW platform for TinyML Continual
Learning – together with the novel Quantized Latent Replay-
based Continual Learning (QLR-CL) methodology. More
specifically, we propose to use low-bitwidth quantization to
reduce the high memory requirements of a Continual Learning
strategy based on Latent Replay rehearsing. We show a small
accuracy drop as small as 0.26% if using 8-bit quantized LR
memory if compared to floating-point vectors and an average
degradation of 5% if lowering the bit precision to 7-bit,
depending on the LR layer selected. Our results demonstrate
that sophisticated adaptive behavior based on CL is within
reach for next-generation TinyML devices, such as PULP
devices; we show the capability to learn a new Core50 class
with accuracy up to 77%, using less than 64MB of memory –
a typical constraint to fit Flash memories. We show that our
QLR-CL library based on VEGA achieves up to ∼65× better
performance than a conventional STM32 microcontroller.

These results constitute an initial step towards moving the
TinyML from a strict train-then-deploy approach to a more
flexible and adaptive scenario, where low power devices are
capable to learn and adapt to changing tasks and conditions
directly in the field.

Despite this work focused on a single CL method, we
remark that, thanks to the flexibility of the proposed platform,
other adaptation methods or models can be also supported,
especially if relying on the back-propagation algorithm and
CNN primitives, such as convolution operations.

ACKNOWLEDGEMENT

We thank Vincenzo Lomonaco and Lorenzo Pellegrini for
the insightful discussions.

REFERENCES

[1] L. Pellegrini, G. Graffieti, V. Lomonaco, and D. Maltoni, “Latent Replay
for Real-Time Continual Learning,” 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 10 203–10 209,
2020.

[2] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learn-
ing in 2 kb ram for the internet of things,” in International Conference
on Machine Learning. PMLR, 2017, pp. 1935–1944.

[3] C. R. Banbury, V. Janapa Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov et al., “Benchmarking
tinyml systems: Challenges and direction,” arXiv e-prints, pp. arXiv–
2003, 2020.

[4] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized Clipping Activation for
Quantized Neural Networks,” arXiv e-prints, pp. arXiv–1805, 2018.

[5] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?” in Proceedings of Machine Learning
and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2,
2020, pp. 129–146.

[6] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden,
“TensorFlow Lite Micro: Embedded Machine Learning on TinyML
Systems,” arXiv e-prints, pp. arXiv–2010, 2020.

[7] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, “Concrete Problems in AI Safety,” arXiv e-prints, pp. arXiv–
1606, 2016.

[8] M. de Prado, M. Rusci, A. Capotondi, R. Donze, L. Benini, and N. Pa-
zos, “Robustifying the Deployment of tinyML Models for Autonomous
mini-vehicles,” Sensors, vol. 21, no. 4, p. 1339, 2021.

[9] M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang, J. Wang, and
T. Li, “In-situ ai: Towards autonomous and incremental deep learning
for iot systems,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018, pp. 92–103.

[10] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” in Proceedings of the na-
tional academy of sciences, N. A. Sciences, Ed., vol. 114, no. 13, 2017,
pp. 3521–3526.

[11] S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup, and M. Shah, “A
survey of on-device machine learning: An algorithms and learning theory
perspective,” ACM Transactions on Internet of Things, vol. 2, no. 3, pp.
1–49, 2021.

[12] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

[13] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner, “Online
continual learning in image classification: An empirical survey,” arXiv
preprint arXiv:2101.10423, 2021.

[14] G. M. Van de Ven and A. S. Tolias, “Three scenarios for continual
learning,” arXiv preprint arXiv:1904.07734, 2019.

[15] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania,
P. H. Torr, and M. Ranzato, “On tiny episodic memories in continual
learning,” arXiv preprint arXiv:1902.10486, 2019.

[16] V. Lomonaco, L. Pellegrini, P. Rodriguez, M. Caccia, Q. She, Y. Chen,
Q. Jodelet, R. Wang, Z. Mai, D. Vazquez, G. I. Parisi, N. Churamani,
M. Pickett, I. Laradji, and D. Maltoni, “CVPR 2020 Continual Learning
in Computer Vision Competition: Approaches, Results, Current Chal-
lenges and Future Directions,” arXiv preprint arXiv:2009.09929, 2020.

[17] Z. Mai, H. Kim, J. Jeong, and S. Sanner, “Batch-level experience replay
with review for continual learning,” arXiv preprint arXiv:2007.05683,
2020.

