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Abstract: The present study introduces a brain–computer interface designed and prototyped to
be wearable and usable in daily life. Eight dry electroencephalographic sensors were adopted to
acquire the brain activity associated with motor imagery. Multimodal feedback in extended reality
was exploited to improve the online detection of neurological phenomena. Twenty-seven healthy
subjects used the proposed system in five sessions to investigate the effects of feedback on motor
imagery. The sample was divided into two equal-sized groups: a “neurofeedback” group, which
performed motor imagery while receiving feedback, and a “control” group, which performed motor
imagery with no feedback. Questionnaires were administered to participants aiming to investigate the
usability of the proposed system and an individual’s ability to imagine movements. The highest mean
classification accuracy across the subjects of the control group was about 62% with 3% associated
type A uncertainty, and it was 69% with 3% uncertainty for the neurofeedback group. Moreover, the
results in some cases were significantly higher for the neurofeedback group. The perceived usability
by all participants was high. Overall, the study aimed at highlighting the advantages and the pitfalls
of using a wearable brain–computer interface with dry sensors. Notably, this technology can be
adopted for safe and economically viable tele-rehabilitation.

Keywords: electroencephalographic sensor; dry sensors; motor imagery; brain–computer interface;
neurofeedback; tele-rehabilitation

1. Introduction

Tele-rehabilitation has long been considered a promising way of providing rehabil-
itative therapies “at distance” [1–3]. Digital sensing and artificial intelligence solutions
enable patient-centered treatment by continuously monitoring and evaluating patient per-
formances [4,5]. Over the past few years, the COVID-19 pandemic has accelerated this
transition to a new era known as health 5.0 [6,7]. In this context, extended reality helped to
provide an alternative therapy at a distance for a wide range of people. Notably, different
solutions were proposed for older adults with neurodegenerative diseases [8–10].
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Brain–computer interfaces (BCIs) based on the motor imagery paradigm have been
extensively studied for human patients with a variety of neuromuscular disorders in
order to facilitate the recovery of neural functions. Their effectiveness has been confirmed,
especially for stroke patients [11–13]. The combination of BCIs and extended reality can
provide patients with neurofeedback on their mental tasks [14]. In particular, sensory
feedback helps them in the self-regulation of brain rhythms and promotes neural plasticity.

The literature has shown that neurofeedback improves classification for motor imagery
and that sensorimotor cortical activation is significantly enhanced. This was quantified not
only in terms of classification accuracy, with an improvement of about 10% to 20% [15,16],
but also as event-related spectral perturbation and functional connectivity [15].

To be involved in tele-rehabilitation, a system including a BCI and extended reality
must be non-invasive, wearable, portable, comfortable, and generally ready for getting out
of controlled lab environments [17,18]. Moreover, wireless features are desirable in disclos-
ing new applications with brain-type communication services [19]. These requirements
are often fulfilled by exploiting electroencephalography (EEG) to acquire brain signals [20].
EEG systems for “out-of-lab” acquisitions are increasingly being developed [21]. These are
mainly wireless devices with a reduced number of sensors that allow freedom of movement
and improve usability [22,23]. Moreover, instead of the standard wet sensors, dry sens-
ing could be used to increase user comfort while attempting to keep a high metrological
performance [24–26].

Previous studies already proposed EEG devices relying on dry sensors. They relied
either on ad hoc instrumentation [27–29] or evaluated consumer-grade instrumentation [30,31]
involving dry electrodes. For instance, in [32], classification was attempted in different dry
sensing setups (from 8 to 32 sensors) and with different signal processing approaches. A
wireless high-density EEG medical grade system was used and a drop in performance was
observed when eight channels were used. However, neurofeedback was not investigated
in trying to enhance motor imagery detection. Recently, the feasibility of a wearable BCI for
neurorehabilitation at home was proposed in [33]. Healthy participants received remote
instructions on the use of an EEG device with 16 dry sensors. Visual feedback consisted of a
bar fluctuating vertically up or down from the midline. Half of the participants succeeded
in controlling the BCI during six sessions.

It is worth noting that a previously published work [16] already investigated a similar
motor-imagery-based BCI with wet sensors. Moreover, unimodal feedbacks (visual and
haptic) were investigated along with multimodal visual–haptic feedback. The results high-
lighted the role of neurofeedback in improving the performance, and participants generally
preferred visual and visual–haptic feedback modalities. Nonetheless, the experiments had
to be extended to a greater number of participants.

