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Abstract: This 3D coupled hygro-elastic model proposes the
three-dimensional (3D) equilibrium equations associated
with the 3D Fick diffusion equation for spherical shells.
The primary unknowns of the problem are the displace-
ments and the moisture content. This coupled 3D exact shell
model allows to understand the effects of themoisture field in
relation with the elastic field on stresses and deformations in
different plates and shells. This model is specifically devel-
oped for configurations including functionally graded mate-
rial (FGM) layers. Four different geometries are analyzed
using an orthogonal mixed curvilinear reference system.
The main advantage of this reference system for spherical
shells is the degeneration of the equations to those for simpler
geometries. The solving method is the exponential matrix
method in the thickness direction. The closed-form solution
is possible because of simply supported sides and harmonic
forms for displacements and moisture content. The moisture
content amplitudes are directly applied at the top and bottom
outer faces through steady-state hypotheses. The final system
is based on a set of coupled homogeneous second-order dif-
ferential equations. The moisture field effects are evaluated
for the static analysis in terms of displacement, strain, and
stress components. After preliminary validations, used to
better understand how to properly define the calculation of
the curvature-related terms and FGM properties, four new
benchmarks are proposed for several thickness ratios, geo-
metrical data, FGM configurations, and moisture values
imposed at the external surfaces. From the results, it is clear
the accordance between the uncoupled hygro-elastic model
and this new coupled hygro-elastic model when the 3D Fick
diffusion law is employed. Both effects connected with the

thickness layer and the embedded material are included in
the 3D hygro-elastic analyses proposed. The 3D coupled
hygro-elastic model is simpler than the uncoupled one
because the 3D Fick diffusion law does not have to be sepa-
rately solved.

Keywords: three-dimensional exact model, coupled hygro-
elastic shell model, 3D Fick diffusion law, functionally
graded materials, moisture content

1 Introduction

In the framework of aerospace structural analyses, the external
environmental conditions become extremely important to
be analyzed. Severe temperature and humidity gradients
are the classic conditions where these aircraft and space-
craft usually operate [1–4]. In particular, modern aerospace
structures can have problems concerning the absorption of
humidity from the external air. This phenomenon can
create irreversible damages related to the debonding and
the mechanical degradation of composite materials, with
severe problems related to the safety of aircraft structures.
For these reasons, the use of FGMs, whose peculiarity is the
continuous variation of its own mechanical, thermal and
hygroscopic properties along a given direction, can be rele-
vant. These peculiarities of the FGMs can strongly mitigate
all the aforementioned possible damages typical of compo-
site materials.

The scientific and technical literature fulfills various
features related to hygro-elastic models for plates and
shells embedding FGM layers. Numerical and analytical
models (1D, 2D, and 3D approaches) are deeply discussed
in this section to better understand the originality of the
new proposed model. In all the discussed papers, the
moisture field is involved. Two different sections are pro-
posed: in the first one, all the numerical models are deeply
described; meanwhile, in the second one, analytical models
are shown.

In the context of numerical models, Aria and Friswell
[5] showed a hygro-thermal investigation of functionally
graded (FG) sandwich microbeams based on Eringen
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nonlocal elasticity theory where motion equations are
derived using Hamilton principle and the first order shear
deformation theory (FSDT). The finite element (FE) proce-
dure is based on a five-noded beam element. In the study
by Garg et al. [6], the bending analysis of sandwich FGM
beams under combined hygrothermomechanical loadings
was evaluated. The study was carried out using a FE based
on a high order zigzag theory (HOZT). Li and Tang [7]
proposed three-directional FGMs to carry out the composi-
tion of slender beams. The nonlinear governing equations
were developed using the principle of minimum for poten-
tial energy. Liu and Mohammadi [8] proposed the bending
response of FG nanobeams under hygrothermomechanical
loadings. The nonlocal strain gradient theory (NSGT) was
implemented to consider both hardening and softening
impacts on the system response. Nguyen et al. [9] discussed
the hygro-thermal effects on vibration and buckling ana-
lyses of FG beams. This work was based on equations of
motion obtained from Lagrange equations using a higher-
order shear deformation theory. Tang and Ding [10]
showed the nonlinear hygro-thermal dynamics of a bi-
directionally FG beam where material and hygro-thermal
properties gradually change along both thickness and length
directions. Dastjerdi et al. [11] proposed a quasi three-dimen-
sional approach for the bending analysis of plates embed-
ding FGMs with porosities. The bending equations were
developed using Hamilton principle, and the solution was
obtained using a semi-analytical polynomial method. Lee
and Kim [12] showed the postbuckling behaviors of FGM
plates in hygrothermal environments. The model was based
on the FSDT and the von Karman strain-displacement rela-
tions, and it was developed using the FE method and
the Newton–Raphson technique. Sobhy [13] gave out the
bending analysis of sandwich-curved beams with graphene
platelets/aluminum (GPLs/Al) nanocomposite face sheets
and aluminum honeycomb. The differential quadrature
method (DQM), based on a new shear and normal defor-
mation curved beam theory, was employed. Sobhy also
[14] presented a three-dimensional asymmetric bending
analysis of solid circular and annular plates, made of
aluminum matrix reinforced with uniformly distributed
GPLs, lying on an elastic medium with different boundary
conditions. In-plane magnetic field, transverse external loads,
thermal loads, and humid conditions were included. Zhao
et al. [15] presented the dynamic analysis of GPL sandwich
shallow shells reinforced with FG porous and embedding
shape memory alloy (SMA) wires under hygrothermal load-
ings with general boundary conditions. Dai et al. [16] showed
a mechanical model to investigate the coupling between tem-
perature and moisture for a porous FG-carbon nanotube rein-
forced composite rotating annular plate with variable

thickness. Numerical results were achieved by combining the
DQM, the Runge–Kutta method, and the Newmark method.
Saadaftar and Aghaie-Khafri [17] proposed a rotating FGM
cylindrical shell with imperfect surfaces and piezoelectric
layers subjected to an axisymmetric hygro-thermo-electro-
mechanical loading. The Fourier series expansion method
through the longitudinal direction and the DQM along the
thickness direction were used to solve governing differential
equations. Nie et al. [18] showed the hygro-thermo-electro-
mechanical coupling problem of FG piezoelectric structures
using the edge-based smoothed point interpolation method
(ES-PIM). The basic equations for these structures were
derived in the multi-physical field. The resolution of the
coupled problem was obtained via ES-PIM and FE method
under different hygrothermal conditions.