[18] L. Ravaglia, M. Rusci, A. Capotondi, F. Conti, L. Pellegrini,
V. Lomonaco, D. Maltoni, and L. Benini, “Memory-Latency-Accuracy
Trade-offs for Continual Learning on a RISC-V Extreme-Edge Node,”
in 2020 IEEE Workshop on Signal Processing Systems (SiPS). IEEE,
2020, pp. 1–6.

[19] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, “PULP: A
parallel ultra low power platform for next generation IoT applications,”
in 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, 2015, pp. 1–39.

[20] D. Rossi, F. Conti, M. Eggiman, S. Mach, A. D. Mauro, M. Guermandi,
G. Tagliavini, A. Pullini, I. Loi, J. Chen, E. Flamand, and L. Benini, “4.4
a 1.3tops/w @ 32gops fully integrated 10-core soc for iot end-nodes with
1.7uw cognitive wake-up from mram-based state-retentive sleep mode,”
in 2021 IEEE International Solid- State Circuits Conference (ISSCC),
vol. 64, 2021, pp. 60–62.

[21] S. Cass, “Taking ai to the edge: Google’s tpu now comes in a maker-
friendly package,” IEEE Spectrum, vol. 56, no. 5, pp. 16–17, 2019.

[22] H. Cai, C. Gan, L. Zhu, and S. Han, “TinyTL: Reduce Memory,
Not Parameters for Efficient On-Device Learning,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[23] H. Ren, D. Anicic, and T. Runkler, “TinyOL: TinyML with Online-
Learning on Microcontrollers,” arXiv e-prints, pp. arXiv–2103, 2021.

[24] S. Disabato and M. Roveri, “Incremental On-Device Tiny Machine
Learning,” in Proceedings of the 2nd International Workshop on Chal-
lenges in Artificial Intelligence and Machine Learning for Internet of
Things, 2020, pp. 7–13.



14

[25] S. Benatti, F. Montagna, V. Kartsch, A. Rahimi, D. Rossi, and L. Benini,
“Online learning and classification of emg-based gestures on a parallel
ultra-low power platform using hyperdimensional computing,” IEEE
transactions on biomedical circuits and systems, vol. 13, no. 3, pp. 516–
528, 2019.

[26] D. Maltoni and V. Lomonaco, “Continuous learning in single-
incremental-task scenarios,” Neural Networks, vol. 116, pp. 56–73, 2019.

[27] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Alahari,
“End-to-end incremental learning,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 233–248.

[28] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017, pp.
2001–2010.

[29] T. L. Hayes, N. D. Cahill, and C. Kanan, “Memory efficient experience
replay for streaming learning,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 9769–9776.

[30] L. Caccia, E. Belilovsky, M. Caccia, and J. Pineau, “Online learned con-
tinual compression with adaptive quantization modules,” in International
Conference on Machine Learning. PMLR, 2020, pp. 1240–1250.

[31] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable Convolutional Neural Network processor in 28nm
FDSOI,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC), Feb. 2017, pp. 246–247.

[32] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient Processing of
Deep Neural Networks: A Tutorial and Survey,” arXiv:1703.09039 [cs],
Mar. 2017.

[33] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” arXiv:1510.00149 [cs], Feb. 2016.

[34] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, Jan. 2017.

[35] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma,
C. Bekas, A. Curioni, and E. Eleftheriou, “Mixed-precision in-memory
computing,” Nature Electronics, vol. 1, no. 4, pp. 246–253, Apr. 2018.

[36] M. Zemlyanikin, A. Smorkalov, T. Khanova, A. Petrovicheva, and
G. Serebryakov, “512KiB RAM Is Enough! Live Camera Face Recog-
nition DNN on MCU,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 2019, pp. 0–0.

[37] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network
Kernels for Arm Cortex-M CPUs,” arXiv e-prints, p. arXiv:1801.06601,
Jan. 2018.

[38] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“TVM: An automated end-to-end optimizing compiler for deep
learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 578–594. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/chen

[39] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and
F. Conti, “Dory: Automatic end-to-end deployment of real-world dnns
on low-cost iot mcus,” IEEE Transactions on Computers, p. 1–1, 2021.
[Online]. Available: http://dx.doi.org/10.1109/TC.2021.3066883

[40] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, “CMix-NN: Mixed
low-precision CNN library for memory-constrained edge devices,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5,
pp. 871–875, 2020.

[41] J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu, “Quantized CNN: A
unified approach to accelerate and compress convolutional networks,”
IEEE transactions on neural networks and learning systems, vol. 29,
no. 10, pp. 4730–4743, 2017.

