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Low-Density EEG Correction With Multivariate
Decomposition and Subspace Reconstruction

Pasquale Arpaia , Senior Member, IEEE, Antonio Esposito , Member, IEEE,
Angela Natalizio , Member, IEEE, Marco Parvis , Fellow, IEEE,

and Marisa Pesola

Abstract—A hybrid method is proposed for removing arti-
facts from electroencephalographic (EEG) signals. This relies
on the integration of artifact subspace reconstruction (ASR)
with multivariate empirical mode decomposition (EMD). The
method can be applied when few EEG sensors are available,
a condition in which existing techniques are not effective,
and it was tested with two public datasets: 1) semisynthetic
data and 2) experimental data with artifacts. One to four
EEG sensors were taken into account, and the proposal was
compared to both ASR and multivariate EMD (MEMD) alone.
The proposed method efficiently removed muscular, ocular,
or eye-blink artifacts on both semisynthetic and experimental
data. Unexpectedly, the ASR alone also showed compati-
ble performance on semisynthetic data. However, ASR did
not work properly when experimental data were considered.
Finally, MEMD was found less effective than both ASR and
MEMD-ASR.

Index Terms— Artifact removal, electroencephalography, empirical mode decomposition (EMD), few sensors, low cost.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a common
and consolidated technique for measuring brain activ-

ity [1], [2]. The advantages of EEG are ease of use, non-
invasiveness, wearability, and low cost [3], [4], [5]. Thanks to
its flexibility, EEG has found application in clinical practice,
research, and daily life, where a low number of sensors is
desirable [6], [7], [8].

In out-of-the-lab contexts, however, artifacts of both endoge-
nous and exogenous sources contaminate measured EEG

Manuscript received 24 May 2023; revised 26 July 2023;
accepted 26 July 2023. Date of publication 25 August 2023; date
of current version 2 October 2023. This work was supported in part
by the Project INTENSE, MISE under Grant F/310148/01/X56. The
associate editor coordinating the review of this article and approving
it for publication was Prof. Octavian Postolache. (Corresponding author:
Pasquale Arpaia.)

Pasquale Arpaia is with the Department of Electrical Engineering and
Information Technology (DIETI) and the Centro Interdipartimentale di
Ricerca in Management Sanitario e Innovazione in Sanità (CIRMIS),
Università degli Studi di Napoli Federico II, 80125 Naples, Italy (e-mail:
pasquale.arpaia@unina.it).

Antonio Esposito and Marisa Pesola are with the Department of
Electrical Engineering and Information Technology (DIETI), Università
degli Studi di Napoli Federico II, 80125 Naples, Italy.

Angela Natalizio and Marco Parvis are with the Department of Elec-
tronics and Telecommunications (DET), Politecnico di Torino, 10129
Turin, Italy.

Digital Object Identifier 10.1109/JSEN.2023.3307444

signals [9], [10]. Among these, muscular and ocular artifacts
are the most common and difficult to face. Artifact removal is
essential to obtain a signal reflecting true brain activity, but the
choice of a proper removal technique is not obvious, especially
with few EEG sensors [11].

A suitable idea is to implement hybrid methods, that is,
combining different rejection/removal techniques. This has
been especially proposed for the few EEG sensor cases, in an
attempt to merge the benefits of different techniques [12]. Sev-
eral hybrid approaches involve a first step of data decomposi-
tion, to produce a higher-dimensional signal, and a subsequent
artifact removal technique applicable to multidimensional
signals.

Many approaches rely on empirical mode decomposition
(EMD) [13], [14] and its modification [15]. Although these can
be employed with simple component selection criteria [16],
[17], the integration with techniques such as independent com-
ponent analysis (ICA) [18] or canonical correlation analysis
(CCA) [19] led to improved performance compared to single
methods. However, they considered signals from multiple
sensors decomposed individually.

In recent works, multivariate EMD (i.e., MEMD) was
combined with CCA to remove only muscle artifacts from
few sensors [20], [21]. It was demonstrated that this hybrid
method outperforms multichannel CCA but with a higher
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computational cost. Next, a faster version was proposed [22]
by relying on fast MEMD [23]. The approach was only
validated on actual EEG with a baseline contaminated by
muscle artifacts, and further investigation should be carried on.

