
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Zero touch privacy preserving provisioning in an Edge-, Fog, and Cloud environment / Schermann, Raphael; Bussa,
Simone; Urian, Rainer; Steger, Christian. - (2023), pp. 276-283. (Intervento presentato al convegno IEEE International
Conference on Fog and Mobile Edge Computing (FMEC 2023) tenutosi a Tartu (Estonia) nel 18-20 September 2023)
[10.1109/FMEC59375.2023.10305878].

Original

Zero touch privacy preserving provisioning in an Edge-, Fog, and Cloud environment

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/FMEC59375.2023.10305878

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982768 since: 2023-10-05T09:29:58Z

IEEE

Zero-Touch privacy preserving provisioning in an
Edge-, Fog-, and Cloud environment

Raphael Schermann∗, Simone Bussa‡, Rainer Urian†, Christian Steger∗
Email: raphael.schermann@student.tugraz.at,simone.bussa@polito.it, rainer.urian@infineon.com, steger@tugraz.at

∗Institute for Technical Informatics, Graz University of Technology, Graz, Austria
†Infineon Technologies AG, Augsburg, Germany

‡Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy

Abstract—IoT device onboarding, especially in the context
of an edge-fog-cloud architecture, still has many challenges
to solve. FIDO has already specified a zero-touch onboarding
process called FIDO Device Onboarding (FDO) specification. In
this paper, we present improvements to the FDO specification
regarding performance and privacy. For privacy and security
reasons, we show how the URL of the Owner Fog can be hidden
from the Rendezvous Server. Further, we replaced the EPID
protocol with a promising privacy-preserving protocol called
AACKA. We also modified the last phase in the FDO protocol
to create a performance improvement.

Index Terms—secured zero-trust onboarding, edge-fog-cloud
architecture, anonymous authenticated encryption, FDO

I. INTRODUCTION

The number of Internet of Things (IoT) devices is constantly
increasing. IDC foresees 42 billion IoT devices by 2025 [1].
The heterogeneity of these devices, each with its own hardware
and operating system, needs portable security solutions as a
centerpiece.

A particularly critical aspect in the life cycle of these
devices is onboarding, i.e., the process through which a device
establishes for the first time a trusted connection with the
service/platform on which it will then operate. This process
is typically done manually: an operator turns on the device,
manually installs the credentials, and indicates the device
which platform to communicate to. This approach, aside from
its expense and time-intensive nature, mandates the presence
of skilled and reliable personnel. For all these reasons, industry
and academia are trying to automate the process.

Plug&play and zero-touch solutions are being sought, that
the device automatically interacting with the platform when
switched on, without requiring manual intervention. There
exist several concepts for this automatic interaction like zero-
touch provisioning [2], [3], a RFC [4], and some academic
research [5], [6].

Among the various protocols that have been proposed,
the FIDO Device Onboard Specification (FDO) is the most
prominent one [7]. The objective of this protocol is threefold:
i) authentication of the Device to the platform (also called the
Owner Platform), ii) authentication of the Owner Platform to
the Device (thus completing mutual trust between the parties),
and iii) provision of some cryptographic material to be used
to protect all subsequent communications (i.e., secure channel
establishment). Late binding is another central aspect. This

feature allows the Owner, the person who purchased the
Device, to choose the Owner Platform at a later stage in
the Device life cycle without being required to specify this
information already during Device manufacturing. To achieve
this, the Rendezvous Server is applied, a third entity that serves
as a meeting point between the Device and the platform. On
the one hand, the platform contacts the server and stores the
URL on which it waits for the Device. On the other hand, the
Device, which during manufacturing was configured with the
IP address of the server to contact at power on, requests from
it the URL of the platform.

This process, however functional, exposes the Device to
privacy issues. An attacker listening on the Rendezvous Server
can link the Device to the URL of the platform to which it
will be connected.

This paper aims to propose a solution to overcome this
privacy limitation while also increasing the performance of the
protocol. In particular, we try to optimize the FDO protocol,
especially regarding an edge-fog-cloud architecture. To this
purpose, we propose a revised version that introduces privacy
for the Device against the Rendezvous Server. Specifically,
the URL that is sent to Rendezvous Server is encrypted in an
anonymous and authenticated way, which allows the Device to
recover the original information and, at the same time, prevents
the Rendezvous Server from tracing the final destination of
the Device and does not expose the owner’s IP as a target of
potential attacks.