In the case of exact analytical models, Akbarzadeh and
Chen [19] showed analytical solutions for hygrothermal
stresses in 1D FG piezoelectric media where material prop-
erties varied through the thickness direction. The media
were subjected to an external constant magnetic field. Gov-
erning equations were written in a unified form in cylind-
rical and spherical coordinates. Ebrahimi and Barati [20]
presented an hygro-thermo-mechanical vibration analysis of
FG size-dependent nanobeams exposed to various hygro-
thermal loadings. The analysis was performed via a semi-ana-
lytical differential transform method. Three hygro-thermal
loadings types (uniform, linear, and sinusoidal) were investi-
gated. Ebrahimi and Barati also [21] proposed a study where
the combined effects of moisture and temperature on free
vibration characteristics of FG nanobeams resting on elastic
foundationwere investigated. Different refined beam theories,
including shear deformations, were involved. Jouneghani
et al. [22] investigated the bending behavior of FG nanobeams
with internal porosity and subjected to a hygro-thermo-
mechanical loading. Eringen nonlocal theory was applied for
the numerical study considering a uniform porosity within the
nanobeam. The bending response of porous FG Bernoulli–
Euler nanobeams under hygrothermomechanical loadings
was analyzed by Penna et al. [23]. The governing equations
of the problem associated with the local/nonlocal stress and
strain-driven gradient models of elasticity were derived
using the principle of virtual work. Wang et al. [24] investi-
gated the influence of hygrothermomechanical coupling
loadings on buckling behaviors of porous bidirectional FG
Timoshenko nanobeams. The governing equations and
boundary conditions were derived using a two-phase local
strain gradient theory/NSGT employing the principle of vir-
tual work. A hygro-thermal stress analysis of rotating FG
graphene/metal sandwich cylindrical shells embedding an
auxetic honeycomb core was proposed the study by Allam
et al. [25]. The simply supported sandwich shell was
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spinning about its axial axis with a constant angular speed.
Arshid et al. proposed in [26] a study about the vibrational
behavior of three-layered cylindrical shells embedding gra-
phene nanoplatelets reinforced composite core and piezo-
electro-magnetic face sheets. The whole structure was rested
on the visco-Pasternak foundation, and it was exposed to
hygro-magneto-electro-thermal loads. Karimiasl et al. [27]
investigated the post-buckling behaviors of doubly curved
composite shells in a hygro-thermal environment employing
multiple scales perturbation methods. Three-phase compo-
site shells with polymer/carbon nanotube/fiber and
polymer/GPL/fiber and SMA/matrix were taken into consid-
eration according to the Halpin–Tsai model. Zidi et al. [28]
investigated the bending response of an FGM plate resting
on elastic foundation and subjected to hygrothermomecha-
nical loadings. Zenkour and Radwan [29] investigated the
effects of moisture and temperature on the bending analysis
of FG porous plates resting on two-parameter elastic foun-
dation. The effects of transverse normal and shear strains
were taken into account. Tang et al. [30] proposed a study
where the influence of the hygrothermal effects on center
deflections, fundamental natural frequencies, and vibration
deflection amplitudes for shells were discussed to under-
stand the service life of polymer matrix composites during
operating conditions. In the study by Mudhaffar et al. [31],
the bending behavior of an advanced FG ceramic-metal
plate subjected to a hygrothermomechanical load and
resting on a viscoelastic foundation was studied using a
simple higher-order integral shear deformation theory.

All the proposed exact models are related to 1D or 2D
theories. For this reason, a 3D hygro-elastic model was
developed by Brischetto and Torre in [32] to understand
the behavior of shells embedding FGM layers when external
moisture conditions were imposed. The present work can be
seen as a general extension of the works presented by
Brischetto in [33–35] where the mechanical and free vibra-
tion analyses of FGM shells were proposed. In the present
article, the important novelty with respect to the 3D hygro-
elastic shell model proposed by Brischetto and Torre in
[32,36] is the full coupling between the displacement field
and the hygroscopic field. Therefore, the moisture content
profile is directly obtained from the solution of the system,
and it is not “a priori” defined. A similar procedure was
already used by the authors in [37,38] in the case of full
coupling between the displacement field and the thermal
field for the 3D bending analysis of composite and FG plates
and shells, and in the study by Brischetto and Cesare [39] for
the case of full coupling between the displacement field and
the hygroscopic field for the 3D bending analysis of classical
multilayered composite plates and shells. The Fick diffusion

equation [40,41] coupled with 3D equilibrium equations
gives a system in mixed curvilinear orthogonal coordinates
[42,43]. The system is solved via the exponential matrix
method [44,45].

This article is organized in a section containing the
theoretical formulation of the 3D coupled hygro-elastic
model, a section about results (divided into preliminary
validations and new benchmarks) and a section about con-
clusions where the achieved results are summarized.

2 3D coupled hygro-elastic model
for FGM shells

The 3D formulation for full coupled exact hygro-elastic
analyses of FGM plates and shells is here presented. This
formulation allows hygro-elastic analyses of several geo-
metries such as cylinders, plates, cylindrical panels, and
spherical shells. The differences between these four geo-
metries are highlighted in Figure 1. Figure 1 indicates also
the mixed curvilinear orthogonal reference system with
the origin point located in the left corner. The directions
α and β are along to the in-plane curved sides, and they lie
on the surface Ω0, defined as the middle and reference
surface. Ω0 surface will be used for the calculation of all
the geometrical parameters. The thickness direction z is
normal to the Ω0 surface and directed upside and towards
the top surface. A coupled formulation is possible because
the three displacement components u, v, and w, and the
scalar moisture content� are the four unknown primary
variables of the problem.