The aim of the present study was to prototype and validate a user-friendly BCI that
could then address tele-rehabilitation. This was performed by emphasizing wearability,
comfort, engagement, and ease of use. An upgraded version of a previously proposed
system [16] was designed and developed incorporating a ready-to-use Class IIA EEG
device with eight dry sensors, certified according to the Medical Device Regulation. The
effectiveness of visual–haptic neurofeedback in discriminating between left hand and
right hand motor imagery was also investigated over 5 experimental sessions for each
of the 27 enrolled subjects. Notably, this multimodal feedback was chosen in accordance
with the subjects’ preference proven by the previous study [16]. To this aim, the subjects
were divided into a control group and a neurofeedback group. Preliminary results were
presented in [34] but extended here by considering a large subject cohort and the results of
questionnaires administered to evaluate usability. The remainder of the paper is organized
as follows: Section 2 presents an overview of the proposed system, with a focus on the
experimental protocol and outcome measures; Section 3 shows the system performance in
experiments; and Section 4 concludes the manuscript by discussing the results.
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2. Materials and Methods

This section discusses the design, implementation, and validation methods for a
wearable BCI relying on motor imagery, EEG with dry sensors, and online neurofeedback.
An overview of the system is given together with the adopted hardware. Then, EEG
processing is focused in association with the experimental protocol. Questionnaires will
also be introduced. They were adopted to assess the usability of the system and imaginative
abilities of its users. Finally, the tests considered within the statistical analysis are recalled.

2.1. System Overview

The present study proposes a new system integrating a BCI with neurofeedback in
extended reality, where a virtual reality environment was set to provide both visual and
haptic virtual sensations (Figure 1). This could be addressed both to daily-life applications
for tele-operating a device [19,35] and to tele-rehabilitation purposes.

EEG ONLINE PROCESSING

FEEDBACK DELIVERING

visual

haptic

Figure 1. A subject using the proposed BCI system with neurofeedback in extended reality. The
system involves EEG acquisition with the Helmate device, online processing, and actuators for
visual–haptic feedback delivery.

In the system, brain signals were acquired by using the Helmate EEG device by ab
medica (https://www.abmedica.it/, accessed on 12 Febraury 2023). This is a Class IIA
device certified according to the Medical Device Regulation (EU) 2017/745. It has eight
measuring channels plus one reference channel and one bias channel. Ten dry sensors with
different shapes can be chosen according to the zone of the scalp to reach. Moreover, as a
multipurpose device, different configurations for the channels’ location could be exploited.
In this study, the eight measuring channels were located at FP1, FP2, Fz, Cz, C3, C4, O1, and
O2 according to one of the default configurations, while the reference and bias sensors were
placed in the frontal region at AFz and FPz, respectively (Figure 2). Such a configuration
guarantees the optimal mechanical stability of the helmet during measurements. Moreover,
it makes the system open to future upgrades by allowing, for instance, the integration of a
module for monitoring users’ engagement.

Data were collected at a sampling rate of 512 Sa/s and transmitted via Bluetooth to a
custom Simulink model for EEG processing. In Simulink, features from the EEG signal were
extracted by means of the filter bank common spatial pattern (FBCSP) [36] and classified by
means of the naive Bayesian Parzen window (NBPW). The latter returns two outputs: the
class to which the multichannel EEG signal is assigned (right or left) and the probability
associated with that class.

https://www.abmedica.it/
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Fp1 Fp2

Fz

CzC3 C4

O1 O2

Figure 2. Position on the scalp of the sensors adopted in this study. Locations are identified by the
10–20 standard system for EEG.

The classification outputs were used to drive multimodal feedback through a custom
Unity application. The neurofeedback consisted of a combination of visual and haptic
feedback associated with the mind control of a virtual object and coherent tactile sensation.
For visual feedback, a virtual ball was shown on a display (Figure 3). This could roll to
the left or to the right of the virtual environment according to the EEG classification. In
detail, while the assigned class determined the direction, the related score determined its
velocity. The TactSuit X40 from bHaptics Inc was used for the haptic feedback. This is a
wearable and portable vest equipped with 40 individually controllable vibrotactile motors.
The vibration was again modulated by classification outputs. More specifically, the pattern
could move from the center of the torso (front side) to the right or to the left in accordance
with the assigned class. Meanwhile, the related score determined the vibration intensity. It
is worth noting that only the bottom motors were used to minimize vibration artifacts on
the EEG signals.