[42] S. Ghamari, K. Ozcan, T. Dinh, A. Melnikov, J. Carvajal, J. Ernst, and
S. Chai, “Quantization-Guided Training for Compact TinyML Models,”
arXiv e-prints, pp. arXiv–2103, 2021.

[43] L. Cecconi, S. Smets, L. Benini, and M. Verhelst, “Optimal Tiling
Strategy for Memory Bandwidth Reduction for CNNs,” in Advanced
Concepts for Intelligent Vision Systems, ser. Lecture Notes in Computer
Science, J. Blanc-Talon, R. Penne, W. Philips, D. Popescu, and P. Sche-
unders, Eds. Springer International Publishing, 2017, pp. 89–100.

[44] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,
Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy, “A hardware–
software blueprint for flexible deep learning specialization,” IEEE Micro,
vol. 39, no. 5, pp. 8–16, 2019.

[45] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen,
J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu,
M. Smelyanskiy, B. Kaul, and P. Dubey, “A Study of BFLOAT16 for
Deep Learning Training,” arXiv e-prints, pp. arXiv–1905, 2019.

[46] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, V. V.
Srinivasan, X. Cui, W. Zhang, and K. Gopalakrishnan, “Hybrid 8-bit
floating point (HFP8) training and inference for deep neural networks,”
Advances in neural information processing systems, vol. 32, pp. 4900–
4909, 2019.

[47] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 DNPU: An 8.1 TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, 2017, pp. 240–241.

[48] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiqui-
tous machine-learning,” ACM SIGARCH Computer Architecture News,
vol. 42, no. 1, pp. 269–284, 2014.

[49] J. Shin, S. Choi, Y. Choi, and L.-S. Kim, “A pragmatic approach to
on-device incremental learning system with selective weight updates,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
2020, pp. 1–6.

[50] D. Han, D. Im, G. Park, Y. Kim, S. Song, J. Lee, and H.-J. Yoo, “HNPU:
An Adaptive DNN Training Processor Utilizing Stochastic Dynamic
Fixed-Point and Active Bit-Precision Searching,” IEEE Journal of Solid-
State Circuits, pp. 1–1, 2021.

[51] S. Kang, D. Han, J. Lee, D. Im, S. Kim, S. Kim, and H.-J. Yoo,
“7.4 GANPU: A 135TFLOPS/W Multi-DNN Training Processor for
GANs with Speculative Dual-Sparsity Exploitation,” in 2020 IEEE
International Solid- State Circuits Conference - (ISSCC), 2020, pp. 140–
142.

[52] J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov, “Spiking Neural
Networks and online learning: An overview and perspectives,” Neural
Networks, vol. 121, pp. 88–100, Jan. 2020.

[53] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A Neuromorphic
Manycore Processor with On-Chip Learning,” IEEE Micro, vol. 38,
no. 1, pp. 82–99, Jan. 2018.

[54] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang,
Z. Zou, Z. Wu, W. He, F. Chen, N. Deng, S. Wu, Y. Wang, Y. Wu,
Z. Yang, C. Ma, G. Li, W. Han, H. Li, H. Wu, R. Zhao, Y. Xie, and
L. Shi, “Towards artificial general intelligence with hybrid Tianjic chip
architecture,” Nature, vol. 572, no. 7767, pp. 106–111, Aug. 2019.

[55] G. Karunaratne, M. Schmuck, M. Le Gallo, G. Cherubini, L. Benini,
A. Sebastian, and A. Rahimi, “Robust high-dimensional memory-
augmented neural networks,” Nature Communications, vol. 12, no. 1,
p. 2468, Apr. 2021.

[56] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[57] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini, “A
transprecision floating-point architecture for energy-efficient embedded
computing,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2018, pp. 1–5.

[58] I. Loi, A. Capotondi, D. Rossi, A. Marongiu, and L. Benini, “The quest
for energy-efficient i$ design in ultra-low-power clustered many-cores,”
IEEE Transactions on Multi-Scale Computing Systems, vol. 4, no. 2, pp.
99–112, 2017.

[59] V. Lomonaco, D. Maltoni, and L. Pellegrini, “Rehearsal-free continual
learning over small non-iid batches,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE
Computer Society, 2020, pp. 989–998.