2.1 Geometrical and constitutive equations

Geometrical relations written in matrix form are here pro-
posed for the coupled 3D hygro-elastic model. The matrix
equation is:

= − = + −ε ε ε G u ηz z zΔ ,k

u

k k k k k k k�� ( ( ) ( )) ( ) (1)

where ε
k is the ×6 1 hygro-mechanical strain vector, ε

u

k is
the ×6 1 strain vector related to the ×3 1 displacement
vector u

k , ε
k

� is the ×6 1 strain vector related to the scalar
moisture content k� , zΔk( ) is the ×6 3 matrix containing
differential geometrical terms, G z

k( ) is the ×6 3 matrix
containing algebraic geometrical and curvature terms,
and η z

k( ) is the ×6 1 vector containing hygrometric expan-
sion coefficients.
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Each k FGM layer has elastic and hygroscopic proper-
ties that are functions of the z coordinate. Isotropic FGM
layers are analyzed. Therefore, material reference system
(1, 2, 3) is coincident with the structural reference system
(α β z, , ). The extended forms of the previous matrices and
vectors are as follows:
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Rα and Rβ are the radii of curvature in the α and β in-
plane directions, respectively; they are constant values.

H zα( ) and H zβ( ) coefficients introduce the curvature shell
terms. They are defined, for each direction, as follows:
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The curvature shell terms are linear functions of the thick-
ness coordinate z or z̃. h is the total thickness of the struc-
ture and it is always considered as constant. The z coordi-
nate varies in the range between − ∕h 2 and ∕h 2; z̃ is in the
range between 0 and h.

The moisture content � is defined as follows:

∫
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where Wd is the mass of the dry material in kg, Wc is the
mass of the moisture present in the material in kg,W is the
mass of the moist material in kg (that is the sum ofWd and
Wc),V is the volume of the structure in m3, c is the moisture
concentration in kg/m 3, and ρ

d
is the density of the dry

material in kg/m 3. Therefore, � is in nondimensional or
in percentage form.

Stresses are linked with strains via the 3D Hooke law
written for a generic k FGM layer:

=σ C εz
k k k( ) (5)

where the stress vector is =σ σ σ σ σ σ σ
k
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k T( ) and
the elastic coefficient matrix C z

k( ) has ×6 6 dimension.
The substitution of Eq. (1) into Eq. (5) gives:
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where z
kM ( ) indicates the pure mechanical coefficients

and it has dimension ×6 3; ξ z
k( ) includes the hygro-elastic

coupling coefficients in the structural reference system:
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In Eq. (6), the six stress components are linked with displacementsu, v, w, and the moisture content� that are unknown
variables of this formulation.

2.2 3D equilibrium equations for spherical shells

The equilibrium equations and the 3D Fick diffusion equation for spherical shells are the basic equations of the present
coupled formulation. The set of three equilibrium equations for spherical shells written in the matrix form using the
mixed curvilinear orthogonal coordinates (α, β, z) is as follows:

Figure 1: Geometries in the mixed curvilinear orthogonal reference system.
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The final compact form is:
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where subscripts α, β, and, z indicate the partial derivatives ∂
∂α

, ∂
∂β

, and ∂
∂z

, respectively.

Eq. (9) is coupled with the 3D Fick diffusion equation for spherical shells in steady-state conditions:
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2
�

�
�

�
�

�
( ) ( ) ( ) (10)

where the diffusion coefficients z*
k

1� ( ), z*
k

2� ( ) and z*
k

3� ( ) for each k layer are defined as follows:

=

=

=

z

z

H z

z

z

H z

z z

* ,

* ,

* .

k

k

α

k

k

β

k k

1

1

2

2

2

2

3 3

�
�

�
�

� �

( )
( )

( )

( )
( )

( )

( ) ( )

(11)

z
k

1� ( ), z
k

2� ( ), and z
k

3� ( ) are the three diffusion coefficients in the mixed curvilinear reference system depending on z in the
case of FGM layers. In Eq. (10), the diffusion coefficients take into account the curvature of the geometry along in-plane
directions. For the plate cases, the z*

i

k� ( ) diffusion coefficients degenerate in z
i

k
� ( ) because curvatures are not involved.

2.3 Solution procedure

The resolution of this coupled hygro-elastic problem in a closed form needs the imposition of the Navier conditions for all
the main unknowns u

k , v
k , w

k , and k� . These impositions can be written as follows:
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

u α β z

v α β z

w α β z

α β z

U z

V z

W z

M z

αα ββ

αα ββ

αα ββ

αα ββ

, ,

, ,

, ,

, ,

0 0 0

0 0 0

0 0 0

0 0 0

cos ¯ sin ¯

sin ¯ cos ¯

sin ¯ sin ¯

sin ¯ sin ¯

.

k

k

k

k

k

k

k

k

�

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

(12)

Using the Navier form for the unknowns, the boundary conditions are simply-supported sides for all the investigated
structures. The capital letters proposed in Eq. (12) are the amplitudes of the unknowns. The ᾱ and β̄ coefficients depend
on the a and b dimensions and on the half-wave numbers m and n in the in-plane directions:

= =α

mπ

a

β

nπ

b
¯ , ¯ . (13)

All the primary variables expressed in Eq. (12) are 3D variables because they are functions of α, β, and z.
Substituting the primary variables written in the harmonic forms as in Eq. (12), the geometrical relations as in Eq. (1)

and the constitutive equations as in Eq. (5) into the governing Eqs. (9) and (10), a global set of four second-order
differential equations is obtained. It can be properly transformed into a first-order differential equation system by
redoubling the number of unknowns (as stated in [44] and [45]). After all these manipulations, the set of first-order
differential equations can be written in a compact matrix form as follows:

′ =D X A Xz z z z ,k k k k( ) ( ) ( ) ( ) (14)

where

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

D z

A z

A z

A z

J z

A z

A z

A z

J z

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

,k

k

k

k

k

k

k

k

k

6

12

19

7

6

12

19

7

( )

( )

( )

( )

( )

( )

( )

( )

( )

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

′ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

′

′

′

′

′

′

′

′

′

X Xz

U z

V z

W z

M z

U z

V z

W z

M z

z

U z

V z

W z

M z

U z

V z

W z

M z

, ,k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

(15)