For the encryption, we introduce a recently proposed en-
cryption scheme called Anonymous Authenticated Credential
Key Agreement (AACKA), [8], that adds an additional benefit
in terms of performance. In the new concept proposed in this
paper, we extend the encrypted payload containing the URL
with a pre-shared key that can be used to optimize the secure
channel establishment phase. This should make it easier for the
device to communicate with the owner’s platform (e.g., Owner
Fog) through a simple TLS with PSK. Moreover, applying this
encryption scheme also allows implicit mutual authentication,
further improving the protocol’s performance.

The remainder of this paper is structured as follows. We first
start with a Background & related work section. This section
is followed by a more detailed description of FIDO Device
Onboard (FDO) specification. Our main contribution starts in
section IV where we cover the integration of the FDO in

an Edge-,Fog-,Cloud- architecture and show their limitations.
In V we propose our developed architecture and show their
benefits and the related security analysis is done in section VI.
The paper ends with an Evaluation (VII) and a conclusion and
future work section (VIII).

II. BACKGROUND & RELATED WORK

This section explains the necessary background information
and related work that is essential to understand the remainder
of the paper.

A. Cloud computing

Cloud computing [9] is a centralized computing paradigm
that offers on-demand computational resources and storage.
An IoT Cloud is a platform used to manage devices with
restricted computational capabilities, providing them with all
the underlying infrastructure for their real-time operations and
processing. This is achieved by exchanging data over the
network. It is inherently scalable, cost-effective, and efficient.
It has numerous advantages: it provides devices with storage
for the data they collect and computational power to analyze
it, allows users to access this data at any time from anywhere
using any device with an Internet connection, makes it easier
to manage large numbers of devices without having to design
the entire infrastructure from scratch.

B. Fog computing

Fog computing, introduced by Cisco [10], extends cloud
computing and positions itself close to the edge of the network,
near the physical IoT device. It is a decentralized/distributed
computing model which performs most of the data collecting
and processing locally, near the edge. Then it sends only the
pre-processed data to the cloud for more complex operations.
This way, a smaller amount of data travels on the network,
limiting bandwidth consumption and minimizing response
time. This makes this paradigm ideal for real-time and low-
latency applications.

C. Zero touch onboarding

Zero-touch onboarding is an automated process that enables
organizations to quickly and securely onboard devices to a
Fog/Cloud platform, eliminating the need for manual con-
figuration, reducing the cost and complexity and increasing
security.

The onboarding process nowadays is very complex. As
described in [2], part of this complexity is due to the wide
variety of existing IoT devices, each with its own hardware
and software. Most of the devices have no display and differ-
ent devices may have different connectivity (wired/wireless).
The onboarding process is very often carried out manu-
ally by an operator who must have qualified skills and be
trusted by the owner of the device. Therefore, an automatic,
hardware/software-independent solution is more than ever nec-
essary.

The first Zero touch protocols that appeared on the market
were all proprietary: each company implemented its own

protocol and this made the interoperability with different
platforms difficult. Devices were configured to communicate
only with platforms of a specific vendor already in the man-
ufacturing phase, thus violating the principle of late binding.
The need to decide later on which platform to connect the
device and also overcome the other mentioned limitations is
driving industry and academia to standardize the onboarding
process. Several attempts for zero-touch provisioning have
been published over the years, [3], [4], [5], [5]. What appears,
to the best of our knowledge, FIDO FDO stands out as the
most promising candidate at present [2].

D. Privacy-preserving protocols as a candidate for secured
zero touch onboarding

This subsection is divided into a high overview of the
Enhanced Privacy IDentification (EPID) scheme and a newly
developed scheme called Anonymous Authenticated Creden-
tial based Key Agreement (AACKA). We explain the AACKA
protocol in more detail because this one is later used in our
proposed model in section V.

1) Enhanced Privacy IDentification (EPID): The EPID
protocol is a cryptographic scheme developed by Intel Cor-
poration [11]–[13] to address the need for secure device
authentication while preserving user privacy. It achieves this
by employing a group signature scheme, which allows multiple
devices to generate signatures on behalf of a group, making
it difficult to trace a signature back to a specific device. The
signature is a BBS+ signature scheme [14] and a variant of the
Boneh-Boyen signature scheme [15]. In particular, it addresses
two problems with PKI solutions. First, anonymity and second,
membership revocation.

The EPID security ecosystem encompasses three distinct
roles. Firstly, the Issuer acts as the authority group responsible
for assigning EPID Group IDs and Keys to individual plat-
forms. The Issuer manages group membership and maintains
up-to-date versions of all revocation lists. By generating a new
private key for the group, the Issuer produces a single group
public key and multiple EPID member private keys as needed,
each paired with the group public key. The Member role
represents an end device and constitutes one member among a
group of several members who share the same level of access.
Members utilize the EPID credentials provided by the Issuer to
authenticate their identities and participate in the group. Lastly,
the Verifier role assumes the role of a gatekeeper within the
EPID ecosystem. Verifiers are responsible for verifying EPID
signatures generated by platforms and ensuring their alignment
with the correct group. Basically, the EPID scheme consists
of four algorithms:

1) Setup or key generation: The protocol begins with a
trusted authority generating a group public key and
a corresponding private key. The group public key is
shared with all devices in the EPID group, while the
private key remains securely held by the authority.