GO! RELAX

0.00 s 2.00 s 3.00 s 6.00 s

Figure 3. Timing of a single trial of the experimental sessions for the control group. The same timing
was also used for the neurofeedback group only during the first phase of an experimental session.
Notably, there was an overlap of 0.25 s between the cue and the word “GO!”.

2.2. Experimental Protocol

The described BCI was exploited within a cue-based (synchronous) paradigm. This
implied that the user had to imagine a movement or be relaxed in accordance with given
indications (the cues). The indications were delivered visually by means of the Unity3D
platform. Two motor imagery tasks were possible, namely imagining the movement of
the left hand or imagining the movement of the right hand. In case of neurofeedback,
multimodal feedback was delivered to the user in response to the ongoing mental task. It
should be noted that this was not simply intended for training the user (i.e., neurofeedback
training) but as a part of the BCI online operation. Indeed, the actual role of this neurofeed-
back was to enhance the users’ experience by providing some information on the ongoing
brain activity. On the other side, the classifier adopted for the online processing had to be
identified. This was performed by exploiting signals acquired during pure motor imagery
(no feedback).

In the experimental protocol, subjects were divided into two groups and involved in
five one-hour experimental sessions over five weeks. The subjects assigned to a control
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group never received feedback. For the subjects of the neurofeedback group, pure motor
imagery had to be recorded at the beginning of each session, and then neurofeedback was
provided thanks to an EEG classifier trained on these preliminary data. The protocol for
the two groups is described in detail in the following.

2.2.1. Control Group

The Unity application dictated the timing within the experimental session. A total of
6 runs were recorded, and each run consisted of 30 trials. Each trial consisted of a fixation
cross visualized from 0.00 s to 2.00 s, a cue (left or right arrow) visualized from 2.00 s to
3.25 s, the word “GO!” visualized from 3.00 s to 6.00 s, and the word “RELAX” visualized
for a random time window of 1.00 s to 2.00 s (Figure 3). Notably, words were displayed to
guide the user through the experiment in the absence of any feedback on the screen. The
sequence of left and right cues and the duration of the final “RELAX” were randomized
across trials to avoid biases. The EEG was acquired as a continuous stream during each
run but never processed online and thus the control group did not receive any feedback.
The runs were separated by short breaks, with a longer time break between the first three
runs (phase 1) and the last three runs (phase 2) of a session.

2.2.2. Neurofeedback Group

The first three runs of each session (phase 1) were carried out as they were for the
control group. However, during the time break between the phases, the EEG data from
phase 1 were used to train the online classifier. This classifier was trained from scratch for
each subject and for each session. Subsequently, the participants of this group performed
three further runs (phase 2), during which they received online multimodal feedback in
response to motor imagery. The goal of the participants in the neurofeedback group was
to move the visual feedback ball over the white lines of the game environment and to
maximally activate the motors of the vest on the back of the respective side (i.e., left or
right). In this experimental phase, words were no longer appearing but the user was fully
guided by the arrows and the virtual ball (Figure 4). In this case, the timing was slightly
changed because participants were asked to start imagining from the appearance of the cue
at t = 2.00 s. Then, they received the feedback from 4.50 s to 6.00 s (Figure 4). The instant
t = 4.50 s depended on the fact that the system actually started to classify at t = 2.50 s, and
the time window for online processing was 2.00 s wide. Finally, the feedback could only
move if the label obtained from the online classifier matched the assigned task (positive
bias). Otherwise, no feedback was provided and the virtual ball was dragged towards the
center of the screen while the intensity of the vibration was interrupted. Further details on
that are discussed in the next subsection.

RELAX

0.00 s 2.00 s 4.50 s 6.00 s

Figure 4. Timing of a single trial of the experimental sessions for phase 2 of the neurofeedback group.
The same timing of the control group was used for phase 1.

