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a b s t r a c t

At the beginning of this century, Hegselmann and Krause proposed a dynamical model for opinion
formation that is referred to as the Bounded Confidence Opinion Dynamics (BCOD) model and that
has since attracted a wide interest from different research communities. The model can be viewed
as a dynamic network, in which each agent is endowed with a state variable representing an opinion
and two agents interact if the distance between their opinions does not exceed a constant confidence
bound. This relation of instantaneous proximity between the opinions naturally induces a dynamic
interaction graph. At each stage of the opinion iteration, all agents synchronously update their opinion
to the average of all opinions that belong to the neighbors in the interaction graph.

BCOD models exhibit a broad variety of phenomena that cannot be studied by traditional methods,
and their analysis has enriched the systems and control field with a number of novel mathematical
tools. This fact, together with the existence of an extensive literature on the topic scattered across
different fields, calls for a systematic presentation of the existing results on this class of dynamic
networks. The aim of this survey is to provide an overview of BCOD models with time-synchronous
interactions, with possibly asymmetric and heterogeneous confidence bounds. Conditions on the
different classes of BCOD which ensure the convergence (in finite time or asymptotically) of the
opinions are discussed, and the possible structures of the terminal opinions are described. The
numerous phenomena highlighted in the literature from numerical studies, e.g., the characterization
of steady state behaviors and the sensitivity to confidence thresholds, are also reviewed. Finally, some
recent modifications and applications of BCOD models are discussed, and suggestions of directions for
future research are provided.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Models of opinion formation or opinion dynamics (Anderson,
abbene, Proskurnikov, Ravazzi, & Ye, 2020; Castellano, Fortu-
ato, & Loreto, 2009; Friedkin, 2015; Mastroeni, Vellucci, & Naldi,
019; Noorazar, Vixie, Talebanpour, & Hu, 2020; Proskurnikov
Tempo, 2017; Ravazzi, Dabbene, Lagoa, & Proskurnikov, 2021)
ave been proposed in mathematical sociology and sociophysics
n an endeavor to portray the rich and diverse behaviors of social
roups, capturing the most important effects of the temporal
volution of behaviors and attitudes of the social agents caused by
heir interactions. The mathematical theory of such models natu-
ally complements the classical social network analysis (Freeman,

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Editor Sonia Martinez.
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ttps://doi.org/10.1016/j.automatica.2023.111302
005-1098/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
2004) that is primarily focused on structural properties of social
networks and the computational social science (Lazer et al., 2009)
that aims to understand collective human behavior through the
analysis of data sets related to social networks. Opinion dynamics
modeling has been empowered by recent progress in control of
multi-agent systems and large-scale dynamical networks.

Opinion dynamics is now a topic of growing relevance for the
systems and control community. The search query ‘‘opinion dy-
namics’’ on ScienceDirect platform returns more than 300 papers
published in Automatica; the same search in the database IEEEx-
plore returns more than 200 works. Wiener’s prediction (Wiener,
1954) that cybernetics and control as its indispensable part would
play a key role in social sciences is thus coming true.

1.1. Summary

Bounded Confidence Opinion Dynamics (BCOD) models form one
of the widely investigated classes of opinion dynamics models.
They capture the homophily behavior, i.e., the tendency of individ-
uals to be attracted by other individuals having similar opinions.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he dynamics of interest in this survey is induced in the model
y updating the opinions of all agents according to the average
pinion of the agent’s neighbors, i.e., those agents who have
pinions belonging to its confidence interval.
The survey provides an overview of BCOD with time-sync-

ronous interactions between the agents (for brevity, we refer
hem to as synchronous BCOD). After presenting the interpreta-
ions of the concept of opinion and giving a brief introduction
o the field of opinion dynamics models, properties and con-
itions on the different classes of synchronous BCOD models
hich ensure the convergence (in finite time or asymptotically)
f the opinions are provided, and the structures of the termi-
al opinion clusters are described. The technical proofs of the
heoretical results are reported in Appendix B. Moreover, the nu-
erous phenomena investigated in the literature through numer-

cal studies, e.g., the characterization of steady state behaviors,
re also reviewed. The most ‘‘mature’’ modifications of classical
ynchronous BCOD models and their principal properties are
riefly discussed. Finally, a few applications of synchronous BCOD
odels are presented.
This introduction continues by framing the topic of the survey

ithin the literature on opinion dynamics and by discussing how
raphs and opinion formations constitute the basic ingredients
or our analysis. Readers who are familiar with these arguments
ay move directly to Section 1.4, which focuses on bounded
onfidence models.

.2. Agents, opinions, interaction graphs

In this survey, we are primarily interested in microscopic or
gents-based models that portray the evolution of a social group
y specifying the behavior of its individual members, which are
alled agents or social actors. At each time instant, the agents
re characterized by their opinions. The term ‘‘opinion’’ admits
arious interpretations in human and technical sciences. In its
roadest sense, this term stands for a numerical characteristic of
social agent, which is altered due to interactions with other
gents. In social psychology, an opinion can be interpreted as
cognitive orientation (attitude) towards a particular object,

ction, event or issue (Friedkin, 2015). However, many other
nterpretations are available. Opinions can, e.g., stand for sets
f cultural traits characterizing an individual (Axelrod, 1997),
easure an agent’s skill in a particular field (Xie et al., 2016)
r characterize an agent’s knowledge set, i.e., the aggregate of
nformation and skills received from the others (Yokomatsu &
otani, 2020).
The agents are represented by nodes of a graph (referred to as

ocial network) whose edges (generally, directed) represent some
elations or influence among the agents. The graph can be static,
ime-varying or even depend on the opinions. The dependence
n the opinion values for the neighbors’ selection allows one to
odel the homophily behavior, that is, the tendency of individuals

to establish relations with similar people (Granovetter, 1973;
Lobel & Sadler, 2016; McPherson, Smith-Lovin, & Cook, 2001;
Rivera, Soderstrom, & Uzzi, 2010).

1.3. Models of opinion formation

Opinion formation models studied in the engineering litera-
ture primarily deal with real-valued opinions whose dynamics are
governed by differential or difference equations. Such dynamic
models can be examined by Lyapunov analysis and other control-
theoretic methods and may be divided into two major classes of
linear and nonlinear dynamical systems.

1.3.1. Linear models
Several classes of linear models of opinion formation have

been thoroughly studied in the literature. One such class origi-
nates from the classical French–DeGroot model of iterative
2

averaging (DeGroot, 1974; French, 1956; Harary, 1959) and its
modification proposed by Friedkin and Johnsen (1990, 1999).
At each stage of the opinion iteration, the agents update their
opinions by taking convex combinations of their own and the
others’ opinions; the weights of this convex combination de-
termine a weighted directed graph (generally, time-varying).
Properties of linear averaging-based models are closely related
to the dynamics of Markov chains and are well documented
in the literature (Bolouki & Malhame, 2015; Bullo, 2022; Fried-
kin, 2015; Martin & Hendrickx, 2016; Parsegov, Proskurnikov,
Tempo, & Friedkin, 2017; Proskurnikov & Tempo, 2017; Tian &
Wang, 2018). It is known that the usual French–DeGroot system
usually converges to consensus, whereas full or partial ‘‘stub-
bornness’’ of the agents (i.e., their anchorage at their initial
opinions) leads to opinion cleavage. The iterative averaging ad-
mits a game-theoretic interpretation (Bauso & Cannon, 2018;
Ghaderi & Srikant, 2014) and is related to some problems of
multi-agent control, e.g., constrained consensus and containment
control (Proskurnikov, Calafiore, & Cao, 2020; Proskurnikov & Cao,
2017).

Another broad class of linear models has been inspired by the
theory of structural balance (Altafini & Lini, 2015; Facchetti, Ia-
cono, & Altafini, 2011; Heider, 1946). Models of this sort describe
opinion dynamics over signed graphs, where negatively weighted
arcs stand for antagonistic or competitive interactions (repulsion
between the opinions), whereas positive weights correspond to
trust or cooperation between individuals (whose opinions at-
tract). We refer the reader to the recent survey by Shi, Altafini,
and Baras (2019) for a detailed review of these models. One of
their principal properties is the emergence of bimodal polariza-
tion or ‘‘bipartite consensus’’ (Altafini, 2013; Angeli & Manfredi,
2019; He, Liu, Hu, & Fang, 2021; Liu, Chen, Basar, & Belabbas,
2017; Proskurnikov & Tempo, 2018) in the case where the signed
graph is structurally balanced.

It should be noted that the interest in opinion formation mod-
eling was inspired, to a great extent, by the problem of community
cleavage (Friedkin, 2015), known also as the Abelson’s diversity
puzzle (Kurahashi-Nakamura, Mäs, & Lorenz, 2016): to build a dy-
namic model capable to explain both consensus among the agents
nd persistent disagreement between their opinions, in particu-

lar, the splitting of the opinions into several large clusters. The
existing linear models can portray consensus and disagreement
behaviors; however, in the case of disagreement, the clusters are
usually determined by the weighted interaction graph rather than
the initial opinion profile. In some models (e.g., the Friedkin–
Johnsen model), the terminal opinions are pairwise different, that
is, each cluster consists of only one opinion. These limitations
stimulate the development of more advanced nonlinear models
able to capture more complex socio-psychological phenomena.

1.3.2. Nonlinear models
It was Abelson (1964, 1967) (see also Hunter, Danes, and

Cohen (1984)) who suggested that the actual mechanisms of
the opinion (‘‘attitude’’) formation could be nonlinear. However,
rigorous examination of such models started much later and
was enabled by the progress in nonlinear systems (in particu-
lar, Lyapunov-based methods). In recent decades, a number of
nonlinear models have been proposed in the literature; some
of them exhibit very rich and complex opinion-forming behav-
iors such as, e.g., multistable agreement and disagreement man-
ifolds (Bizyaeva, Franci, & Leonard, 2022). Whereas linear opin-
ion formation models have been thoroughly studied, nonlinear
models (even relatively simple) still present challenges.

The vast majority of nonlinear models of opinion formation
inherit the averaging-based mechanism of the French–DeGroot
model (DeGroot, 1974) or its continuous-time counterpart (Abel-
son, 1964). This structure was initially proposed by Abelson
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1964) and was lacking experimental confirmations. However, re-
ent experiments with small-size groups (Friedkin, Proskurnikov,
Bullo, 2021) and large-scale social media (Kozitsin, 2022) dem-
nstrate that the convex combination mechanism of opinion
ormation is more than just a mathematical abstraction, even
hough the structure of averaging weights is not easy to find. In
articular, the steady state opinions of a social group tend to fall
nto the convex hull spanned the initial opinions. A peculiar fea-
ure of the nonlinear opinion dynamics models is the dependence
f the influence weights on the opinions. The coupling between
he influence weights and the opinions implies that the influence
raph evolves along with the opinions.
Opinion-dependent weights can portray various effects ob-

erved in real societies. In ‘‘polar opinion dynamics’’ models
Amelkin, Bullo, & Singh, 2017), such weights are caused by
he opinion-dependent susceptibility function (e.g., people with
xtreme opinions can be more reluctant in changing their opin-
ons than people with neutral opinions). In models of biased
ssimilation (Dandekar, Goel, & Lee, 2013; Xia, Ye, Liu, Cao, & Sun,
020), the agents are biased towards their own opinions, which
ncreases the importance of self-opinions and scales down the
nfluence of the neighbors. In this way, individuals draw undue
upport to their initial positions (Dandekar et al., 2013). Even
ore sophisticated are appraisal-based models, where the influ-
nce weights are altered by a dynamic (opinion-driven) appraisal
echanism (Anderson et al., 2020; Kang & Li, 2022; Tian et al.,
022). In the bounded confidence models we consider below, the
eights are nonlinear discontinuous functions of the opinions.

.4. Bounded confidence opinion dynamics

Among the nonlinear opinion formation mechanisms, the class
f BCOD models is perhaps the one that has been investigated the
ost. BCODmodels arose from the pioneering works by Deffuant,
eau, Amblard, and Wiesbuch (2000), Hegselmann and Krause
2002) and Krause (2000). Even though these two models exhibit
imilar steady state behaviors, e.g., clustering and consensus, their
ormal analyses require theoretical frameworks which are very
ifferent (Castellano et al., 2009). The reason is that in the model
roposed by Deffuant and Weisbuch at each time-step only a pair
f agents is randomly chosen and their opinions are updated ac-
ording to the classical BCOD rule, which motivates the attribute
f asynchronous BCOD for this model. Instead, this survey deals
ith synchronous BCOD models, in the sequel for simplicity just

ndicated with BCOD, which means that the opinions of all agents
re updated simultaneously at each period.
BCOD has attracted visible attention of systems and control

heorists, as witnessed, e.g., by the recent works Altafini and Cer-
gioli (2018), Blondel, Hendrickx, and Tsitsiklis (2009), Ceragioli
nd Frasca (2012), Chazelle and Wang (2017), Chen, Su, Mei, and
ullo (2020), Etesami (2019), Etesami and Başar (2015), Frasca,
arbouriech, and Zaccarian (2019), Kang and Li (2022), Kolarijani,
roskurnikov, and Esfahani (2021), Su, Chen and Hong (2017),
asca, Bernardo, and Iervolino (2021) and Yang, Dimarogonas,
nd Hu (2014) in leading control journals. The goal of this survey
s to overview the recent progress in the analysis of BCOD and
he mathematical tools developed for their examination.

In BCOD, the graph topology is dynamic: at each time point
he neighbors of each agent are individuals with similar opin-
ons or, mathematically, the individuals whose opinions belong
o the agent’s confidence interval. Similar to the conventional
rench–DeGroot linear model, an agent updates its opinion at
ach time point by the average of the opinions of its neigh-
ors (Hegselmann & Krause, 2002). BCODmodels can thus be con-
idered as a particular class of (state-dependent) piecewise affine
ystems (Iervolino, Tangredi, & Vasca, 2016) or mixed logical
ynamical systems (Bernardo & Vasca, 2020).
3

From a sociological viewpoint, the BCOD mechanism promi-
nently manifests the phenomenon of homophily (McPherson et al.,
2001): the agents readily assimilate opinions of like-minded in-
dividuals and disregard dissimilar opinions. The importance of
BCOD, however, is not confined to social sciences. Indeed, similar
dynamical networks arise, for instance, in algorithms of flock-
ing and swarming with distance-based (or ‘‘nearest neighbor’’)
graphs (Cucker & Smale, 2007; Motsch & Tadmor, 2014; Reynolds,
1987; Tanner, Jadbabaie, & Pappas, 2007; Vicsek, Czirók, Ben-
Jacob, Cohen, & Shochet, 1995). Hence, an overview of the the-
oretical studies on BCOD and a systematic presentation of the
different model substructures provides an important insight for
the examination of more general classes of systems.

The characteristics of the confidence thresholds allow one to
divide BCOD models into several groups. A model is said to be
homogeneous when the same confidence thresholds characterize
all agents, and heterogeneous otherwise; the model is said to be
ymmetric if the same confidence thresholds are used to select
he neighbors with lower and upper opinions, and asymmetric
therwise (Hegselmann & Krause, 2002). Both asymmetry and
eterogeneity lead to behaviors that are not found in symmetric
odels (Bernardo & Vasca, 2020; Hegselmann & Krause, 2002).
n the other hand, the properties of homogeneous BCOD can-
ot be easily derived by particularizing the theoretical results
vailable for the heterogeneous case. This survey provides a sys-
ematic presentation of the available theoretical results and of
heir applicability to the different categories of BCOD. Whereas
his survey is primarily dedicated to discrete-time models (stem-
ing from the Hegselmann–Krause system), BCOD can also be
onsidered in continuous time. The analysis of continuous-time
COD models requires additional tools; the key problem is the
otential absence of classical solutions, whose existence can be
roved only for almost all initial conditions (Blondel, Hendrickx, &
sitsiklis, 2010; Yang et al., 2014). However, this problem can be
voided by ‘‘smoothing’’ discontinuous nonlinearities (Ceragioli
Frasca, 2012; Yang et al., 2014). Confining oneself to classical

olutions, the analysis of continuous-time BCOD models is similar
n spirit to discrete-time BCOD (Jabin & Motsch, 2014; Motsch &
admor, 2014) (such models are briefly mentioned in Section 9).
eneralized (non-classical) Filippov and Krasovskii solutions are
eyond the scope of this survey because their theory relies on
ssentially different mathematical tools (Ceragioli & Frasca, 2012;
iccoli & Rossi, 2021; Stamoulas & Rathinam, 2018).
Starting from classical BCOD, many modifications have been

roposed in the literature, which differ by assumptions on the
onfidence thresholds, communication graph and exogenous sig-
als. Section 10 briefly reviews the major peculiarities of these
odels.

.5. Problems in question

Despite its conceptual simplicity, a rigorous analysis of BCOD
s a nontrivial task due to the presence of model discontinuities
hat become especially sophisticated for heterogeneous mod-
ls (Hegselmann, 2004).
A key problem, when dealing with BCOD models, is their

symptotic behavior. Unlike classical control systems, BCOD ex-
ibits infinitely many possible equilibria, depending on the initial
onditions. However, the typical behavior of a BCOD is that some
f the equilibria correspond to consensus (all opinions are equal)
nd others correspond to opinion profiles split into two or more
lusters, inside which the opinions become identical. A basic
uestion arising in BCOD is whether each solution converges to
ne of the two types of equilibria mentioned above (consensus
nd clustering) or if more complex asymptotic behaviors can
xist and, if yes, under what conditions. More specific questions
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re: What conditions ensure convergence to a unanimous value
or all opinions at the steady state? And to clustering? Is it
ossible to characterize the form of the asymptotic behavior? Is
he convergence to the steady state occurring in finite time? Is it
ossible to estimate the convergence time? Existing results and
pen issues related to these questions are discussed in this paper.

.6. Organization of the survey

The rest of this survey paper is organized as follows. Sec-
ion 2 introduces notation and basic concepts of opinion model-
ng. Section 3 presents discrete-time BCOD and some definitions.
n Section 4, the typical steady state behaviors shown by BCOD
re introduced. Section 5 describes the properties which are
atisfied by more general classes of BCOD, i.e., in the presence of
eterogeneity and asymmetric confidence intervals. Section 6 is
edicated to homogeneous BCOD, and some convergence prop-
rties are provided for this special case, while in Section 7 the
eterogeneous case is discussed. In Section 8, BCOD is analyzed
n presence of stubborn agents. Section 9 describes the main
eatures of continuous-time BCOD. Section 10 includes a concise
eview of some recent modifications of classical BCOD. In Sec-
ion 11, the applications of BCOD are briefly presented. Section 12
oncludes the paper by tracing directions for future research. Ba-
ic definitions of graph theory are given in Appendix A. The proofs
f the theoretical results presented in the paper are reported in
ppendix B.

. Preliminaries and notation

The following notation is adopted throughout the paper: N
(N0) is the set of positive (non-negative) integers, R (R+

0 ) is the set
of (non-negative) real numbers. Symbol N stands for the number
of agents in a network, agents that are numbered by indices from
set I = {1, . . . ,N} ⊂ N.

For a number α ∈ R, ⌈α⌉ denotes the smallest integer larger
than or equal to α, ⌊α⌋ denotes the largest integer smaller than
or equal to α. For a sequence of scalars or vectors s = {s(k)}k∈N0 ,
e use s+ to denote the shifted sequence: s+(k) = s(k + 1).
Given a set S ⊆ R, |S| denotes the cardinality of S. A partition

f S is a finite family {Sµ}Mµ=1 of its disjoint subsets Sµ ⊆ S such
that

⋃M
µ=1 Sµ = S.

A matrix A ∈ RN×N is row-stochastic if it is non-negative and
the sum of the elements of each row of A is equal to 1. Given a
row-stochastic matrix A, Ak converges to a rank-one (equal-row)
atrix as k → ∞ if and only if there exists a h ∈ N such that Ah

as a positive column. The trace of the square matrix A, denoted
r(A), is the sum of the entries on the main diagonal of A (or,
quivalently, the sum of its eigenvalues).
In the following, G = {I, E} stands for a (directed) graph1 with
the node set and E the edge set. The neighbor set of a node i

s defined as Ni = {j ∈ I | (j, i) ∈ E}. A graph is weighted
f a non-negative weight is associated to each edge. A finite
equence of graphs G(1), G(2), . . . , G(M), M ∈ N, M ≥ 2, with the
ame node set is union (composition) jointly rooted if their union
composition) is rooted. An infinite sequence of graphs with the
ame node set is repeatedly union (composition) jointly rooted if
here exist contiguous, nonempty, bounded, finite time-intervals
ki, ki+1), i ≥ 0, starting at k0 ∈ N0, such that each finite sequence
(ki), G(ki + 1), . . . , G(ki+1) is jointly union (composition) rooted.

1 For the reader’s convenience, basic concepts of graph theory are
ummarized in Appendix A.
4

2.1. Opinion formation via iterative averaging

In this section, we introduce a sufficiently general class of
discrete-time opinion formation models that are referred to as
models of iterative averaging. At each time-step k ∈ N0, a so-
ial network consists of N ∈ N agents, whose opinions are
epresented through scalar state variables xi ∈ R, i ∈ I, and
graph G(k) = (I, E(k)) whose edge (i, j) represents influence
f the agent i on the agent j. The graph G(k) determines the
gents’ neighbor sets Ni(k), and, vice versa, the knowledge of
ll neighbor sets Ni(k) allows to determine G(k). In the models
onsidered below, we most typically deal with the situation that
he dynamic graph is determined by the opinions. Choosing spe-
ific rules for the selection of the neighbors, e.g., the tendency to
onnect with similar agents represents the so-called homophily
rinciple (McPherson et al., 2001). Some works also consider
gents that prefer to connect with agents with dissimilar opinions
heterophilic agents) (Yokomatsu & Kotani, 2020).