2) Join: When a device wishes to join the EPID group,
it submits its public key to the trusted authority. The
authority verifies the authenticity of the device through

rigorous procedures and issues a membership credential
upon successful validation. This credential serves as
proof of the device’s membership in the EPID group.

3) Sign: When a device needs to prove its identity or
integrity in a particular scenario, it utilizes its private key
and the group public key to generate an EPID signature.
The signature includes a randomized component, mak-
ing it difficult to link the signature back to the specific
device that generated it. This randomization enhances
privacy protection by preventing the potential tracking
and identification of individual devices.

4) Verify: A remote party (verifier) receives the EPID
signature and employs the group public key to verify its
validity. The verifier can ascertain whether the signature
originates from a member of the EPID group without
having knowledge of the specific device that generated
it. This capability allows the verifier to establish trust
and verify the authenticity of devices without compro-
mising user privacy.

EPID is currently used in the FDO specification by FIDO.
2) Anonymous Authenticated Credential based Key Agree-

ment (AACKA): Schermann et al. [8] presented a novel
building block called Anonymous Authenticated Credential
Key Agreement (AACKA). This building block can be used to
enable Anonymous Authenticated Credential based Encryption
(AACE). Further, the AACKA protocol can be enhanced by
pseudonyms (Pseudonymous Authenticated Credential Key
Agreement - PACKA) that gives the user the opportunity to
decide whether to be anonymous or linkable/pseudonymous to
a communicating entity. The AACKA protocol is designed to
enable anonymous or pseudonymous encryption to resource-
constrained devices and uses only basic cryptography. It
combines Camenisch-Lysyaskaya (CL) credentials [16] with
an Elliptic Curve Diffie-Hellman (ECDH) key agreement. The
AACKA consists of three roles and three phases. The basic
roles are split into an issuer I, a Device D, and a Service
Provider SP. For performance reasons and offline-package
provision a Privacy-Proxy PP is used. While the phases
are divided into SETUP, JOIN, AACKA, and AACE. In the
end, the service provider and the device have an anonymous
and authenticated encrypted channel established based on CL
credentials.

In detail, AACKA can be seen as an ephemeral/static Diffie-
Hellman key agreement with an anonymous and authenticated
extension between a Device D and a Service-Provider SP ,
e.g., a Cloud node (Owner Cloud). Instead of a classical X.509
certificate, the AACKA uses a Camenisch-Lysyanskaya (CL)
credential A,B,C,D.

A CL-credential consists of four elliptic curve points
A,B,C, and D. It certifies a private key that is associated
with a private key D = Kprivate ∗ B. The crucial point for
anonymity is that a scalar multiple, R,S, T,W → l ∗ A, l ∗
B, l ∗C, l ∗D, of such a CL-credential can also be verified as
a valid CL-credential. This does not reveal the actual points
of the CL-credential.

The protocol consists of four phases. A Setup, Join,
AACKA, and AACE phase. In the Setup phase the Issuer I

generates a public and private key pairs (X,Y;x,y) from the
systems parameter. In the Join phase, the Device D joins to I

with the help of his private AACKA key f and gets a CL-
credential from I. In the AACKA phase a key agreement
between D and the Service-Provider SP with the help of the
CL-credential happens. In the end both parties have derived
the same shared secret. This secret can then be used in the
AACE phase to derive keys for the ECIES protocol. In our
paper, it is important to understand the AACKA-ECIES phase.
The role of I and randomization of the CL-Credential can be
taken over by the manufacturer. Further, the Privacy Proxy
can be skipped because it is only useful for resource-limited
devices. D is in possession of a private AACKA key f and
a randomized CL-credential A,B,C,D. This CL-credential
must be randomized (R,S, T,W) by D to infiltrate anonymity.
This randomized credential is then forwarded to the Service
Provider SP . SP performs a bilinear mapping to verify if the
current randomized CL-credential is a valid member. With the
help of R,S, T,W SP derives in the end symmetric keys and
creates an encrypted package with a Tag. The ephemeral key
U together with the encrypted package and the Tag is sent to
D . D can now create the same keys as SP with the help of
the private AACKA key f and U to first verify the tag and
then decrypt the package.