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

− − − − − −

− − − − − −

− − − − − − − −

− +

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

A z

A z

A z

A z
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A z A z A z J z A z A z

A z A z A z J z A z A z

A z A z A z J z A z A z A z J z

J z J z

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0 0

.k

k

k
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k

k k k k k k
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k k

6
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7
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X z
k( ) is the ×8 1 redoubled unknown vector containing

displacements, moisture content amplitudes, and related
first order derivatives along z direction (stated with the
superscript ′). Eq. (14) is valid for each k physical layer.
Coefficient matrices in Eq. (14) depend on z due to the
curvature terms H zα( ) and H zβ( ), and elastic and hygro-
scopic terms for FGMs. To solve the system in Eq. (14), the
coefficients must be constant. Introducing a number of L

fictitious layers in each physical layer k along the thickness
direction, H zα( ), H zβ( ), D z

k( ), and A z
k( ) can be exactly

calculated in the middle points of these layers, and the
values become constant within each of it. A generic ficti-
tious layer is indicated with j and goes from 1 to = ×F L P

(where P is the total number of physical layers). The
system in Eq. (14) has now constant coefficients, and it
can be rewritten as follows:

′ =X A X
* ,j j

j

(16)

where = −
A D A

* j j

j

1

. The exponential matrix method, pro-
posed in [44,45], is employed and the solution of the pro-
blem in Eq. (16) is:

( )= =X X A Xe ** .
*

A

t

j
z

b

j

b

j˜

j

j j (17)

The unknown amplitude vector Xt

j at the top of the j ficti-
tious layer can be obtained from the unknown amplitude
vector X

b

j at the bottom of the same j fictitious layer. The
exponential matrix is computed referring to the thickness
value h

j. The exponential matrix can be expanded and
calculated in correspondence of h

j for each fictitious layer:

( )=

= + +

+ + ⋯+

A

I A

A

A A

h h

h

N

h

** e

*
*

2!

*

3!

*

!
.

*
A h

j j

j

N

j N

2

2

3

3

j

j

j

j

j

j j

(18)

I is the ×8 8 identity matrix.
Further relationships must be included for interla-

minar continuity conditions. They are useful to link the
top of the j fictitious layer and the bottom of the +j 1

fictitious layer. These interlaminar continuity conditions
must be imposed for displacements u, v, and w, moisture
content � , and transverse shear/normal stresses σαz, σβz,

and σzz and transverse normal moisture flux g
z
in the z

direction. The interlaminar continuity conditions in the
compact form is expressed as follows:

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

+

+

+

+

x x

u

v

w

u

v

w

,
b

j

b

j

b

j

b

j

b

j

t

j

t

j

t

j

t

j

t

j

1

1

1

1

1
� �

(19)

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

+

+

+

σ σ

σ

σ

σ

σ

σ

σ

,n nb

j

βz

j

αz

j

zz

j

t

j

βz

j

αz

j

zz

j

1

1

1

1

b

b

b

t

t

t

(20)

=+
g g .

z

j

z

j1

b t

(21)

The interlaminar continuity conditions expressed in Eq.
(19) can be easily imposed directly for the amplitudes U

j ,
V

j, W
j, and j� . It is possible to obtain an amplitude form

of Eqs. (19)–(21) taking into account the constitutive rela-
tions in Eq. (5) and the harmonic forms in Eq. (12). This
amplitude form can be rewritten as follows:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

′
′
′
′

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

′
′
′
′

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⇒ =

+ +

+ +
X T X

U

V

W

M

U

V

W

M

T T T

T T T

T T T τ T

τ

U

V

W

M

U

V

W

M

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

,

b

j
j j

t

j

b

j
j j

t

j

1

1 2 3

4 5 6

7 8 9 1 10

2

1,

1 1,

(22)

where +
T

j j1, is the transfer matrix that links the bottom of
the +j 1 layer with the top of the j layer.

The boundary conditions for simply supported sides
are satisfied for harmonic forms:

= = = = =w v σ α a0, 0, 0 for 0, ,αα� (23)

= = = = =w u σ β b0, , 0, 0 for 0, .ββ� (24)

Load boundary conditions are imposed on the external
faces as follows:

= = = = = ± ∕σ σ σ z h0, 0, 0, for 2.zz αz βz ext� � (25)

The matrix forms of Eq. (25) are as follows:
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⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

− − + −

−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

′
′
′
′

⎤

⎦

⎥
⎥
⎥
⎥
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⎥
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⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

C

H

α

C

H

β

C

H R

C

H R

λ C

C

H R

C

H

β C

C

H R

C

H

α C

U

V

W

M

U

V

W

M

M

¯ ¯ 0 0 0

0 ¯ 0 0 0 0

0 ¯ 0 0 0 0

0 0 0 1 0 0 0 0

0

0

0 ,

F

α

F

F

β

F

F

α

F

α

F

β

F

β

z

F F

F

β

F

β

F

β

F

F

F

α

F

α

F

α

F

F

t

F

t

13 23 13 23

33

44 44

44

55 55
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t t t t

t t

t t

(26)

⎡
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− − + −
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⎥

⎡
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⎢
⎢
⎢

′
′
′
′

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

C

H

α

C

H

β

C

H R

C

H R

λ C

C

H R

C

H

β C

C

H R

C

H

α C
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M

U

V

W

M

M

¯ ¯ 0 0 0

0 ¯ 0 0 0 0

0 ¯ 0 0 0 0

0 0 0 1 0 0 0 0

0

0

0 ,

α β α α β β

z

β β β

α α α

b

b

13

1

1

23

1

1

13

1

1

23

1

1

1

33

1

44

1

1

44

1

1 44

1

55

1

1

55

1

1 55

1

1

b b b b

b b

b b

(27)

and they can be further compacted as follows:

=B X ,
t

F

t

F

tP (28)

=B X .
b b b

1 1 P (29)

Superscript F indicates the last fictitious layer and superscript 1 is the first fictitious layer. Vectors tP and bP include the
impositions related to the mechanical load in the three directions α, β, and z and the moisture content. Assuming a
classical hygro-elastic stress analysis, the mechanical loads in α, β, and z directions are set equal to zero.