.1.1. The French-type model
The simplest iterative averaging procedure that was proposed

in the case of a static graph) by French (1956) is described by
he difference equations

+

i =
1

|Ni|

∑
j∈Ni

xj (1)

for all i ∈ I, with initial conditions xi(0) ∈ R, i ∈ I. For the sake of
brevity, time is omitted here: xi := xi(k), x+

i := xi(k+1), x+h
i :=

i(k + h), Ni := Ni(k). The neighbor set Ni of the agent i in the
odels considered below includes i; hence, |Ni| ≥ 1 for all i ∈ I,
nd the model (1) can thus be rewritten as

+

i = xi +
1

|Ni|

∑
j∈Ni

(xj − xi). (2)

he structure (2) highlights that the evolution of each agent’s
pinion is driven by the deviations between its own and the
eighbors’ opinions (Tangredi, Iervolino, & Vasca, 2016). In partic-
lar, by considering pairwise interactions on the right-hand side
f (2), one could say that each neighbor agent j ∈ Ni tends to

attract the opinion of the agent i towards its own opinion, in
the sense that it contributes to increase (decrease) xi if xj > xi
(xj < xi).

2.1.2. A compact matrix form: DeGroot-type model
It is convenient to rewrite the system (1) in a compact matrix

form by introducing the opinion vector x ∈ RN

x :=
(
x1 x2 . . . xN

)⊤
, (3)

and defining the (time-varying) adjacency matrix A := A(k)
whose entries are

aij :=

{
1

|Ni|
, j ∈ Ni,

0, otherwise.
(4)

Obviously, the matrix defined in such a way is row-stochastic. The
system (1) shapes into the equation

x+
= Ax. (5)

It should be noticed that even if the graph G is undirected, the
matrix defined in (4) is usually not symmetric, except for special
situations (for instance, A is symmetric if G is undirected and
regular, that is, all nodes have the same number of neighbors).
Moreover, A need not be column-stochastic, and hence the dy-
namics (1) do not preserve the sum (or, equivalently, the average)
of the opinions (Iervolino, Vasca, & Tangredi, 2018).
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Some properties of the French model (1) remain valid for an
arbitrary choice of row-stochastic weight matrices A. The sys-
tem (5) with a general row-stochastic matrix is known as the
DeGroot model (DeGroot, 1974). Whereas most BCOD models
considered in this survey are special cases of the French model,
some advanced models discussed in Section 10 are special cases
of the DeGroot model (5) in which A = A(k) differs from (4).

2.1.3. The range of opinions
It is easy to verify that in iterative averaging the opinions

remain bounded between the minimum and maximum initial
opinions for all time-steps.

Proposition 1. Consider the opinion dynamics model (5). The
opinions satisfy the inequalities

x+

i ≤ max
j∈Ni

xj, (6a)

+

i ≥ min
j∈Ni

xj (6b)

or all i ∈ I. Hence, the opinions remains bounded: xi ∈ [mini∈I

i(0),maxi∈I xi(0)] for all i ∈ I and k ∈ N0.

In view of Proposition 1, the diameter of the convex hull
panned by the opinions (the range of opinions defined below)
s nonincreasing and may serve for stability analysis. Also, the
aximum and the minimum of the opinions converge to finite

imits as k → ∞.

efinition 2 (Range of Opinions). The range of opinions constitut-
ng a vector x ∈ RN from (3) is

(x) = max
i∈I

xi − min
i∈I

xi = max
i,j∈I

(xi − xj). (7)

The inequality v(x+) ≤ v(x) following from Proposition 1
can be further tightened using the relation coming from Markov
chains theory and involving the so-called ergodicity coefficient τ1(A
Seneta, 1980, Theorem 3.1)

1(A) := 1 − min
i,j∈I

∑
w∈I

min{aiw, ajw}. (8)

roposition 3. Consider the opinion dynamics model (5) where A
s row-stochastic. The range of opinions satisfies the inequality

(x+) ≤ τ1(A)v(x) (9)

or all k ∈ N0.

.1.4. Asymptotic consensus
In the systems and control literature, the system (5) is of-

en referred to as the (first-order discrete-time) consensus pro-
ocol (Cao, Morse, & Anderson, 2008; DeGroot, 1974; Ren &
eard, 2005). Reaching an asymptotic consensus as a result of
he iterative opinion averaging is one of the important ques-
ions (although, as will be discussed later, BCOD often fails to
each consensus and converges to a clustering equilibrium). The
ollowing sufficient consensus criterion is broadly known in the
iterature.

emma 4. If the time-varying neighbor sets Ni(k) for all i ∈

determine a repeatedly composition jointly rooted sequence of
raphs G(k), then each solution of the dynamical system (1) enjoys
he asymptotic consensus of the opinions, i.e., there exists c ∈ R
uch that

lim
k→∞

xi(k) = c (10)

or all i ∈ I, where the convergence is exponentially fast.
5

Lemma 4 has been proved by Cao et al. (2008) (Theorem 3).
s discussed in Cao et al. (2008) (pp. 596–597), the presence
f a self-loop at each node allows one to replace the words
‘repeatedly composition jointly rooted’’ by ‘‘repeatedly union
ointly rooted’’ (which is easier to be validated in practice). In this
orm, Lemma 4 in fact extends to a more general class of DeGroot
odels (5) with time-varying matrices A = A(k). We refer the

eader to the surveys Proskurnikov et al. (2020), Proskurnikov and
empo (2018) for details.

emark 5. Obviously, if an asymptotic consensus (10) is reached,
hen v(x(k)) −−−→

k→∞

0. The inverse implication is also valid due to

roposition 1. Indeed, the limits M̄ = limk→∞ maxi∈I xi(k) and
¯ = limk→∞ mini∈I xi(k) exist. It is obvious that v(x(k)) −−−→

k→∞

M̄ − m̄. Hence, if v(x(k)) −−−→
k→∞

0, then M̄ = m̄, which entails (10)

(where c = M̄ = m̄).

2.1.5. Convergence under reciprocal interactions
As has been discussed, the Abelson’s diversity puzzle has

motivated the development of models that portray not only con-
sensus but also different opinions at steady state. If such a model
inherits the structure of the DeGroot model (5), then the sufficient
condition from Lemma 4, obviously, should fail to hold for some
solutions. A natural question then arises on whether the opinions
converge. More formally, do the limits in (10) always exist or can
some solutions fail to have a limit and persistently oscillate2?

Although the condition of the asymptotic consensus is stronger
than the convergence of each opinion, consensus conditions are,
paradoxically, studied much better than general convergence
criteria that are known only in special situations. One of these
situations is the case of reciprocal interactions.

Lemma 6. Suppose that the stochastic matrices A(k) in (5) are
type-symmetric, that is, there exists K ≥ 1 such that

K−1aji(k) ≤ aij(k) ≤ Kaji(k) (11)

for all i, j ∈ I and k ∈ N0. Suppose also that the diagonal entries of
all matrices are uniformly positive, i.e., aii(k) ≥ δ > 0 for all i ∈ I
and k ∈ N0. Then, the sequence x(k) has a limit x∞

= limk→∞ x(k).
Furthermore, x∞

i = x∞

j for any pair of agents such that

∞∑
k=0

aij(k) = ∞. (12)

Lemma 6 is a special case of a more general convergence
riteria established in Bolouki and Malhame (2015) (Theorem 1)
hose alternative proof is in Proskurnikov et al. (2020) (Theo-
em 5). The type-symmetry condition (11) means that if i influ-
nces j at some period k, then j also influences i and the intensity
f these mutual influences are commensurate. In reality, this
ondition can be substantially relaxed and replaced by a so-called
‘cut balance’’ condition stating that if a group of agents I1 ⊂ I
nfluences the remaining agents from the group I2 = I \ I1,
hen I2 also influences I1 and the mutual influences of the two
roups are commensurate. The convergence criterion expressed
y Lemma 6 has been generalized by Xia, Shi, Meng, Cao, and
ohansson (2019), where the type-symmetry and cut balance con-
itions are replaced by their non-instantaneous relaxations. The
onvergence criterion from Lemma 6 can be restated as follows.

2 Recall that opinions remain bounded due to Proposition 1, thus −∞ <

im infk→∞ xi(k) ≤ lim supk→∞ xi(k) < ∞. If the middle inequality is strict, the
sequence x (k) oscillates between its lower and its upper limits as k → ∞.
i



C. Bernardo, C. Altafini, A. Proskurnikov et al. Automatica 159 (2024) 111302

C
w
=

i

m
t
e

a

f
a
t
(
(
a
t
{

s
o

D
E
s

L

C
o
c

3

d
w
c
e
m
t

3

t
a
v
i
b

N

w
t

o

w

S

x

f

H
a
a
T
f
a

t

D
o
φ

c

3

o
B

D

A
u
r
(
b

orollary 7. If the assumptions of Lemma 6 hold, then the back-
ard matrix products converge, i.e., there exists A∞

limk→∞ (A(k)A(k − 1) . . . A(0)). Furthermore, if the condition
n (12) holds, then the i-th and j-th rows of A∞ are identical.

Notice that in BCOD models (and other models of opinion for-
ation) the matrices A(k) usually satisfy an additional restriction:

heir nonzero entries are uniformly positive, i.e., a constant η > 0
xists such that

ij(k) ∈ {0} ∪ [η, 1] (13)

or all i, j ∈ I and k ∈ N0. Under this extra assumption, Lemma 6
nd Corollary 7 have been first established by Lorenz (2005); al-
ernative proofs can be found in Proskurnikov and Tempo (2018)
Lemma 1), Blondel, Hendrickx, Olshevsky, and Tsitsiklis (2005)
Theorem 5) and Frasca and Fagnani (2018) (Theorem 3.2). If (11)
nd (13) hold, then the condition (12) admits a simple interpre-
ation: the arcs (j, i) and (i, j) appear in the sequence of graphs
G(k)}∞k=0 infinitely often. A pair of agents satisfying (12) is thus
aid to interact persistently; connecting such pairs by edges, one
btains a persistent graph.

efinition 8 (Persistent Graph). The graph G∞
= {I, E∞

}, where
∞

= {(j, i) | (12) holds}, is called the persistent graph of the
equence {A(k)}k∈N0 .

Trivially, the persistent graph is undirected when (11) holds.
emma 6 entails the following simple corollary.

orollary 9. If the assumptions of Lemma 6 hold, then the steady
pinions of two agents i and j that belong to the same connected
omponent of G∞ coincide, i.e., x∞

i = x∞

j .

. Bounded confidence opinion dynamics

In this section, we formally introduce BCOD and some related
efinitions. Like in the previous section, we confine ourselves
ith scalar opinions; a brief discussion on the multidimensional
ase is provided in Section 10. As we will see, scalar-valued BCOD
njoys a number of properties that fail to hold in the multidi-
ensional case and are proved by using special mathematical

ools.

.1. Definitions

BCOD models manifest the homophily principle and stipulate
hat at each time-step each agent selects as neighbors those
gents who have an opinion belonging to its confidence inter-
al (Hegselmann & Krause, 2002). In particular, the set of the
ndices of the agents who are neighbors of the i-th agent is given
y

i = Ni(x) := {j ∈ I | −ℓi ≤ xj − xi ≤ ui}, (14)

ith ℓi ∈ R+

0 and ui ∈ R+

0 called lower and upper confidence
hresholds of the agent i, respectively.

Definition 10 (BCOD). BCOD (with scalar opinions) is the proce-
dure of iterative averaging (1), where the neighbor set of each
agent i is defined by (14).

The interval [xi − ℓi, xi + ui] is called confidence interval of
the agent i, i ∈ I. An agent such that ℓi = 0 (ui = 0) is said
to be one-sided confident. An agent i is said to be stubborn3 if
ℓi = ui = 0.

3 Stubborn agents are sometimes called radicals (Hegselmann & Krause, 2015)
r zealots (Verma, Swami, & Chan, 2014).
6

Fig. 1. An example of influence function φi(xi, xj).

For BCOD, the cardinality of the set Ni is given by

|Ni(x)| =

∑
j∈I

φi(xi, xj), (15)

here φi : R2
→ {0, 1}, i, j ∈ I, is the influence function (see

Fig. 1) defined as

φi(xi, xj) =

{
1, if −ℓi ≤ xj − xi ≤ ui,

0, otherwise.
(16)

ubstituting (15) and (16) into (1), BCOD is written as

+

i =
1∑

j∈I φi(xi, xj)

∑
j∈I

φi(xi, xj)xj (17)

or all i ∈ I, with φi(xi, xj), i, j ∈ I, defined in (16). The compact
matrix form (5) of BCOD is as follows

x+
= A(x)x, (18)

where the adjacency matrix A(x) is given by

A(x) := Θ(x)−1Φ(x). (19)

ere, Θ(x) is the diagonal matrix whose main diagonal entries
re Θ(x)ii = |Ni(x)|, i.e., the number of neighbors of the agent i,
nd Φ(x) is the N×N matrix whose entries are Φ(x)ij = φi(xi, xj).
he model (17) can be also rewritten in a mixed logical dynamical
orm (Bernardo & Vasca, 2020) and as a system with a piecewise
ffine structure (Iervolino et al., 2016).
Henceforth, the symbol G(x) denotes the graph determined by

he neighbor sets (14) whose definition is as follows.

efinition 11 (Confidence Graph). The confidence graph of the
pinion vector x is G(x) = (I, E(x)) such that (j, i) ∈ E(x) if
i(xi, xj) = 1, and (j, i) /∈ E(x) otherwise, i, j ∈ I.

Definition 11, together with (16), implies that any node of a
onfidence graph has a self-loop.

.2. Classification of BCOD

The properties of BCOD substantially depend on the structure
f confidence thresholds ℓi and ui, i ∈ I; the following classes of
COD (17) are distinguished.

efinition 12 (Classes of BCOD). BCOD (17) is

• symmetric if the confidence interval of each agent is cen-
tered at the agent’s opinion, i.e., ℓi = ui for all i ∈ I
(possibly, ℓi ̸= ℓj for some i ̸= j), and asymmetric otherwise;

• homogeneous if all agents have the same confidence interval,
i.e., ℓi = ℓ and ui = u for all i ∈ I (possibly, ℓ ̸= u), and
heterogeneous otherwise.

n asymmetric heterogeneous BCOD with ℓi = ℓ or, alternatively,
i = u for all i ∈ I is called one-sided heterogeneous. An asymmet-
ic BCOD where all agents are one-sided confident, i.e., ℓi = 0
ui = 0) for all i ∈ I, is called one-sided confident (such BCOD can
e homogeneous or heterogeneous).
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For symmetric homogeneous BCOD, the adjacency matrix A(x)
in (18) is type-symmetric, i.e., the conditions in (11) hold, and, in
particular, Lemma 6 and Corollary 7 are applicable. This case has
been most studied in the literature (Bhattacharyya, Braverman,
Chazelle, & Nguyen, 2013; Blondel et al., 2009; Dittmer, 2001;
Krause, 2000; Lorenz, 2005; Sun, 2010).

3.3. Technical definitions

In this subsection, we collect several definitions that will be
used in the subsequent analysis of BCOD.

During the opinion evolution, an agent’s opinion can increase
or decrease depending on the neighbors’ opinions. It appears,
however, that some BCOD models preserve the order of opinions,
o an agent’s opinion cannot ‘‘jump over’’ the opinions of its
eighbors. We give a formal definition.

efinition 13 (Order-preservation). The opinion dynamics model
1) is said to satisfy the order-preservation property if (xi −

j)(x+

i − x+

j ) ≥ 0 for any i, j ∈ I and k ∈ N0.

As it will be discussed later on, this property, substantially
implifying the system’s analysis, is not satisfied by some types of
COD. In general, validation of this property is non-trivial; how-
ver, one class of order-preserving BCOD, generalizing the clas-
ical Hegselmann–Krause model, has been considered by Hen-
rickx (2008).
Silent agents are agents who are in consensus with all their

eighbors (and thus do not change the opinion at the next time-
tep) but are not in consensus with some other agents. A silent
gent, for instance, can have no neighbors at all, and in this case
e call it isolated. The formal definition is as follows.

efinition 14 (Silent and Isolated Agents). An agent i ∈ I is said
o be silent at the time-step k if xj = xi for all j ∈ Ni and there
xists a q ∈ I \ Ni with xq ̸= xi. In particular, a silent agent i ∈ I
s said to be isolated at the time-step k if Ni = {i}.

The definitions of crack and d-chain allow one to relate the
alues of the opinions to the connectivity of the confidence graph.
f two agents are connected at some time-step (i.e., at least one of
hem influences the other) and become disconnected at the next
ime-step, we say that a crack has occurred between these two
gents. More formally, one can provide the following definition.

efinition 15 (Crack). Consider the opinion dynamics model (1)
nd any two agents who are connected at the time-step k,
.e., i, j ∈ I with i ̸= j such that i ∈ Nj and/or j ∈ Ni. If at the
ext time-step the two agents are disconnected, i.e., i /∈ N+

j and
/∈ N+

i , a crack has occurred between the agents i and j at the
ime-step k + 1.

By using Definitions 13 and 15, one can show that if the order-
reservation property holds, then the possible increase in the
umber of components of the confidence graph at each step is
qual to the number of cracks occurring at that time-step.

efinition 16 (d-chain). Consider the opinion dynamics model (1).
ay x1 ≤ x2 ≤ · · · ≤ xN . The opinion vector (3) is a d-chain at the
ime-step k if xi+1 − xi ≤ d for all i ∈ I \ {N}, i.e., the distance
etween adjacent opinions is less than or equal to d.

The concept of d-chain in Definition 16 can be related to the
onnectivity of the confidence graph by using the maximum and
inimum confidence thresholds:

M = max max{ℓi, ui}, (20a)

i∈I

7

dm = min
i∈I

min{ℓi, ui}. (20b)

n the case of homogeneous BCOD, the opinion vector is a dm-
hain if and only if the confidence graph is strongly connected.
oreover, the opinion vector is a dM-chain if and only if the
onfidence graph is weakly connected.
For heterogeneous BCOD, the situation is more involved. If

he opinion vector is a dm-chain, then the confidence graph is
trongly connected, but the opposite implication does not hold.
f the opinion vector is a dM-chain, then the confidence graph
ight be either (weakly or strongly) connected or disconnected.
onversely, assuming the connectivity of the graph, one can only
ay that if the confidence graph is weakly connected then the
pinion vector is a d-chain for some d ≤ dM . Nothing more can
e said, in general, under strong connectivity.

. Steady state behaviors

In this section, we are interested in the analysis of steady state
ehaviors of BCOD.
One typical situation is when all opinions converge to the

ame value, which is called a consensus opinion, and can be
ormally defined as follows.

efinition 17 (Consensus). A consensus state is a vector x of
COD (17) at which all opinions are coincident, i.e., xi = c̄ for
ll i ∈ I with some c̄ ∈ R. The value c̄ is said to be the consensus
pinion of the agents.

Consensus states possess several important properties that are
ummarized in the following remark.

emark 18. According to (14) and (17), each consensus state
s an equilibrium of BCOD. From (7), it directly follows that
onsensus states are opinion vectors of zero range, i.e., v(x) = 0.
urthermore, a solution of BCOD (17) converges to a consensus if
nd only if v(x(k)) −−−→

k→∞

0 (see Remark 5).

Clearly, at a consensus state every pair of agents is con-
ected, i.e., the graph G(x) is complete, and then the adjacency
atrix A(x) from (19) has rank one. On the other hand, if the
raph G(x) is complete at some time-step k, then x+

= x(k+1) is a
onsensus state in view of (17). Therefore, an equilibrium x = x+

s a consensus if and only if its graph is complete.
Another situation of interest is when a subgroup of agents

s disconnected from the other agents and the subgraph of G(x)
onsisting of the agents of each subgroup is a weakly connected
omponent of G(x). Note that this situation applies to every opin-
on vector, which need not be a steady state of the model (17). On
he other hand, a typical steady state behavior exhibited by BCOD
s the coincidence of the opinions in each disconnected subgroup
f agents. This situation is called clustering4 and requires consid-
ring not only the values of the opinions but also the confidence
raph.

efinition 19 (Clustering). A clustering is an opinion vector x
f BCOD (17) for which there exists a partition {Cµ} of I and a
equence of pairwise different constants {c̄µ} (indexed by µ =

, . . . ,M , with M ≥ 2) such that the subgraph consisting of the
gents in Cµ is a cluster5 and xi = c̄µ for all i ∈ Cµ.

4 If a solution converges to a clustering equilibrium, it is sometimes said
hat opinion dynamics exhibits asymptotic clustering (Altafini & Ceragioli, 2018)
r fragmentation (Hegselmann & Krause, 2002; Su, Guo, Chen, Chen, & Li, 2019).
5 A cluster is a complete isolated component of a graph.
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Fig. 2. Opinions of the BCOD in Example 20.

It can be easily shown that clustering is an equilibrium point
f BCOD. Indeed, φi(xi, xj) = 1 for any pair i, j ∈ I for which
t is xi = xj. Definition 19 implies that at any clustering it is
i(xi, xj) = 1 for any i, j ∈ Cµ and φi(xi, xj) = 0 for any i ∈ Cµ1 ,

j ∈ Cµ2 , µ1 ̸= µ2. By definition, a clustering is not a consensus
state.

The next example illustrates consensus and clustering.