III. FIDO DEVICE ONBOARD SPECIFICATION

The FIDO Device Onboarding (FDO) is a protocol specified
by the FIDO Alliance in an early version in 2020, [2]. Unlike
other specifications from the same Alliance, it is a protocol
specific for securely onboarding a device on a cloud/edge
platform. The Onboarding process is zero-touch, plug&play
and hardware independent. As partially anticipated in the In-
troduction, the protocol consists of different actors. Device: the
”thing” to onboard. Manufacturer: the company that produced
the Device. Owner: the person/company which currently owns
the Device. Owner Platform: the platform on which the Device
will be onboarded. Rendezvous server: the server that indicates
the correct Owner Platform for the Device. From when the
Device is manufactured to when it is turned on for the first
time, the Owner can change several times (e.g., manufacturer,
distributor, reseller, etc.). To track these changes of ownership,
the Ownership Voucher (OV) has been introduced. Fig. 1
shows the OV structure. It is a digital chained certificate
characterized by multiple entries, each new one added every
time the Device changes ownership. Initially, the ownership
of the Device belongs to the manufacturer. Therefore the first
entry of the OV certifies the public key of the manufacturer.
The Device trusts this first key and internally has stored the
corresponding private key. All transfers of ownership can take
place with the Device switched off. Each time the Device
is sold, a new entry is added to the OV. This new entry,
Ni contains the public key of the new Owner. It is certified
by the previous Owner, who signs it with the private key
corresponding to the public key contained in the entry Ni−1 of

the new OV. Concretely, the signature affixed by the previous
Owner is used to certify the transfer of ownership of the
Device. Among the other fields, the OV also contains the
GUID of the Device and the IP address of the Rendezvous
Server. The protocol is divided into 4 phases:

Fig. 1. Ownership Voucher structure

1) Device Initialize (DI) protocol: takes place during manu-
facturing in a safe environment. The GUID, the private
key from the manufacturer, and the URL of the ren-
dezvous server are installed inside the Device. The OV
is then created, which contains the same values and the
public key.

2) Transfer Ownership protocol 0 (TO0): the Owner regis-
ters with the Rendezvous server. After receiving the OV
and taking ownership of the Device, the Owner extracts
the URL of the rendezvous server from the OV and
registers on it the IP address of the Owner Platform. The
Owner has the private key corresponding to the public
key in the last entry of the OV. Therefore it uses the OV
to authenticate to the Server. At the end of the protocol,
the IP address of the Owner Platform is saved on the
Rendezvous Server while the Owner Platform is waiting
for the device connection at the specified URL. Notice
that, to authenticate the Owner, the Server must trust
at least one of the keys present in the OV. Typically,
there is trust between the Server and the manufacturer.
Since it is the manufacturer who decides which Server
its devices have to use, it is conceivable that there is an
agreement between the two parties and the Server trusts
the manufacturer’s public key in the first entry of the
OV.

3) Transfer Ownership protocol 1 (TO1): the Device, just
turned on, contacts the Rendezvous Server to get the IP
address of the Owner Platform and the corresponding
Ownership Voucher. It uses its GUID and the private
signing key to authenticate to the Server.

4) Transfer Ownership protocol 2 (TO2): Onboarding. It is
the most important phase of the protocol between the
Device and the Owner in which mutual authentication
takes place. The Owner authenticates to the Device by
providing to be the actual Owner of the OV. The Device
authenticates to the Owner by using the private key
received from the manufacturer, whose corresponding
public key is contained in the first entry of the OV. Once
mutual authentication is completed, a key exchange

protocol is performed to create a secure channel on
which to communicate.

More details about the protocol can be found in [7].

IV. INTEGRATION OF CLASSIC FDO IN FOG COMPUTING
AND ITS LIMITATIONS

This subsection introduces our interpretation of integrating
a Fog node (Owner Fog) into the current FDO specification.
In this case, the role of the Owner is split into a Cloud-Owner
and at least one Fog-Owner, which is the final node on which
the device will be installed. The difference with respect to the
protocol described above is that, in this case, the Fog node
(and not the Cloud Platform) must be the last Owner of the
device. For this, the ownership voucher has to be extended
with a new entry and transferred to the corresponding Owner
Fog.

Figure 2 shows such an architecture as it would work with
the actual FIDO device onboarding specification (FDO). DI
remains the same as it is specified above (Step 1). Then, the
Cloud takes ownership of the OV (Step 2). TO0 protocol is
executed between the Rendezvous Server and the Cloud, the
actual owner of the OV (Step 3). The IP address registered
on the Rendezvous Server, in this case, is the address of the
Owner Fog. The Owner Cloud than extends the OV, adding
an entry for the public key of the Owner Fog and sends it to
the Owner Fog (Step 3). T01 remains the same (Step 4). TO2
is executed between the Fog-node and the device (Step 5-6).