MEMD was also combined with ICA in removing only
ocular artifacts from a five-sensor EEG [24]. An increase in the
signal-to-noise ratio (SNR) was shown in both synthetic and
experimental data. In [25], wavelet decomposition was applied
after ICA on the components recognized as ocular artifacts,
to preserve most of the actual EEG signal. This method was
only tested on experimental data, and many sensing channels
were needed for applying the ICA.

As a common limitation, the mentioned approaches specif-
ically remove a single artifact type, that is, either muscular
[19], [20], [21], [22], [26] or ocular [24], [27], [28], [29]
ones. Nonetheless, the artifact removal technique should be
applicable to a few-sensor scenario for different types of arti-
facts, since they can all occur during actual EEG acquisition.
Despite its importance, such investigations are still scarce in
the few-sensor scenario.

It should be noted that the above-mentioned methods
combine modal decomposition with blind-source separation
techniques. The latter relies on strict assumptions of inde-
pendence of components to separate underlying sources [30],
which is not always the case for modal decomposition. Instead,
an adaptive filter such as the artifact subspace reconstruction
(ASR) [31], [32], [33] has less strict assumptions and it already
proved more effective in comparison with other methods [11].

Therefore, a novel hybrid method for artifact removal
in low-density EEG setups is proposed. For the first time,
the MEMD was combined with ASR to remove artifacts
from a few available EEG signals and even in single-sensor
settings. In particular, Section II provides a background on
artifact removal, Section III introduces the proposed method,
Section IV describes public data exploited for validating the
method, and Section V discusses the results.

II. BACKGROUND

When dealing with EEG, artifact removal techniques can be
classified into four main groups [12], [34]: regression-based,
filtering, blind source separation, and source decomposition.
In addition, new learning-based methods are recently receiving
increasing attention [9], but these are beyond the present study.

Regression methods are still considered a gold standard,
though they have been gradually replaced by more sophis-
ticated methods. Meanwhile, filtering methods involve tradi-
tional frequency bandpass filters and adaptive ones. The former
can be used if the bands of artifacts do not overlap with the
signal of interest, while the latter are more flexible.

Simplicity and moderate computational costs are the main
advantages of such techniques, while the need for a priori
knowledge and/or reference channels are their major draw-
backs. In this context, a recent and promising adaptive filtering
technique is the ASR [31]: Extracts an artifact-free data
fragment as a baseline and then corrects EEG data by setting
an automatic threshold before reconstructing clean data. ASR
computes a covariance matrix and retrieves statistics to identify
and remove short, high-amplitude artifact components (e.g.,
muscle artifacts) [35].

Other artifact removal techniques can be classified as blind
source separation methods and source decomposition methods.
They do not require reference channels nor a priori knowledge
about the artifacts, but they are based on strict assumptions of
linearity, independence, and uncorrelation. In addition, they
typically have high computational costs.

Blind source separation methods estimate a relationship
matrix between the observed signals and the real unknown
sources that generated them. The goal is to distinguish noise
sources from real brain sources. Typical examples are the ICA,
the CCA, or the principal component analysis (PCA). This
category of techniques is often used in high-density biomedical
signal processing [10], [30].

Source decomposition methods are based on the idea that the
signal from each sensor can be decomposed into a series of
fundamental modes in the time–frequency domain. Again, the
noise components should be distinguishable in the transformed
domain and removed before reconstructing the clean signal.
Well-known examples are the wavelet transform [36] and
the EMD [37]. In particular, EMD can only decompose 1-D
signals independently. Meanwhile, the MEMD can decompose
all the signals of a multidimensional acquisition at the same
time by computing the same number of coherent modes for
each sensor [38].

In a preliminary study [11], ICA, PCA, and ASR were
compared while diminishing the number of available sensors.
In accordance with the literature, ASR appeared as the most
effective and balanced method when exploiting at least four
sensors. Indeed, ASR was able to effectively correct the
physiological artifacts while preserving a large part of the pure
EEG signal and it was found to be the fastest technique (even
ten times faster than ICA). However, its performance was
degraded with less than four sensors. For the above reasons,
Section III deals with the enhancement of ASR by means of
MEMD.

