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Abstract—Nowadays, critical infrastructures are managed
through paradigms such as cloud/fog/edge computing and Net-
work Function Virtualization (NFV), providing advantages as
flexibility, availability, and reduced management costs. These
paradigms introduce several advantages but – given their nature
of physically distributed systems – leave room for various
security threats, such as software integrity attacks. To counter
these threats, Trusted Computing and Remote Attestation (RA)
techniques can be used, to allow a third party (Verifier) to
verify the software and configuration integrity of a platform
(Attester). In environments composed of different objects, several
RA frameworks (hardware-based, software-based, or hybrid)
might need to be deployed, depending on the capabilities of the
attested elements. To ease this process, we propose a new design
and implementation of our Trust Monitor (TM) architecture,
which implements the Trust Manager specified by ETSI for NFV
environments, making it more flexible and usable in different
contexts. In addition, we define a generic model for performing
RA in heterogeneous environments by employing various RA
technologies. More specifically, the extended TM allows flexible
RA in hybrid infrastructures composed of different objects, i.e.,
physical nodes, virtual machines, containers, pods, and enclaves.
Through tests performed in an experimental testbed, we show
that the proposed implementation is scalable and usable in
heterogeneous contexts.

Index Terms—trusted computing, cloud computing, Trust
Monitor

I. INTRODUCTION

The security of IT infrastructures, in particular cloud or
NFV environments, is increasingly significant in business since
more and more resources, like sensitive data and applications,
are managed by cloud-enabled or NFV-supported services. The
world of networks and infrastructures has been revolutionized
by the concept of virtualization, allowing for optimized re-
source utilization and service provision. On the other hand,
this innovation has also introduced inherent security issues
[1], because if the employed resources are tampered with, they
could pose serious threats to the infrastructures themselves. An
example of how virtualization can be used to add flexibility
in a network context is NFV [2]. This paradigm allows
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moving all the services provided by a network provider to
a higher level, by making them available via Virtualized
Network Functions (VNFs) instead of implementing them with
dedicated hardware. Also cloud computing is heavily based on
virtualization, as it exploits several aspects of these technology
but it inherits also some security vulnerabilities, such as the
ones related to platform tampering.

One possible approach to detect code manipulation or con-
figuration tampering is through Remote Attestation (RA) [3].
The RA process typically involves an entity (called Attester,
or Prover) sending its current state, usually in the form of
a set of software component measurements, to an external
trusted entity (called Verifier) which checks this data against
an expected behavior, called golden values. Hardware-based
RA techniques exploit a specific device, the Trusted Platform
Module (TPM) [4], which is a cryptographic co-processor
providing the security capabilities needed by the RA process.
However, for IoT devices with limited resources, the TPM
may not be practical because it would consume most of the
capabilities of the device [5], so alternative solutions like DICE
[6] or Keystone [7], have been proposed. A critical problem in
heterogeneous network environments is that different entities
might be attested through different RA technologies. Thus, the
European Telecommunications Standards Institute (ETSI) has
created a specific RA standard [8], which proposes a Trust
Manager entity in charge of the VNFs integrity verification in
NFV infrastructure by centralizing these operations.

Contribution. We define first a generic model for object
representation, in order to integrate different RA technologies
specific to different kinds of objects. We propose a new design
of our Trust Monitor (TM) in [9] by adding the Adapters’
connector, which allows to manage different RA frameworks
in a transparent way. This new TM has been fully implemented
and evaluated in a test-bed to measure its performance.

Paper structure. The paper is organized as follows: Section
II introduces the main theoretical concepts in the trusted
computing, RA, and network virtualization areas. Section III
describes the extended design of the new TM architecture.
Sections IV and V detail the implementation and testing of the
extended TM. Section VI discusses the related work. Finally,
Section VII provides conclusions and future work.



II. BACKGROUND

A. Trusted Computing
The concept of trust applied to a platform means deter-

mining if the platform behaves as expected or not. In case
the platform has the expected behavior, it can be considered
trusted, otherwise, it has to be considered untrusted. From
this concept, it can be deduced that trustworthiness can be
determined if the behavior is predictable.