Fig. 2. Architecture concept to be FDO compliant

In this FDO conform integration, we figured out following
disadvantages:

• The Rendezvous Server sees all target IP addresses of
the corresponding Fog nodes (Owner Fogs) in plain. This
totally impacts the privacy of the Owner Fog, allowing
an attacker who is listening on the Rendezvous Server
to know the IP address of the final node and also, most
likely, what task it is intended to do, having information
on the characteristics of the device to be onboarded.
Moreover, following the entry chain present in the OV,
a possible attacker can easily discover who is the actual
Owner Cloud of the corresponding Owner Fog, and this
can be another problem affecting its privacy.

• The private key stored inside the device and used for
device authentication can easily lead to linkability issues

in case of subsequent invocations of FDO. The FDO
protocol foresees that in case of resale of the device,
all the cryptographic material and device identifiers are
substituted, with the exception of the private key used
for attestation. Using this key makes it possible to
correlate past owner and future owner of the device.
A possible countermeasure addressed in [2] to avoid
this is by using Intel EPID protocol, which allows the
device to use a group signature to authenticate and never
expose its private/public attestation key. However, this
is a quite complex and heavy protocol, which involves
group signatures and revocation lists and still has some
disadvantages.

• The owner has to extend the ownership voucher with
a public key of the Owner Fog. This extended voucher
has to be transmitted to the Owner Fog. This increases
the complexity and time for the owner verification and
therefore makes it more expensive.

• In step TO2, the Owner Fog has to perform asymmetric
cryptography to authenticate the device. It would be
more convenient to use standard TLS with pre-shared key
simply.

The next sections describes our proposed architecture and
provides a solution to the listed drawbacks. This proposed
model should fit with minor changes into the classic FDO
scheme.

V. PROPOSED MODEL

In the following, we propose a privacy-preserving zero
touch provisioning mechanism that is especially suited in
the context of a Fog environment. Our solution provides
anonymity by hiding the Owner Fog URL from the Ren-
dezvous server. This is done by encrypting the URL of the
Owner Fog to which the device should be connected with a
novel privacy-preserving encryption protocol AACKA-ECIES
[8]. In addition to anonymity, we show how AACKA-ECIES
can be exploited to improve the performance of the onboarding
process in a Fog environment. The basic idea is as follows.
Besides the URL, the Owner Cloud also encrypts a symmetric
key for the device. This symmetric key is also shared with the
Owner Fog and can subsequently be used to form a TLS with
pre-shared key connection between the device and the Owner
Fog. This relieves the Owner Fog from implementing the
complex EPID and ECDSA protocols as used by the standard
FIDO FDO protocol.

We now describe our novel concept in detail and its relation
to the FIDO FDO protocol [7]. Figure 3 shows the graphic
representation of our concept.

Precondition

Each Owner Fog has established a secured channel with
the Owner Cloud. Over this channel, the Owner Cloud can
share a symmetric key Kfog . The details of how this channel
is established and the key is shared are outside the scope of
the onboarding protocol.

Fig. 3. Our proposed zero touch onboarding architecture

DI Protocol (1)

As in the FIDO FDO protocol, the manufacturer provisions
the device with a GUID and the URL of the Rendezvous
Server. However, in our modification, the device will be
provisioned with an AACKA-ECIES decryption key and an
associated CL-certificate (R,S, T,W) instead of an EPID or
ECDSA signature key as used in the original FIDO FDO.
The manufacturer constructs the ownership voucher, which
contains a certificate of the signature public key of the Owner
Cloud. The device will also be personalized with a public key
which is used to verify the certificate chain of the Ownership
Voucher.

Ownership Voucher (2)

The device manufacturer sends the ownership voucher and
the AACKA CL-credentials (R,S, T,W) to the Owner Cloud.
The Owner Cloud verifies the CL-certificate (R,S, T,W) as
described in [8].