III. PROPOSED METHOD

The proposed method aims to enable the usage of few
EEG sensors. Similar to literature hybrid approaches, the few
available signals are decomposed before applying a multidi-
mensional artifact removal technique. However, using MEMD
for that purpose is relatively new and the combination with
ASR was unexplored.

A. Design
MEMD decomposition operates in a multivariate

time–frequency domain and it gives back basic waveforms
called intrinsic mode functions (IMFs) [38]. Different from
EMD, the MEMD returns the same number of matched
scale-aligned IMFs for each available signal. Artifacts could
then be identified in the new space by applying ASR [31].
Notably, the ASR still relies on the statistics of a calibration
interval, but retrieving statistics and cleaning must be done
on IMFs.

To work properly, the MEMD and the ASR cannot be
simply cascaded, but additional steps are necessary. Overall,
the pipeline of the proposed hybrid method consists of five
steps (Fig. 1):
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Fig. 1. Block diagram of the proposed hybrid method for artifact removal.

1) Preprocessing: The EEG signals are filtered in the fre-
quency bands of interest and, after that, the epochs to analyze
can be selected.

2) Decomposition: The MEMD is carried out on all the
available EEG signals simultaneously. The number of direc-
tions of the signal projection should be explicitly fixed.
To extract meaningful IMFs, this number must be greater than
the dimensionality of the original signal. The rule adopted in
the current proposal is

Ndirections = 2 × (Nsensors + 1) (1)

with the constraint of having at least six directions. This choice
is consistent with the indications of the developers [39], [40].
At the end of the decomposition, the IMFs of each signal are
matched among the corresponding sensors.

3) IMF Grouping: The resulting IMFs have many different
amplitudes, which prevents the direct application of ASR.
Therefore, IMFs with low amplitudes are identified and
summed to the last IMF with acceptable amplitude. To set an
amplitude boundary, a calibration interval before decomposi-
tion is taken into account and the difference 1p between the
90th and 10th percentile is calculated for each sensor. Then,
the same quantity is calculated for all the IMFs associated
with that calibration interval. If the interquartile range of an
IMF is lower than 10% of 1p for at least one sensor, all the
matched IMFs are summed up with the closest matched IMFs
above the boundary. This process is done consistently for all
sensors.

4) ASR: It includes a calibration phase and a cleaning
phase. In this hybrid method, the calibration data are the IMFs
obtained from the decomposition of the calibration interval.
A mixing matrix M is obtained as the square root of the
covariance matrix of calibration data. PCA is carried out for
this mixing matrix. Then, a rejection threshold is automatically
selected for each principal component as

0i = µi + kσi (2)

where µi and σi are the mean and standard deviation of
the root mean square values obtained with a sliding window
for each component. The threshold depends on the cut-off
parameter k and the time window w on which statistics
are calculated. For each window, the algorithm zeroes the
components exceeding the rejection limit.

5) Signal Reconstruction: Once the data are cleaned with the
ASR, the signals in the original space are reconstructed by the
inverse MEMD, that is, the cleaned IMFs for each sensor are
coherently summed up.

In the proposed method, calibration and artifacts data should
be ideally recorded in compatible conditions, namely with
the same acquisition hardware, in the same session, and with
the same subject. However, calibration data from a previous
session on the same subject could be reused.

Moreover, this hybrid method can also be applied to multi-
dimensional signals with any number of sensors. Nonetheless,
it should be noted that the number of IMFs passed to the ASR
grows exponentially as the number of sensors increases.

B. Implementation
The proposed MEMD-ASR method was implemented as

a MATLAB function, so that it can be easily integrated in
EEG processing pipelines. The inputs of this function were as
follows.

1) The original signal to be cleaned, expressed as an
(S × N ) matrix, where S is the number of samples and
N is the number of sensors.

2) The sampling frequency of the original signal, expressed
in samples per second.

3) The calibration interval corresponds to a time interval
in which artifacts are assumed as absent.

4) The cut-off parameter of ASR, expressed as an integer
greater than one; it determines the aggressiveness of data
rejection: the smaller the k, the more the aggressiveness.

5) The length of the statistics window, expressed in sec-
onds. This value w should be no longer than the time
duration of the artifacts [31].