2.3. EEG Processing

The FBCSP with the NBPW classifier was used not only for online processing but also
for the offline processing of EEG data. This is a well-known approach in the literature of
motor imagery BCIs [36] and it is still considered one of the most successful ones for binary
classification [37]. Its main blocks involve the following:
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1. Time domain filtering by means of a filter bank (FB) with 17 overlapped bandpass
Type II Chebyshev filters with order 10 from 4 Hz to 40 Hz;

2. Features extraction using a spatial domain filtering by means of the common spatial
patterns (CSPs) algorithm [35];

3. Feature selection based on the class-related information content of the features using
the mutual-information-based best individual features selector;

4. Feature classification exploiting the Bayesian (NBPW) classifier.

Further details on the processing pipeline can be found in [16,34,36]. With reference to
the neurofeedback group, after acquiring the EEG in a first half-session, data processing
was needed to train the online classification algorithm. Specifically for online processing,
the FBCSP-based approach was adapted so that the EEG stream was processed with a
sliding window covering the motor imagery period.

Through exploiting the results of previous studies [16,34], the time-width for the
sliding windows was fixed at 2.00 s, and this was used to span the interval from 0.00 s to
7.00 s with a 0.25 s shift. A five-folds cross validation with five repetitions was used to
identify the best portion of the EEG trials for training the algorithm. This best 2.00 s wide
window was selected as the one associated with the highest mean classification accuracy
and the lowest difference between classification accuracies per class. Possible windows
were extracted from the motor imagery window by considering all trials of phase 1.

Finally, at the end of the experiments, all data were processed offline to classify all
data and assess the related accuracy. Differently from above, an artifact removal technique
was introduced as a pre-processing step preceding the processing pipeline discussed
above. This consisted of the artifact subspace reconstruction (ASR) technique, which
was applied to raw signals during offline processing [38]. This is a relatively recent
technique for artifact removal exploited here to prepare data prior to feature extraction and
classification. ASR uses an artifact-free data segment as a baseline and then corrects the
original data by calculating a covariance matrix and retrieving statistics to identify and
remove artifacts. Notably, its usefulness for an eight EEG channels setup is supported by
previous studies [39].

The ASR was applied by means of EEGLAB, a MATLAB© open-source toolbox for
EEG analysis developed by Delorme and Makeig in 2004 [40]. Notably, the plug-in for
cleaning raw data was specifically used.

2.4. Outcome Measures

To evaluate the usability of the proposed system and the participants’ imaginative
abilities, the following questionnaires were administered to participants of both groups:

• MIQ-3 [41]: this is the most recent version of the movement imagery questionnaire [42]
and of the revised movement imagery questionnaire [43]. It is a 12-item questionnaire
to assess an individual’s ability to imagine 4 movements using internal visual imagery,
external visual imagery, and kinaesthetic imagery. The rating scales range from 1 (very
difficult to see/feel) to 7 (very easy to see/feel). The MIQ-3 has good psychometric
properties, internal reliability, and predictive validity.

• SUS (system usability scale) [44]: this is one of the most robust and tested psychometric
tools for user-perceived usability. The SUS score consists of a value between 0 and
100, with high values indicating better usability. According to Bargor et al. [45],
it is possible to adopt a 7-point adjectival scale (from “worst imaginable” to “best
imaginable”) for the SUS score. Another variation, proposed in [46], is to consider the
score in terms of “acceptable” (value above 70) or ”not acceptable” (value below 50).
The range from 50 to 70 is instead “marginally acceptable”.

• NASA-TLX (acronym for NASA task load index) [47]: it is a subjective, multidimen-
sional evaluation tool that assesses the perceived workload while performing a task
or an activity. The original version also includes a weighting scheme to account for
individual differences. However, the most common change made to the questionnaire
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is the elimination of these weights in order to simplify its application [48]. In this
work, it was administered without weights.

• UEQ-S (user experience questionnaire—short form) [49]: a standardized questionnaire
to measure the user experience of interactive products. It distinguishes between
pragmatic and hedonic quality aspects. The first describes interaction qualities that
relate to tasks or goals the user wants to achieve when using the product. The second
describes aspects related to pleasure or enjoyment while using the product. Values
between −0.8 and +0.8 represent a neutral evaluation of the corresponding scale,
values greater than +0.8 represent a positive evaluation, and values lower than −0.8
represent a negative evaluation.

The MIQ-3 was administered twice: before the first experimental session and at the
end of the last experimental session. In contrast, the other questionnaires were administered
only at the end of the experimental sessions. In addition, during each experimental session,
the participants were also given a short interview to assess their physical and mental
state. This interview was adapted from the questionnaire proposed in [50], with some
modifications needed to introduce aspects associated with neurofeedback [16].