TO0 protocol (3)

In the TO0 protocol (3), the Owner Cloud derives a key
kfog,device := KDF (Kfog, GUIDdevice) by using some
arbitrary key derivation function KDF . This key will be used
in the TO2 protocol as a pre-shared key between the Owner
Fog and the Device. The Owner Cloud has to construct the
encrypted rendezvous blob. This blob consists of the URL
from the Owner Fog URLfog and the shared key kfog,device.
The Owner Cloud encrypts the corresponding data for the
Owner Fog (URL,KFog, additional data) with the AACKA-
ECIES encryption key (S,W) of the Device as described in
[8]. Then the Owner Cloud signs the encrypted blob together
with the GUID and auxiliary data used for the encryption (e.g.
the ephemeral key U for the AACKA-ECIES encryption) with
his private signing key associated to his Ownership Voucher.
The Owner Cloud sends the GUID, the rendezvous blob
(SIGprk,voucher(GUID,U,ENCpub,device(URL,KFog,
additional data))), and the Ownership Voucher to the Ren-
dezvous Server.

The encryption prevents an attacker and even the Ren-
dezvous Server from discovering the final destination (Owner
Fog URL) of the device. In addition, encryption and signing

of the rendezvous blob prevent the Rendezvous Server from
forging the URL of the Owner Fog. Note, the encryption
approach also allows the Owner Cloud to directly inject
additional confidential information in the encrypted blob, e.g.,
a firmware update or other symmetric/private keys in addition
to kfog,device.

TO1 protocol (4)

Our TO1 protocol is defined as follows. After the regis-
tration of the device to the Rendezvous Server, the device
fetches the Ownership Voucher and the rendezvous blob from
the Server. The device performs a signature validation of the
rendezvous blob by using the public key of the Ownership
Voucher and decrypts the encrypted blob with its private
AACKA key. Note that the device attestation step is not
necessary. This is done implicitly because only a correct device
can decrypt the rendezvous blob.

TO2 protocol (5)

Basically, our proposed T02 protocol is the right part of
Figure 9 ”Transfer Ownership Protocol 2 (TO2)” [7]. The left
side of the original T02 protocol has already been performed
in our modified T01 protocol.

Our modification on the right-hand side of T02 is
only in the establishment of a secure channel. This will
be done by exploiting the symmetric key Kfog . The
device contacts the Fog node (Owner Fog) and sends
GUIDdevice. The Owner Fog can now derive the key
kfog,device := KDF (Kfog, GUIDdevice). The Owner Fog
and the device have now established a shared symmetric key.
This key can then be used to establish a secured channel over
TLS with a pre-shared key. The remainder of the onboarding
protocol provisioning between the Owner Fog and the device
can be done with this channel. Note that the signing operation
with the Owner2 key can be performed and sent to the Owner
Fog by the Owner Cloud.

Figure 4 shows the more detailed protocol flow. In grey
are the messages that are involved in the FIDO FDO standard
and replaced by our steps. Please note that to simplify the
presentation, we have assumed that the ownership voucher has
only one entry, i.e., the device manufacturer.

Fig. 4. Protocol flow

Summarized Benefits

At the end of this section, we want to summarize the benefits
that our concepts generate:

• URL is hidden from the Rendezvous Server by encryption
with AACKA-ECIES. This improves the privacy and
supports unlinkability.

• Faster onboarding because the left side of the original
FDO T02 protocol can be skipped. This means there is
also no further need for the complex mutual authentica-
tion that is required there.

• The Owner Fog does not need the capability to perform
asymmetric cryptography. Only TLS with PSK is needed.

• Complex EPID protocol for anonymity is replaced by the
simpler AACKA protocol.

VI. SECURITY ANALYSIS

The protocol described above was verified using Proverif
[17], a widely used automatic tool that performs formal
verification. Formal verification, among the various existing
static analysis methods, allows us to reach high guarantees
of the security of an analyzed protocol by building a formal
(mathematically rigorous) model of it. Proverif takes as input
the abstract model of the protocol and some security properties
that are expected to be satisfied and automatically verifies
that no attacks are possible against the system under certain
modeling assumptions. The verification is reliable but needs
to be completed: the tool can find false attacks, but whether it
proves the correctness of a property, the property is guaranteed
to hold.

A. Component model

Even the model for the formal verification is made up
of several actors: the Device to be onboarded, the Owner
Cloud, the Owner Fog, the Manufacturer and the Rendezvous
Server. Each of these entities can execute different instances
of the protocol. The Server can accept different connections
from different Owners and Devices. The Owner can onboard
multiple Devices and control a number of Fog nodes.

B. Channel and Attack model

All the channels on which the various entities communicate
are public, with the exception of the channel between Device
and manufacturer (i.e., the one used for the DI protocol), which
is private since the standard assumes it is a safe environment
in the manufacturer’s factory. The attacker in this scenario
can act as a traditional Dolev-Yao attacker: it can read,
delete, replay, and modify messages if they are not protected
adequately. We also tested a second scenario in which the
attacker controls a second valid device (with valid credentials
issued by the manufacturer). This was done to give the attacker
the possibility to participate in all phases of the protocol and
interact with the entities also as an ”honest actor” by using this
second device. Therefore, it can receive a valid OV for this
second device from the manufacturer, correctly authenticate to
the Rendezvous Server, and store its IP on it. The main idea
of this second scenario is to check if exists a strict association

between the device and its credentials/OV. The attacker should
not be able to use the second device’s valid credentials/OV to
impersonate the owner of the first (honest) device.