The output consists of the cleaned signal, still expressed as
an (S × N ) matrix.

Inside the function, the five steps described above were
implemented. During signal preparation, a chunk of the signal
had to be added at the end of the original signal. This
typically consists of the last 0.25 s of the original signal
that is flipped and concatenated. The reason is that the ASR
cleaning function introduces a default delay due to a look-
ahead operation. With this option, the ASR can reconstruct
a sample by considering not only its preceding samples, but
also the following ones [31]. Therefore, adding the chunk is
needed whenever the look-ahead is exploited, while this will
be removed in signal reconstruction by cutting the last 0.25 s.

The function implementing the MEMD was taken from [39],
where the output IMFs are given as a cell per each sensor.
These cells were converted into matrices, with rows corre-
sponding to IMFs. Then, the grouping criterion was applied
to reduce the number of IMFs to be passed to the ASR. Finally,
the resulting IMFs per sensor were concatenated in a unique
matrix.
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TABLE I
CORRELATION COEFFICIENTS TO WEIGHT OCULAR ARTIFACTS AND EYE BLINKING FOR EACH SENSOR

Overall, reduced IMFs were obtained for either the calibra-
tion interval or the epochs with artifacts. These were given
in input to the ASR, where the calibration function returns a
state for initializing the subsequent cleaning phase. In addition
to the state, the inputs for the cleaning phase are the data
matrix, the sampling rate, the window length, and the look-
ahead value. At the end of cleaning, the signal is reconstructed
by summing the IMFs per sensor.

IV. DATASETS

The proposed method was validated on public semisynthetic
and experimental datasets. Compared to purely synthetic data,
semisynthetic data offer more realistic signal variability and
power, ensuring reliability and results significance. To generate
semisynthetic data, pure EEG data were first synthesized and
then partially contaminated with artifacts extracted from real
recordings. In doing so, the pure EEG can be easily compared
with the cleaned EEG. This is indeed not possible with
actual EEG data, but the results on them should be discussed
differently.

A. Semisynthetic Data
Pure EEG signals were synthesized with the recently devel-

oped SEED-G simulator available online [41]. Per each sensor,
a 150-s-long pure signal was generated with a sampling
frequency of 256 Sa/s. These parameters were chosen to have
suitable data for the application of the ASR. In detail, the first
60 s of the trace were left intact to represent clean calibration
data. The remaining 90 s were contaminated with three types
of artifacts: muscular, ocular, and eye blinking.

The muscular and ocular artifacts were extracted from the
online DenoiseNet database [42]. These artifacts are available
in 2-s-long segments at a sampling rate of 256 Sa/s, consistent
with the choice made to simulate pure EEG. Therefore,
15 segments were randomly extracted for each artifact type to
obtain 30 s of muscular artifacts and 30 s of ocular artifacts.
In addition, eye blinking artifacts were added on the last 30
s of the signal. In this case, half sinusoidal signals with 0.2-s
duration were added to simulate the typical eye blinking peaks.
The time distance between them was set 1 s apart.

The amplitude of the synthetic artifacts was adjusted with
respect to the pure synthetic signal to achieve an SNR from
−20 to 5 dB [43]. Moreover, since ocular artifacts and eye
blinking usually propagate over the scalp starting from the
prefrontal area, their addition was weighted per channel.
The weights were achieved as the correlation coefficients
between real electrooculographic data and corresponding EEG
data [41]. Fifteen channels were thus chosen from different
regions of the scalp, and these are indicated in Table I with
the mentioned correlation coefficients.

B. Experimental Data From a Public Dataset
A public dataset was exploited to extract actual EEG

data [44]. This dataset is meant for testing artifact removal

techniques and includes 13 participants with one recording
session each. Brain signals were recorded by using a helmet
by Brain Products [45] with 27 EEG channels and three
electrooculographic channels, at a sampling rate of 200 Sa/s.
Despite the nonwearability of the acquisition device, these
publicly available data were chosen for the sake of repro-
ducibility and the possibility of analyzing different numbers
of sensors. The subjects sat in front of a screen to follow
instructions for performing muscular or ocular artifacts.