[60] F. Conti, “Technical Report: NEMO DNN Quantization for Deployment
Model,” arXiv preprint arXiv:2004.05930, 2020.

https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://dx.doi.org/10.1109/TC.2021.3066883


15

Leonardo Ravaglia receive his M.Sc. degree in
Automation Engineering from the University of
Bologna in 2019. He is currently a Doctoral Student
in Data Science and Computation at the University
of Bologna. His research interests include DNN al-
gorithms for Continual Learning, parallel computing
on Ultra Low Power devices and Quantized Neural
Networks.

Dr. Manuele Rusci received the Ph.D. degree
in electronic engineering from the University of
Bologna in 2018. He is currently a Post-Doctoral
Researcher at the same University at the Department
of Electrical, Electronic and Information Engineer-
ing “Guglielmo Marconi” and closely collaborates
with Greenwaves Technologies. His main research
interests include low-power embedded systems and
AI-powered smart sensors.

Davide Nadalini Davide Nadalini received the
M.Sc. degree in electronic engineering from the
University of Bologna in 2021. Since then, he is
a Ph.D. student at Politecnico di Torino. His main
research topic is Hardware-Software co-design and
optimization of embedded Artificial Intelligence. His
research interests include parallel computing, Quan-
tized Neural Networks and low-level optimization.

Dr. Alessandro Capotondi Dr. Alessandro Capo-
tondi (IEEE Member) is a postdoctoral researcher
at the Università di Modena e Reggio Emilia (IT).
His main research interests focus on heteroge-
neous architectures, parallel programming models,
and TinyML. He received his Ph.D. in Electrical,
Electronic, and Information Engineering from the
University of Bologna in 2016.

Prof. Francesco Conti received the Ph.D. in elec-
tronic engineering from the University of Bologna,
Italy, in 2016. He is currently an Assistant Professor
in the DEI Department of the University of Bologna.
From 2016 to 2020, he was a postdoctoral researcher
at the Integrated Systems Laboratory of ETH Zürich
in the Digital Systems group. His research is focused
on the development of deep learning based intelli-
gence on top of ultra-low power, ultra-energy effi-
cient programmable Systems-on-Chip. In particular,
he works on Deep Learning-aware architecture, on

tinyML hardware acceleration facilities such as dedicated accelerator cores
and ISA extensions, as well as on automated DNN architecture search, quan-
tization, and deployment methodologies tuned to maximally exploit hardware
features. He has been involved in the development of the RISC-V based open-
source Parallel Ultra-Low-Power (PULP) project since its inception (2013).
From 2020, he has collaborated with GreenWaves Technologies, France as a
consultant for the development of DNN and RNN acceleration IP. His research
has resulted in 50+ publications in international conferences and journals and
has been awarded several times, including the 2020 IEEE TCAS-I Darlington
Best Paper Award, the 2018 Hipeac Tech Transfer Award, the 2018 ESWEEK
Best Paper Award, and the 2014 ASAP Best Paper Award.

Prof. Luca Benini (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, USA, in 1997. He was
the Chief Architect of the Platform 2012/STHORM
Project with STMicroelectronics, Grenoble, France,
from 2009 to 2013. He held visiting/consulting po-
sitions with École Polytechnique Fédérale de Lau-
sanne, Lausanne, Switzerland; Stanford University;
and IMEC, Leuven, Belgium. He is currently a Full
Professor with the University of Bologna, Bologna,
Italy. He is also the Chair of Digital Circuits and

Systems with ETH Zürich, Zürich, Switzerland. He has authored over 700
papers in peer-reviewed international journals and conferences, four books,
and several book chapters. His current research interests include energy-
efficient system design and multicore system-on-chip design. Dr. Benini is
a member of Academia Europaea.


	I Introduction
	II Related Work
	II-A Memory-efficient Continual Learning
	II-B Deep Learning at the Extreme Edge
	II-C On-Device Learning on low-end platforms

	III Methods
	III-A Background: Continual Learning with Latent Replays
	III-B Memory Requirements
	III-C Quantized Latent Replay-based Continual Learning

	IV Hardware/Software Platform
	IV-A Hardware architecture
	IV-B Software stack

	V Experimental Results
	V-A Experimental Setup
	V-B QLR-CL memory usage and accuracy
	V-C Hardware/Software Efficiency
	V-D Latency Evaluation on VEGA SoC
	V-E Energy Evaluation on CL Use-Cases and Comparison with other Solutions

	VI Conclusion
	References
	Biographies
	Leonardo Ravaglia
	Dr. Manuele Rusci
	Davide Nadalini
	Dr. Alessandro Capotondi
	Prof. Francesco Conti
	Prof. Luca Benini