It is possible to write X
t

F in terms of X
b

1 to directly link the top of the last fictitious layer with the bottom of the first
one. This operation can be achieved introducing recursively Eq. (22) into Eq. (17):

= =− − − −
X A T A T A T A X H X** ** … ** ** .

t

F F F F F F F

b m b

, 1 1 1, 2 2 2,1 1 1 1( ) (30)

Eq. (30) defines the ×8 8 matrix Hm for structures embedding FGM layers. Introducing Eq. (30) into Eq. (28):

=B H X .
t

F

m b t

1 P (31)

Eqs. (29) and (31) can be now compacted in an unique equation as follows:

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣⎢
⎤

⎦⎥
⇒ =

B H

B
X EX .

t

F

m

b

b

t

b
b1

1 1

P

P P (32)

Matrix E has ×8 8 dimension independently by the number of fictitious layers employed and layer-wise approach.
Vector P contains all the load impositions, both mechanical and hygroscopic ones, at the top and at the bottom of the
structure. The system in Eq. (32) is formally the same shown in the previous studies by Brischetto [32–34] even if the 3D
Fick diffusion equation is added to equilibrium relations.

This mathematical formulation is implemented in a Matlab code to evaluate stresses, strains, and displacements
along the thickness direction for all the structures presented in the next section and including different FGM configura-
tions (sandwich and single-layered ones).

Once the unknown vector at the bottom of the first fictitious layer ( =j 1) is computed, Eqs. (17) and (22) can be
recursively applied to obtain the trends of all the variables through the z direction of the structures.
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Table 1: Mechanical and hygroscopic properties for the two PVR and for
benchmarks (B)

FGM properties

Km [GPa] 227.24
Gm [GPa] 65.55

η
m

⎡⎣ ⎤⎦
1

%

×2 10‒3

m� ⎡⎣ ⎤⎦
kg

ms

10‒9

Kc [GPa] 125.83
Gc [GPa] 58.077

η
c

⎡⎣ ⎤⎦
1

%

10‒3

c� ⎡⎣ ⎤⎦
kg

ms

10‒10

Table 2: Moisture contents, geometrical data, and lamination config-
urations for the two PVR

PVR1 PVR2
Square plate Cylindrical shell

a [m] 100 1
b [m] 100

R
π

β3

h [m] 25, 10, 2 0.2, 0.01
Rα [m] ∞ ∞

Rβ [m] ∞ 10

t� [%] +1.0 +1.0

b� [%] +0.5 +0.5
m 1 1
n 1 1
p 2.0 2.0
Configuration Single FGM layer Single FGM layer

Table 3: Preliminary validation results (PVR1), square plate embedding a single FGM layer. Moisture content applied at the external surfaces. The
reference solutions are the 3D uncoupled analytical model and the 3D FE model via Patran and Nastran proposed by Brischetto and Torre [32]

→→F 10 50 100 200 300

w [10 4‒ m] at =z h˜ , = ∕α a 2, and = ∕β b 2

∕ =a h 4 3D FEM [32] 143.3 143.3 143.3 143.3 143.3
3D( c� , 3D) [32] 151.0 141.9 141.6 141.5 141.5
3D-u-� 152.0 142.0 141.6 141.5 141.5

σαα [Pa] at =z 0˜ , = ∕α a 2, and = ∕β b 2

∕ =a h 4 3D FEM [32] ‒751,662 ‒751,662 ‒751,662 ‒751,662 ‒751,662

3D( c� , 3D) [32] ‒75,532 ‒75,561 ‒75,551 ‒75,548 ‒75,548

3D-u-� ‒76,106 ‒75,573 ‒75,554 ‒75,549 ‒75,549

u [10‒4 m] at = ∕z h 2˜ , = ∕α a 2, and =β 0

∕ =a h 10 3D FEM [32] ‒226.0 ‒226.0 ‒226.0 ‒226.0 ‒226.0

3D( c� , 3D) [32] ‒227.3 ‒225.8 ‒225.7 ‒225.7 ‒225.7

3D-u-� ‒227.4 ‒225.8 ‒225.8 ‒225.8 ‒225.8

σαα [Pa] at =z h˜ , = ∕α a 2, and = ∕β b 2

∕ =a h 10 3D FEM [32] ‒63,825 ‒63,825 ‒63,825 ‒63,825 ‒63,825

3D( c� , 3D) [32] ‒87,250 ‒68,062 ‒65,359 ‒63,979 ‒63,515

3D-u-� ‒87,228 ‒68,063 ‒65,360 ‒63,980 ‒63,516

u [10 4‒ m] at =z 0˜ , = ∕α a 2, and =β 0

∕ =a h 50 3D FEM [32] ‒236.8 ‒236.8 ‒236.8 ‒236.8 ‒236.8

3D( c� , 3D) [32] ‒235.9 ‒236.8 ‒236.8 ‒236.9 ‒236.9

3D-u-� ‒235.9 ‒236.9 ‒236.9 ‒236.9 ‒236.9

σαα [Pa] at = ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

∕ =a h 50 3D FEM [32] ‒105,149 ‒105,149 ‒105,149 ‒105,149 ‒105,149

3D( c� , 3D) [32] ‒114,035 ‒107,338 ‒106,457 ‒106,013 ‒105,865

3D-u-� ‒96,097 ‒103,761 ‒104,669 ‒105,119 ‒105,269
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3 Results

This 3D coupled hygro-elastic shell model here developed is
indicated with the acronym 3D-u-� that clearly indicates
the employed primary variables (displacement vector and
scalar moisture content) . This newmodel is also compared
with past 3D uncoupled hygro-elastic shell models where
the moisture content profile is separately defined. These
models are indicated as 3D( a� ) when the moisture con-
tent profile is a priori assumed as linear through the entire
thickness direction, 3D( c� , 1D) when the moisture content
profile is separately calculated by solving the 1D version of
the Fick diffusion equation, and 3D( c� , 3D) when the
moisture content profile is separately calculated by solving
the 3D version of the Fick diffusion equation.