2.5. Statistical Analysis

To compare classification accuracies between sessions and groups, a repeated-measures
ANOVA test was used under the assumption of normally distributed data and homoscedas-
ticity. The Jarque–Bera test was exploited to check for the normality assumption. The
homoscedasticity was tested by means of the Bartlett’s test. In case of a violation for the
assumption of homoscedasticity, it was possible to apply a Welch’s correction before apply-
ing the ANOVA. Meanwhile, the Kruskal–Wallis non-parametric test was used instead of
the ANOVA when data were not normally distributed.

The comparison of MIQ-3 scores between the two groups and the two endpoints
(before starting and at the end of the sessions) was conducted via the Mann–Whitney U
test [51]. In addition, a Wilcoxon signed-rank test was used to compare paired data of
the MIQ-3 scale within each group (control and neurofeedback). Similarly, a comparison
between the two groups was carried on in terms of SUS, NASA-TLX, and UEQ-S scores
at the end of the sessions. In each case, test-specific assumptions were checked before
applying the test.

The statistical analyses were performed using MATLAB (version 2021b), and the
significance level for them was set by α = 5% (the probability of a false negative or type-
I error).

3. Results

Results are reported in this section after commenting on the sample of participants
to the experimental campaign. Experimental data were analyzed in accordance with
the methods of Section 2. Then, classification accuracies were exploited to assess the
performance of the system and to describe its limits. Neurophysiological changes were
also evaluated for each subject. The results are discussed in conjunction with answers to
the questionnaires, especially to address the usability of the system in tele-rehabilitation.
Additional details regarding the results are reported in the Supplementary Material section
at the end.

3.1. Participants

A sample of 27 healthy volunteers was enrolled in the study (mean age: 26, standard
deviation: 2). The study was approved by the Ethical Committee of Psychological Research
of the Department of Humanities of the University of Naples Federico II, and all the
participants provided a written informed consent before starting the experiments.

To investigate multimodal feedback, roughly half of the participants were assigned to
the “control group” and half to the “neurofeedback group”. The two groups were balanced
by age. In the control group, four subjects were males and nine were females. In the
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neurofeedback group, eight subjects were males and six were females. All participants
used the wearable system with dry sensors while seated in front of a display for visual
indications and eventual feedback. Participants with affected motor and/or cognitive
functions were excluded. However, it is worth mentioning that a subject (C08) reported
past epileptic seizures during childhood.

Most subjects were right-handed with the exception of two left-handed subjects per
each group and one ambidextrous subject in the neurofeedback group. More than 60% of
participants in the neurofeedback group practiced sport, while the participants in the control
group practicing sport were less than 40%. No participant played sport at a professional
level. More than 50% of participants already had experienced some BCI paradigms, and
some subjects also had previous experience with neurofeedback. Such information is
detailed in Table 1 along with a summary of previous information about sex, handedness,
and practicing sport.

Table 1. Summary of participants’ information for control and neurofeedback groups. BCI experi-
ence: experience with brain–computer interfaces in active paradigms, passive paradigms, reactive
paradigms, or multiple paradigms or no experience. NF experience: previous experience with
neurofeedback or no experience.

Control Neurofeedback

Sex male: 31%, female: 69% male: 57%, female: 42%

Handedness right: 85%, left: 15%, both: 0% right: 79%, left: 14%, both: 7%

Practicing sport yes: 38%, no: 62%, professional: 0% yes: 64%, no: 36%, professional: 0%

BCI experience no: 38.5%, active: 8%, passive: 15%, no: 43%, active: 7%, passive: 21%,
reactive: 0%, multiple: 38.5% reactive: 0%, multiple: 29%

NF experience yes: 46%, no: 54% yes: 36%, no: 64%

3.2. System Performance

Classification results for the control group are shown in Figure 5. The matrix on the left
reports the classification accuracy obtained on the first three runs of pure motor imagery
(phase 1) across five sessions (x-axis) and for the thirteen subjects (y-axis). The matrix on
the right reports the analogous results for the last three runs of pure motor imagery (phase
2). Higher classification accuracy is indicated by a red color. Meanwhile, a white space
refers to a missing result caused by corrupted data or a skipped session.
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Figure 5. Control group: mean classification accuracy using the best 2-second window.
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Given that 90 trials were used for each classification result, the classification accuracy
of a random classifier would be modeled by a binomial distribution with a mean equal
to 50% (the well-known chance level) and a 95% coverage interval spanning from 40%
to 59% (related to the number of trials) [52]. Notably, this implies that only classification
accuracy values above 59% can be considered non-random with an α = 5%. Therefore, the
classification accuracy for subjects in the control group was compatible with randomness
except in a few cases. Overall, the highest mean classification accuracy across subjects
was about 62% with 3% associated type A uncertainty and it was obtained in phase 2 of
session 2 and phase 1 of session 3.