The Trusted Computing Group (TCG) [10] is a worldwide
organization, that defines the specifications and promotes
tools related to trusted computing. It has defined the concept
of Trusted Platform (TP), which is based on the ability
to perform integrity measurements on all its hardware and
software components. All these measurements are computed
over the code or the configuration data of a component using
a cryptographic hash algorithm (e.g. SHA-256). The TCG has
proposed a possible implementation of the TP, which relies on
an additional chip called TPM [11], a hardware Root of Trust
(RoT), which is a cryptoprocessor fixed on the motherboard of
a platform that permits to store securely the integrity metrics in
some special register called Platform Configuration Registers
(PCRs) and then report these integrity metrics to third parties
in an authenticated way.

The mechanism used to measure a TP follows the concept
of transitive trust for which the trust in a component is used
to evaluate the trustworthiness of the subsequent component
which will get control of the platform. Thus, it is possible to
establish a chain of trust which allows to verify whether the
system has booted into a trusted environment. After checking
if a system booted correctly, the measurement process may
continue at the operating system (OS) level in order to
determine the trustworthiness of the applications. A remote
third party may verify the trustworthiness of a platform by
using RA.

B. Remote Attestation
Remote attestation is a security mechanism that enables a

trusted platform (Verifier) to verify the integrity of another
platform (Attester or Prover) by exploiting golden values saved
in a whitelist. The protocol used by remote attestation follows
a challenge-response model, with two main entities involved,
namely the Prover (P) and the Verifier (V), as shown in Fig. 1.

The process of RA typically starts with the Verifier, which
already has a golden value containing the state of the Prover
(P known state), sending a challenge (c) to the Prover. The
Prover must provide a response (called Integrity Report) corre-
sponding to its state at the time the attestation was requested
by the Verifier, calculated as a signature on the attestation
data (att data) and the challenge c with a specific asymmetric
private key, i.e. Sign(att data, c,KP.priv). Once the Verifier
receives the response, it verifies first the signature on the
Integrity Report with the public asymmetric key (KP.pub)
corresponding to the Prover P. Then, it compares the attestation
data with the golden value (P known state) stored in the
local whitelist. If the two values match, the Verifier can assert
that the Prover’s verified code has not been modified.

Verifier (V) Prover (P)

c

att_data = Attest()

σ, att_data

AuthProver()

s = P_known_state
c = nonce
KP.pub

σ = Sign(att_data, c, KP.priv)

Verify(c, σ, s, att_data, KP.pub)

Fig. 1. Simplified workflow of the Remote Attestation process.

Several RA approaches have been proposed, based on dif-
ferent hardware and software technologies used for protecting
the sensitive data (like keys) exploited in the RA process.

a) Hardware-based Attestation: These kinds of tech-
niques are based on a dedicated piece of hardware, typically
a cryptographic chip, which has to be present on the Prover.
One of the most used and common hardware devices used
to perform RA is the TPM, described in Section II-A. The
TPM specification has been proposed by the TCG, with the
first version which was 1.2 [12]. Subsequently, an improved
version was proposed, the TPM 2.0 [13], which is the current
standard. Other RA approaches exploit a Trusted Execution
Environment (TEE) [14], such as Intel SGX [15], or ARM
TrustZone [16]. These techniques are typically based on some
hardware extension that permits to obtain specific security
features.

b) Software-based Attestation: While hardware-based at-
testation is a highly effective solution for RA, it may not
always be practical due to hardware and software constraints,
especially in embedded devices. To address this problem,
some software-only RA approaches have been proposed to
minimize hardware overhead. Pioneer [17] is an example
of a software-based primitive that does not rely on CPU
architecture extension or any secure co-processor. The core
idea of this method is that the dispatcher (Verifier) uses
Pioneer to create a dynamic root of trust [18] on the untrusted
platform (Prover), thereby ensuring that all contained code is
unmodified.

c) Hybrid Attestation: While software-based approaches
for RA may not be sufficient in certain networked settings due
to potential adversarial capabilities [19], a hybrid approach that
incorporates both software and hardware has been developed
to address this issue. One example is SMART [20], which is
based on a minimal hardware modification of embedded Micro
Controller Units and represents the first minimal hardware
solution for establishing a dynamic root of trust in such
devices.