Each experimental session consisted of two parts. First,
the subjects were asked to focus on a fixation cross on the
screen and avoid doing artifacts (baseline). Clean 30-s-long
signals were thus recorded for each subject twice. Second,
nine different artifact types were done in random order ten
times each. A single trial with artifact lasted from 10 to 30 s,
for a total length of 40–50 min for the second part.

In the present work, data from the first subject of the dataset
were chosen to be processed. For computational reasons, the
length of the entire EEG signal was limited to about 8 min.
While the two sets of baseline signals were kept unchanged,
only ten continuous artifact conditions were considered for the
contaminated signal part. Finally, the whole EEG data were
filtered in the 1–40-Hz range and base-normalized to have zero
mean. Note that the last condition was also satisfied when
generating semisynthetic data.

V. RESULTS AND DISCUSSION

The experimental setup is described in this section along
with the metrics adopted for quantifying the method’s
effectiveness. The results presented hereafter can be repro-
duced by exploiting the code published at https://github.com/
anthonyesp/low_density_eeg_asr.git.

A. Experimental Setup
In accordance with the above discussion, the proposed

hybrid method was tested from four sensors down to a single
sensor but can work properly with up to four sensors. Notably,
in the case of a single sensor, the MEMD is actually an
EMD. Per each number of sensors, the sensors were randomly
selected 15× among available ones to obtain an average
performance independent of their locations.

Different values for the cut-off parameter k and for the
statistical window w associated with ASR were investigated to
identify the best pair. Notably, k was varied from 5 to 30 with
step 1 and w was varied from 0.2 to 3.0 s with step 0.1 s.
The selection of the best ASR parameters was based on the
relative root mean square error (RRMSE) [46]. It reflects the
differences between the pure EEG signal and the EEG signal
cleaned by MEMD-ASR. It is defined as

RRMSE =

√√√√∑N
i=1

[
eeg⋆(i) − eeg(i)

]2∑N
i=1 eeg(i)2

(3)
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Fig. 2. Surface obtained by calculating the Euclidean norm in 5-D space
associated with the RRMSE in the two-sensor case.

where eeg(i) and eeg⋆(i) are samples of the uncontaminated
signal and cleaned one, respectively. These values should be
zero in the ideal case, that is, with artifacts perfectly removed.

Therefore, semisynthetic data were primarily used in these
tests. RRMSE was calculated on different segments: the seg-
ment used as a baseline for ASR, the residual pure EEG (not
used as a baseline), the segments with muscle artifacts, the
one with ocular artifacts, and the one with blink artifacts.

The point defined by the five RRMSE values (as five
were the EEG segments) was considered in a Euclidean 5-D
space and its norm was calculated. The dispersion around
these values was also taken into account and propagated to
achieve the uncertainty of the norm. The optimal w was
chosen to minimize the Euclidean norm and possibly its
associated uncertainty. Then, k was identified by looking for
the minimum 90th percentile associated with the five values.
As an essential check, once w and k were fixed, a visual
inspection of the signals in the time domain was carried on.
In particular, the pure signal and the signal cleaned with
MEMD-ASR were compared for each segment of the EEG
signal.

Eventually, the hybrid method was tested on experimental
data by using the best w and k chosen on semisynthetic data.
Again, sensors were randomly selected 15× from the available
ones to test the method from four sensors down to a single
sensor. To evaluate the effectiveness of the hybrid method on
experimental data, a visual inspection of the signals in the
time domain was carried out. The RRMSE was calculated
too. Nonetheless, as the pure signal is not available with
experimental data, this metric has the same meaning of the
semisynthetic data case only when considering the baseline
and pure segments. The same metric was calculated on the
remaining segments with artifacts that are thus not reported to
avoid misunderstandings.

B. Results on Semisynthetic Data
To identify the optimal k and w values, Fig. 2 shows the

Euclidean 5-D norm associated with median RRMSE values.
Moreover, its colors refer to the dispersion of the norm.
This specific result regards the two-sensors case, but similar
surfaces were obtained in the other cases.