Example 20. Consider the homogeneous BCOD with N = 6
agents, xi(0) = 0.2(i−1), i = 1, . . . , 6, ℓi = ui = 0.35 for all i ∈ I.
The corresponding simulation results are shown in the upper plot
of Fig. 2. A consensus is reached at k = 6 with opinion 0.5, which
is the average of the initial conditions. By considering the same
initial conditions but ℓi = ui = 0.2 for all i ∈ I, the results are
those reported in the lower plot of Fig. 2. In this second case, a
clustering is reached at k = 6, and the agents are partitioned into
two clusters with opinion values 0.334 and 0.666.

In the sequel, we will show that homogeneous BCOD cannot
ave equilibria different from consensus and clustering. In gen-
ral, BCOD may have other types of equilibria, as shown by the
ollowing example.

xample 21. Consider the heterogeneous BCOD with N = 3
agents and an opinion vector x such that x1 < x3, x2 = (x1+x3)/2,
x3 − x2 > ℓ3, x2 − x1 > u1, x2 − x1 ≤ ℓ2 and x3 − x2 ≤ u2. It
is easy to verify that this is an equilibrium, and clearly it is not
a consensus state (the opinions are pairwise different), but it is
also not a clustering because the agents 1 and 3 are isolated and
the agent 2 is connected with the other two (edges incident to 2);
hence, the graph G(x) is weakly connected and not rooted. Fig. 3
shows a transient with x1(0) = 0.1, x2(0) = 0.15, x3(0) = 0.5,
ℓ1 = u1 = ℓ3 = u3 = 0, ℓ2 = u2 = 0.4; the opinions converge
asymptotically to the above equilibrium point. Clearly, by starting
with the same initial condition, the simulation results will not
change if one selects u1 < 0.05, ℓ3 < 0.2 and arbitrary ℓ1 and u3.

An intuitive conjecture arises that a general BCOD cannot
exhibit a non-constant steady state behavior, that is, oscillate
persistently; to the best of the authors’ knowledge, a formal proof
of this result is still missing for heterogeneous BCOD. On the
other hand, for some classes of BCOD it is possible to provide
sufficient conditions for the convergence of the opinion vector to
 (

8

Fig. 3. Opinions of the BCOD in Example 21.

a consensus or a clustering state in finite time. In these situations,
one can define the convergence time6 as follows.

Definition 22 (Convergence Time). Consider a BCOD (17) with
given initial opinions x(0). If the system reaches a constant steady
state in finite time, then the convergence time is the minimum
(finite) time-step k̄ ∈ N0 such that x+

i = xi for all i ∈ I and k ≥ k̄.

On the other hand, there are examples of BCOD for which the
convergence to a constant steady state is reached only asymptot-
ically. In these situations, one may look for conditions of conver-
gence in finite time to regions around a consensus or a clustering
state. To this aim, we introduce the concepts of practical consensus
and practical clustering proposed by Bernardo, Vasca and Iervolino
(2021) and Vasca et al. (2021). According to the following defini-
tions, the agents in a practical consensus or a subgroup of agents
of a practical clustering are connected and share a small interval
of opinion values rather than a unique one.

Definition 23 (ϵ-practical Consensus). Given a sufficiently small
ϵ > 0, a solution x(k) of BCOD (17) is said to have reached an
ϵ-practical consensus if there exists a finite k̄ ∈ N0 such that
v(x) ≤ ϵ and each graph G(x(k)) is weakly connected for any

≥ k̄.

Definition 23 directly implies that if the opinions belong to an
-practical consensus, then the inequalities

xi − xj| ≤ ϵ (21)

old for all i, j ∈ I. It is evident from (21) that the range of
pinions at a practical consensus is such that v(x) ≤ ϵ. Since
(x) is nonincreasing, the set of opinion vectors corresponding to
-practical consensus is forward invariant under BCOD dynamics.
or homogeneous BCOD, if ϵ ≤ dM then the condition (21) implies
hat the confidence graph is weakly connected (complete for the
ymmetric case) and remains weakly connected (respectively,
omplete) for all future time-steps. In order to have this impli-
ation in the case of heterogeneous BCOD, one should consider
≤ dm.
A consensus (Definition 17) is a special case of an ϵ-practical

onsensus. However, differently from the consensus, Definition 23
oes not imply that the vector x is an equilibrium point of BCOD.

6 The convergence time is sometimes called dynamics termination time
Etesami & Başar, 2015; Touri & Nedić, 2011).
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intervals of amplitude ϵ = 0.0382.

If the opinion vector reaches an ϵ-practical consensus, then
t cannot reach any clustering in future time-steps because the
orresponding graph would be disconnected. On the other hand,
he following definition can be given.

efinition 24 (ϵ-practical Clustering). Given a sufficiently small
> 0, a solution x(k) of BCOD (17) is said to have reached an

-practical clustering if there exist a finite k̄ ∈ N0 and a partition
{Cµ} of I (indexed by µ = 1, . . . ,M , with M ≥ 2) such that
v(xµ) ≤ ϵ, where xµ ⊂ x is the opinion vector of the agents
belonging to Cµ, and the subgraph consisting of the agents in Cµ
is a weakly connected component of G(x(k)) for any k ≥ k̄.

The ϵ-practical clustering is a sort of generalization of the
clustering concept in the sense of Definition 19. The following
example shows a situation in which clustering is reached only
asymptotically, but a practical clustering is reached in finite time.

Example 25. Consider the BCOD with N = 6 agents, xi(0) =

0.2(i − 1), i = 1, . . . , 6, ℓi = ui = 0.2 for all i ∈ I except for
ℓ2 = ℓ5 = 0. The result of a numerical simulation is shown in
Fig. 4. At k = 0, the graph is connected. The BCOD converges
asymptotically to an equilibrium with two clusters: the agents 5
and 6 reach consensus at opinion 0.9, while the remaining agents
converge to the terminal opinion 0.4278. However, an ϵ-practical
clustering with ϵ = 0.0382 is reached at k = 4.

5. Common properties

The propositions recalled in this section express properties
which are valid for all classes of BCOD.

The following proposition shows that if a crack occurs (or has
occurred) at some time-step between two adjacent agents with
a relative distance larger than dM , then the two agents will not
influence each other in the future.

Proposition 26. Consider BCOD (17). If there exist a time-step
k ∈ N0 and i, j ∈ I such that xj − xi > dM and there does not
exist any agent q ∈ I such that xq ∈ (xi, xj), then x+

j − x+

i > dM .

The proof of Proposition 26 is reported in Bernardo, Altafini,
and Vasca (2022) (Lemma 13) for the homogeneous case and can
be easily extended to the heterogeneous case by using similar

arguments. A direct consequence of Proposition 26 is that if a

9

crack with a relative distance larger than dM occurs, no consensus
can be reached.

A classical criterion for the asymptotic convergence to a con-
sensus is based on the connectivity of the graph, as shown by
the following result which is implied by a consensus criterion
from Cao et al. (2008).

Theorem 27. Consider BCOD (17). An asymptotic consensus (10)
is reached in BCOD by a given solution x(k) if and only if the
infinite sequence of graphs G(x(k)) is repeatedly composition jointly
rooted. Moreover, if a solution to BCOD (17) reaches asymptotic
consensus (10), then G(x(k)) is rooted for k large enough.

Recall that the strong connectivity of each graph along a
solution of (17) implies that any sequence of these graphs is
repeatedly union (and composition) jointly rooted. The following
example shows that the condition of repeatedly jointly rooted
must be carefully considered.

Example 28. Consider the heterogeneous BCOD with N = 3
agents, x1(0) = 0.1, x2(0) = 0.3, x3(0) = 0.5, ℓ1 = ℓ2 = u2 =

ℓ3 = u3 = 0.05 and u1 = 0.3. The opinions converge to a
clustering at k = 6 with values 0.316 (for the agent 2) and 0.485
(for the agents 1 and 3). The sequence of confidence graphs is
characterized by the following sets of edges:

E(0) = {(2, 1)} ∪ SL,
E(1) = {(2, 1), (3, 1)} ∪ SL,
E(2) = {(1, 2), (2, 1), (3, 1)} ∪ SL,
E(3) = E(4) = {(3, 1)} ∪ SL,
E(k) = {(1, 3), (3, 1)} ∪ SL, k ≥ 5,

where the self-loops have been indicated with the set SL =

{(1, 1), (2, 2), (3, 3)}. It is easy to verify that the union of the
confidence graphs is rooted at the node 3 for any k ≥ 1 and it is
also strongly connected for any k ≥ 5. By considering any inter-
val [0, k̄) with k̄ ≥ 5, the corresponding union (and composition)
of confidence graphs is jointly rooted. On the other hand, this
condition is not satisfied for any sequence of confidence graphs
starting after any k ≥ k̄, and then the repeatedly jointly rooted
condition required for consensus in Theorem 27 does not hold.

The assumptions of Theorem 27 do not exclude the possibility
that the confidence graph is disconnected at some time-step, as
shown by the following example.

Example 29. Consider the heterogeneous BCOD with N = 3
agents, x1(0) = 0.1, x2(0) = 0.3, x3(0) = 0.5, ℓ1 = ℓ2 = u2 =

u3 = 0.1, u1 = 0.3 and ℓ3 = 0. The results of a simulation are
shown in Fig. 5. The solution exhibits an asymptotic consensus,
but, as shown in Fig. 6, the agent 3 was initially isolated, i.e., the
graph corresponding to the initial opinions was not connected. It
is easy to verify that for this example the repeatedly jointly rooted
condition holds.

The situation occurring in Example 29, i.e., having a confidence
graph disconnected and then reaching a consensus later on, is
not necessarily associated to the initial condition in the sense
that the confidence graph may disconnect also during the system
evolution.

Theorem 27 establishes sufficient conditions for asymptotic
consensus. A natural question arising from this result is whether
one can also prove finite-time convergence. Let us first consider
the simple situation when all opinions are sufficiently close to
each other. The following proposition shows that if the range of
opinions is such that v(x) ≤ dm, then a consensus is reached in

at most one time-step (Bernardo et al., 2022, Lemma 11).
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Fig. 5. Opinions of the BCOD in Example 29.

Fig. 6. Confidence graphs for the opinions in Fig. 5: at k = 0 (a), for k = 1, . . . , 7
b), for any k ≥ 8 (c).

Proposition 30. Consider BCOD (17). If at some time-step k ∈ N0
it is v(x) ≤ dm, then x+

i = c̄ with c̄ =
1
N

∑N
i=1 xi, i.e., at the next

ime-step consensus corresponding to the average of the opinions is
eached.

The proof of Proposition 30 directly follows by considering
hat if v(x) ≤ dm in (17) it is φi(xi, xj) = 1 for all i, j ∈ I, i.e., G(x)
s complete, and then the right-hand side of (17) is the same for
ll i ∈ I. In particular, note that in Proposition 30 for dm = 0 it is
(x) = 0, which already corresponds to a consensus. Moreover,
he condition v(x) ≤ dm is not necessary for reaching consensus
n one step, e.g., consider the case N = 3, x3 − x2 = x2 − x1 = dm,
ℓ2 = u2 = dm and ℓ3 = u1 ≥ 2dm which implies x+

i = x2
for all i ∈ {1, 2, 3}. It should be noticed that in Example 29
the convergence is asymptotic; this is possible because dm = 0,
and then the condition v(x) ≤ dm (in this case is equivalent to
v(x) = 0) is never satisfied in finite time.

The following theorem shows that if all confidence thresholds
are strictly positive, i.e., dm > 0, then the sequence v(x(k)) ter-
minates in finite time and, therefore, the sequences maxi∈I xi(k)
nd mini∈I xi(k) also terminate in finite time.

heorem 31. Consider BCOD (17) and assume that dm > 0. There
xists a finite time-step k̄ ∈ N0 such that v(x+) = v(x) for all k ≥ k̄.
n particular, if ν(x) ≤ 2dm any solution x(k) converges to 2 clusters
t most.

A special case of Theorem 31 dealing with symmetric het-
rogeneous models has been proved in Su, Gu, Wang and Yu
2017) (see Theorem 3.2, Remark 3.5 and Corollary 3.6 therein).
heorem 31 shows that the evolution of the opinions will be
onfined in finite time to some level set of the range function
x : v(x) = const}. However, the solutions inside this set may not

e constant.

10
The results in Theorems 27 and 31 allow one to provide
onditions for the convergence to a consensus in finite time, as
he following theorem states.

heorem 32. Consider BCOD (17) and assume that dm > 0. A
consensus is reached in finite time in BCOD by a given solution x(k) if
and only if the sequence of graphs G(x(k)) is repeatedly composition
jointly rooted.

From Theorem 32, the following result directly descends.

Corollary 33. Consider BCOD (17) and assume that dm > 0. A
consensus is reached in finite time in BCOD by a given solution x(k)
if each graph of the sequence G(x(k)) is strongly connected.

This result, for the specific class of homogeneous BCOD, fol-
lows from Theorem 7.3 in Motsch and Tadmor (2014).

For symmetric homogeneous BCOD, if an agent becomes silent
or isolated (Definition 14) during the time evolution, then it
remains in the same condition for all future time-steps. This is not
the case for the other classes of BCOD, e.g., see Example 29. The
following theorem shows that the convergence to a consensus
is guaranteed in finite time if no agent remains silent for any
time-step (Etesami & Başar, 2015, Theorem 7).

Theorem 34. Consider BCOD (17) and assume that dm > 0. A
consensus is reached in finite time in BCOD by a given solution x(k)
if and only if there exists a finite time interval ∆ ∈ N such that no
agent is silent for more than ∆ consecutive time-steps.

The theoretical results presented above can be summarized in
the following implications:

G(x(k))rcjr Theorem 27
⇐⇒ asymptotic consensus

dm > 0 Theorem 31
H⇒ v(x) constant in finite time

dm > 0; G(x(k))rcjr Theorem 32
⇐⇒ consensus in finite time

dm > 0; no permanent
silent agents

Theorem 34
⇐⇒ consensus in finite time

where G(x(k))rcjr stands for the sequence of graphs G(x(k)) being
repeatedly composition jointly rooted. By comparing the last two
lines in the list above, it follows that, under the assumption
dm > 0, the condition G(x(k))rcjr is equivalent to the absence of
permanently silent agents. Unfortunately, finding apriori condi-
tions for ensuring the absence of permanently silent agents or
that the graphs are repeatedly jointly rooted over the entire time
evolution is anything but easy. On the other hand, by restricting
the analysis to specific classes of BCOD one can provide sufficient
conditions for the convergence in finite time to a consensus or a
clustering, as shown in the sequel.

6. Homogeneous model

According to Definition 12, BCOD is said to be homogeneous
if the agents have equal confidence intervals with the same
thresholds, i.e., ℓi = ℓ and ui = u for all i ∈ I, with ℓ, u ∈ R+

0 .
The influence functions (16) thus equal

φi(xi, xj) = φ(xi, xj) =

{
1, −ℓ ≤ xj − xi ≤ u,
0, otherwise.

(22)

The homogeneity of the model allows one to prove that the order
of the opinions is preserved.

Proposition 35. BCOD (17) with influence function (22) enjoys the

order-preservation property (see Definition 13).
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Proposition 35 derives from Lemma 2 in Krause (2000). A
formal proof has been provided in Blondel et al. (2009) (Propo-
sition 1) in the case where ℓ = u.

The order-preservation property in Proposition 35 allows one
to consider, without loss of generality, that in homogeneous
BCOD the agents can be ordered such that x1 ≤ x2 ≤ · · · ≤ xN for
any time-step k ∈ N0.

6.1. Symmetric model

In this subsection, we consider symmetric homogeneous
BCOD, i.e., opinion dynamics (17) with (22) and ℓ = u.

6.1.1. Convergences to consensus and clustering
The convergence properties of symmetric BCOD are expressed

by the following theorem, which shows that the opinions con-
verge in finite time to a steady state (either a consensus or a
clustering).

Theorem 36. Consider BCOD (17) with influence function (22) and
= u > 0. A constant steady state which is either a consensus or
clustering is reached in finite time in BCOD by any solution x(k),
nd the corresponding convergence time k̄ satisfies

¯ ≤ 2
(
N − 1 +

⌈
2N2

d
v(x(0))

⌉)
(23)

ith d = ℓ = u. In particular, a consensus is reached if and only if
x(k) is a d-chain with d = ℓ = u for all k ∈ N0.

Notice that the first statement of Theorem 36, that is, the finite
time convergence of opinions, has been first proved in Dittmer
(2001) (Theorem 9). This statement also follows from Lemma 6,
because in the case ℓ = u the matrices A(x) are type-symmetric;
this alternative way of proving the finite-time convergence has
been employed by Lorenz (2005). Both approaches, however, do
not provide an upper bound on the convergence time.

The final part of Theorem 36 (consensus condition) has been
first proved in Krause (2000) (Theorem 2). This statement is a
direct consequence of Theorem 32 because for the symmetric
homogeneous model the opinion vector is a d-chain if and only if
the confidence graph is connected. A sufficient condition for the
connectivity of the confidence graph for symmetric homogeneous
BCOD is provided in Sun (2010) (Proposition 5.1), where it is
proved that if |Ni(x(0))| ≥

N+1
2 for all i ∈ I, i.e., the number

f neighbors of each agent at the initial time-step is larger than
alf of the number of agents, then the confidence graph remains
onnected.
The estimate for convergence time is a special case of a more

eneral statement from Theorem 40 below, which appeared first
n Bernardo et al. (2022) (Theorem 17). Sorting the opinions in the
scending order, one can assume, without loss of generality, that
he distance between adjacent opinions does not exceed d (oth-
rwise, BCOD decomposes into several smaller systems evolving
ndependently). Then, v(x(0)) = O(N), and thus (23) estimates the
worst-case convergence time as O(N3). On the other hand, if all
agents are arbitrarily spaced but belong to a predefined interval,
then v(x(0)) is bounded and (23) implies that k̄ is O(N2).

Theorem 36 does not provide any indication on the form of
the steady state situation, e.g., the number of clusters that are
reached. Clearly, by excluding the trivial case when the agents
with the minimum and maximum opinions are isolated, an up-
per bound on the number of clusters is given by ⌊

v(x(0))
d ⌋. This

ound is strict for arbitrary initial conditions. In fact, this number
f clusters can be obtained by considering agents divided into
v(x(0))

d ⌋ subgroups and by taking initial opinions such that any
two agents in the same subgroup have a relative distance less
11
than d and any two agents belonging to different subgroups have
a relative distance larger than d. Many studies have been devoted
to the analysis of clustering behaviors by assuming uniform initial
conditions. In this case, numerical simulations in Bernardo and
Vasca (2020), Blondel et al. (2009), Hegarty and Wedin (2016),
Hegselmann and Krause (2002), Kou, Zhao, Peng, and Shi (2012),
Lorenz (2006, 2007), Srivastava, Bernardo, Altafini, and Vasca
(2023) and Schawe, Fontaine, and Hernández (2021) have shown
that, as one would expect, the number of clusters tends to in-
crease by decreasing the confidence threshold d. However, there
exist numerical tests which show that an increase in d can in-
rease the number of clusters (Proskurnikov & Tempo, 2018,
ig. 1). Moreover, for a fixed d, the number of clusters tends to
ncrease as the initial range of opinions v(x(0)) increases. Blondel,
endrickx, and Tsitsiklis (2007) have analyzed the so-called ‘‘2d-
onjecture’’, according to which for initial opinions uniformly
istributed the opinions converge to ⌈

v(x(0))
2.2d ⌉ clusters and the rel-

tive distance between adjacent clusters is approximately equal
o 2.2d. However, numerical tests have shown that the latter
onjecture may provide only an upper bound on the number of
lusters (Proskurnikov & Tempo, 2018). In synthesis, rigorously
haracterizing the possible forms of the steady states is still an
pen issue even for the simple case of symmetric homogeneous
COD.

.1.2. Energy function
The convergence to a constant steady state of the opinions in

ymmetric homogeneous BCOD has been analyzed also by using
he energy function approach, which is discussed in this section.

The energy function is obtained starting from a quadratic
unction of the opinions weighted by the Laplacian of the con-
idence graph. The Laplacian matrix (function) L(x) : RN

→

−1, 0, 1, . . . ,N}
N×N of the confidence graph is given by

(x) = Θ(x) −Φ(x), (24)

here Θ(x) and Φ(x) are defined in (19). The matrix (24) is
ero-row-sum and is symmetric for symmetric homogeneous
COD.
From (24), one can write

r(L(x)) =

∑
i,j∈I

φ(xi, xj) − N, (25)

hich means that the trace of the Laplacian matrix provides
he number of edges over the confidence graph excluding the
elf-loops (Etesami, 2019). Moreover, it is

⊤L(x)x = x⊤Θ(x)x − x⊤Φ(x)x

=

∑
i∈I

θix2i − x⊤

⎛⎜⎝
∑

j∈I φ(x1, xj)xj
...∑

j∈I φ(xN , xj)xj

⎞⎟⎠
=

∑
i,j∈I

φ(xi, xj)x2i −

∑
i,j∈I

φ(xi, xj)xixj

=

∑
i,j∈I

φ(xi, xj)xi(xi − xj), (26)

here θi =
∑

j∈I φ(xi, xj), i = 1, . . . ,N , are the diagonal elements
f the matrix Θ(x). For each pair of connected agents, say i and j,
n (26) there are two terms that can be grouped in the form

(x − x ) + x (x − x ) = x2 + x2 − 2x x = (x − x )2,
i j i j j i i j i j i j
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hich substituted in (26) allows one to write
⊤L(x)x =

∑
i,j∈I

φ(xi, xj)xi(xi − xj)

=
1
2

∑
i,j∈I

φ(xi, xj)(xi − xj)2. (27)

It should be noted that, in general, the function x⊤L(x)x given
by (27) is not monotone in time along the system’s solutions,
also if the confidence graph remains connected. An alternative
function, which strictly decreases until the opinion dynamics
terminates, is given by the so-called energy function defined as

E(x) = x⊤L(x)x −
1
2
tr(L(x))d2 +

1
2
N(N − 1)d2, (28)

which has been introduced by Roozbehani, Megretski, and Fraz-
zoli (2008). By using (25) and (27), the energy function (28) can
be rewritten as

E(x) =
1
2

∑
i,j∈I

g(xi, xj), (29)

here

(xi, xj) = φ(xi, xj)(xi − xj)2 + (1 − φ(xi, xj))d2

=

{
(xi − xj)2, if |xi − xj| ≤ d,
d2, otherwise.