C. Critical Infrastructures and virtualization

IT infrastructures are nowadays a crucial asset of big
companies, public entities, and even small businesses since
they support the management of both internal and external



workflows inside companies. In the case of internal flows, it
offers organizational-level services to the employees, while
for the external ones, they permit to expose offered services
and facilities to clients. Paradigms like cloud computing [21]
[22] and NFV allow to manage companies’ IT infrastructures
more easily and in a cost-preserving manner, by exploiting the
concept of virtualization, which permits the optimization of
resource consumption. Traditionally, virtualization introduces
new entities, the Virtual Machines (VMs), that allow for a
high level of application-level isolation because each VM
has its own virtual hardware and separate environment. The
lightweight virtualization is another option, which employs
various OS features and concepts to isolate processes at the
kernel level, as an alternative to the hardware virtualization.
More recently, containers [23] have been increasingly adopted
in IT infrastructures due to their flexibility. In practice, con-
tainers are entities enabling different levels of isolation based
on specific needs, such as at the network, process, or user
level, or combinations of them.

Cloud providers offer nowadays different levels of infras-
tructure management services to the service providers or
clients (i.e., companies or organizations in general), such as
Infrastructure as a Service (IaaS) where the provider supplies
the virtual hardware, and the client builds its infrastructure
as it would be on-premise without managing physical nodes.
Alternatively, the cloud provider may offer Software as a
Service (SaaS), where an application or service is provided
to the client, and all infrastructure details are hidden. Lastly,
in the Security-as-a-Service (SECaaS) model, the service
provider integrates its security services into a cloud infras-
tructure on a subscription basis, because this approach may
be less expensive than most clients can afford on their own
when the total (security) cost of ownership is considered. The
security services offered often include intrusion detection, anti-
malware/spyware, authentication, anti-virus, and even penetra-
tion testing or security event management.

Regarding network management, the NFV paradigm was
proposed to address the high hardware resource consumption
in traditional networks. This innovative approach replaces tra-
ditional network components with a virtualized infrastructure,
allowing for the deployment of VNFs like firewalls, intrusion
detection systems, and network monitors. These objects are
software implementations of physical components running
within containers or VMs. This approach offers several advan-
tages, such as the separation of the NFVs from the hardware,
obtaining thus reduced hardware dependencies and a faster
deployment, configuration, and management time.

The NFV paradigm offers several advantages but also raises
security concerns [24]. To address these issues, the NFV-
SEC Working Group was established by ETSI. In particular,
monitoring activity in an NFV scenario becomes crucial as
all VNFs are software implementations, which makes them
vulnerable to manipulation from malicious actors. To tackle
the security challenges in NFV environments, RA can be
employed to verify the trustworthiness of resources and the
VNFs. ETSI provides a document [8] that outlines the RA

Cloud Verifier

Registrar

Tenant

TPM

Cloud Agent

Attestation
request

Integrity
Report

Attester credentials

Fig. 2. Keylime Remote Attestation workflow.

architecture(s) suitable for NFV systems. In this context, ETSI
proposes the Trust Manager, which has the purpose to manage
the trust relationships in NFV deployment environments.

D. Keylime Framework

We briefly describe this famous RA framework since we
have exploited it in the prototype implementation. Developed
by the “Lincoln Laboratory” (a security research group at Mas-
sachusetts Institute of Technology - MIT) for cloud computing
context [25] and, more specifically, in the scenarios supporting
IaaS, the Keylime framework is aimed to provide high scal-
ability to the RA process. In Keylime, the final user (called
Tenant) is provisioned with resources (cloud nodes) that could
be physical or virtual machines. The resources are given to the
user who will deploy and control his software to these nodes.
The tenants have no control over the underlying infrastructure,
so they cannot ensure, with their own implementation, that the
platform given by the IaaS provider remains in a good and safe
state during the computation.