This section is splitted in two different parts: the first
subsection is devoted to the validation of the 3D coupled
hygro-elastic model for FGM shells by means of compar-
isons with the past 3D( c� , 3D) model and the 3D solid
finite element model by Patran and Nastran in the study
by Brischetto and Torre [32]. This assessment subsection
is very important because it is useful to understand the
number of fictitious layers F that must be used to prop-
erly account for effects of the shell curvatures and FGM
variable properties. In addition, the order of the expan-
sion N for the exponential matrix must be also defined to
obtain accurate results. In the second subsection, four
new benchmarks are presented. They are useful to under-
stand all the potentiality of the model because they con-
sider different parameters such as the thickness ratio, the

Table 4: Preliminary validation results (PVR2), cylindrical shell embedding a single FGM layer. Moisture content applied at the external surfaces. The
reference solutions are the 3D uncoupled analytical model and the 3D FE model via Patran and Nastran proposed by Brischetto and Torre [32]

→→F 10 50 100 200 300

w [10 6‒ m] at =z h˜ , = ∕α a 2, and = ∕β b 2

∕ =R h 50β
3D FEM [32] 411.97 411.97 411.97 411.97 411.97

3D( c� , 3D) [32] 417.06 398.20 397.51 397.34 397.31
3D-u-� 417.80 398.20 397.52 397.35 397.31

w [10 6‒ m] at = ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

∕ =R h 50β
3D FEM [32] 279.92 279.92 279.92 279.92 279.92

3D( c� , 3D) [32] 285.49 268.05 267.42 267.26 267.23
3D-u-� 286.30 268.06 267.42 267.26 267.23

u [10 6‒ m] at =z h˜ , = ∕α a 2, and =β 0

∕ =R h 50β
3D FEM [32] ‒538.01 ‒538.01 ‒538.01 ‒538.01 ‒538.01

3D( c� , 3D) [32] ‒539.7 ‒531.1 ‒530.8 ‒530.7 ‒530.7

3D-u-� ‒539.9 ‒531.1 ‒530.8 ‒530.7 ‒530.7

u [10 6‒ m] at =z 0˜ , = ∕α a 2, and =β 0

∕ =R h 50β
3D FEM [32] ‒380.50 ‒380.50 ‒380.50 ‒380.50 ‒380.50

3D( c� , 3D) [32] ‒379.6 ‒381.7 ‒381.8 ‒381.8 ‒381.8

3D-u-� ‒379.2 ‒381.8 ‒381.9 ‒381.9 ‒381.9

w [10 6‒ m] at =z h˜ , = ∕α a 2, and = ∕β b 2

∕ =R h 1,000β
3D FEM [32] 10,128 10,128 10,128 10,128 10,128

3D( c� , 3D) [32] 10,149 10,064 10,061 10,060 10,060
3D-u-� 10,149 10,064 10,061 10,061 10,061

w [10 6‒ m] at = ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

∕ =R h 1,000β
3D FEM [32] 10,123 10,123 10,123 10,123 10,123

3D( c� , 3D) [32] 10,144 10,059 10,056 10,055 10,055
3D-u-� 10,144 10,059 10,056 10,056 10,056

u [10 6‒ m] at =z h˜ , = ∕α a 2, and =β 0

∕ =R h 1,000β
3D FEM [32] ‒520.37 ‒520.37 ‒520.37 ‒520.37 ‒538.01

3D( c� , 3D) [32] ‒521.1 ‒517.9 ‒517.8 ‒517.8 ‒517.8

3D-u-� ‒521.1 ‒518.0 ‒517.8 ‒517.8 ‒517.8

u [10 6‒ m] at =z 0˜ , = ∕α a 2, and =β 0

∕ =R h 1,000β
3D FEM [32] ‒202.42 ‒202.42 ‒202.42 ‒202.42 ‒202.42

3D( c� , 3D) [32] ‒202.5 ‒202.0 ‒201.9 ‒201.9 ‒201.9

3D-u-� ‒202.5 ‒202.0 ‒202.0 ‒202.0 ‒202.0

Coupled hygro-elastic 3D model for steady-state analysis of FG plates and shells  11



FGM configuration, the moisture content at the external
surfaces, and the geometry. In both subsections, the FGM
is composed by two phases: the metallic one is Monel
(70Ni30Cu) and the ceramic one is Zirconia. The hygro-
elastic properties of these two materials are clearly
shown in Table 1.

The volume fraction of the ceramic phase for all the
cases proposed (both assessments and benchmarks) is:
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where z̃FGM is the local thickness coordinate of the FGM
layer, p is the exponential coefficient, and hFGM is the total

dimension in the z direction of the FGM layer. The FGM
layer is completely in Monel for =V 0c , and it is completely
in Zirconia for =V 1c .

Bulk and shear moduli of the FGM layer vary in the
thickness direction following the Mori-Tanaka model:
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The moisture expansion coefficient η, written according
to the Hatta and Taya model, is a function of the bulk mod-
ulus as follows:
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and themoisture diffusion coefficient� can be computed using:
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where the dependence on Vc is clear. The material data
employed in this section were proposed by Reddy and
Cheng in [46].

3.1 Comparisons for validations

Two preliminary validation results (PVRs) are proposed for
this new three-dimensional general exact coupled hygro-

Table 5: Moisture contents, geometrical data, and lamination config-
urations for the four Benchmarks (B). t can assume the values 5, 2.5, 1,
0.2, and 0.1

B1 B2 B3 B4
Square
plate

Cylinder Cylindrical
shell

Spherical
shell

a [m] 10 30 30
R

π

α3

b [m] 10 2πRβ R
π

β3
R

π

β3

h [m] t t t t

Rα [m] ∞ ∞ ∞ 10
Rβ [m] ∞ 10 10 10

t� [%] +1.0 +1.0 +1.0 +1.0

b� [%] 0.0 0.0 0.0 0.0
m 1 1 0 2
n 1 2 2 2
p 1.0 2.0 0.5 0.5
Scheme Single

FGM layer
Single FGM
layer

Sandwich with
FGM core

Sandwich
with FGM core
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Figure 2: Benchmark 1 (B1), bulk modulus, and volume fraction of the ceramic phase for a square plate embedding a single FGM layer ( =p 1.0).
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elastic shell model (3D-u-� ). A square plate and a cylind-
rical shell panel are analyzed for several thickness ratios,
moisture content profiles and lamination schemes. For
these validation cases, the 3D-u-� model is compared
with the 3D( c� , 3D) model and the 3D FE model via
Patran and Nastran (for the details about these models,
see [32]). Table 2 shows all the data used for the assessment
cases. When =N 3 and =F 300, the 3D-u-� model obtains
the same results as the 3D( c� , 3D) presented by Brischetto
and Torre in [32], but some differences occur with respect
to the 3D FE analysis. The results obtained by the Patran
and Nastran model are always the same for each number
of fictitious layers F because the 3D solid FE model does not
use fictitious layer discretization.