(30)

Clearly, each function g(xi, xj), i, j ∈ I, is Lipschitz continuous
and non-negative meaning that the function E(x) is piecewise-
smooth, Lipschitz continuous and non-negative. The energy func-
tion E(x) evaluated along the system’s solutions has many local
minima corresponding to the different constant steady state so-
lutions at consensus or clustering. In particular, the lowest value
of E(x) is obtained at any consensus for which it is E(x) = 0,
see (30). For any clustering, it is

E(x+) = E(x) =

∑
µ1,µ2∈Ic
µ1 ̸=µ2

|Cµ1 ∥ Cµ2 |d
2 > 0,

here Cµ, µ ∈ Ic = {1, . . . ,M}, are the sets of agents grouped
y clusters.
Although E(x) is not globally convex, for BCOD (17) it is

trictly decreasing as long as some agent moves, as shown by
he following proposition proved in Roozbehani et al. (2008)
Theorem 1) and Bhattacharyya et al. (2013) (Theorem 4.3) (also
or multi-dimensional systems).

roposition 37. Consider BCOD (17) with influence function (22)
nd ℓ = u. The energy function (28) satisfies for all k ∈ N0 the

inequality

E(x+) − E(x) ≤ −2
∑
i∈I

(x+

i − xi)2. (31)

A similar result has also been obtained for opinion dynamics
with more general influence functions; see Jabin and Motsch
(2014), Motsch and Tadmor (2014) and Proskurnikov and Tempo
(2018).

Proposition 37 represents an alternative way for showing the
fact, here expressed as part of Theorem 36, that the opinion
dynamics terminate in finite time reaching a consensus or a
clustering. Remarkably, energy-based arguments allow to prove
the convergence of BCOD on the circle (Hegarty, Martinsson, &
Wedin, 2016), which exhibits properties similar to classical BCOD.

Functions different from (29) have been used for the stability
analysis of BCOD. A local piecewise quadratic Lyapunov function
has been considered by Tangredi, Iervolino, and Vasca (2017) for
12
finding sufficient conditions for the convergence to a consensus.
The convergence in finite time has been proved by Coulson,
Steeves, Gharesifard, and Touri (2015) and Mohajer and Touri
(2013) by adopting the following function

E(x) = |Cx1 |(xN − x1) + (xN − xν), (32)

here (by assuming without loss of generality an ordered se-
uence of indices) xN is the maximum opinion, x1 is the minimum
pinion, Cx1 is the set of all agents having the minimum opinion,
.e., Cx1 = {i ∈ I | xi = x1}, and xν is the smallest opinion strictly
arger than the minimum one, i.e., ν = min{|Cx1 | + 1,N}.

6.2. Asymmetric model

In the following, we exclude the trivial case dM = 0 and
separately consider the case dm = 0, which corresponds to one-
sided confident agents, i.e., agents who connect only with lower
(ℓ > 0 and u = 0) or upper (ℓ = 0 and u > 0) neighbors.

It should be noticed that asymmetric BCOD satisfies the prop-
erties in Section 5, e.g., the range of opinions becomes constant
in finite time and the absence of silent agents allows consensus.

6.2.1. Convergence to a consensus
The analysis of convergence to a consensus can be started by

considering the particular situation when the opinions are close
enough. The following proposition is proved in Bernardo et al.
(2022) (Lemma 12).

Proposition 38. Consider BCOD (17) with influence function (22)
and assume that dm > 0. A consensus is reached in finite time in
BCOD by a given solution x(k) if there exists a time-step k∗

∈ N0 such
that v(x(k∗)) ≤ dM . In particular, the convergence time k̄ satisfies

k̄ ≤ k∗
+

⌈
N
dM − dm

dm

⌉
+ 1. (33)

Analogously to Theorem 36, which deals with the symmetric
case, one should expect that also in the asymmetric case the
convergence to a consensus can be reached if at each time-step
there exists at least one agent able to propagate its opinion to all
the others. The presence of at least one root in the confidence
graph corresponds to the opinion vector being a d-chain with
d = dM ; indeed, according to Definition 16, this corresponds to
φ(xi, xi+1) = 1 or φ(xi+1, xi) = 1 for all i ∈ I \ {N}. In particular,
the following result holds.

Corollary 39. Consider BCOD (17) with influence function (22). An
asymptotic consensus is reached in BCOD by a given solution x(k) if
and only if the opinion vector x(k) is a d-chain with d = dM for all
k ∈ N0. Hence, a consensus is reached in finite time if dm > 0.

The result above has been proved in Bernardo et al. (2022)
Theorem 14) and also derives as a corollary of Theorem 27 by
onsidering that in homogeneous BCOD the graph corresponding
o a d-chain with d = dM is rooted and one of its roots is the agent
ith the minimum (if ℓ > u) or maximum (if u > ℓ) opinion.

.2.2. Convergence to a constant steady state
Conditions for which the confidence graph remains rooted

ver the system’s evolution are not easy to find. On the other
and, it is possible to prove that the opinions always converge
o a constant steady state which is a consensus or a clustering,
.e., in homogeneous BCOD it is not possible to have situations
ike that in Example 21. Moreover, the convergence is in finite
ime if d > 0, as shown by the following theorem.
m
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heorem 40. Consider BCOD (17) with influence function (22). Any
olution x(k) converges to a constant steady state which is either a
onsensus or a clustering. In particular, if dm > 0 the steady state is
eached in finite time and any convergence time k̄ satisfies

¯ ≤ 2

⎛⎝N − 1 +

⎡⎢⎢⎢ N

min
{
dm,

dM
2N

}v(x(0))
⎤⎥⎥⎥
⎞⎠ . (34)

Theorem 40 has been proved in Bernardo et al. (2022) (The-
rem 17) by introducing the set of agents who are not silent,
.e., they have at least one neighbor whose opinion is different
rom their own:

= {i ∈ I | ∃j ∈ Ni with xj ̸= xi}. (35)

heorem 40 implies that if dm > 0 the set M becomes empty
fter a finite number of steps. The following subsets of M are

also used:

Mmin = argmin
i∈M

xi, Mmax = argmax
i∈M

xi, (36)

hat is, Mmin (Mmax) is the set of indices of agents with the min-
mum (maximum) opinion among those who have at least one
eighbor with an opinion different from their own. By definition,
ny agent with opinion less (larger) than xq, with q ∈ Mmin
Mmax), will not change its opinion at the next time-step.

By using the sets (35) and (36), the following result can be
roved (Bernardo et al., 2022, Lemma 16).

roposition 41. Consider BCOD (17) with influence function (22)
nd dm > 0. For agent q, denote N=q = {i ∈ I | xi = xq} and

N+
=q = {i ∈ I | x+

i = x+
q }.

If u ≥ ℓ, then for any agent q ∈ Mmin at least one of the
conditions C1-C4 holds:

C1. |N+
=q| > |N=q|, i.e., at the next time-step the number of agents

with the same opinion of the agent q increases;
C2. N+

=q = N+
q , i.e., at next time-step all neighbors of q have the

same opinion;
C3. x+2

q − xq > u
2N2 , i.e., the increase of the opinion of q after two

time-steps is at least u/(2N2);
C4. x+

q − xq > ℓ
N , i.e., the increase of the opinion of q after one

time-step is at least ℓ/N.

If u ≤ ℓ, then for any agent q ∈ Mmax at least one of the
onditions C1, C2, C5, C6 holds:

C5. x+2
q − xq < −

ℓ

2N2 , i.e., the decrease of the opinion of q after
two time-steps is at least ℓ/(2N2),

C6. x+
q − xq < −

u
N , i.e., the decrease of the opinion of q after one

time-step is at least u/N.

It should be noticed that the occurrences of C1 and C2 do not
require that x+

q is equal to xq.
Proposition 41 contains the main conditions used in Bernardo

et al. (2022) for deriving the upper bound of the convergence time
expressed by (34).

Theorem 40 does not provide any indication on the form of the
steady state solution, e.g., the value of opinions at a consensus,
the number of clusters eventually reached and the number of
agents in each cluster. In Bernardo and Vasca (2020), Hegselmann
and Krause (2002) and Lorenz (2007), it has been shown via
numerical simulations that the number of clusters tends to in-
crease by decreasing the confidence thresholds ℓ and u, but some
exceptions may occur (Lorenz, 2006; Proskurnikov & Tempo,
2018).

Example 42. Consider the asymmetric homogeneous BCOD with
N = 10 agents. We considered a truncation of all real numbers
13
Fig. 7. Convergence time in the tests from Example 42. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. Number of clusters in the tests from Example 42.

with 8 decimal digits. The choice of a truncation on the decimal
numbers, i.e., to fix a desired precision on the numerical results,
is important because of the equality conditions which determine
the edges of the confidence graphs. For each value of ℓ in the set
0.1, 0.2, 0.5, 0.6, 0.8, 0.9}, 35 values of u uniformly distributed
in the interval [0.1, 1] have been chosen. For each pair {ℓ, u},
20.000 runs have been done. For each run, the initial opinions
have been chosen as pseudorandom numbers with uniform distri-
bution in the interval [0, 1] by using the Matlab command rand.
The plots in Fig. 7 show the average (red), maximum (blue) and
minimum (cyan) convergence time. It should be noticed that in
many experiments the convergence time is larger than N . Fig. 8
shows the same statistics for the number of clusters. For each
value of ℓ, the maximum and average number of clusters usually
(but not always) decreases as u increases.

Numerical results in Bernardo and Vasca (2020) show that
the average of the opinions at the steady state tends to move in
the direction of the asymmetry of the confidence interval, i.e., it
increases by increasing the upper threshold u and decreases by

increasing the lower threshold ℓ. A formal sensitivity analysis of
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he steady state behaviors with respect to the model parameters
s anything but trivial and represents an open issue.

.2.3. One-sided confident model
In homogeneous BCOD where all agents are one-sided con-

ident, i.e., all agents have a null lower or upper confidence
hreshold, it is dm = 0. If ℓ = 0 (u = 0), the agents are not
nfluenced by lower (upper) neighbors and from (17) all opinions
re nondecreasing (nonincreasing), i.e., x+

i ≥ xi (x+

i ≤ xi) for all
∈ I and k ∈ N0.
The following properties of one-sided confident BCOD can be

irectly derived as particular cases of dm ≥ 0:

• any crack cannot be recovered, i.e., Proposition 26 holds;
• the repeatedly composition jointly rooted property for the

infinite sequence of confidence graphs is a criterion for the
asymptotic convergence to a consensus, i.e., Theorem 27
holds;

• Proposition 30 is trivial since the condition v(x) ≤ dm
already corresponds to a consensus;

• the opinions preserve their order, i.e., Proposition 35 holds.

The convergence in finite time to a steady state or to a consensus
cannot be derived by Corollary 39 and Theorem 40 because the
hypothesis dm > 0 does not hold. The following example of a one-
sided confident BCOD shows the convergence to an asymptotic
consensus.

Example 43. Consider the one-sided confident BCOD with dM =

and dm = ℓ = 0 and an opinion vector x such that c−u ≤ x1 < c
and xi = c for all i ∈ I \ {1}. From (17) with (22), it follows that
x+

1 =
1
N x1 +

N−1
N c and x+

i = xi for all i ∈ I \ {1}. Then, one can
write

x+h
1 =

1
Nh x1 + c(N − 1)

(
1
Nh + · · · +

1
N

)
,

hich converges asymptotically to c , despite the opinion vector
s a dM-chain.

By excluding the trivial cases corresponding to initial condi-
ions already at a consensus or a clustering, the condition dm > 0
expressed by Corollary 39 and Theorem 40 is also necessary for
the convergence in finite time to a constant steady state. This
is implied by the following proposition (Bernardo et al., 2022,
Lemma 18).

Proposition 44. Consider BCOD (17) with influence function (22)
and dm = 0. For any i, j ∈ I, if xi ̸= xj at some time-step k ∈ N0,
then (xi − xj)(x+

i − x+

j ) > 0.

It is easy to verify that in one-sided confident BCOD with
ℓ = 0 (u = 0) for any solution x(k) that converges to an
asymptotic consensus, such consensus will correspond to the
maximum (minimum) initial opinion.

In order to analyze the convergence of the opinions, the con-
cepts of ϵ-practical consensus and ϵ-practical clustering in Defi-
nitions 23 and 24, respectively, can be considered. In particular,
if all opinions have a mutual distance less than or equal to dM ,
the system converges in finite time to a practical consensus, as
shown by the following proposition.

Proposition 45. Consider BCOD (17) with influence function (22)
and dm = 0. Given a solution x(k), if there exists a finite time-
step k∗

∈ N0 such that v(x(k∗)) ≤ dM , then for any δ ∈ (0, dM ]

there exists a finite ∆ ∈ N0 such that v(x(k∗
+∆)) ≤ δ with

∆ ≤

⌈
N
dM − δ

⌉
. (37)
δ

14
By using arguments similar to those in the proof of Corol-
lary 39 and Theorem 40, the convergence in finite time to an
ϵ-practical consensus or an ϵ-practical clustering can be proved.
In particular, if ℓ = 0 (u = 0) then at an ϵ-practical consensus it
is xi ∈ [xN (0) − ϵ, xN (0)] (xi ∈ [x1(0), x1(0) + ϵ]) for all i ∈ I.

6.3. Historical remarks: Convergence time estimates

The problems of the convergence in finite time to a constant
steady state and the determination of an upper bound on the
convergence time have been considered by several authors, as
discussed below. In Blondel et al. (2009), it is shown that the
worst-case convergence time depends on N .

Several papers investigated possible expressions for upper
bounds on the convergence time. The different results are syn-
thesized in Table 1. Only the results proposed by Bernardo et al.
(2022) and Shen and Sun (2009) are valid for asymmetric BCOD.
The upper bound N8

+N , which is valid also for multidimensional
opinions, has been proposed by Etesami and Başar (2015) for
symmetric BCOD. An upper bound of the order N5 has been pro-
vided by Martínez et al. (2007). By restricting the result in Shen
and Sun (2009) to symmetric models, one obtains that the con-
vergence time k̄ must satisfy the inequality

k̄ ≤

N∑
n=2

(n − 1)
⌈

ln(n − 1)
ln n − ln(n − 1)

⌉
+ 1, (38)

hich becomes very conservative when N increases. The upper
bound 32N4 for the convergence time has been proved by Touri
and Nedić (2011). More specifically, the bound presented in that
paper is given by a product of N2 and a function that depends on
the initial opinions and the adjoint dynamics. However, in order
to obtain an explicit formula for the upper bound, this function
has been bounded by a term proportional to N2, which leads to
a bound O(N4). By using the energy function (31), the constant
2 has been replaced by 2 in Martinsson (2016) (this estimate
emains valid for multidimensional opinions, see Section 10). The
ess tight upper bound 4N3

+2N has been found in Bhattacharyya
et al. (2013) by improving on the bound NO(N) resulting from
a more general theorem in Chazelle (2011). Other bounds of
the third order of the number of agents have been proposed
in Mohajer and Touri (2013), i.e., 3N3

+ N , and Coulson et al.
(2015), i.e., 6N3

− 7N2
− 2N , by using the energy function (32).

For asymmetric homogenous BCOD, Bernardo et al. (2022) have
provided the upper on the convergence time expressed in (34). An
alternative upper bound, which also depends on the number of
agents and the confidence thresholds, has been presented by Shen
and Sun (2009).

It is known that the worst-case convergence time (for a spe-
cially constructed initial condition) is Ω(N2); the relevant exam-
ple has been provided in Wedin and Hegarty (2015) (Theorem 1).
In the configurations examined by Wedin and Hegarty (2015),
however, one has v(x(0)) = O(N), which corresponds, as has
been already mentioned, to the upper estimate O(N3). Hence, a
gap between the lower and upper bounds on the convergence
time remains. To find an exact value of the convergence time as
a function of x(0) is a difficult open problem that has been solved
only for special situations, e.g., the convergence time for equally
spaced agents (and d small enough) is known to be 5N/6 +

(1) (Hegarty & Wedin, 2016, Remark 1.4).

. Heterogeneous model

According to Definition 12, BCOD is said to be heterogeneous
f the agents have different confidence intervals, i.e., ℓi ̸= ℓj
r u ̸= u for some i, j ∈ I, with ℓ , u ∈ R+, i ∈ I.
i j i i 0
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Table 1
Upper bound expressions for the convergence time.
Type of model Upper bound Reference

Symmetric N8
+ N Etesami and Başar (2015) (Theorem 2)

Symmetric O(N5) Martínez, Bullo, Cortés, and Frazzoli (2007) (Theorem III.1)
Asymmetric

∑N
n=2(n − 1)

⌈
ln(n−1)dM−ln(dm)

ln n−ln(n−1)

⌉
+ 1 Shen and Sun (2009) (Theorem 3.1)

Symmetric NO(N) Chazelle (2011) (Theorem 2.1)
Symmetric 32N4 Touri and Nedić (2011) (Theorem 2)
Symmetric 2N4 Martinsson (2016) (Theorem 1.1)
Symmetric 6N3

− 7N2
− 2N Coulson et al. (2015) (Theorem 3.1)

Symmetric 4N3
+ 2N Bhattacharyya et al. (2013) (Theorem 3.1)

Symmetric 3N3
+ N Mohajer and Touri (2013) (Theorem 1)

Asymmetric 2
(
N − 1 +

⌈
N

min
{
dm,

dM
2N

} v(x(0))
⌉)

Theorem 40 (Bernardo et al., 2022, Theorem 17)
w
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Heterogeneous BCOD allows one to capture realistic behaviors,
such as an agent may be influenced by another but not vice versa
and two disconnected agents may reconnect. For heterogeneous
BCOD, the order-preservation property given in Definition 13 may
be violated, as shown by Example 29 (see Fig. 5).

Heterogeneous BCOD can exhibit constant steady states which
re neither a consensus nor a clustering, as shown in Example 21.
he reasonable conjecture that asymmetric heterogeneous BCOD
onverges asymptotically to a constant steady state has not been
ormally proved yet. Moreover, in this case one should consider
definition of clustering which is weaker than Definition 19
ecause Example 21 shows that constant steady states with dif-
erent opinions but without the corresponding subgraphs being
isjoint are possible.
An exhaustive numerical analysis of heterogeneous BCOD is a

ontrivial task due to the high number of parameters. However,
umerical simulations have shown the tendency that hetero-
eneity leads to consensus more easily than homogeneity (Liang,
ang, & Wang, 2013; Lorenz, 2010). Moreover, numerical tests
ave shown that the number of clusters at a clustering usually
ncreases as the fraction of agents with low confidence threshold
ncreases and, keeping the distribution of the confidence bounds
ixed, the number of clusters decreases as the number of agents
ncreases (Kou et al., 2012).

Some (not many, indeed) theoretical results have been ob-
ained in the literature for particular classes of heterogeneous
COD. In symmetric heterogeneous BCOD (Definition 12), the
onfidence bounds are symmetric, and then the influence func-
ion (16) can be rewritten as

i(xi, xj) =

{
1, if |xj − xi| ≤ di,
0, otherwise,

(39)

ith i, j ∈ I and di = ℓi = ui. For this particular class
f heterogeneous BCOD, Mirtabatabaei and Bullo (2012) have
onjectured that any solution x(k) converges to a constant steady
tate and found sufficient conditions for the existence of a finite
ime after which the confidence graph remains constant (see Con-
ectures 2.1–2.3, Lemma 4.2, Theorem 4.4 and Proposition 4.11
herein). Moreover, Etesami (2020) has shown that the energy
unction in the form (28) is not a valid Lyapunov function for
ymmetric heterogeneous BCOD (see Fig. 6 therein).
Another special (and simpler) case of heterogeneous BCOD

s that of one-sided heterogeneous BCOD in which the agents
ave equal upper confidence thresholds and different lower con-
idence thresholds or vice versa. Let ηi ∈ [0, ℓ] be the lower-
eighborhood parameter associated to the agent i, according to
hich its confidence interval is [xi − ℓ + ηi, xi + u], with ℓ, u ∈
+

0 . Hence, in one-side BCOD with different lower thresholds the
nfluence function (16) can be rewritten as

i(xi, xj) =

{
1, if −ℓ+ ηi ≤ xj − xi ≤ u,

(40)

0, otherwise, e

15
ith i, j ∈ I. Analogously, given the upper-neighborhood pa-
ameter ηi ∈ [0, u], then in one-side BCOD with different upper
thresholds the influence function (16) can be written as

φi(xi, xj) =

{
1, if −ℓ ≤ xj − xi ≤ u − ηi,
0, otherwise,

(41)

ith i, j ∈ I. Obviously, the case in which the condition ηi = ηj
olds for all i, j ∈ I corresponds to homogeneous BCOD.
For some particular cases, a bound on the convergence time

or one-sided heterogeneous BCOD can be given (Bhattacharyya
t al., 2013; Coulson et al., 2015). To this aim, the following
emma, which is analogous of Proposition 41, can be proved.

emma 46. Consider BCOD (17). Say q an agent and define the sets
=q = {i ∈ I | xi = xq} and N+

=q = {i ∈ I | x+

i = x+
q }.