The Keylime architecture exploits four main components:
the Tenant, the (Cloud) Agent, the Registrar, and the (Cloud)
Verifier. The Tenant, is the module that registers the Could
Agent with the Cloud Verifier (CV), sending it all the infor-
mation (that is the whitelist, exclude list, and TPM policy)
necessary to start the periodic RA on the node running the
Cloud Agent. The Cloud Agent (CA), is a service running
on the Attester node. It is in charge of sending the Integrity
Reports (IRs) to the Cloud Verifier. The Registrar is the
component to which every network node has to register via
its own UUID, an alphanumerical identifier. The Keylime RA
workflow is shown in Fig. 2

The CV is the core element of the Keylime framework.
Once a node is registered, the Tenant can start monitoring
it by asking the CV to verify the integrity of the registered
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node (Fig. 2). By default, the Verifier sends every 2 seconds
an attestation request to the Cloud Agent, even though the
attestation period can be changed to verify the Attester more
frequently. To evaluate the integrity level of the Attester, the
Verifier processes the IRs based on the information received
from the Tenant (e.g., the whitelist, the TPM policy), as well
as the data received from the Registrar.

III. TRUST MONITOR DESIGN

The TM, originally proposed in [9], is a system that permits
to handle Remote Attestation of VNFs in a Security-as-a-
Service (SECaaS) scenario. The TM was designed to be
a stand-alone component in the administrative domain of
the Management and Orchestration (MANO) [26] system,
managing the attestation process of virtual Network Security
Functions (vNSFs) and Network Function Virtualization In-
frastructure (NFVI).

The TM architecture is modular and provides several func-
tions, including a) the verification of the integrity of both
heterogeneous nodes of the NFVI and vNSFs; b) notification
and reporting on integrity status; and c) auditing integrity
verification logs of the infrastructure. Attestation of the in-
frastructure hosts is performed by sub-components known
as Attestation Drivers, developed as plugins, which allow
instantiating different RA workflows based on the type of
entity to attest.

The extended TM architecture we propose is based on
the original one, maintaining thus coherence with the basic
structure. However, the key concept in our extension stands
in aiming to make the TM architecture independent from the
RA technologies and frameworks used and the type of infras-
tructure. The updated design of the architecture is illustrated

in Fig. 3. The most significant change is the introduction of
the Adapters’ Connector, and the Attestation Adapters, which
are similar to the Attestation Drivers. This improvement allows
the TM to be independent of the attestation technologies used,
since it may contact the right attestation adapter for each entity
by using data specified during the registration phase. To reach
this, all the attestation logic was moved on the adapters so
that the TM Core Application has no constraints about the
RA framework(s) deployed in the attested infrastructure(s).

The attestation results are aggregated into a report for
each entity with an active RA process, providing an instant
view of its status. Message queues facilitate sorting attestation
results from different technologies in an asynchronous way,
allowing for other requests during the wait. Queues receive
attestation results from all the adapters and permit the TM core
application to read and aggregate them based on the entity.
Another queue receives all the aggregated reports created by
the TM core application, which can be processed by a custom
consumer developed for specific needs. We also defined a
generic object model, that permits abstracting objects and it
makes possible to register different kinds of entities. This
model includes generic fields where specific information can
be specified. In this way, the object remains generic to the
TM, but the correct adapters can specifically manage it.

The TM provides APIs that enable administrators to control
and manage the system, including all of its components and
the attestation process. We also developed a graphical web
interface that allows all the TM functionalities to be managed
more easily.

Databases are also crucial components of the system, as
they store all the necessary information for attestation. By
maintaining a separate state from the attestation frameworks
used, the system can store information independently of the
attestation process and the specific frameworks used.