As observed by the sharp negative peak, w = 0.5 s remained
unaffected by both the k value and the number of sensors. This
new w value corresponds to the default length of the statistics
window [31], [47]. In addition, a value for k in the 5–10 range
minimizes both the norm and its dispersion. After fixing w,
the optimal value of k was identified as described in V-A

TABLE II
MEDIAN RRMSE VALUES FOR SEMISYNTHETIC DATA

per each number of sensors. In general, for small k values,
the baseline and pure segments differ from the original ones,
but the artifacts are completely removed. On the other hand,
for large k values, the baseline and pure segments match the
original ones but the artifacts are only partially removed.

Table II reports the median RRMSE corresponding to the
optimal w and k values. Moreover, the novel hybrid method
was compared to ASR and MEMD alone. Note that the
classical ASR cannot be applied to a single sensor as a method
based on covariance [48], [49], thus EMD-ASR was only
compared with EMD alone. Furthermore, entropy was used as
a criterion to identify and remove artifactual IMFs, as proposed
in [50]. These results demonstrate that the proposed hybrid
method performs compatibly with the ASR. In contrast, the
only MEMD is not effective in isolating artifacts but, due to
its filter bank-like behavior [38], it affects clean signals.

The RRMSE values of Table II are also compatible with
previous studies. Notably, by considering results on semisim-
ulated data with an SNR between −20 and 5 dB, the
RRMSE values reported in [20], [21], and [22] span in the
0.2–0.5 range. Moreover, it should be noted that the minimum
number of considered channels was 3, even when taking into
account other relevant studies [24], [40].

The Mann–Whitney U-test [51] was applied to prove dif-
ferences between MEMD-ASR, ASR, and MEMD with a
5% significance level. The test results confirmed that the
medians of RRMSE for ASR are not significantly different
from MEMD-ASR, except for the case of an ocular artifact
with two sensors (reported in bold). Meanwhile, they also
confirmed that MEMD performs worse than both MEMD-ASR
and ASR.

The gain in the signal-to-artifact ratio (γ ) [46] was then
investigated as a further metric. Notably, this could be only
exploited on semisynthetic data as it requires the availability
of the true EEG. The γ is defined as

γ = 10 log

∑N
n=1

∣∣eeg⋄(i) − eeg(i)
∣∣2∑N

n=1 |eeg⋆(i) − eeg(i)|2
(4)

where eeg⋄(i) are the samples of the contaminated EEG
signal. Positive values of gamma indicate a better SNR,
negative values indicate a decrease, and zero represents no
improvement. Table III reports the median γ , corresponding
to the optimal w and k values, in comparing the novel hybrid
method with ASR and MEMD alone.

Since the contaminated signal eeg⋄(i) and the uncontam-
inated signal eeg(i) coincide within the baseline and pure



23626 IEEE SENSORS JOURNAL, VOL. 23, NO. 19, 1 OCTOBER 2023

TABLE III
MEDIAN γ VALUES FOR SEMISYNTHETIC DATA

Fig. 3. Visual inspection of the sensor Fz with two sensors involved
in artifact removal by MEMD-ASR. Quantitative metrics associated with
these semisynthetic data are reported in Tables II and III.

segments, γ was computed only for the three artifact condi-
tions. Also in this case, statistical testing proved the superior
performance of MEMD-ASR over ASR for eye blinks, but also
for ocular artifacts, in the two sensors case. In all other cases,
MEMD-ASR and ASR demonstrated compatible performance
and both were better than only MEMD.

Visual inspection confirmed that MEMD-ASR and ASR
have compatible performance on these data. Meanwhile,
EMD-ASR is effective in removing ocular and eye-blink
artifacts on single-channel EEG. Fig. 3 shows a representative
example of visual inspection. The two-sensor case was consid-
ered and the sensor Fz is here represented with respect to the
five EEG segments. As expected, the green (pure signal) and
the blue (signal cleaned with MEMD-ASR) curves are mostly
overlapped. Hence, artifacts are removed with respect to the
red curves representing contaminated signals.

C. Results on Experimental Data From the Public
Dataset

As anticipated, the optimal w and k values derived with
the semisynthetic data were adopted on experimental data too.

TABLE IV
MEDIAN RRMSE FOR EXPERIMENTAL DATA

Fig. 4. Visual inspection of the sensor Fz with two sensors involved
in artifact removal by MEMD-ASR. Quantitative metrics associated with
these experimental data are reported in Table IV.