If u ≥ ℓ and the influence function (40) is considered, then for
ny agent q ∈ Mmin at least one of the conditions C1-C4 holds:

C1. |N+
=q| > |N=q|, i.e., at the next time-step the number of agents

with the same opinion of the agent q increases;
C2. N+

=q = N+
q , i.e., at next time-step all neighbors of q have the

same opinion;
C3. x+2

q − xq > u
2N2 , i.e., the increase of the opinion of q after two

time-steps is at least u/(2N2);
C4. x+

q − xq > ℓ−ηmax
N , where ηmax = maxi∈I ηi, i.e., the increase

of the opinion of q after one time-step is at least (ℓ−ηmax)/N.

If u ≤ ℓ and the influence function (41) is considered, then for
ny agent q ∈ Mmax at least one of the conditions C1, C2, C5, C6,
olds:

C5. x+2
q − xq < −

ℓ

2N2 , i.e., the decrease of the opinion of q after
two time-steps is at least ℓ/(2N2),

C6. x+
q − xq < −

u−ηmax
N , i.e., the decrease of the opinion of q after

one time-step is at least (u − ηmax)/N.

Lemma 46 can be used to determine an upper bound on the
convergence time in some particular cases.

Theorem 47. Consider BCOD (17) with (40) and assume that
u ≥ ℓ > ηmax, with ηmax = maxi∈I ηi. Any solution x(k) converges
n finite time to a constant steady state which is either a consensus
r a clustering. Moreover, any convergence time k̄ satisfies

¯ ≤ 2

(
N − 1 +

⌈
N

min
{
ℓ− ηmax,

u
2N

}v(x(0))⌉) . (42)

If ℓ ≥ u > ηmax a result similar to Theorem 47 can be
roved by exchanging the roles of u and ℓ and by considering
he influence function (41).

Lemma 46 and Theorem 47 have been proved in Bhattacharyya
t al. (2013) (Lemma 3.4 and Theorem 3.3, respectively) for ℓ = u
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n (40) and (41) and can be easily extended by applying sim-
lar arguments to those used in Bernardo et al. (2022) for the
omogeneous case.
In Coulson et al. (2015) (Theorem 3.1), Lyapunov arguments

ave been used to prove that one-sided heterogeneous BCOD
eaches a constant steady state within a time interval propor-
ional to N3.

8. Stubbornness

The concept of stubbornness introduces the possibility that
ome agents, independently from system dynamics, do not
hange their opinions but can influence those of the other agents.
stubborn (or radical) agent σ ∈ I is such that ℓσ = uσ = 0. This

definition, together with (16) and (17), implies that the opinion
of a stubborn agent is constant, i.e., x+

σ = xσ for all k ∈ N0. By
considering Definition 14, it follows that a stubborn agent is silent
for any time-step. For the sake of simplicity, in the following we
consider the presence of a single stubborn agent.

It is easy to verify that the presence of a stubborn agent does
not influence the validity of Propositions 1 and 3, i.e., the opinion
of any agent at the next time-step is bounded by the minimum
and maximum opinions of its neighbors and the range of opinions
is non-increasing.

It is also easy to find situations such that during the time
evolution the opinion of some agents intersects with that of
the stubborn. On the other hand, in the case of homogeneous
confidence intervals for the non-stubborn agents, the opinions of
these agents preserve their order, i.e., Proposition 35 holds for
all i ∈ I \ {σ }. Clearly, the presence of a stubborn agent does not
influence the fact that, in general, the order preservation property
is not verified for the heterogeneous model. Also in the presence
of a stubborn agent, any crack between two adjacent agents
with a relative distance larger than dM cannot be recovered,
i.e., Proposition 26 holds, as shown by the following example.

Example 48. Consider the heterogeneous BCOD with N = 5
agents, ℓi = 0.1, i ∈ I \ {3}, ui = 0.1, i ∈ I \ {1, 3}, u1 = 0.4,
3 = u3 = 0. Then, the agent 3 is stubborn. Fig. 9 shows the
imulation results for x(0) = [0.2, 0.3, 0.4, 0.6, 0.7]⊤. The solu-
ion converges asymptotically to a clustering corresponding to the
pinion 0.6382 (for the agents 1, 4 and 5 who reach this value
t k = 5) and the stubborn opinion 0.4 which is asymptotically
eached by the agent 2. The corresponding confidence graphs are
hown in Fig. 10.

The analysis of convergence in finite time for BCOD in pres-
nce of a stubborn agent is not relevant. In order to motivate this,
e show that Proposition 30 holds only in a very particular case.
y assuming that v(x) ≤ dm at the time-step k, all agents except
he stubborn at the next time-step have the same opinion. Such
shared opinion is given by

¯
+

=
1
N

⎛⎝ ∑
i∈I\{σ }

xi + xσ

⎞⎠ . (43)

ay x̄++ the opinion at the time-step k+2, which is shared by all
gents except for the stubborn agent. Then, one can write

¯
++

=
N − 1
N

x̄+
+

1
N
xσ , (44)

which shows that the only possibility that the convergence to
the stubborn opinion is in finite time (in at most one time-step,
indeed) is that when the confidence graph excluding the stubborn
becomes complete, i.e., v(x−) > dm and v(x) ≤ dm with x−

=

x(k−1), and the mean of the opinions of all agents except that of
16
Fig. 9. Opinions of the BCOD in Example 48.

Fig. 10. Confidence graphs for the opinions in Fig. 9: at k = 0 (a), at k = 1 (b),
t k = 2 (c), at k = 3 (d), for any k ≥ 4 (e).

he stubborn is equal to the stubborn opinion, i.e.,
∑

i∈I\{σ }
xi =

N − 1)xσ .
If the stubborn opinion diffuses over the network then the

pinions of a group of agents usually converge to the stubborn
pinion (Krause, 2015). For homogeneous BCOD with a single
tubborn agent, if the stubborn does not become isolated then
he opinions of a group of agents, not necessarily all of them, con-
erge to the stubborn opinion. The following theorem is proved
n Hegselmann and Krause (2015) (Constant Signal Theorem) for
ymmetric models.

heorem 49. Consider BCOD (17) with influence function (22) and
= ℓi = ui for all i ∈ I \ {σ }, where σ is the index of a stubborn
gent. The following conditions hold:

C1. there exist a (possibly empty) set A of agents and a finite time-
step k̄ such that the opinions of the agents in A ∪ {σ } are a
d-chain for all k ≥ k̄;

C2. the opinions of the agents in A will converge to the stubborn
opinion;

C3. the opinions of the agents in I \ A will converge in finite time
to a constant steady state with opinions different from that of
the stubborn.
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The result above can be easily generalized to the case of
asymmetric homogeneous BCOD. Theorem 49 does not provide
any indication about the number of agents included in the set A.
imulation results in Hegselmann and Krause (2015) obtained by
ssuming a stubborn opinion close to the minimum or maximum
pinions have shown that the number of agents in A tends to

increase with the confidence bound.
A similar result to Theorem 49 has been proved in Chazelle

and Wang (2017) (Theorem 1.2) for the case of multiple stubborn
agents. In particular, it has been shown that the opinions con-
verge asymptotically to a fixed point for any number of stubborn
agents and also for agents with a multidimensional state. How-
ever, it should be noticed that the steady state in the presence
of stubborn agents need not be a clustering in the sense of
Definition 19, as shown by Example 21.

The model with stubborn agents exhibits also some counter-
intuitive properties. Paradoxically, an increase in the number of
stubborn agents can drastically decrease the number of agents
whose opinions coincide with that of a stubborn agent (Hegsel-
mann & Krause, 2015).

A formal analysis for the convergence properties of heteroge-
neous BCOD in the presence of stubborn agents is still an open
issue.

9. Continuous-time model

The theory of discrete-time BCOD can be generalized, to some
extent, to continuous-time dynamical systems (Blondel et al.,
2010; Yang et al., 2014):

ẋi(t) =

∑
j∈I

φi(xi, xj)(xj(t) − xi(t)), (45)

where φi(xi, xj) is defined in (16). The principal limitation of the
continuous-time theory is the absence of a classical (Caratheó-
dory) solution for some initial conditions (even in the homoge-
neous symmetric case, the solution existence has been proved
for almost all x(0)). A continuous-time counterpart of Lemma 6
(Proskurnikov & Tempo, 2018, Lemma 5) allows one to prove the
convergence of each classical solution in the case of homoge-
neous BCOD (45); the work Yang et al. (2014) has given some
sufficient conditions for the asymptotic convergence to a con-
sensus. Classical solutions of (45) enjoy the order-preservation
property (Blondel et al., 2010).

The problem of solution existence can be resolved in two
ways. On one hand, generalized solutions can be introduced such
as Krasovskii or Filippov solutions (Ceragioli & Frasca, 2012; Pic-
coli & Rossi, 2021). A generalized solution is not uniquely deter-
mined by its initial condition and, in general, may exhibit some
‘‘pathological’’ behavior, e.g., a solution starting at an equilibrium
point may leave it and converge to another equilibrium (Ceragioli
& Frasca, 2012). On the other hand, one can replace the dis-
continuous indicator function (16) by its ‘‘smoothened’’ version,
e.g., φi(xi, xj) = ψ(xi − xj), where ψ is an even C1-smooth
function supported on [−d, d]. Such continuous-time BCOD has
been studied in many works (Ceragioli & Frasca, 2012; Jabin &
Motsch, 2014; Motsch & Tadmor, 2014; Stamoulas & Rathinam,
2018; Yang et al., 2014); their behaviors appear to be similar to
discrete-time symmetric homogeneous BCOD.

An extension of continuous-time BCOD with symmetric and
homogeneous confidence thresholds and antagonistic interac-
tions has been analyzed by Altafini and Ceragioli (2018), Ceragioli
et al. (2016) and He, Liu, Wu, and Fang (2020). In these models,
the sign of each term on the right-hand side of (45) depends on
the sign of the product of the two corresponding opinions. It has
been shown that the order-preservation property is valid and the
asymptotic convergence to a steady state solution holds (Altafini
& Ceragioli, 2018, Theorem 2).
 n
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10. Generalizations of BCOD

In the last decade, numerous modifications of standard BCOD
have been proposed. In such models, the key idea of bounded
confidence (that is, the agents do not take into consideration
too dissimilar opinions) is preserved, while the dynamical mech-
anism of opinion formation (17) is altered in different ways
in order to capture additional features of the complex social
influence mechanism.

10.1. Multidimensional BCOD

Up to now, models with real-valued opinions have been con-
sidered. In many situations, however, opinions are naturally rep-
resented by vectors, being, e.g., subjective probability distribu-
tions (DeGroot, 1974), decisions on how to distribute some re-
source between several entities (Friedkin, Proskurnikov, Mei, &
Bullo, 2019), etc. Vector-valued opinions can be used to charac-
terize belief systems (Friedkin, Proskurnikov, Tempo, & Parsegov,
2016), multidimensional threat appraisal (Friedkin et al., 2021) or
sets of cultural traits (Axelrod, 1997).

The definition of BCOD (as well as the more general DeGroot
dynamics) can be easily extended to multidimensional opinions,
using a convenient matrix notation form (DeGroot, 1974; Fried-
kin, 2015). Namely, if one replaces the scalar opinions xi ∈ R
by the s-dimensional vectors xi = (xi1, . . . , xis)⊤ ∈ Rs, then the
opinion vector (3) is naturally replaced by the N × s matrix

x =

⎡⎢⎣x⊤

1
...

x⊤

N

⎤⎥⎦ =

⎡⎢⎣x11 . . . x1s
...

. . .
...

xN1 . . . xNs

⎤⎥⎦ ∈ RN×s.

Using this convention, the DeGroot equation (5) generalizes to
the multidimensional opinion case. A multi-dimensional coun-
terpart of Proposition 1 ensures that the convex hull D(x) =

conv {x1, . . . , xN} spanned by the opinions is non-expanding, i.e.,
D(x+) ⊆ D(x) for all k ∈ N0. Introducing some norm on Rs, one
can define the range of opinions v(x) = maxi,j ∥xi − xj∥, which
corresponds to the diameter of the set D(x), and prove easily that
his function does not increase along the solutions (5).

In order to generalize the Eqs. (17)–(19) to vector-valued opin-
ons, the confidence intervals have to be replaced by Minkowski
ums xi + Oi ⊂ Rs, and functions φi(xi, xj) from (16) have to be
efined as

i(xi, xj) =

{
1, if xj − xi ∈ Oi,
0, otherwise.

(46)

most typical choice of the confidence set Oi (which has to be
bounded) is the ball in some norm ∥ · ∥ on Rs, i.e.,

i = {z ∈ Rs
: ∥z∥ ≤ di}, (47)

being a multidimensional counterpart of the symmetric interval
[−di, di] for all i ∈ I in the scalar case7. The concepts of
consensus, clustering and confidence graph generalize then to
multidimensional BCOD.

The model with confidence sets (47) corresponding to the
Euclidean norm on Rs has been introduced in the seminal work
by Nedic and Touri (2012) who have proved that, in the homo-
geneous case, i.e., d1 = · · · = dN , BCOD terminates in finite
time. The original proof in Nedic and Touri (2012) (Proposition 4)
is based on a special quadratic Lyapunov function with time-
varying coefficients. An alternative proof, applicable to a general

7 To the best of the authors’ knowledge, models with more general sets
i ⊂ Rs , s ≥ 2, (which, in theory, can be asymmetric and non-convex) have
ot been studied.
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orm, can be obtained by using Lemma 6 (Proskurnikov et al.,
020; Proskurnikov & Tempo, 2018). For the case of the Euclidean
orm in (47), polynomial upper bounds for the convergence
ime have been obtained (Bhattacharyya et al., 2013; Etesami
Başar, 2015; Etesami, Başar, Nedić, & Touri, 2013; Martins-

on, 2016). It has been shown (Martinsson, 2016, Theorem 1.1)
hat the multidimensional homogeneous BCOD terminates in no
ore than 2N4 steps independent of the dimension s; it is also

known (Bhattacharyya et al., 2013, Theorem 5.1) that for s ≥ 2
it is k̄ ≥ N2/28 for some initial conditions. The upper estimates
of the convergence time are based on the energy-type Lyapunov
function whose structure is similar to (28). Two principal dif-
ferences in the analysis of scalar and multidimensional BCOD
are, first, the absence of the order-preservation property in the
vector-valued case and, second, more intricate dynamics of con-
fidence graphs G(x(k)) that may not only loose but also acquire
connectivity as the opinions evolve. There is, in particular, no
counterpart of Proposition 26 in the multidimensional case. How-
ever, De Pasquale and Valcher (2022) have provided sufficient
conditions for the order-preservation property in homogeneous
multidimensional BCOD when ℓ∞-norm is used in the confidence
sets (47) (see Proposition 20 therein).

The convergence properties of heterogeneous multidimen-
sional BCOD, even for the Euclidean norm case, have not been
much studied. It can be shown that Theorem 27 remains valid
in the multidimensional case. Moreover, Theorem 34 has been
proposed for the more general case of heterogeneous multidi-
mensional BCOD (Etesami & Başar, 2015, Theorem 7). Chazelle
and Wang (2017) have considered heterogeneous multidimen-
sional models where each pair of agents is characterized by a
confidence bound and then the influence graphs are undirected.
For this class of BCOD, in Theorem 1.3 they have proved that the
system converges asymptotically to a fixed-point attractor and, if
any pair of agents have a positive confidence threshold, then the
communication network converges to a fixed graph.

10.2. Self-weights and susceptibility to social influence

In classical BCOD, an agent assigns equal influence weights
to self and to the others; in particular, the larger number of
neighbors Ni(x) the agent i has, the lower is its self-influence
weight aii(x). The work Urbig, Lorenz, and Herzberg (2008) and
the subsequent papers Fu, Zhang, and Li (2015) and Han, Huang,
and Yang (2019) relax this assumption by introducing the agent’s
level of self-confidence, which is a constant value αi ∈ [0, 1]
that characterizes the agent’s susceptibility to social influence;
the remaining weight 1 − αi is equally allocated between the
neighbors in the confidence graph:

x+

i = αixi +
1 − αi∑

j∈I\{i} φi(xi, xj)
φi(xi, xj)xj (48)

(if the denominator vanishes, it is supposed that x+

i = xi). A
similar model has been considered by Chazelle and Wang (2017)
with the only difference that the summation in (48) is taken over
the whole set I (in this situation, the self-weight admits a lower
bound aii(x) ≥ αi):

x+

i = αixi +
1 − αi∑

j∈I φi(xi, xj)
φi(xi, xj)xj. (49)

Notice that αi = 1 is equivalent to the stubbornness of the agent i:
in this situation, one has x+

i = xi for all k ∈ N0.
Models with static self-weight usually do not enjoy the finite

convergence time property. Notice, however, that in the case
where 0 < αi < 1 and ℓi = ui = d for all i ∈ I (the
confidence bounds are symmetric and homogeneous), Lemma 6
is applicable, which ensures asymptotic convergence. Another
18
convergence result is the aforementioned Chazelle and Wang
(2017) (Theorem 1.2), where some of the agents are stubborn,
whereas the others have αi < 1 and obey symmetric homoge-
neous BCOD equations. To the best of the authors’ knowledge,
the analysis of solutions convergence in (48) and (49) is far
from being completed. An elegant result of Chazelle and Wang
(2017) (Theorem 1.1) entails that the solutions of (49) obey the
inequality∑
i∈I

∞∑
k=0

|xi(k + 1) − xi(k)|2 ≤
N2

4
. (50)

ormally, this condition does not imply the existence of a limit
imk→∞ x(k), showing, however, that the increment of the opinion
ector x+

−x vanishes as k → ∞. The condition in (50) has been
roved by using the algorithmic approach based on a distributed
yapunov function.

0.3. BCOD models with ‘‘truth-seekers’’

The series of works Douven and Hegselmann (2022), Douven
nd Riegler (2010), Glass and Glass (2021), Hegselmann and
rause (2006) and Kurz and Rambau (2011) have proposed a
odification of BCOD that involves a so-called ‘‘truth’’ parameter:

+

i = αiτ +
1 − αi∑

j∈I φi(xi, xj)

∑
j∈I

φi(xi, xj)xj. (51)

lthough the structure of (51) may seem similar to (48), the
oefficient αi has a principally different interpretation and is not
elated to an agent’s self-influence weight. It is supposed that
ome of the agents (‘‘truth-seekers’’) are interested to learn the
alue of some numerical parameter, which is called the ‘‘truth’’.
lthough the agents may not know the truth exactly, they may
ave access to or generate new data (arguments, evidences, test
esults, etc.) that point in the direction of τ (Hegselmann &
rause, 2006). This leads to the presence of a constant term αiτ ,
hich Hegselmann and Krause (2006) have called the ‘‘objective
omponent’’. The coefficient αi ∈ [0, 1) characterizes the agent’s
esire to find the true value or the ‘‘attractivity’’ of the truth for
he agent. Formally, one may also consider agents with αi = 1
ho are aware of the truth variable and have xi ≡ τ .
Similar to models with static self-influence weights, the model

51) does not converge in finite time. The convergence of this
odel has been proved only in the case of homogeneous and
ymmetric confidence bounds. The first proof proposed in
hazelle (2011) (Theorem 2.2) is based on a method of power
eries (s-energy method). A more elementary proof, based on
he theory of averaging inequalities, has been later found in
roskurnikov et al. (2020) (Theorem 6). It has been proved, in
articular, that the opinions of the truth-seekers (agents with
i > 0) eventually asymptotically converge to the truth τ , a

property which appears to be nontrivial and, in fact, fails to hold
for asymmetric BCOD (Kurz & Rambau, 2011, p. 867).

In order to capture the measurement errors on the truth
value, the model (51) has been extended by Douven (2010) by
adding some noise to the truth τ . A constant steady state solution
cannot be reached in this case due to the presence of noise, but
for sufficiently large confidence thresholds and strengths of the
attraction of truth a non-constant practical consensus around the
true value is achieved. Glass and Glass (2021) have proposed a
variant of the model (51) where each agent is influenced by the
true opinion τ only if τ lies within its confidence interval, i.e., at
each time-step k the weight α is set equal to 0 if φ (x , τ ) = 0.
i i i



C. Bernardo, C. Altafini, A. Proskurnikov et al. Automatica 159 (2024) 111302

d
h
s
s
i
p

(
(
o
(
i
t
w

1

p
p
s
j
B
T

i

x

a
P
o
t
j
k

i

w
a
s
s
b
a
s

s
s
d
e
d
r
D

c
s
i
d
r
p
[

c
A
c
t
t
c

1

w
o
l
g
b
e
h
B
n
o

(

φ

T
t
c

A modified BCOD which includes self-belief and true value has
been proposed by Li, Li, Du, Tang and Fan (2022). Accordingly, the
model is expressed as

x+

i =αiτ + (1 − αi)(
βixi +

1 − βi∑
j∈I φi(xi, xj)

∑
j∈I

φi(xi, xj)xj
)
, (52)

where αi and βi are the strength of the attraction of truth and the
self-belief of the agent i, respectively.