In brief, we extended the original TM design with an
additional RA abstraction layer, which allows a simpler in-
tegration of different RA technology workflows. By storing
information such as data about objects to be attested, verifiers,
and attestation technologies to be used, the attestation process
becomes independent of the specific technologies utilized. The
TM is the only system that needs to be contacted to initiate the
integrity verification process, after which it will interact with
all necessary attestation frameworks. This approach enables
the attestation of an entity using multiple technologies by
simply specifying in the registration phase, which frameworks
will be used for RA of that particular object. The TM will
manage all specified technologies and aggregate all results into
a single report.

The components that compose the proposed architecture are:

1) TM Core Application: This is the main component that
manages all the RA processes in execution. Moreover, it is
responsible for collecting the attestation results, produced by
the RA frameworks and aggregating them for each entity. It
handles the central high-level logic, focusing on managing
the attestation process indirectly. When a request is received
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to initiate the RA process for a specific entity, the TM
Core Application retrieves the required data by contacting the
Database Connectors. It then passes this data to the adapters
responsible for managing the RA process.

2) Adapters’ Connector: The Adapters’ Connector is a
crucial component that enables the TM to communicate with
different RA technologies without requiring prior knowledge
of the specific framework involved. This allows for the
seamless addition and removal of RA technologies without
necessitating any changes to the TM core. This component,
at load time, read a specific section in a configuration file,
in order to detect the specified adapters. In this section, there
are declared all the developed adapters that will be used. If a
new adapter is inserted in the configuration file, there will not
be necessary to restart the TM, because each time a new RA
process starts, the Adapter’s Connector loads all the adapters
that have been specified.

3) Attestation Adapters: The TM’s flexibility in managing
the attestation process is achieved through the Attestation
Adapters. These components enable the connection of attesta-
tion frameworks with the TM core application while keeping
the frameworks’ details hidden from the TM. An Adapter
follows a specific structure to expose a common interface to
the TM, allowing it to use the framework without knowledge
of its implementation and workflow. Custom data can be stored
in metadata fields in the databases, which will be utilized by
developed adapters. Whitelist structures are also customizable,
as different attestation technologies support different struc-
tures, allowing the adapter to manage and utilize the structure
for the attestation process. The TM core application is kept
unaware of these details.

4) Attestation Results management: The extended TM ar-
chitecture includes two types of queues: the single result
queue and the aggregate report queue. The first one gathers
all attestation results from the attestation technologies through
the adapters. It enables the TM Core Application to receive
attestation results in an asynchronous manner, enabling more
efficient management of the results to create reports that

aggregate the results related to a specific entity. A single queue
is created for each entity under integrity verification, and it
collects all the results produced by every RA framework that
is attesting that specific entity. The purpose of the aggregate
report queue is to make reports available for live consumption.
As a result, a customized consumer can be developed to
process the generated reports and make decisions or take
actions based on them. There will only be a single queue in
this case.

5) High-level RA attestation process: The attestation pro-
cedure (Fig. 4) begins with a request to the API manager
(1), which contacts the TM Core Application. The TM Core
Application retrieves all the necessary data (2) to begin the
RA process. Upon gathering the required information, the TM
Core Application communicates with the Adapters’ Connector
(3) to select the appropriate attestation adapter. If multiple
attestation technologies are employed, the Adapters’ Connec-
tor contacts all the necessary adapters. Once contacted, the
selected adapter begins communication with the attestation
framework (4) to manage the attestation process performed
with the specific technology (5). The results of this process
are published on the single report queue (6), which makes
them accessible to the TM Core Application for reading.
Periodically, the TM Core Application generates a report that
consolidates this information and publishes it on the aggregate
report queue (7). Additionally, the reports are stored in the
internal database, enabling historical analysis of all reports
created for a specific entity.

6) APIs and Web Interface: The TM exposes a set of APIs
that can be used to interact with it. The APIs Manager handles
all the operations provided by the TM, receiving requests and
subsequently communicating with the TM Core Application to
execute the requested procedures. This component has been
implemented as a web server, which can run on http or
https.