The first preliminary validation results (PVR1) propose
a simply supported square plate composed by a single FGM
layer. The hygro-elastic material properties are presented
in Table 1, and the geometrical parameters are given in the
first column of Table 2. Table 3 shows the results of the
conducted analyses for different numbers of fictitious
layers F and different thickness ratios ∕a h. Transverse
normal displacement w, in-plane displacement u, and in-
plane normal stress σαα are analyzed. There is a clear con-
vergence of results for the increasing number of fictitious
layers F . For the majority of the cases, a number of 200
fictitious layers is sufficient for both the 3D uncoupled
model and for the 3D coupled model (both using the 3D
Fick diffusion equation).

The second preliminary validation results (PVR2) show
a simply supported cylindrical shell embedding a single
FGM layer. The hygro-elastic material properties are col-
lected in Table 1, and the geometrical parameters are given
in the second column of Table 2. Table 4 proposes results

Table 6: Benchmark 1 (B1), square plate embedding a single FGM layer.
3D uncoupled hygro-elastic models [32] vs the 3D coupled hygro-elastic
model

∕∕a h 2 4 10 50 100

‒� [ ] at = + ∕z h4 5˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 0.8000 0.8000 0.8000 0.8000 0.8000
3D( c� , 1D) [32] 0.5595 0.5595 0.5595 0.5595 0.5595
3D( c� , 3D) [32] 0.4351 0.5197 0.5525 0.5592 0.5594
3D-u-� 0.4352 0.5197 0.5526 0.5592 0.5594

v [10 3‒ m] at = + ∕z h4 5˜ , = ∕α a 2, and =β 0

3D( a� ) [32] ‒2.094 ‒2.089 ‒2.087 ‒2.086 ‒2.086

3D( c� , 1D) [32] ‒1.454 ‒1.461 ‒1.462 ‒1.462 ‒1.462

3D( c� , 3D) [32] ‒1.148 ‒1.362 ‒1.445 ‒1.462 ‒1.462

3D-u-� ‒1.148 ‒1.363 ‒1.445 ‒1.462 ‒1.463

w [10 3‒ m] at = + ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 1.226 2.661 6.791 34.07 68.16
3D( c� , 1D) [32] 1.103 2.405 6.144 30.83 61.68
3D( c� , 3D) [32] 1.008 2.336 6.113 30.83 61.67
3D-u-� 1.008 2.337 6.113 30.83 61.68

σzz [103 Pa] at = + ∕z h 5˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] ‒5,915 ‒982.6 ‒127.7 ‒4.879 ‒1.218

3D( c� , 1D) [32] ‒1,197 44.77 26.65 1.217 0.3054
3D( c� , 3D) [32] 515.5 173.0 30.09 1.222 0.3057
3D-u-� 515.5 173.0 30.09 1.222 0.3057

σαα [106 Pa] at = +z h˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] ‒7.939 ‒34.86 ‒43.94 ‒45.68 ‒45.73

3D( c� , 1D) [32] ‒63.24 ‒3.08 ‒89.55 ‒90.74 ‒90.78

3D( c� , 3D) [32] ‒90.78 ‒90.95 ‒90.83 ‒90.79 ‒90.79

3D-u-� ‒90.78 ‒90.95 ‒90.83 ‒90.79 ‒90.79

γ
βz

[10 6‒ ] at = + ∕z h 3˜ , = ∕α a 2, and =β 0

3D( a� ) [32] ‒173.7 ‒57.29 ‒18.35 ‒3.489 ‒1.741

3D( c� , 1D) [32] ‒39.06 3.440 4.709 1.072 0.5379
3D( c� , 3D) [32] 19.67 12.49 5.321 1.076 0.5384
3D-u-� 19.67 12.49 5.324 1.077 0.5386
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Figure 3: Benchmark 1 (B1), moisture content profile α β z, ,� ( ) at = + ∕α a 2 and = + ∕β b 2 for a moderately thick ( ∕ =a h 4) and a moderately thin
( ∕ =a h 50) configuration. Square plate embedding a single FGM layer ( =p 1.0).
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Figure 4: Benchmark 1 (B1), displacement components, moisture content profile, and stress components for a thick ( ∕ =a h 2) square plate embedding
a single FGM layer ( =p 1.0). Maximum values: u in (0, b/2); w, � , σzz, and σαα in (a/2, b/2); σβz in (a/2, 0).
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for different numbers of fictitious layers F and for two
different thickness ratios: a thick configuration and a
thin configuration. Transverse and in-plane displacements
are analyzed and the reference solutions are the same seen
in PVR1. The same conclusions seen for PVR1 are con-
firmed. For a number of fictitious layers =F 200 and order
of expansion =N 3 for the exponential matrix, the 3D-u-�
model is coincident with the reference solution for both
thickness ratios because these two different 3D analytical
models take into account the same effects but in a dif-
ferent way.

After these PVRs, a number of =F 300 fictitious layers
(that is overbundant with respect to =F 200) and an order
of expansion for the exponential matrix =N 3 are fixed for
all the future new benchmarks proposed in the next
section.

3.2 New benchmarks

Four benchmark cases are here proposed. They take into
account different characteristics for each case to have a
global overview of all the peculiarities. The proposed four
benchmarks consider the geometries given in Figure 1. The
results obtained in this subsection consider different lami-
nation schemes, FGM properties, and external moisture con-
tent impositions. =N 3 is used as the order of expansion for
the exponential matrix, and =F 300 is the number of ficti-
tious layers involved in each benchmark. This choice about
N and F has been deeply discussed in the previous subsec-
tion. The new 3D coupled hygro-elastic model (3D-u-� ) is
compared with 3D uncoupled models presented by
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Figure 5: Benchmark 2 (B2), bulk modulus and volume fraction of the ceramic phase for a circular cylinder embedding a single FGM layer ( =p 2.0).