Finally, a sophisticated hierarchical BCOD with truth-seekers
has been proposed by Zhao, Zhang, Tang, and Kou (2016). In this
model, the agents are divided into two classes: the leaders and
the followers. A leader’s opinion is influenced by the truth and
the other leaders’ opinions, but not by the followers’ opinions.
The followers have no access to the truth, but they are influenced
by each other and by the leaders. The resulting dynamics is as
follows. Assume that the first N1 agents are followers, and define
the sets IF = {1, . . . ,N1} and IL = {N1+1, . . . ,N}. The follower i
updates its opinion according to

x+

i =
αi∑

j∈IL
φi(xi, xj)

∑
j∈IL

φi(xi, xj)xj

+
1 − αi∑

j∈IF
φi(xi, xj)

∑
j∈IF

φi(xi, xj)xj, (53)

where αi ∈ [0, 1] is the trust degree of the agent i on the leaders.
The leader i updates its opinion according to

x+

i = wiτ +
1 − wi∑

j∈IL
φi(xi, xj)

∑
j∈IL

φi(xi, xj)xj, (54)

where τ ∈ R is the truth and wi ∈ [0, 1] characterizes the leader’s
esire to find the truth. This model with two leader groups
aving opposite opinions has been analyzed through numerical
imulations by Zhao, Kou, Peng, and Chen (2018). It has been
hown that the followers do not converge to the leaders’ opinions,
.e., in such a scenario leader groups have no complete influence
ower on the followers’ opinions.
It can be noticed that the constant term in the models (51)–

54) makes them similar to the seminal Friedkin–Johnsen model
Friedkin, 2015), where the constant vector is usually the initial
pinion x(0), but can also be a more general vector of prejudice
Proskurnikov & Tempo, 2017). Sometimes the constant value τ
s also interpreted as an agent’s prejudice (Su et al., 2019). Unlike
he standard Friedkin–Johnsen model, however, the influence
eights depend on the opinion vector x.

0.4. Random noises and disturbances

A number of randomized versions of BCOD have been pro-
osed in the literature. The opinion dynamics becomes random in
resence of stochastic exogenous signals influencing the opinions,
uch as communication noises, environmental disturbances and
umps that are used to portray the ‘‘free will’’ effect (Pineda &
uendía, 2015; Pineda, Toral, & Hernandez-Garcia, 2009; Pineda,
oral, & Hernández-García, 2013).
An arbitrarily small additive disturbance ξ = ξ (k) in the

terative averaging dynamics (5), i.e.,
+

= Ax + ξ,

s can be easily seen, destroys the boundedness of opinions:
roposition 1 fails to be valid, and, generally speaking, the range
f opinions can grow unbounded. In many situations, however,
he opinions have to stay in a predefined interval, being, e.g., sub-
ective probabilities (DeGroot, 1974) or certainties of belief (Fried-

in et al., 2016). Hence, most BCOD models with additive noises

19
ntroduce a projection map, preventing the updated opinion x+

i
from leaving the desired interval.

Assuming, without loss of generality, that the opinions are
confined to the interval [0, 1], consider the projector

Π[0,1](y) =

⎧⎨⎩
1, if y > 1,
y, if y ∈ [0, 1],
0, otherwise.

(55)

A natural extension of BCOD (17) (Chen, Su, Ding, & Hong, 2019;
Su, Chen et al., 2017; Su et al., 2019; Volkova, Manita, & Manita,
2019) is then given by

x+

i = Π[0,1]

( 1∑
j∈I φi(xi, xj)

∑
j∈I

φi(xi, xj)xj + ξi

)
, (56)

here ξi = ξi(k) are random environmental disturbances that
re typical supposed to be i.i.d., although this assumption can be
ubstantially relaxed (Chen et al., 2019). In particular, one can
uppose that the source of the signal ξi is not the environment
ut a noisy communication: the opinions xj, j ∈ Ni, used by the
gent i are polluted by noises ζij(k) (Chen et al., 2019). In this
ituation, ξi(k) is the average of the noises ζij(k).
The presence of noises, obviously, makes asymptotic consen-

us (and even) the convergence of the opinions impossible. For
ymmetric homogeneous BCOD (56) with the confidence range

= ℓi = ui for all i ∈ I, an elegant result in Su, Chen
t al. (2017) (Theorem 5) ensures that in presence of bounded
isturbances |ξi(k)| ≤ d/2 that are i.i.d. (and satisfy some non-
estrictive technical assumptions), a d-practical consensus (see
efinition 23) is achieved in finite time with probability 1.
An example of non-additive random disturbance has been

onsidered in a model from Pineda et al. (2013). At each time-
tep, the agents have the opportunity to change their opin-
ons at random values with some probability equal to p or up-
ate it according to BCOD with probability 1 − p. Two possible
anges within which the random value is selected have been
roposed: (i) the full interval of possible opinions, for instance,
mini∈I xi(0),maxi∈I xi(0)]; (ii) a random interval around the
urrent opinion, i.e., [xi − ξ, xi + ξ ], with ξ ∈ R and i ∈ I.
constant steady state cannot be reached due to the possible

hoice of random opinions. Numerical simulations have shown
hat the model exhibits practical clustering (Definition 24); prac-
ical clusters containing few agents appear between practical
lusters with many agents.

0.5. BCOD with general influence functions

The key property of homophily, that is, assigning influence
eights only to agents with similar opinions, is preserved if
ne replaces the influence function (16) by more general non-
inearities. As has been already mentioned, one can consider the
eneral function (46), where Oi is not a closed interval or a closed
all (47), but some other bounded set. For instance, in Blondel
t al. (2009), open symmetric confidence intervals Oi = (−d, d)
ave been considered. It can be shown that the properties of such
COD are not principally different from the symmetric homoge-
eous BCOD discussed in Section 6, although, obviously, the sets
f equilibrium points differ.
In a model from Bernardo, Vasca et al. (2021) and Vasca et al.

2021), the sets Oi are unions of disjoint open intervals:

i(xi, xj) =

⎧⎨⎩
1, if −ℓi < xj − xi < −ϵ,

1, if ϵ < xj − xi < ui,

0, otherwise.
(57)

he (small) similarity interval is introduced to reflect the fact that
wo agents with similar opinions do not interact; this is a special
ase of heterophilous behavior (Motsch & Tadmor, 2014).



C. Bernardo, C. Altafini, A. Proskurnikov et al. Automatica 159 (2024) 111302

w
i

φ

w

w
t
a

More generally, one can consider the situation where the
influence function φi(xi, xj) in the definition of BCOD is replaced
by a more general function φij(xi, xj) that is determined not
only by the agent i, but also by the agent j. For instance, the
model with ‘‘reputation’’ of agents has been proposed by Blondel
et al. (2009), Chen, Glass, and McCartney (2016) and Douven and
Riegler (2010) as a variant of symmetric heterogeneous BCOD,
where φij(xi, xj) = φi(xi, xj)rj, with φi(xi, xj) is defined in (16)
(where ℓi = ui = d) and rj ∈ R+ is the reputation of the
agent j. Numerical tests have shown that, by reducing the larger
reputations and by increasing the confidence thresholds, it is
easier to achieve a consensus. A BCOD in which the reputation
is proportional to the opinion distance has been proposed by Xi,
Liu, and Chai (2022).

In Chen, Zhang, Xie and Li (2017) and Xu, Cai, Wu, Ai, and Xu
(2020), an extension of BCOD with static self-influence weights
(48) is provided by introducing the concept of media literacy for
which each agent selects its neighbors not only based on their
opinions’ closeness but also on their social similarities. Then, the
opinions are updated according to (48), where φi(xi, xj) is replaced
by

φij(xi, xj) =

⎧⎨⎩
1, if w(|mj − mi| − m̄)

+(1 − w)(|xj − xi| − di) ≤ 0,
0, otherwise,

(58)

and φii(xi, xi) = 0 for all i ∈ I, where di ∈ R and mi ∈ R are
the confidence threshold and the media literacy of the agent i,
respectively, m̄ ∈ R is the lower limit of the media literacy that
the agents can accept and w ∈ [0, 1] is the weight given to the
media literacy. Numerical simulations lead to a conjecture that,
for m̄ being large and w close to 1, a consensus can be reached
regardless of the confidence bounds.

A number of models (Dietrich, Martin, & Jungers, 2016; Jabin
& Motsch, 2014; Motsch & Tadmor, 2014) introduce even more
general coupling functions φij(xi, xj) that attain not only binary
values, e.g., φij(xi, xj) = f (∥xi − xj∥), where f : [0,∞) → [0,∞)
is some function with a compact support. Properties of such
models are studied mainly in the situations where the weight
matrix is type-symmetric and the graph G(x) is undirected; the
convergence of every solution can be proved by using Lemma 6 or
energy-type Lyapunov functions (Proskurnikov & Tempo, 2018).
Moreover, under some assumption on the function f (∥xi−xj∥), Di-
etrich et al. (2016) have analyzed the diameter of a cluster and
its distance from the other agents to provide a lower bound on
the number of time-steps required for the cluster before merging
with the others (see Theorem 1 therein).

In Hendrickx (2008), a similar influence function φi(xi, xj) =

f (xj − xi) has been considered, where f : R → R+ is a
general function with a finite support (this function need not be
even). It is shown that this BCOD enjoys the order-preservation
property if log f is a concave function (that attains the value
−∞ outside the support of f ); this condition is almost necessary
(modulo some technical assumptions) for the order-preservation
property (Hendrickx, 2008, Theorem 2).

Finally, the influence functions can encode additional com-
munication constraints. In classical BCOD, it is assumed that the
agents are aware of each other’s opinions, which, of course, is
a simplification: an agent interacts with its inner circle and not
with the whole group. There exist a number of models where the
agents can be influenced only by the adjacent agents determined
by a communication graph, usually undirected (Etesami, 2019;
Fortunato, 2005; Fotakis, Palyvos-Giannas, & Skoulakis, 2016;
Lanchier & Li, 2022; Li & Zhang, 2010; Parasnis, Franceschetti, &
Touri, 2018, 2021; Schawe et al., 2021). Generalizing symmetric
homogeneous BCOD, one can replace φi(xi, xj) in (16) by

φij(xi, xj) =

{
1, if |xj − xi| ≤ d and (j, i) ∈ E,

(59)

0, otherwise, o

20
where d is the confidence bound and E is the edge set of a
communication graph. It has been shown that the convergence
time and the number of clusters at the steady state decrease
as the confidence bound increases. Fotakis et al. (2016) have
proved the convergence to a steady state of the model (59)
by analyzing the temporal graph connectivity (see Theorem 2
therein). A lower bound on its convergence time has been pro-
vided in Parasnis et al. (2018) (Proposition 3) by using the concept
of conductance (Kannan, Vempala, & Vetta, 2004). Moreover,
under the assumption that the influence graph remains con-
nected, an upper bound of the order O(N3logN) on the time-
steps required to achieve a consensus has been given in Parasnis
et al. (2021) (Proposition 4). Chen, Wu, Wang and Li (2017)
have analyzed a BCOD with limited interactions which includes
static self-influence weights and reputation. A model with truth-
seeking, noises, communication constraints and reputation has
been presented by Riegler and Douven (2010).

10.6. Group influence

The effect of group influence (or group pressure) on an agent’s
opinion has been examined in some works. The public and pri-
vate opinions (possibly different) of the agents are considered,
and each agent can observe only the expressed opinions of the
others (Cheng, Luo, & Yu, 2020; Cheng & Yu, 2019, 2022; Hou, Li,
& Jiang, 2021). Denote xi ∈ R and yi ∈ R the private and public
opinions of the i-th agent at the time-step k, respectively. At each
time-step, the agent i first expresses its public opinion yi, then
observes the public opinion of the others and updates its private
opinion as

x+

i = αiyi +
1 − αi

1 +
∑

j∈I φi(xi, yj)

⎛⎝xi +
∑
j∈I

φi(xi, yj)yj

⎞⎠ , (60)

here αi ∈ (0, 1] is called self-persuasion of the agent i and the
nfluence function φi(xi, yj) is defined as

i(xi, yj) =

{
1, if |yj − xi| ≤ di and j ̸= i,
0, otherwise,

(61)

with di ∈ R is the confidence threshold of the agent i. Once the
private opinion is updated, the agent i updates its public opinion
according to

y+

i = (1 − pi)x+

i + pi
1
N

∑
j∈I

yj, (62)

here y+

i := yi(k+1) and pi ∈ (0, 1] is called group pressure of the
agent i. It has been proved that the gap between public opinions
is less than or equal to the gap between private opinions and
when a consensus is reached the private and public opinions have
the same value (Cheng et al., 2020, Theorem 1). This result has
been proved by showing that the sequence of influence graphs is
composition jointly rooted.

The averaged group opinion also appears in Chen et al. (2019),
which has introduced a generalization of (56) as follows

x+

i = Π[0,1]

(
αix̄ +

1 − αi∑
j∈I φi(xi, xj)

∑
j∈I

φi(xi, xj)xj + ζij

)
, (63)

here ζij ∈ [−η, η] are noises, x̄ =
1
N

∑
j∈I xj is the average of

he opinions intended as a background opinion which influences
ll agents and αi ∈ [0, 1] is the weight given to the background
pinion.
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1. Applications and validation of BCOD

Recently, opinion dynamics models have been tested by using
eal data on different application fields (Bernardo, Wang et al.,
021; Dong, Zhan, Kou, Ding, & Liang, 2018; Li, Liu and Chai,
022; Zha et al., 2020). More specifically, some authors have con-
idered practical validations for synchronous bounded confidence
echanisms.
Homogeneous BCOD with self-weights has been proposed

y Wan, Ma, and Pan (2018) to describe the dynamic nature
f online consumer reviews in the context of e-commerce. Ac-
ording to this mechanism, the viewer’s opinion depends on the
umber of reviews considered, their order, which is determined
y the specific e-commerce, and the confidence bounds. The
odel has been tested using the reviews of 100 products from
mazon.com, by showing that the opinions on a product converge
o a consensus or at most two clusters.

A randomized opinion dynamics model in which agents in-
eract according to both the bounded confidence strategy and
he geographic distance has been proposed by Haensch, Dragovic,
örgers, and Boghosian (2023) to describe the opinions’ evolution
bout Covid-19 vaccination in the United States. In order to
odel external influences, such as those from mass media and
overnors, the agent set includes two stubborn agents having
pposite extreme opinions. Simulation results have validated the
roposed BCOD by using real data collected in two different time
rames.

A symmetric homogeneous BCOD with limited interactions
nd variable confidence bound has been used for the community
etection problem by Morarescu and Girard (2010). According to
his approach, the communities are the sets of agents that reach
he same opinion. The effectiveness of the proposed approach has
een shown through a comparison with the typical community
etection approaches on three examples.
Pilyugin and Campi (2019) have proposed a dynamical model

f voting process that is based on the principle of bounded con-
idence and contains the synchronous BCOD model as a special
ase. Voters have to choose between two alternatives, and real-
alued opinions varying in [−1, 1] measure the preferences for
hese two options. The principle of opinion dynamics reflects
he phenomenon of ‘‘reinforcement’’ in social psychology: ‘‘an
gent’s opinion has a tendency to reinforce and drift towards
higher level of belief in the absence of opposite voices’’ (Pi-

yugin & Campi, 2019). Convergence of the proposed model and
he structure of equilibria have been examined under certain
onditions.
In a broader sense, some authors consider as an ‘‘application’’

he study of control strategies for achieving specific steady state
ehaviors in discrete-time BCOD. For instance, Ding et al. (2016)
ave proposed an optimization strategy to ensure that a consen-
us is progressively reached in BCOD for any confidence bound.
t each time-step, the solution of an optimization problem de-
ermines the minimum number of opinions to adjust, respecting
ome threshold constraints on the adjustments.
Other approaches consist in changing the confidence intervals

n order to achieve some desired behaviors. Models in which
he confidence thresholds of some silent agents are increased
llow to achieve the complete confidence graph in finite time,
.e., a consensus is reached (Iervolino et al., 2018). Bernardo, Vasca
t al. (2021) and Vasca et al. (2021) have proposed other con-
idence threshold adaptation policies, where it is assumed that
he lower (upper) confidence threshold of each agent is increased
uch that it would connect with at least one neighbor having
lower (upper) opinion, and each agent has a maximum num-
er of interacting agents. These policies, with sufficiently large
hresholds, ensure a finite-time practical consensus, as proved
21
in Vasca et al. (2021) (Theorem 9) and Bernardo, Vasca et al.
(2021) (Theorem 4).

An optimal opinion control has been proposed by Hegselmann,
König, Kurz, Niemann, and Rambau (2015) in order to maximize
the number of opinions that reach a desired opinion interval at
a given time instant. In this control strategy, there is one agent
that freely chooses its opinion at each time-step. Liang et al.
(2019) have addressed a problem of optimal adjusting the initial
opinions in order to achieve a consensus in BCOD at a given time-
step. Kurz (2015) has proposed a control algorithm to minimize
the convergence time by determining the opinion values of some
strategic agents at each time instant.

12. Conclusions

An overview of synchronous BCOD and, more specifically, of
the properties satisfied by different classes of this system has
been presented. The study concentrates on discrete-time models
with scalar opinions and possibly asymmetric and heterogeneous
confidence intervals. It is shown that heterogeneity, asymmetric
confidence intervals and stubbornness, even though they intro-
duce local differences in the system evolution, do not destroy
the typical asymptotic behavior in BCOD models, which is char-
acterized by convergence to (practical) consensus or clustering.
Conditions for having such steady states in the different classes
of BCOD are discussed.

Several directions for future research emerge from the analysis
proposed in this survey, mainly from the theoretical, numerical
and applications points of view. From a formal perspective, there
are fundamental conjectures that still require rigorous justifica-
tions, such as: the absence of non-vanishing oscillations also for
asymmetric heterogeneous models; the sensitivity of the con-
vergence time and the number of clusters on the confidence
thresholds; the convergence in finite time to a practical clustering
also in the presence of stubborn agents; which properties are
still valid in the presence of multiple stubborn agents. Solving
these problems is far from trivial in general, but help in this sense
could be achieved by assuming some simplifying hypotheses,
such as for example specific initial conditions. Furthermore, the
concept of practical consensus seems to be an approach that has
not yet been fully exploited in the literature. More generally,
similar overviews to the one reported in this survey but dedi-
cated to asynchronous and continuous-time BCOD could be useful
contributions for the research field.

This survey is mainly focused on the existing rigorously proven
results. On the other hand, the literature on numerical analyses of
BCOD is huge, but a comprehensive organization of the evidences
which have been highlighted in simulations is still missing. The
proposed presentation of the theoretical results existing for BCOD
models could provide the basis for a structured discussion of
numerical analyses available in the literature.

Last but not least, by providing a systematic analysis of the
main properties of the various BCOD models, we also aim at
highlighting which main features could be of relevance from an
application perspective. The applications briefly discussed herein
show that the main challenge ahead is still to understand how
to use these dynamical behaviors in a constructive way in the
various contexts in which they could play a role, which poten-
tially span from engineering to sociology, from psychology to
economics.
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ppendix A. Basic concepts of graph theory

A graph G is a pair of sets {I, E}, where I is the node set and
is the set of edges (or arcs) between the nodes. In a directed

raph (digraph), the arcs are ordered pairs of nodes E ⊆ I × I,
nd the pair (i, j) ∈ E is said to be an edge from i to j. In an
ndirected graph, each edge {i, j} is an unordered pair of nodes.

In the literature, undirected graphs are often considered as a
subclass of digraphs by replacing each undirected edge {i, j} by
a pair of directed arcs (i, j), (j, i).

The node j is a neighbor of the node i if (j, i) ∈ E , i.e., there
exists an edge from j to i. The neighbor set of a node i is defined
as Ni = {j ∈ I | (j, i) ∈ E}. A graph is weighted if a non-negative
weight is associated to each edge. The adjacency matrix A of a
weighted graph is a N×N matrix whose element aij is the positive
weight of the edge from the node j to the node i if (j, i) ∈ E , and 0
therwise8. The in-degree (out-degree) of the node i of a graph is

the number of the edges which are incident to (outgoing from) i.
A path is a sequence of edges that joins a sequence of pairwise
distinct nodes. An undirected graph is connected if there exists a
path between any pair of nodes. A digraph is strongly connected
if for every pair of distinct nodes i and j there exists a directed
path from i to j. A digraph is weakly connected if replacing all of
its directed edges with undirected edges produces a connected
undirected graph. A graph is complete if (i, j) ∈ E for any i, j ∈ I.

A subgraph G∗
= {I∗, E∗

} of G = {I, E} is a graph such that
I∗

⊆ I and E∗
⊆ E , and it inherits all the arcs from the parent

graph that connect the nodes from I∗, i.e., E∗
= E ∩ (I∗

× I∗).
The induced subgraph is thus uniquely determined by its node
set I∗. A subgraph G∗ is a strongly (weakly) connected component
of the graph G if G∗ is strongly (weakly) connected and any
other subgraph of G strictly containing G∗ is not strongly (weakly)
connected. It can be shown that the node sets of strongly (weakly)
connected components constitute a partition of the node set I,
i.e., each node of a graph belongs to only one strongly (weakly)
connected component. Notice that weakly connected components
of an undirected graph are strongly connected components; in
this case, they are called connected components. A weakly con-
nected component of a graph is isolated in the sense that any
agent in that component has no edges with agents outside the
component; this condition does not hold for strongly connected
components.

A node i is a root9 of the graph G if there exists a path from i
to j for all j ∈ I (Cao et al., 2008). The graph G is rooted at i if the
node i is a root. If a graph is strongly connected then it is rooted
at every node; on the other hand, if a graph is rooted then it is
weakly connected. Some examples of different types of graphs are
shown in Fig. 11.

The union of two graphs G1 = {I, E1} and G2 = {I, E2} is
the graph with the same node set and the edge set E1 ∪ E2. The
composition of two graphs G1 = {I, E1} and G2 = {I, E2} having
the same node set, denoted by G2 ◦ G1, is the graph with the
same node set and the edge set such that (i, j) is an edge of the
composition if (i, q) ∈ E1 and (q, j) ∈ E2 for some q ∈ I. In general,
the composition is not commutative, i.e., G2 ◦G1 ̸= G1 ◦G2. If each
node of the graphs has a self-loop, then all edges of the union of
the graphs are also edges of their composition.