Only subjects C07 and C08 do not belong to the general trend. Notably, the clas-
sification accuracies exceed 70% in several cases, an empirical threshold for acceptable
performance in motor imagery. Interestingly, C08 was the participant reporting past epilep-
tic seizures.

Figure 6 shows the classification results for the neurofeedback group. The matrix on
the right refers to three runs with neurofeedback (phase 2 for the neurofeedback group).
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Figure 6. Neurofeedback group: mean classification accuracy using the best 2-second window.

The results of phase 1 for the neurofeedback group appear similar to those of the con-
trol group, with classification accuracies close to the chance level. Nonetheless, 8 subjects
out of 14 exceeded the 70% accuracy threshold at least once during phase 2. In more
detail, by individually considering the sessions, the average improvement in classification
accuracy due to neurofeedback ranges from 5% to 12%. The subjects reached the respective
peak accuracies in different sessions. This led to a maximum average classification accuracy
among subjects of 69% with 3% uncertainty.

Statistical testing suggested that the highest classification performance of the neu-
rofeedback group in phase 2 did not differ significantly from the highest of the control
group, though it was 7% higher on average. Instead, a statistically significant difference
between the two groups was found when focusing on the third session of phase 2 (p < 0.05).
Moreover, classification accuracy in phase 2 was significantly higher than that of phase 1
in the fourth session of the neurofeedback group (p < 0.005). Finally, when comparing
all the classification accuracies (all subjects and all sessions) of the neurofeedback group
with those of the control group, the improvement given by neurofeedback in phase 2 is
statistically significant (p < 0.005).

3.3. Questionnaires

As mentioned in Section 2, the MIQ-3 was administered twice to each subject, i.e., be-
fore the first experimental session and at the end of the experimental sessions. On a scale
from 1 to 7, the mean scores were above 5 already at the first endpoint, with only one excep-
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tion, kinesthetic imagery, whose mean score equaled 4 for both groups. This implies that
subjects generally considered it easy, or at least not difficult, to see/feel the involved move-
ments. The Wilcoxon signed-rank test did not produce statistically significant variations in
the MIQ-3 paired scores within each group. The same applies to the Mann–Whitney U test
when considering differences between the two groups before and after the experiments.

The SUS scores suggest that the system was considered acceptable by both groups
(above 70). Specifically, the results are equal to 78 ± 10 and 75 ± 11 for the control
and neurofeedback groups, respectively. In addition, the overall results of the UEQ-s
equaled 1.60 ± 0.64 for the control group and 1.70 ± 0.80 for the neurofeedback group. No
statistically significant differences between the groups were detected (p = 0.40 for SUS and
p = 0.98 for UEQ-s).

Finally, the NASA-TLX results are reported in Figure 7. This shows similar subscale
results for both groups with the exception of the effort. In particular, the Mann–Whitney
U test found statistically significant differences for the latter dimension between the two
groups (p < 0.05) indicating that the neurofeedback group perceived that there was more
effort required than the control group, which was anticipated due to the need to engage
with neurofeedback. The mental demand was high (around 75 for both groups), while the
frustration level, performance, and temporal and physical demand were low.
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Figure 7. NASA-TLX results for both control and neurofeedback groups.

4. Discussion

In this concluding section, the results in terms of the system performance and its
acceptability by healthy users are thoughtfully discussed. Next, how the present work
discloses the possibility of tele-rehabilitation is commented on by relying on the current
results to address future steps. Overall, both the limitations and strengths of the proposed
system are considered in aiming to target the rehabilitation field.

4.1. System Features and Acceptability

Motor-imagery-based BCIs present the possibility of novel rehabilitation paradigms,
either substituting or supplementing current therapy protocols. This technology can be an
option for safe and economically viable home-based therapies.