Table IV reports, for the only baseline and pure data segments,
the median RRMSE corresponding to the same w and k values
of Table II. The novel method was again compared to MEMD
and ASR. The proposed hybrid method affects the baseline
and the pure signal segment less than both MEMD and ASR
alone, with a significant difference for all cases from four to
two sensors.

An example of the effectiveness of MEMD-ASR in remov-
ing artifacts is reported in Fig. 4. The two-sensor case was
considered and the sensor Fz is here represented with respect
to the five EEG segments. The signals cleaned with MEMD-
ASR (blue) are here compared to the experimental data
signals (red). It can be seen that these signals are mostly
overlapped in the baseline and pure conditions, while artifacts
are removed in the other three conditions. The effectiveness
of the proposed methods is further supported by the visual
inspection of baseline and ocular artifacts for comparing the
artifact removal methods (Fig. 5). In there, the two-sensor case
was again involved. In the calibration segment neither MEMD
nor MEMD-ASR affects the signal, while the ASR already
disrupts it. Regarding the noisy segment, the MEMD-ASR is
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Fig. 5. Visual inspection of the sensor C3 with two sensors involved
in comparing artifact removal methods. Quantitative metrics associated
with these experimental data are reported in Table IV.

the only one to effectively remove ocular artifacts. Conversely,
the MEMD fails to mitigate artifacts and the ASR overcorrects
them. Indeed, the ASR fails to remove artifacts and cancels out
the signal on experimental data, in contrast to its performance
on semisynthetic data.

In conclusion, it should be noted that a drawback of the
proposed technique is execution time. ASR alone takes about
0.2–0.4 s to remove artifacts, where the more the sensor the
higher the time. Meanwhile, MEMD-ASR execution takes
from about 32 s (two sensors) to about 72 s (four sensors).
Instead, EMD-ASR for a single sensor takes about 0.7 s. The
MEMD thus creates a bottleneck in terms of processing time,
but the EMD-ASR discloses the possibility of implementing
a soft EEG sensor with integrated artifact removal features.

D. From Semisynthetic to Experimental Data
Results on semisynthetic data suggest that ASR is equally or

more effective than MEMD-ASR down to two sensors. Mean-
while, a significant improvement with MEMD-ASR holds for
the removal of ocular artifacts in the two-sensor case. This
was confirmed with statistical testing on both RRMSE and
γ metrics. In contrast, MEMD alone was always found to
be less effective than ASR and MEMD-ASR. Compared with
ASR alone, the proposed method discloses the possibility of
working on a single sensor. However, EMD-ASR does not
seem effective in removing blinks.

Conversely, when experimental data were used, the
MEMD-ASR appeared more effective than ASR and MEMD
in not affecting the baseline and pure EEG signal. Further-
more, the visual inspection in Fig. 4 proves that the hybrid
approach exhibits a balanced corrective action. Meanwhile,
in accordance with literature [38], MEMD fails to remove
artifacts in the same frequency bands of the signal.

Finally, Fig. 5 supports the importance of testing artifact
removal techniques on experimental data despite the unknown
pure EEG. Notably, the only RRMSE would not highlight the
issue, thus confirming the importance of visual inspection in
the current scenario.

VI. CONCLUSION

This work has proposed a hybrid artifact removal method
addressed to low-density EEG. Different from existing lit-
erature, this was designed to remove various types of EEG
artifacts and to jointly consider all the available channels for
maximizing the available information. The method relies on
the multivariate version of EMD and ASR.

Both semisynthetic and experimental data were exploited to
validate the method. In the former case, the hybrid method has
performance compatible with the classical ASR. In the latter
case, visual inspection demonstrated that ASR is not effective
on experimental data, while only MEMD-ASR works properly.
This also suggested that semisynthetic data are not always
appropriate for testing artifact removal techniques. Finally,
MEMD was found to be less effective than MEMD-ASR and
ASR.

Future works should further explore the applicability of the
proposed methods in different settings. Moreover, execution
time should also be reduced if willing to realize soft sensors
for online applications. Finally, standardization in terms of
metrics is still required, especially when experimental data are
used. These speculations will be eased by the material shared
for the present article to replicate and extend the results.
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