8 In dynamical networks theory (Bullo, 2022), the opposite convention is
ometimes used: (j, i) ∈ E , i.e., there exists an edge from j to i, if and only if
aji > 0. The convention herein is adopted without loss of generality and follows
the pioneering work on opinion dynamics (French, 1956) and the tradition of
multi-agent control (Moreau, 2005; Ren & Beard, 2005). This convention is
important for the consistency of some definitions and statements reported in
the paper.
9 More formally, a node i is the root of an (out-branched) spanning tree of

the graph (Chebotarev & Agaev, 2002). Rooted graphs are also referred to as
graphs with spanning trees (Ren & Beard, 2005) or quasi strongly connected
graphs.
22
Fig. 11. Examples of graphs: weakly connected but not rooted (a), rooted at the
red node but not strongly connected (b), rooted at the red node and the blue
nodes constitute a strongly connected component (c), strongly connected but
not complete (d), two strongly connected components which are not clusters
(e), two clusters (f). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Appendix B. Proofs

Proof of Proposition 1. Since Ni contains at least the i-th agent
and by considering (1) which is the scalar version of (5), it follows

x+

i =
1

|Ni|

∑
j∈Ni

xj ≤
1

|Ni|
|Ni|max

j∈Ni
xj = max

j∈Ni
xj

for all i ∈ I, which proves (6a), and

x+

i =
1

|Ni|

∑
j∈Ni

xj ≥
1

|Ni|
|Ni|min

j∈Ni
xj = min

j∈Ni
xj

or all i ∈ I, which proves (6b).
The second part of the proof directly follows from the condi-

tion minj∈I xj(0) ≤ xi(0) ≤ maxj∈I xj(0), for all i ∈ I, and the
application of (6).

Proof of Proposition 3. By applying Definition 2 together with
(5) one can write

v(x+) = max
i∈I

x+

i − min
i∈I

x+

i = max
i,j∈I

(x+

i − x+

j )

= max
i,j∈I

∑
w∈I

(aiw − ajw)xw.

Moreover, it is∑
w∈I

(aiw − ajw)xw =

∑
w∈I

(
aiw − min{aiw, ajw}

)
xw

−

∑
w∈I

(
ajw − min{aiw, ajw}

)
xw

≤

∑
w∈I

(
aiw − min{aiw, ajw}

)
max
w∈I

xw

−

∑
w∈I

(
aiw − min{aiw, ajw}

)
min
w∈I

xw

=

∑
w∈I

aiw
(
max
w∈I

xw − min
w∈I

xw
)

−

∑
w∈I

min{aiw, ajw}

(
max
w∈I

xw − min
w∈I

xw
)

=

(
1 −

∑
w∈I

min{aiw, ajw}

)(
max
w∈I

xw − min
w∈I

xw
)

=

(
1 −

∑
min{aiw, ajw}

)
v(x),
w∈I
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here in the second last step we used the condition that the
atrix A is row-stochastic.
Then, it is

(x+) = max
i,j∈I

∑
w∈I

(aiw − ajw)xw

≤ max
i,j∈I

(
1 −

∑
w∈I

min{aiw, ajw}

)
v(x)

=

(
1 − min

i,j∈I

∑
w∈I

min{aiw, ajw}

)
v(x),

which completes the proof.

Proof of Lemma 4. The proof is reported in Cao et al. (2008)
(Theorem 3, p. 596).

Proof of Lemma 6. Lemma 6 follows from Proskurnikov et al.
(2020) (Theorem 5) by noticing that the type-symmetry (11) is
a special case of the cut-balance condition (Proskurnikov et al.,
2020, Eq. (14)). Notice also the difference in the notation: the
matrices A(k) in Proskurnikov et al. (2020) are denoted by W (k).

The first part of Lemma 6 establishing convergence of each
solution (also in the general case of cut-balance graph) was first
published as Bolouki and Malhame (2015) (Theorem 1).

Proof of Corollary 7. The proof is straightforward by applying
Lemma 6 to the initial condition x(0) = em (the coordinate basis
vector whose m-th element is 1 and the others are 0). Denoting
Π (k) := A(k − 1) . . . A(0), k ≥ 1, Lemma 6 ensures that x(k) =

(k)em converges as k → ∞ for all m = 1, . . . ,N , that is, each
column of Π (k) has a limit as k → ∞. This proves the existence
of a limit

A∞
= lim

k→∞

Π (k),

and the limit of the solution with initial condition x(0) is nothing
else than limk→∞ x(k) = limk→∞Π (k)x(0) = A∞x(0). Further-
more, the i-th and j-th elements of the latter vector are coincident
for each value x(0), which is possible only if the i-th and j-th rows
of A∞ are equal.

Proof of Corollary 9. The proof is straightforward from the
second statement of Lemma 6. Indeed, we know that the limits
of the opinions x∞

i and x∞

j are the same for every agents i and j
that satisfy (12), that is, for each i and j that are connected by an
edge in the persistent graph. Hence, the same equality x∞

i = x∞

j
olds for every two agents i and j that are connected by a path
f an arbitrary length in the persistent graph (this can be proved,
.g., via the induction on the path’s length).

roof of Proposition 26. By hypothesis there exist i, j ∈ I such
hat at the time-step k it is xi < xj − dM and there does not exist
ny agent q ∈ I such that xq ∈ (xi, xj). Then, it is φi(xi, xr ) = 0 for

any r ∈ I such that xr > xi, which implies x+

i ≤ xi. Similarly, from
xj > xi + dM it is φi(xi, xp) = 0 for any p ∈ I such that xp < xj,
and thus x+

j ≥ xj. Therefore, it is x+

i ≤ xi < xj − dM ≤ x+

j − dM ,
which implies the thesis.

Proof of Theorem 27. The sufficiency part of the proof is a direct
application of Lemma 4 to (17).

For the necessary part, assume that for a given initial con-
dition x(0) the solution of (17) reaches an asymptotic consen-
sus (10). First consider the case dm > 0, i.e., there are no stubborn
or one-sided confident agents. By hypothesis, it is v(x(k)) −−−→

k→∞

0
and then for any ϵ ∈ (0, d ) there exists a finite time-step k
m ϵ

23
such that v(x(k)) ≤ ϵ which implies that Ni(k) = I for all
i ∈ I and all k ≥ kϵ . The graph G(x(kϵ)) is then complete
and the composition of the graphs in the interval [0, kϵ] will be
rooted. From Proposition 3, any graph G(x(k)) for k ≥ kϵ will be
complete and then the infinite sequence of graphs is repeatedly
composition jointly rooted.

Consider the case of the presence of one-sided confident
agents, all of them with zero lower (upper) bounds, i.e., ℓi = 0
ui = 0) for all i ∈ I such that i is a one-sided confident agent.
ay

˜m = min
i∈I

min{ℓi, ui | ℓi > 0, ui > 0}. (64)

y repeating the arguments above with ϵ ∈ (0, d̃m) it follows that
he graph G(x(kϵ)) is at least rooted and then, since v(x(k)) −−−→

k→∞

0 by hypothesis, the infinite sequence of graphs is repeatedly
composition jointly rooted.

Consider now the case of the presence of one-sided confident
agents with zero upper or lower thresholds, and consider any
two of them i and j such that ℓi = 0 and uj = 0. Since the
pinion xi can only increase and the opinion xj can only decrease,
t must be xi ≤ xj for all k (with the equality holding only at the
onsensus value) otherwise consensus would never be reached.
nalogously, if ui = 0 and ℓj = 0 it must be xi ≥ xj for

all k (with the equality holding only at the consensus value).
Then, by repeating the arguments above with ϵ ∈ (0, d̃m) and
d̃m defined by (64), it follows that the infinite sequence of graphs
is repeatedly composition jointly rooted.

If one or more stubborn agents having the same opinion are
present and an asymptotic consensus (10) is reached, then the
opinion at a consensus, say c , must be the opinion of all stubborn
agents. By hypothesis it is v(x(k)) −−−→

k→∞

0 and then for any

ϵ ∈ (0, d̃m) with d̃m defined by (64), there exists a finite time-
step kϵ such that v(x(k)) ≤ ϵ which implies that φi(xi, c) = 1
for all i ∈ I and, by using Proposition 3, for all k ≥ kϵ . The
graph G(x(kϵ)) is then rooted from all stubborn agents, and the
composition of the graphs in the interval [0, kϵ] will be rooted.
Since any graph G(x(k)) for k ≥ kϵ will be at least rooted from
the stubborn agents, the infinite sequence of graphs is repeatedly
composition jointly rooted and the necessary part of the proof is
complete.

The final statement of the theorem is a direct consequence of
the arguments above, i.e., when k increases the graphs G(x(k))
ventually become rooted.

roof of Proposition 30. By hypothesis, there exists a finite
ime-step such that v(x) ≤ dm. Then, it is φi(xi, xj) = 1 for all
, j ∈ I, i.e., the graph G(x) is complete, and from Proposition 3 it
ollows that all future confidence graphs are complete. Therefore
he right-hand side of (17) is the same for all i ∈ I which implies
hat x+

i =
1
N

∑N
i=1 xi.

Proof of Theorem 31. Say m and M one of the agents with the
minimum and maximum opinion at the time-step k, respectively,
i.e., xm = mini∈I xi and xM = maxi∈I xi. Note that the agents m
and M could change from one step to the next. Since the min-
imum opinion is nondecreasing and, according to Proposition 1,
is bounded in the range of the initial opinions, there exists a real
number cm ∈ [mini∈I xi(0),maxi∈I xi(0)] such that

lim
k→∞

xm = cm. (65)

From (65), it follows that for any ϵ > 0 there exists a finite time-
step k̂ such that xm ∈ (cm − ϵ, cm] for all k ≥ k̂. Suppose that

∈ (0, dm/N2), define the set

= {i ∈ I | x ∈ (c − ϵ, c + (N − 1)ϵ]},
i m m
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nd denote Â := A(x(k̂)), x̂i = xi(k̂) and x̂+

i = xi(k̂ + 1) for all
i ∈ I.

Suppose that Â = I, i.e., all agents are in the set Â. Then, it is

iM − xim < cm + (N − 1)ϵ − cm + ϵ = Nϵ ≤
dm
N

(66)

or all k ≥ k̂, and a consensus is reached at most at the time-
tep k̂ + 1, according to Proposition 30.
Otherwise, if |Â| < N , suppose that there exists an agent q

uch that x̂q ∈ (cm + (N − 1)ϵ, cm + dm − ϵ]. Thus, by definition
f influence function (16), any agent in Â is influenced by q,
.e., φi(x̂i, x̂q) = 1 for all i ∈ Â. By using (17), the following
nequalities

ˆ
+

i ≥
1

|Â| + 1

⎛⎝∑
j∈Â

x̂j + x̂q

⎞⎠
>

1
|Â| + 1

(|Â|(cm − ϵ) + cm + (N − 1)ϵ)

= cm − ϵ +
N

|Â| + 1
ϵ ≥ cm

old for all i ∈ Â since N/(|Â| + 1) ≥ 1 by hypothesis. The
nequalities above contradict the condition in (65). Then, it must
e x̂q > cm + dm − ϵ for all q /∈ Â. By using (17), it is

x̂+

q =
1

|N̂q|

⎛⎝ ∑
j∈Â∩N̂i

x̂j +
∑

j∈N̂i\Â

x̂j

⎞⎠
≥

1
|N̂q|

(
(|N̂q| − 1)x̂m + x̂q

)
>

1
|N̂q|

(
(|N̂q| − 1)(cm − ϵ) + cm + dm − ϵ

)
= cm +

dm
|N̂q|

− ϵ ≥ cm +
dm
|N̂q|

− ϵ

> cm + (N − 1)ϵ

for all q /∈ Â, where N̂q := Ni(k̂) is the neighbor set of the
agent q at the time-step k̂. The inequalities above imply that if
the agent q is not in the set Â, it will never be included in this
set, i.e., q /∈ A for all k ≥ k̂. Moreover, if an agent q /∈ Â influences
some agent r ∈ Â, by applying (17), it follows

x̂+

r ≥
1

|Â| + 1

⎛⎝∑
j∈Â

x̂j + x̂q

⎞⎠
>

1
|Â| + 1

(
|Â|(cm − ϵ) + cm + dm − ϵ

)
≥ cm +

dm
|Â| + 1

− ϵ ≥ cm +
dm
N

− ϵ

> cm + (N − 1)ϵ.

These inequalities and the definition of the set A imply that if
an agent r ∈ Â is influenced by agents which are not included
in the set Â, then the agent r will leave the set Â at the next
time-step. Due to the finite number of agents, there exists a finite
time-step k̄m ∈ N0 from which the agents in A have no neighbors
outside the set A, i.e.,

Ni ∩ (I \ A) = ∅ (67)

for all i ∈ A and k ≥ k̄m. By combining (65) and (67), it follows
that xi = cm for all i ∈ A and k ≥ k̄m and thus the minimum
opinion remains constant.
 u

24
By applying similar arguments to the maximum agent, it fol-
lows that there exists a finite time-step k̄M ∈ N0 such that the
maximum opinion remains constant at the value cM . Then, the
range of opinions is constant for all k ≥ k̄, with k̄ = max{k̄m, k̄M}.

Suppose now that ν(x) ≤ 2dm, and denote F = {i ∈ I |

i = cm or xi = cM} the set of agents having the minimum
r the maximum opinion. If F = I at k̄, then the opinions are
t a consensus (if cm = cM ) or at a clustering with M = 2.
therwise, if I \F ̸= ∅ at k̄, then there exists at least one agent q
uch that either xq − cm ≤ dm or cM − xq ≤ dm. The latter
nequalities contradict the condition (67) and the analogous one
or the agents having maximum opinion, respectively. Then, the
roof is complete.

roof of Theorem 32. The sufficiency part starts by considering
hat if the sequence of graphs G(x(k)) is repeatedly composition
ointly rooted then by applying Theorem 27 it is v(x(k)) −−−→

k→∞

0.
oreover, from Theorem 31 there exists a finite time-step such

hat the range of opinions becomes constant, which implies that
here exists a finite k̄ ∈ N such that v(x(k)) = 0 for all k ≥ k̄.

For the necessary part, assume that a consensus is reached
n finite time, say k̄. Then, the graph G(x(k̄)) is complete, and
he composition of all graphs in [0, k̄] is complete and then
ooted too. By considering contiguous, nonempty, bounded time-
ntervals [ki, ki+1), i ≥ 0, with k0 = 0, k1 = k̄ and arbitrary ki+1
ith i ≥ 1, the composition of the graphs in each subinterval will
e rooted, and then the sequence of graphs G(x(k)) is repeatedly
omposition jointly rooted.

roof of Corollary 33. The proof directly follows from Theo-
em 32 because if each graph of the sequence G(x(k)) is strongly
onnected then any subsequence of these graphs is composition
ointly rooted.

roof of Theorem 34. The sufficiency part of the theorem can be
roved by induction. For N = 1 the theorem is trivial because the
nitial time corresponds to the convergence time and the agent is
ever silent. Assume now that the theorem holds for some N̄ ∈ N
ith N̄ < N . We now prove that the theorem is satisfied also for
agents. First, we show that there exists a finite time-step k̄ such

hat the left product of k̄ consecutive matrices A(x) defined in (18)
ill have at least one positive column.
Consider the agent 1, and define the set

= {i ∈ I | (A(x(k))A(x(k − 1)) . . . A(x(0)))i1 > 0} (68)

nd its complement Sc = I \ S. Since φii = 1 for all i ∈ I, if i ∈ S
t is i ∈ S+ for any k ∈ N0. If at the time-step k̄ it is S = I, the
ypothesis of having a positive column in the left product of k̄
onsecutive matrices A(x) holds. Otherwise, assume that it exists
time-step k∗ since then the set S will not change over time.
rom the definition (68) any agent in Sc cannot be influenced
y those in S. Since the set S contains at least the agent 1,
he inequality |Sc | < N holds for all k ≥ k∗. Then, by using
he induction assumption, the agents in Sc will reach a steady
tate in finite time interval ∆̄. However, under the hypothesis of
he theorem, the agents cannot remain silent for more ∆ time-
teps. Then, after at most ∆̄ + ∆ time-steps at least one agent
s added in the set S. Due to the finite number of the agents,
= (N + 1)(δ̄ + ∆) time-steps guarantee the satisfaction of the

ondition S = I, which implies that the first column of the matrix
(x(k))A(x(k − 1)) . . . A(x(0)) is positive.
Since by definition the non-null entries of A(x) are bounded

rom below by 1/N , the minimum positive entry of the left
roduct of T consecutive matrices A(x) is equal to (1/N)T . By

sing (9) in Proposition 3, after T time-steps the range of opinions
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ecreases by at least (1/N)T . Therefore, there exists a finite time-
tep such that v(x) ≤ dm which implies the convergence to a
onsensus at the next time-step, according to Proposition 30.
The necessary part of the theorem is straightforward by con-

idering the fact that, according to Definition 14, at a consensus
ll agents share the same opinion and then no silent agents exist.

roof of Proposition 35. For N = 1, the statement is trivial. For
> 1, consider the agents q and r with xq ≤ xr and their sets

f neighbors defined as Nq = {i ∈ I | −ℓ ≤ xi − xq ≤ u} and
r = {i ∈ I | −ℓ ≤ xi − xr ≤ u}, respectively. Let Nqr = Nq ∩ Nr ,

assume that Nqr ̸= ∅, and define N̂q = Nq\Nqr and N̂r = Nr \Nqr .
The means of the opinions in the three sets Nqr , N̂q and N̂r are
given by

x̄qr =

∑
i∈Nqr

xi
|Nqr |

, x̄q =

∑
i∈N̂q

xi
|N̂q|

, x̄r =

∑
i∈N̂r

xi
|N̂r |

, (69)

espectively. Clearly, it is x̄q ≤ x̄qr because xq ≤ xr by hypothesis
nd N̂q contains at least the agent q. Since the opinion evolu-
ion (17) is the mean of the opinions in the neighbor set, it follows

+

q =
|N̂q|x̄q + |Nqr |x̄qr

|N̂q| + |Nqr |
≤ x̄qr . (70)

Similarly, the inequality x+
r ≥ x̄qr holds for the agent r . From

the last two inequalities, it follows x+
q ≤ x+

r , thus completing the
proof.

Proof of Theorem 36. The convergence in finite time of any so-
lution x(k) to a constant steady state which is either a consensus
or a clustering and the upper bound on the convergence time
expressed by (23) is a direct application of Theorem 40 to the
case of homogeneous symmetric BCOD.

Let us prove the second part of the statement, i.e., a consensus
is reached if and only if x(k) is a d-chain with d = ℓ = u. First
note that for symmetric homogeneous BCOD the graphs G(x(k))
re undirected and then the rooted condition is equivalent to the
onnected one. From Definition 16, it follows that the opinion
ector is a d-chain if and only if the (undirected) confidence graph
s connected.

Assume that x(k) is a d-chain. Then, each graph is connected,
nd the sequence of graphs G(x(k)) is repeatedly composition
ointly rooted. Therefore, by using Theorem 32, it follows that a
onsensus is reached in finite time, which completes the suffi-
iency part.
Assume that a consensus is reached in finite time. Then, from

heorem 32 it follows that the sequence of graphs G(x(k)) is re-
eatedly composition jointly rooted (and connected). This implies
hat any graph of the sequence must be connected, as it can be
hown by contradiction. Indeed, if a crack would occur at some
ime-step, from Proposition 26 with dM = d it follows that the
wo agents involved in that crack will never interact anymore
n the future and the hypothesis of reaching a consensus would
e contradicted. Then, the necessary part is also proved, and the
roof is complete.

roof of Proposition 37. The proof can be obtained by com-
ining the arguments of Theorem 7.3 in Motsch and Tadmor
2014), Theorem 4.3 in Bhattacharyya et al. (2013) and Theorem 2
n Roozbehani et al. (2008), so as detailed below.

Consider (30). It is easy to verify that

(x+

i , x
+

j ) − g(xi, xj) ≤ φ(xi, xj)[(x+

i − x+

j )
2
− (xi − xj)2]. (71)

Indeed, if φ(xi, xj) = φ(x+

i , x
+

j ) the equality holds in (71). If
+ +
φ(xi, xj) = 0 and φ(xi , xj ) = 1, then the left hand side of (71) is u

25
equal to (x+

i −x+

j )
2
−d2 that is non-positive because φ(x+

i , x
+

j ) = 1,
which is equivalent to |x+

i − x+

j | ≤ d and then (71) holds with
the right-hand side being null. If φ(xi, xj) = 1 and φ(x+

i , x
+

j ) = 0
then (71) becomes

d2 − (xi − xj)2 ≤ [(x+

i − x+

j )
2
− (xi − xj)2]

that is verified because φ(x+

i , x
+

j ) = 0, which is equivalent to
|x+

i − x+

j | > d.
By using (71), from (29) and by exploiting the condition

φ(xi, xj) = φ(xj, xi), one can write

E(x+) − E(x) ≤
1
2

∑
i,j∈I

φ(xi, xj)[(x+

i − x+

j )
2
− (xi − xj)2]

=
1
2

∑
i,j∈I

φ(xi, xj)[(x+

i − xi) − (x+

j − xj)]

(x+

i − x+

j + xi − xj)

=

∑
i,j∈I

φ(xi, xj)(x+

i − xi)(x+

i − x+

j + xi − xj).