C. Security properties
We used Proverif to verify confidentiality and authentication

properties in our protocol. In particular:
• Secrecy of messages exchanged between the device and

the Owner Fog. At the end of the TO2 protocol, the device
and the Owner Fog share a kfogdevice key, used as a pre-
shared key to establish a TLS connection. Subsequent
messages encrypted using this key must be unreadable
by the attacker. Implicitly with this property, we are also
proving the secrecy of kfogdevice. This was modeled in
Proverif as a Reachability property.

• Authentication of the Owner to the Device. If the device
believes it has received a valid encrypted blob signed by
the Owner, then the Owner must have signed and sent
that blob (because it is the only entity in possession of
the private key necessary for the signature). This proves
that there can be no such thing as a man in the middle
attacker impersonating the Owner. This was modeled in
Proverif as an Injective Correspondence Assertion.

• Authentication of the device to the Owner Fog. If the
Owner Fog believes it has received a valid message
encrypted with kfogdevice from the device, then the
device must have sent it (because it is the only entity
able to extract that key from the encrypted blob). This
prevents false malicious devices from interacting with the
Owner Fog. This was modeled in Proverif as a Simple
Correspondence Assertion.

Proverif proved that the described properties hold in all
scenarios. Source files containing the Proverif model and the
complete list of properties that were verified can be found
here1.

VII. EVALUATION

In this section, we do a comparison of the current FDO
specification against our concept. Note that we do not show a
performance evaluation and, therefore, no dedicated metrics.
An implementation of this concept is planned together with a
detailed performance analysis.

We expect that our concept will consume more time in the
TO0 and TO1 protocols because we add additional encryption.
The TO2, on the other hand, is significantly improved because
the whole complex mutual authentication is implicitly done in
the TO1 protocol.

In Detail, Table I shows the overview of the main differences
in an Edge-,Fog-,and Cloud architecture. In the DI protocol,
we replaced the signing key with an AACKA encryption key
and introduced CL-credential to enable anonymous authenti-
cated encryption.

Our TO0 protocol adds additional authentication encryption
with AACKA-ECIES. This improves privacy because the URL
does not appear in plaintext.

1https://github.com/netgroup-polito/verification-zero-touch-provisioning

In our TO1 protocol, we substituted signing with encryption.
Only the device with the correct private AACKA key can
decrypt the package received from the Owner Cloud and this
leads to implicit authentication.

The TO2 in our approach does not need an asymmetric
cryptography functionality in the Owner Fogs. It works with
symmetric cryptography (TLS with PSK). Further, the expen-
sive mutual authentication part can be skipped because it has
already been performed implicitly in the TO1 protocol.

TABLE I
COMPARISON OF THE PROTOCOLS

Protocol FDO Our approach
DI Signing key Encryption key

TO0 GUID,URL + GUID,signed &
extend and send encrypted packet,

Ownership Voucher Ownership Voucher
to fog

TO1 plaintext URL, encrypted URL,
explicit authentication implicit authentication

TO2 Mutual authentication implicit authentication
(Part1) and key exchange by step TO0,

based on asym. No asymmetric
cryptography cryptography

TO2 exchange keys to TLS with PSK channel
(Part2) establish a secured channel

Figure 5 shows the generic TO2 protocol. In the FDO
approach, the whole chain has to be processed (Part1+Part2).
While in our approach, due to the TO0 and TO1 modifications,
only Part2 has to be executed. This is expected to generate a
significant performance improvement.

Fig. 5. TO2 comparison (based on [2])

For privacy, we replaced the complex EPID protocol based
on anonymous signatures with a newly presented anonymous
authenticated encryption scheme (AACKA-ECIES). This is
expected to improve the performance additionally.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented (i) how the current FDO speci-
fication fits into an Edge-, Fog-, Cloud architecture and what
are these limitations there (ii) we proposed a new concept to
overcome the limitations.

Further, we evaluated the security of our concept with
Proverif. We showed that our concept holds the following se-
curity properties: (i) Secrecy of messages exchanged between
the device and the Owner Fog (ii) Authentication of the Owner
to the Device (iii) Authentication of the device to the Owner
Fog.