The APIs can be used if there is the intention to integrate
the TM into a more complex architecture. In this case, for
example, it is possible to use or develop an orchestrator’s
integration that will automatically contact the TM. On the
other hand, in case the TM is used as a stand-alone component,
we developed a simple Web Interface to manage all the
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possible operations. This interface is an isolated component
that can be deployed autonomously, independent from the
TM deployment. Additional details on the full design of the
proposed TM architecture can be found in [27].

IV. TRUST MONITOR IMPLEMENTATION

The TM system has been developed using the Python
programming language, version 3.8. Each logical component
has been developed as a single Python file which exposes
all the necessary methods in order that other components can
interface with it.

The APIs Manager component is implemented as a web
server, and the Quart Python framework [28] was utilized.
Quart is an asyncio [29] reimplementation of the popular
Flask microframework API [30], enabling the handling of
requests asynchronously without blocking the execution flow
until a request is served. Asyncio, a component of the Python
standard library, provides an event loop with input/output
operations, enabling the implementation of concurrency and
improving CPU utilization performance.

The implementation of the necessary queues (Fig. 5) is
accomplished using Apache Kafka [31], which allows for the
implementation of a publish/subscribe protocol that is utilized
to transmit attestation results and aggregate reports. Messages
sent in this infrastructure are arranged in topics, which can be
considered similar to folders in a filesystem. Each topic can
have multiple producers that publish messages on the topic,
and multiple consumers that read and process messages sent
on the topic. In the specific case of the TM, there are two
types of topics:

• result_entity_<entity_uuid>: it collects attes-
tation results, produced by all the attestation technologies
that are in execution, related to a specific entity. This is
a dynamic topic that is created when the RA process
begins, for a specific entity, and deleted when it ends;

• report: it makes available aggregate reports, for each
entity under attestation. There is only one instance of this
topic that collects all reports.

As RA technology for the deployed nodes, we used the
Keylime [25] framework (version 6.3.2), which requires nodes
to be equipped with a TPM 2.0 chip. We used an extended
version [32] which has been proposed in order to support
Kubernetes’ pods RA. Moreover, we have developed a specific
attestation adapter for the selected RA framework to enable
the TM to interact with the Keylime software. Each pod was
composed of one container based on the nginx image.

V. TEST AND EVALUATION

A. Testbed description

The implemented TM system was tested to evaluate the
performance and correctness of the functionalities. The exper-
imental testbed (shown in Fig. 6) used was composed of the
following elements:

• two PCs, used as attesters, that were Intel NUC equipped
with an Intel Core i5-5300U Processor, 16GB of RAM,

TM

Pod

Physical
node

Kubernetes
cluster

RA
framework

Fig. 6. Experimental physical testbed.
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and a TPM 2.0 chip, running Ubuntu server 20.04 LTS
with a patched Linux kernel [32] (to support Pods RA)
based on version 5.13 and the RA agent of Keylime.

• one PC, used as a verifier, which was an Intel NUC
equipped with an Intel Core i5-5300U Processor, 16GB
of RAM, and a TPM 2.0 chip, running the Ubuntu server
20.04 LTS and the verifier software of Keylime, described
further below.

• one PC, running the Trust Monitor, which was a DELL
XPS 15 9500 equipped with an Intel Core i7-10750H
Processor, 16GB of RAM. The OS used was Ubuntu
Desktop 20.04 LTS.

B. Results evaluation

The performance evaluation focused on the following met-
rics:

1) the time (duration) for initiating a new attestation pro-
cess by the TM, depending on the size of the whitelist;
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2) the CPU utilization, depending on the number of running
RA attestation processes.

The chart depicted in Fig. 7 illustrates the impact of increas-
ing whitelist size on the time required for the TM to initiate
the RA process. This is the most significant performance
measurement because the subsequent time of the RA process
depends only on the RA framework that is used, so this is the
most notable time overhead that could be introduced by the
TM regarding the RA process. This measurement reflects the
time needed by the TM core to retrieve necessary information
and start the whole attestation process. The tested whitelist
sizes include 1 kB, 5 kB, 50 kB, 500 kB, 1MB, 5MB, and
10MB. The chart also presents results obtained from two
actual use cases: node and pod whitelists. As indicated in the
chart, the time required to start the attestation process begins
to significantly increase when the whitelist size exceeds 1MB
but remains still acceptable.