By defining x+

i = xi +∆i and x+

j = xj +∆j, it follows

(x+) − E(x) ≤

∑
i,j∈I

φ(xi, xj)∆i[2(xi − xj) +∆i −∆j].

y using the condition

j∈I

φ(xi, xj)∆i =

∑
j∈I

φ(xi, xj)x+

i −

∑
j∈I

φ(xi, xj)xi

= |Ni|x+

i −

∑
j∈I

φ(xi, xj)xi

= |Ni|
1

|Ni|

∑
j∈I

φ(xi, xj)xj −
∑
j∈I

φ(xi, xj)xi

=

∑
j∈I

φ(xi, xj)(xj − xi),

it follows

E(x+) − E(x) ≤

∑
i,j∈I

φ(xi, xj)∆i(−∆i −∆j)

= −2
∑
i,j∈I

φ(xi, xj)(x+

i − xi)2

= −2
∑
i∈I

|Ni|(x+

i − xi)2

≤ −2
∑
i∈I

(x+

i − xi)2,

here the symmetry condition φ(xi, xj) = φ(xj, xi) has been used
nce again.

roof of Proposition 38. If v(x(k∗)) ≤ dm, Proposition 30 can
e applied, and the proof directly follows because consensus is
eached at the next time-step at most.

Consider now the case v(x(k∗)) ∈ (dm, dM ]. Suppose that dm =

and dM = u, and say m one of the agents with the minimum
pinion, i.e., m ∈ {q ∈ I | xq = mini∈I xi}. By hypothesis, any
gent with the minimum opinion is influenced by all the other
gents, i.e.,Nm = I for any k ≥ k∗. By using (2) with (15) and (22),
t is x+

m > xm +
dm
N . From Proposition 3, Proposition 35 and the

last inequality, after at most
⌈
N dM−dm

dm

⌉
time-steps the condition

v(x) ≤ dm holds, and by applying Proposition 30 consensus is
eached at the successive time-step at most. Analogously, if dm =

and d = ℓ, consider M as one of the agents with the maximum
M
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pinion, i.e., M ∈ {q ∈ I | xq = maxi∈I xi}. Then, NM = I for any
≥ k∗ and x+

M < xM −
dm
N from which the condition v(x) ≤ dm

s verified after at most
⌈
N dM−dm

dm

⌉
time-steps, and consensus is

eached at the successive time-step at most, which completes the
roof.

roof of Corollary 39. Assume that the opinion vector x(k) is
d-chain with d = ℓ for all k ∈ N0. Then, it is straightforward

o show that the diagonal and lower off-diagonal entries of any
atrix A(x(k)) defined in (18) are not null. It is easy to verify that

he entries (i, j) with i ≤ j of the product of N−1 matrices having
his property are positive.

Now, define the product of the first N − 1 matrices A which
ppear in (18), i.e., B0 = A(x(N−2)) · . . . ·A(x(0)). By applying (18)
ne can define x̃(0) = x(N − 1) = B0x(0), and by recursively us-
ng (18) one can write x̃(k) = x((N−1)(k+1)) = BkBk−1 . . . B0x(0),
where Bk = A(x((N − 1)(k + 1) − 1)) · . . . · A(x((N − 1)k)), k ∈ N0.
From the algebraic property indicated above, the entries (i, j) with
i ≤ j of Bk, k ∈ N0, are positive. Then, according to Proposition 3,
it is v(x̃(k + 1)) < v(x̃(k)) for all k ∈ N0, or equivalently there
exists q ∈ (0, 1) such that v(Bkx̃(k)) ≤ qv(x̃(k)) for all k ∈ N0. This
inequality implies the asymptotic convergence to 0 of the range of
opinions v(x̃). In particular, the sequence {v(x̃)+h

}k+h, with v(x̃)+h

epresenting the range of opinions v(x̃) at the time-step k + h, is
converging subsequence of {v(x)+h

}k+h, with h ∈ N0. Since the
imit point of {v(x̃)+h

}k+h is 0, the sequence {v(x)+h
}k+h converges

o 0 too. Then, there exists a finite time-step such that v(x) ≤ u,
nd by using Proposition 30 consensus is reached in at most one
ime-step.

If x(k) is a d-chain with d = u for all k ∈ N0, similar arguments
an be applied by considering that the diagonal and upper off-
iagonal entries of any matrix A(x(k)) defined in (18) are not
ull.
Assume now that a consensus has been reached. As a conse-

uence, any crack cannot be occurred because of Proposition 26.
his completes the proof.

roof of Theorem 40. If a crack never occurs, then by applying
orollary 39 a consensus is reached. When a crack occurs, the
gents are divided into independent groups, since Proposition 26
olds. This grouping process can be iterated but must stop in
inite time due to the finite number of agents. Hence, there
xists a time-step k ∈ N0 such that the agents are grouped
n independent d-chains, and then each subgroup will reach a
‘local’’ consensus, according to Corollary 39.

Assume that u ≥ ℓ. Due to the finite number of agents, the
ollowing conditions hold:

i. Since the model is homogeneous, two agents with the same
opinion will have the same opinion at any future time-step
and then condition C1 in Proposition 41 can occur at most
N − 1 (not necessarily consecutive) time-steps;

ii. If condition C2 in Proposition 41 occurs, then the agent q
will not belong anymore to M for any future time-step;
therefore, condition C2 can occur at most N − 1 (not nec-
essary consecutive) time-steps;

ii. If one of the conditions C3 and C4 in Proposition 41 holds,
from x+2

q ≥ x+
q it follows that x+2

q > xq+min
{
ℓ
N ,

u
2N2

}
. From

Proposition 1, it follows that this condition can hold at most
a number of time-steps (not necessarily consecutive) such
that the entire convex hull of the initial opinions is covered.

By applying Proposition 41 with u ≥ ℓ and by using i., ii.
and iii. above, it follows that the condition M = ∅, which
26
corresponds to having reached a constant steady state, holds after
at most k̄1 time-steps with

k̄1 ≤ 2

(
N − 1 +

⌈
N

min
{
ℓ, u

2N

}v(x(0))⌉) . (72)

Assume that u ≤ ℓ. Conditions i. and ii. above hold.
Moreover,

iv. If one of the conditions C5 and C6 in Proposition 41 holds,
from x+2

q ≤ x+
q it follows that x+2

q < xq+min
{

u
N ,

ℓ

2N2

}
. From

Proposition 1, it follows that this condition can hold at most
a number of time-steps (not necessarily consecutive) such
that the entire convex hull of the initial opinions is covered.

By applying Proposition 41 with u ≤ ℓ and by using i., ii.
nd iv., it follows that the condition M = ∅ holds after at most

¯2 time-steps with

¯2 ≤ 2

(
N − 1 +

⌈
N

min
{
u, ℓ

2N

}v(x(0))⌉) . (73)

By combining (72), for which ℓ = dm and u = dM because
≥ ℓ, together with (73), for which ℓ = dM and u = dm because

u ≤ ℓ, the thesis with (34) follows.

Proof of Proposition 41. Assume that u ≥ ℓ, and consider
q ∈ Mmin. From (36) and u ≥ ℓ, the agent q cannot have lower
eighbors and has at least one upper neighbor by implying that
+
q > xq. From the homogeneity of the model, it follows that
=q cannot lose elements over time, i.e., |N+

=q| ≥ |N=q|. Let
= min{i ∈ I | xi > xq}. By hypothesis, it is r ∈ Nq and r /∈ N=q.
ne of the following alternatives must occur:

a. If Nq = Nr (and then q ∈ Nr ), from the right-hand side
of (17) it follows x+

q = x+
r , which implies r ∈ N+

=q, and then
condition C1 holds.

b. Otherwise, ifNq ̸= Nr one of the following alternatives must
occur:

b1. If there exists an agent s such that s ∈ Nr and s /∈ Nq,
it is xs − xq > u, and then x+

q ̸= x+
r , i.e., r /∈ N+

=q, by
implying condition C1 does not hold and N+

=q = N=q.
By using (2) with (15) and (22), it follows

x+

r ≥ xr +
(xq − xr )(|Nr | − 2) + (xq + u − xr )

|Nr |

= xq +
u + xr − xq

|Nr |
≥ xq +

u + xr − xq
N

> xq +
u
N
. (74)

We can now consider two alternative cases:

b1.1. If x+
q −xq < u

2N , by using (74) it is x+
r > x+

q −
u
2N +

u
N

and then x+
r − x+

q >
u
2N . Now:

b1.1.1. If x+
r − x+

q > u, then r /∈ N+
q , and by using

Proposition 26 condition C2 holds.
b1.1.2. Otherwise, it is u

2N < x+
r − x+

q ≤ u, which
implies r ∈ N+

q . By using (2) with (15)
and (22), since the agent q cannot acquire
lower neighbors because of Proposition 35,
one can write

x+2
q > x+

q +
u

2N|N+
q |

≥ x+

q +
u

2N2

≥ xq +
u

2N2 , (75)

and condition C3 holds.
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b1.2. Otherwise, if x+
q − xq ≥

u
2N because of (6b) with

i = q and Proposition 35, condition C3 holds.

b2. Otherwise, if it does not exist an agent s such that
s ∈ Nr and s /∈ Nq, since there are no agents with
opinions in the interval (xq, xr ) and Nr ̸= Nq, it must
be Nr = Nq \ Mmin, i.e., the agent q is not a lower
neighbor of r . By using (2) with (15) and (22), one can
write

x+

q ≥ xq +
xr − xq
|Nq|

≥ xq +
xr − xq

N
> xq +

ℓ

N
, (76)

and condition C4 holds.

For the case u ≤ ℓ analogous arguments can be applied.
rom (36) and u ≤ ℓ, the agent q cannot have upper neighbors
nd has at least one lower neighbor by implying that x+

q < xq.
From the homogeneity of the model, it follows that N=q cannot
lose elements over time, i.e., |N+

=q| ≥ |N=q|. Let r = max{i ∈ I |

xi < xq}. By hypothesis, it is r ∈ Nq and r /∈ N=q. One of the
following alternatives must occur:

a. If Nq = Nr (and then q ∈ Nr ), from the right-hand side
of (17) it follows x+

q = x+
r which implies r ∈ N+

=q, and then
condition C1 holds.

b. Otherwise, ifNq ̸= Nr one of the following alternatives must
occur:

b1. If there exists an agent s such that s ∈ Nr and s /∈ Nq,
it is xs − xq < −ℓ, and then x+

q ̸= x+
r , i.e., r /∈ N+

=q, by
implying condition C1 does not hold and N+

=q = N=q.
By using (2) with (15) and (22), it follows

x+

r ≤ xr +
(xq − xr )(|Nr | − 2) + (xq − ℓ− xr )

|Nr |

= xq −
ℓ+ xq − xr

|Nr |
≤ xq −

ℓ+ xq − xr
N

< xq −
ℓ

N
. (77)

We can now consider two alternative cases:

b1.1. If x+
q − xq > −

ℓ
2N , by using (77) it is x+

r <

x+
q +

ℓ
2N −

ℓ
N and then x+

r − x+
q < −

ℓ
2N . Now:

b1.1.1. If x+
r − x+

q < −ℓ, then r /∈ N+
q , and by using

Proposition 26 condition C2 holds.
b1.1.2. Otherwise, it is −ℓ ≤ x+

r −x+
q < −

ℓ
2N , which

implies r ∈ N+
q . By using (2) with (15)

and (22), since the agent q cannot acquire
upper neighbors because of Proposition 35,
one can write

x+2
q < x+

q −
ℓ

2N|N+
q |

≤ x+

q −
ℓ

2N2

≤ xq −
ℓ

2N2 , (78)

and condition C5 holds.

b1.2. Otherwise, if x+
q − xq ≤ −

ℓ
2N because of (6a) with

i = q and Proposition 35, condition C5 holds.

b2. Otherwise, if it does not exist an agent s such that
s ∈ Nr and s /∈ Nq, since there are no agents with
opinions in the interval (xr , xq) and Nr ̸= Nq, it must
be Nr = Nq \ Mmax, i.e., the agent q is not an upper
neighbor of r . By using (2) with (15) and (22), one can
write

x+

q ≤ xq +
xr − xq
|Nq|

≤ xq +
xr − xq

N
< xq −

u
N
, (79)

and condition C6 holds.
27
Proof of Proposition 44. Assume that ℓ = 0 and there exists a
pair q, r ∈ I such that xq < xr . If r /∈ Nq the agents q and r are
ot influenced by each other. By using (6a) with the substitution
= r and by considering that x+

r ≥ xr for the definition of one-
sided confidence BCOD and that for any i ∈ Nq it is xi < xr by
hypothesis, it will be x+

i > x+

j .
Consider now the case r ∈ Nq. If Nr = {r} it is x+

q =

xq > x+
r because of Proposition 35 and the fact that q is also

influenced by itself. In order to consider the case that r has some
upper neighbor different from itself, consider the averages of the
opinions in (69). For any i ∈ Nqr it is xi ≥ xr because ℓ = 0, then
it is x̄r ≥ x̄qr and one obtains

x+

r =
|N̂r |x̄r + |Nqr |x̄qr

|N̂r | + |Nqr |
≥ x̄qr . (80)

he set N̂q includes at least the agent q itself, and for any i ∈ N̂q
t is xi ∈ [xq, xr ) which implies x̄q < x̄qr . Then, one can write

+

q =
|N̂q|x̄q + |Nqr |x̄qr

|N̂q| + |Nqr |
< x̄qr . (81)

y combining (80) and (81), it follows x+
q < x+

r which completes
he proof for the case ℓ = 0.

The proof for u = 0 can be obtained by applying similar
rguments.

roof of Proposition 45. If v(x) ≤ δ the statement is trivial.
or δ < v(x) ≤ dM , assume that dM = u and dm = ℓ = 0.
y hypothesis, the agent 1 is influenced by all the agent set,
.e., N1 = I for any future time-step. From (2) with (15) and (22),
t is

+

1 > x1 +
δ

N
. (82)

y using Proposition 3, Proposition 35 and (82), after at most
N dM−δ

δ

⌉
time-steps the condition v(x) = xN − x1 ≤ δ holds.

Analogously, if dm = u = 0 and dM = ℓ, one can consider the
N-th agent whose opinion at the next time-step is such that

x+

N < xN −
δ

N
(83)

from which the condition v(x) = xN − x1 ≤ δ is verified after at
most

⌈
N dM−δ

δ

⌉
time-steps.

Proof of Lemma 46. Assume that u ≥ ℓ and the influence
function in (40) is considered. The proof is the same as for Propo-
sition 41 when u ≥ ℓ by subsiding the influence function (22)
with the one in (40), except the alternative b2which is as follows.

b2. If it does not exist an agent s such that s ∈ Nr and
s /∈ Nq, since there are no agents with opinions in the
interval (xq, xr ) and Nr ̸= Nq, it must be Nr = Nq \ Mmin,
i.e., the agent q is not a lower neighbor of r . By using (2)
with (15) and (40), one can write

x+

q ≥ xq +
xr − xq
|Nq|

≥ xq +
xr − xq

N

> xq +
ℓ− ηr

N
≥ xq +

ℓ− ηmax

N
, (84)

and condition C4 holds.

Assume, now, that u ≤ ℓ and the influence function in (41)
s considered. The proof is the same as for Proposition 41 when

≥ ℓ by subsiding the influence function (22) with the one
in (41), except the alternative b2 which is as follows.
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b2. If it does not exist an agent s such that s ∈ Nr and
s /∈ Nq, since there are no agents with opinions in the
interval (xr , xq) and Nr ̸= Nq, it must be Nr = Nq \ Mmax,
i.e., the agent q is not an upper neighbor of r . By using (2)
with (15) and (41), one can write

x+

q ≤ xq +
xr − xq
|Nq|

≤ xq +
xr − xq

N

< xq −
u − ηr

N
≤ xq −

u − ηmax

N
, (85)

and condition C6 holds.

roof of Theorem 47. Assume that u ≥ ℓ and the influence
unction in (40) is considered. Due to the finite number of agents,
he following conditions hold:

i. By definition of Mmin in (36) the agent q will be always
the same until condition C2 in Lemma 46 will be verified
because of a swap between the agent q and any upper agent
cannot occur due to u ≥ ℓ, (6b) and the homogeneity of
the upper thresholds. Since an agent with opinion equal to
xq will have the same opinion of q at any future time-step,
then condition C1 in Lemma 46 can occur at most N−1 (not
necessary consecutive) time-steps;

ii. If condition C2 in Lemma 46 occurs, then the agent q will
not belong anymore to M for any future time-step; there-
fore, condition C2 can occur at most N − 1 (not necessary
consecutive) time-steps;

ii. If one of the conditions C3 and C4 in Lemma 46 hold, from
x+2
q ≥ x+

q it follows that

x+2
q > xq + min

{
ℓ− ηmax

N
,

u
2N2

}
. (86)

From Proposition 1, it follows that this condition can hold at
most a number of time-steps (not necessarily consecutive)
such that the entire convex hull of the initial opinions is
covered.

y applying Lemma 46 with u ≥ ℓ and the influence function
n (40) and by using i., ii. and iii. above, it follows that after
t most k̄1 time-steps with

¯1 ≤ 2

(
N − 1 +

⌈
N

min
{
ℓ− ηmax,

u
2N

}v(x(0))⌉) (87)

he condition M = ∅ holds, which corresponds to having reached
constant steady state.
Assume that u ≤ ℓ and the influence function in (41) is

onsidered. Conditions i. and ii. above hold for q ∈ Mmin.
oreover,

iv. If one of the conditions C5 and C6 in Lemma 46 hold, from
x+2
q ≤ x+

q it follows that

x+2
q < xq + min

{
u − ηmax

N
,
ℓ

2N2

}
. (88)

From Proposition 1, it follows that this condition can hold at
most a number of time-steps (not necessarily consecutive)
such that the entire convex hull of the initial opinions is
covered.

By applying Lemma 46 with u ≤ ℓ and by using i., ii. and
v., it follows that after at most k̄2 time-steps with

¯2 ≤ 2

(
N − 1 +

⌈
N

min
{
u − ηmax,

ℓ
2N

}v(x(0))⌉) (89)

he condition M = ∅ holds.
28
By combining (87), for which ℓ = dm and u = dM because
≥ ℓ, together with (89), for which ℓ = dM and u = dm because

u ≤ ℓ, the thesis with (42) follows.

Proof of Theorem 49. For definition of stubborn agent, it is
φsi(xσ , xi) = 0 for all i ∈ I \ {σ } such that xi ̸= xσ . From
efinition 16, it follows that for each agent i ∈ A there exists
d-chain (i1, i2, . . . , ih), i.e., it is φii1 (xi, xi1 ) = 1, φi1 i2 (xi1 , xi2 ) =

, . . . , φihs(xih , xσ ) = 1. Conversely, it is φij(xi, xj) = 0 for all
/∈ A ∪ {σ } and j ∈ A ∪ {σ }. Thus, since the order-preservation
roperty given in Definition 13 is satisfied, by assuming that
= 1, the matrix A(x) defined in (18) will have the following

tructure

(x) =

[
B(x1) 0
0 C(x2)

]
(90)

ith x1 = [x1 . . . x|A|+1]
⊤ and x2 = [x|A|+2 . . . xN ]

⊤. The above
lock structure of the matrix A(x) could change over time.
Proposition 26 implies that A+

⊆ A and, due to the finite
umber of agents, it must exist a finite time-step k̄ such that
+

= A for all k ≥ k̄. Then, condition C1 is proved.
From the block structure in (90), it follows that the sets A∪{σ }

nd I \ {A ∪ {σ }} can be analyzed separately for k ≥ k̄. Consider
he first set. According to Corollary 8.5.10 in Krause (2015), the
et A ∪ {σ } will converge to a consensus if the following three
onditions are satisfied: (i) the diagonal of the matrix B(x1) is
ositive; (ii) the minimum positive entry is lower bounded by
positive constant; (iii) B(x1) is coherent. From the influences

unctions (22) with d = ℓ = u for i ∈ A and (39) for i = 1, it
ollows that in (90) bii ≥ 1/N for all i ∈ A and bij ≥ 1/N for
ll i, j ∈ A such that φi(xi, xj) = 1, by implying that conditions
i) and (ii) are valid. Now we show that condition (iii) holds too.
he matrix B(x1) is coherent if any two of its nonempty saturated
ets have a nonempty intersection. The set A1 ⊆ A ∪ {σ } is
aturated for B(x1) if bij > 0 and i ∈ A1 imply j ∈ A1. Consider
wo nonempty sets A1,A2 ⊆ A ∪ {σ }, i ∈ A1 and j ∈ A2.
f i = j = σ , then σ ∈ A1 ∩ A2. If i = σ and j ̸= σ , for
efinition of the set A there exists a d-chain (i1, i2, . . . , ih) such
hat bji1 > 0, bi1 i2 > 0, . . . , bihσ > 0. Since A2 is saturated, it
ust be i1 ∈ A2, i2 ∈ A2, . . . , σ ∈ A2. Thus σ ∈ A1 ∩A2. If i ̸= σ
nd j = σ , similar considerations can be applied. Finally, if i ̸= σ
nd j ̸= σ for definition of the set A there exist a d-chain from i
o σ and a d-chain from j to σ . Since A1 and A2 are saturated,
t must be σ ∈ A1 ∩ A2. Then, condition (iii) is also satisfied,
nd the convergence to a consensus is proved. Since the stubborn
ill not change its opinion over time, the consensus opinion must
orrespond to the stubborn opinion, which implies condition C2
olds.
Finally, consider the set I \{A∪{σ }}. By using Theorem 36 for

uch set, condition C3 directly follows.
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