However, several training sessions are typically required to successfully control such
a BCI and, as a well-known problem in the literature, BCI illiteracy specifically prevents
its widespread adoption. In such a framework, this study investigated the usage of neuro-
feedback to help a user to successfully control the system in few sessions while stressing
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daily-life and tele-rehabilitation requirements. As key aspects, the foreseen applications led
to the adoption of a wearable and portable EEG with dry sensors, a wearable and portable
actuator for the haptic feedback, and an easy-to-use software application including the
visual feedback.

Indeed, using the dry sensors increased the comfort for the participants mostly by
avoiding the usage of conductive gels. However, the signal-to-noise ratio of the EEG data
was generally lower than the one associated with wet sensors. This appeared especially
true if the user had medium to long hair. For instance, EEG signals were more affected
by artifacts when using dry sensors. The main artifacts superimposed on the EEG signal
were heartbeats (especially at O1 and O2), breathing, ocular artifacts, and sweat artifacts
(especially at F1 and F2). Furthermore, unlike wet sensors [16], vibration-induced artifacts
occasionally appeared when the feedback was delivered by the haptic suit. Although ASR
applied offline removed most artifacts, the suit vibration had to be kept under control
during online experiments, mostly by limiting its vibration intensity. This suggests that a
different type of haptic feedback should be explored in the future.

In the proposed system, feedback was implemented in a non-immersive extended
reality by simultaneously providing multiple sensory stimulation, namely the haptic and
visual modalities. With respect to unimodal feedback, a greater impact on classification
performance was expected [16]. Moreover, the multisensory stimulation aimed to increase
users’ engagement. The resulting mean improvements (on the subjects) are in accordance
with the previous evidence, which suggested that such feedback would have led to an about
6% to 8% improvement in classification accuracy if compared to the absence of feedback. In
particular, a 7% increase was highlighted between the control group and the neurofeedback
group, while the mean improvement between the two phases for the neurofeedback group
ranged from 5% to 12%. Therefore, although only eight dry sensors were employed, the
use of multimodal feedback led to an increase in system performance. In comparison, the
subjects of the control group showed no significant improvement across the sessions, with
the only exceptions of subjects C07 and C08, who achieved good results even without
any feedback.

The results in terms of classification accuracy can also be supplemented with phys-
iological information for neurophysiological changes. Notably, in accordance with the
discussed literature, event-related spectral perturbation was investigated. To this aim,
Figure 8 reports time/frequency maps for the first session of subject N09 from the neuro-
feedback group. The figure focuses on the channels C3 and C4 in the cases of left hand
imagery (Figure 8a) and right hand imagery (Figure 8b). The subject reached a low classifi-
cation accuracy in this first session and, at the same time, a desynchronization only appears
in the beta band for the right hand motor imagery on C3, while the same phenomenon
does not appear for the left hand imagery.

Figure 9 reports the time/frequency maps obtained in a different experimental session,
in which the same subject reached the highest classification accuracy during neurofeedback
(third session of N09). In such a case, and in accordance with the literature [53,54], left
hand motor imagery is associated with a bilateral desynchronization, (Figure 9a) while
right hand motor imagery is associated with a contralateral desynchronization (Figure 9b).
Moreover, the timing of the event-related spectral perturbation is compatible with the best
2.00 s wide window selected in calculating the classification accuracy. Notably, the best
window for this subject in the third session was from 4.00 s to 6.00 s.

The time/frequency maps representative of the neurofeedback group were also com-
pared with those of the subject C07 from the control group. In particular, this subject
was taken into account because it reached one of the highest classification accuracies. For
instance, with respect to the last experimental session, a contralateral desynchronization in
the 10 Hz to 15 Hz band appears for left hand motor imagery (Figure 10a) and a contralat-
eral desynchronization also appears for right motor imagery (Figure 10b). Notably, the
best 2.00 s wide window for this subject and for this session was 2.75 s to 4.75 s, where both
neurophysiological phenomena occur.
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Figure 8. Time/frequency maps for a poorly performing subject from the neurofeedback group:
(a) left hand imagery; (b) right hand imagery. The channels C3 and C4 are taken into account.
Event-related desynchronization is depicted in red and event-related synchronization in blue.
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Figure 9. Time/frequency maps associated with the best accuracy result of the same subject from
Figure 8: (a) left hand imagery; (b) right hand imagery. The channels C3 and C4 are taken into account.
Event-related desynchronization is depicted in red and event-related synchronization in blue.
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Figure 10. Time/frequency maps associated with a subject of the control group reaching high classifi-
cation accuracy: (a) left hand imagery; (b) right hand imagery. The channels C3 and C4 are taken
into account. Event-related desynchronization is depicted in red and event-related synchronization
in blue.