To assess the CPU usage caused by the attestation processes
handled by the TM, a simulated environment (Fig. 8) was
established, entirely deployed on the TM PC. This environ-
ment comprises six infrastructures completely simulated. Each
infrastructure was composed of a simulated Keylime instance
and six simulated nodes. There were simulated only physical
nodes because the purpose of this test was to measure the
performance, independently of the entity attested. The Keylime
framework’s actions were emulated by web servers, deployed
as Docker containers, that expose the same interfaces of the
real framework. To simulate a node, some information was
registered, in order to create the object into the TM. In this
way, it was possible to start a RA process on that object. In this
case, the RA process was just emulated because the Keylime
instance was a simulated one, but this permitted to create
several RA management processes in the TM, to evaluate the
CPU consumption. As depicted in Fig. 9, the results indicate
a nearly linear rise in the CPU utilization (expressed as a
percentage) on the TM node.

VI. RELATED WORK

In a cloud context, a RA architecture aimed to verify the
trustworthiness of users’ VMs, specifically for the IaaS sce-
nario, was proposed in [33]. Unlike our work, this paper aimed
to manage the trustworthiness of objects but it was explicitly
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Fig. 9. CPU consumption in relation to the number of active RA processes.

specialized for managing VMs. Another work proposed that
aims to monitor the trustworthiness and integrity of network
infrastructures is the Trust Monitor [9], but it has the limitation
to be applicable only in an NFV context.

For IoT environments, composed of numerous smart devices
that are potentially vulnerable to cyberattacks, new solutions
have started to be investigated. In particular, the Collective
Remote Attestation (CRA) schemes may remotely perform
attestation of large networks of IoT devices [34] that could
be even mobile nodes. However, such schemes require the
presence of an additional component in the network (in ad-
dition to the Attester and Verifier), named Aggregator, whose
purpose is to relay messages among entities in a network and,
when possible, aggregate inputs from neighbors.

Authors in [35] proposed two scalable remote attestation
scheme suitable for private cloud, NFV use cases support-
ing large amounts of VM attestations by exploiting physical
TPM device. In particular, in the Hypervisor-based attestation
scheme, a so-called appraiser attests the target including n-
VMs. However, the appraiser does not contact and attest VMs
directly, instead, it contacts the hypervisor and receives a
collection of VM attestations attached to a single physical
TPM attestation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a solution for flexible RA attes-
tation in heterogeneous environments composed of different
objects employing various attestation technologies. The Trust
Monitor architecture proposed aims to be independent of the
attestation technologies, by introducing a so-called Adapter’s
Connector. This component allows to dynamically load at-
testation drivers called Adapters, that implement the interface
with different RA attestation technologies. This mechanism
permits to add more easily new RA attestation technologies
by developing the corresponding adapter, without modifying
the core TM application. In addition, a new object model was
designed to support multiple object types. This model permits
to abstract an entity (e.g. physical node, pod, VM, container,
enclave) by specifying all the information necessary for RA,
with custom metadata fields added for flexibility. We described



the prototype implementation as well as the evaluation of
the extended TM for hardware-based RA in environments
composed of physical machines, equipped with TPM 2.0,
and Kubernetes Pods by using the Keylime framework. We
evaluated TM performance both at instantiation time as well
as during runtime, in terms of the overhead introduced by the
TM with the increase of the whitelist dimension, and the CPU
consumption based on the number of attested nodes.

The proposed system could be further improved by in-
troducing an automatic whitelist generation system, which
could permit a more automatic registration phase. Future tests
could verify and improve the use of TEE technologies such
as Intel TXT, AMD SEV, ARM TrustZone, and Keystone.
Due to its flexibility, the proposed TM system has good
potential for expansion and improvement to support emerging
IT infrastructure scenarios.
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