For future work, several parts can be taken into consol-
idation. First, we are planning to do an implementation of
the proposed solution to extract detailed performance values.
Second, due to lack of space we could not go into privacy-
based revocation for our approach, i.e., the Revocation list for
the AACKA protocol. Also, one interesting point would be to
transform the concept into post-quantum resilient cryptogra-
phy.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Grant Agreement No. 871403. Furthermore, this
project has partly received funding from the ECSEL Joint
Undertaking, which funded the ADACORSA project under the
grant agreement number 876019. ADACORSA is funded by
the Austrian Federal Ministry of Transport, Innovation and
Technology (BMVIT) under the program ICT of the Future
between May 2020 and October 2023 (grant number 877585).

REFERENCES

[1] International Data Corporation, “IoT Growth Demands
Rethink of Long-Term Storage Strategies, says IDC,”
https://www.idc.com/getdoc.jsp?containerId=prAP46737220, 2020,
[Online; accessed 27-August-2021].

[2] G. Cooper and B. Behm and A. Chakraborty and H. Kommalapati
and G. Mandyam and H. Tschofenig, “FIDO Device Onboard Specifi-
cation,” https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-RD-
v1.0-20201202.html, 2020, [Online; accessed 16-February-2023].

[3] Intel. Zero-touch provisioning for edge devicesand software-
defined networks. [Online; accessed 10-May-2023]. [Online].
Available: https://networkbuilders.intel.com/docs/networkbuilders/zero-
touch-provisioning-for-edge-devices-and-software-defined-networks.pdf

[4] K. Watsen, M. Abrahamsson, and I. Farrer, “Secure Zero Touch
Provisioning (SZTP),” RFC 8572. [Online]. Available: https://www.rfc-
editor.org/info/rfc8572

[5] S. Maksuti, A. Bicaku, M. Zsilak, I. Ivkic, B. Peceli, G. Singler, K. Ko-
vacs, M. Tauber, and J. Delsing, “Automated and secure onboarding for
system of systems,” vol. 9, pp. 111 095–111 113.

[6] M. Liyanage, Q.-V. Pham, K. Dev, S. Bhattacharya, P. K. R.
Maddikunta, T. R. Gadekallu, and G. Yenduri, “A survey
on zero touch network and service management (zsm) for
5g and beyond networks,” Journal of Network and Computer
Applications, vol. 203, p. 103362, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804522000297

[7] G. Cooper and B. Behm and A. Chakraborty and H. Kommalapati and
G. Mandyam and H. Tschofenig, “FIDO Device Onboard Specification
1.1,” https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-RD-
v1.1-20211214/FIDO-device-onboard-spec-v1.1-rd-20211214.pdf,
2021, [Online; accessed 16-February-2023].

[8] R. Schermann, R. Urian, R. Toegl, H. Bock, and C. Steger, “Enabling
anonymous authenticated encryption with a novel anonymous
authenticated credential key agreement (aacka),” in 2022 IEEE
21st International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom). Wuhan, China: IEEE
Computer Society, oct 2022, pp. 646–655. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/TrustCom56396.2022.00093

[9] N. Antonopoulos and L. Gillam, Cloud Computing - Principles, Systems
and Applications. London, UK: Springer London, 2012.

[10] Cisco, “Cisco Fog Computing Solutions: Un-
leash the Power of the Internet of Things,”
https://www.cisco.com/c/dam/en us/solutions/trends/iot/docs/computing-
solutions.pdf, 2015, [Online; accessed 16-June-2023].

[11] Intel Coperation, “A Cost-Effective Foun-
dation for End-to-End IoT Security,”
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/intel-epid-white-paper.pdf, 2016, [Online; accessed 27-August-
2021].

[12] M. Chandler, “Intel Enhanced Privacy ID (EPID) Security Technology,”
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
enhanced-privacy-id-epid-security-technology.html, 2017, [Online;
accessed 27-August-2021].

[13] E. Brickell and J. Li, “Enhanced privacy id from bilinear pairing
for hardware authentication and attestation,” in 2010 IEEE Second
International Conference on Social Computing, 2010, pp. 768–775.

[14] M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-TAA,” in
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006,
pp. 111–125.

[15] D. Boneh and X. Boyen, “Short signatures without random oracles,”
in Advances in Cryptology - EUROCRYPT 2004. Springer Berlin
Heidelberg, 2004, pp. 56–73.

[16] J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous
credentials from bilinear maps,” in Advances in Cryptology – CRYPTO
2004, M. Franklin, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 56–72.

[17] B. Blanchet and B. Smyth, “Proverif 1.85: Automatic cryptographic
protocol verifier, user manual and tutorial,” 04 2011.