With the short interview administered during each experimental session, it was also
possible to monitor the subjects’ mental and physical state during the sessions, as well
as the type of imagined movement. In general, the most common imagined movements
were squeezing a ball, moving the arm, tapping, grasping an object, dribbling, or playing
piano. Nonetheless, it is worth noting that 6 out of 13 subjects in the control group changed
the type of movement imagined during the sessions and, among these, three subjects
also switched between internal, external, and kinaesthetic imagery. Seven out of fourteen
subjects in the neurofeedback group changed the type of imagined movement during
the sessions and, among these, four subjects changed between internal, external, and
kinaesthetic imagery. According to the results, one can suspect that low-performance levels
would also be caused by changes in the imagined movement during the sessions, especially
when feedback was not provided. Therefore, such an aspect should be more rigorously
kept under control in future protocols.

Overall, the SUS and UEQ-s questionnaires showed that the system is user-friendly,
and subjects of both groups had a positive experience. This was not obvious with dry
sensors because these require proper pressure to obtain a suitable electrode–skin contact. In
turn, this could have implied pain and affected the overall system, whereas motor imagery
requires users’ deep concentration on the task. Contrary to expectations, the MIQ-3 did
not show differences between groups and sessions as the imagination scores reported by
the participants were high both before and after the experiments. A possible explanation
would be that such a questionnaire is not directly linked to left/right hand movements,
which are common motor imagery tasks. Therefore, its scale may not be sensitive enough
for the tasks of this work, although no other standard scale exists for this purpose. Finally,
the NASA-TLX effort was statistically higher for the neurofeedback group. This result may
be explained by the constant demand required by these subjects, who received a response
to their mental state during the online experiment.
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4.2. Toward Tele-Rehabilitation

Several studies demonstrate the benefits of motor-imagery-based systems for patients
with variegated neurological diseases [55–57]. In these cases, neurophysiological signatures
of motor imagery may undergo changes following brain trauma [58]. Indeed, such patients
may present various medical conditions posing challenges for BCI-based tele-rehabilitation.
These include cognitive impairment and different sensory deficits [59]. Moreover, it is
crucial to recognize that brain reorganization takes place after lesions in the central nervous
system. This can significantly impact the recovery of lost sensory and motor functions [55].
Therefore, the integration of motor imagery with neurofeedback assumes significance as an
essential component of rehabilitation procedures. Another essential element that should
be considered in BCI-based tele-rehabilitation is the wide spectrum of needs of patients
in terms of usability and applicability. Indeed, factors such as frustration, cognitive load,
and fatigue can significantly impact the patient’s experience and their interaction with
the system.

Despite its exploratory nature, this work offers valuable insights into BCI-based tele-
rehabilitation. Firstly, the proposed system allows for home use thanks to its features,
e.g., the employment of dry electrodes. Using the system at home also discloses the pos-
sibility to reduce the duration of rehabilitation sessions while increasing their number.
In addition, our results in mental fatigue could be useful to direct future therapy appli-
cations, especially for patients with cognitive impairments. Finally, the present study
suggested that animated objects or better limbs could aid in imaging movements. This
aspect is essential for patients with motor disabilities, which may have more difficulties in
maintaining vivid motor images with respect to healthy subjects [60,61]. The addressed
improvements will be possible thanks to the wearability and the rehabilitation benefits
of the proposed motor-imagery-based BCI. Overall, the investigated system will address
tele-rehabilitation purposes because of the perceived usability and the substantial improve-
ment in classification accuracy revealed in the neurofeedback group with respect to the
control group.

A limitation of this study in tele-rehabilitation applications is that the multimodal pro-
posed feedback was positively biased. Nonetheless, this can be enhanced with an adaptive
bias to optimize system performance and patient learning [62], and future development
could also focus on improving the classification algorithm to enhance performance across
sessions and deliver better feedback [63]. Although multiple sessions were carried out
already with healthy subjects, it is worth emphasizing patients would require even more
training sessions to gain proper control over the BCI system and obtain benefits from
therapy [64].
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