Table 7: Benchmark 2 (B2), closed cylinder embedding a single FGM
layer. 3D uncoupled hygro-elastic models [32] vs the 3D coupled hygro-
elastic model

∕∕R hβ
2 4 10 50 100

‒� [ ] at = + ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 0.5000 0.5000 0.5000 0.5000 0.5000
3D( c� , 1D) [32] 0.2627 0.2627 0.2627 0.2627 0.2627
3D( c� , 3D) [32] 0.2439 0.2577 0.2619 0.2627 0.2627
3D-u-� 0.2439 0.2577 0.2619 0.2627 0.2627

u [10 3‒ m] at = + ∕z h 3˜ , = ∕α a 2, and =β 0

3D( a� ) [32] ‒6.095 ‒6.688 ‒6.975 ‒7.079 ‒7.089

3D( c� , 1D) [32] ‒3.725 ‒4.096 ‒4.253 ‒4.298 ‒4.302

3D( c� , 3D) [32] ‒3.541 ‒4.043 ‒4.244 ‒4.298 ‒4.302

3D-u-� ‒3.541 ‒4.043 ‒4.244 ‒4.298 ‒4.302

w [10 3‒ m] at = + ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 14.96 15.14 14.73 14.33 14.27
3D( c� , 1D) [32] 9.600 9.488 9.056 8.715 8.667
3D( c� , 3D) [32] 9.187 9.372 9.037 8.714 8.667
3D-u-� 9.187 9.372 9.037 8.714 8.667

σzz [106 Pa] at = + ∕z h 3˜ 2 , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 4.442 4.370 2.346 0.5349 0.2716
3D( c� , 1D) [32] 7.308 5.035 2.383 0.5161 0.2605
3D( c� , 3D) [32] 7.578 5.055 2.384 0.5161 0.2605
3D-u-� 7.578 5.055 2.384 0.5161 0.2605

σββ [106 Pa] at = +z h˜ , = ∕α a 2, and = ∕bβ 2

3D( a� ) [32] 12.32 ‒16.61 ‒39.44 ‒52.85 ‒54.56

3D( c� , 1D) [32] ‒69.19 ‒91.24 ‒107.7 ‒117.1 ‒118.3

3D( c� , 3D) [32] ‒75.45 ‒92.77 ‒107.9 ‒117.1 ‒118.3

3D-u-� ‒75.46 ‒92.77 ‒107.9 ‒117.1 ‒118.3

γ
αβ

[10 6‒ ] at =z 0˜ , =α 0, and =β 0

3D( a� ) [32] 516.7 292.5 119.2 23.61 11.78
3D( c� , 1D) [32] 390.8 209.0 82.62 16.12 8.025
3D( c� , 3D) [32] 381.8 207.4 82.50 16.11 8.025
3D-u-� 381.8 207.4 82.50 16.11 8.025
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Brischetto and Torre in [32] (3D( c� , 3D), 3D( c� , 1D), and 3D
( a� )). Now, some reference results have been corrected
because of some residual errors in [32]. All the geometrical
features involved in the four benchmarks are collected in
Table 5. The results discussed in this subsection can be used
as test cases for scientists involved in the developing of 2D or
3D analytical/numerical models to evaluate the effects of the
moisture content in these types of structures. The material
data for the four benchmarks are given in Table 1.

The first benchmark (B1) considers a square plate with
a single FGM layer and simply supported sides. The top of
the structure is fully ceramic, and the bottom is fully
metallic. All the data used for the hygroelastic analysis
are presented in the first column of Table 5. Several thick-
ness ratios are considered to evaluate the effects of geome-
trical parameters. The thickness ratios vary from ∕ =a h 2 to
∕ =a h 100. The moisture content is directly imposed at
the external surfaces in harmonic form. In Figure 2, it
is possible to see how the bulk modulus and the volume
fraction of the ceramic phase vary across the thickness
direction of the material. The trend adopted for the volume
fraction of the ceramic phase is linear and p = 1 is the
exponent used in Eq. (33). In Table 6, moisture content,
displacements, stresses and strains are proposed. The
results for the thick plate highlight the accordance
between the 3D-u-� and the 3D( c� , 3D) because both
consider the three-dimensional nature of the problem,
taking into account both the material and the thickness
layer effects. For this reason, these two solutions show the
most accurate results. Due to the fact that the 3D( c� , 1D)
considers only the material effect and the 3D( a� )

discards both material and thickness layer effects, the
results proposed by these two models are not correct
for the thick cases. For what concerns the thin configura-
tion, as the thickness layer effect vanishes, even the 3D
( c� , 1D) is reliable as the 3D-u-� and the 3D( c� , 3D); the
only discrepancies are proposed by the 3D( a� ) because it
assumes a moisture content profile always linear. In
Figure 3, it is possible to visualize the four moisture con-
tent profiles for a moderately thick case and a moderately
thin one. It is possible to clearly see the differences
involved for the moderately thick structure case among
the u-� coupled profile, the calculated ( c� , 3D) profile
and the calculated ( c� , 1D) profile. For the moderately
thin structure case, only the assumed linear profile ( a� )
is wrong because it does not take into account both mate-
rial and thickness layer effect. Figure 4 shows the trend
along the z direction of two displacement components,
the moisture content calculated with this new 3D coupled
model, and stresses. All the variables are continuous
along the thickness direction because this is a peculiarity
of the FGMs, and it also demonstrates the correct implemen-
tation of the continuity conditions in the model. The trans-
verse normal stress σzz and the transverse shear stress σβz

satisfy the external mechanical loading boundary condi-
tions: they equal zero at both the external faces because
no external mechanical loads act on them.

The second benchmark (B2) is about a closed cylinder
with a single FGM layer and simply supported sides. The
metallic and ceramic phases and related mechanical and
hygroelastic properties are the same seen in B1 and in
Table 1. The geometrical data of the structure are shown
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Figure 6: Benchmark 2 (B2), moisture content profile α β z, ,� ( ) at = + ∕α a 2 and = + ∕β b 2 for a moderately thick ( ∕ =R h 4β ) and a moderately thin
( ∕ =R h 50β ) configuration. Circular cylinder embedding a single FGM layer ( =p 2.0).
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Figure 7: Benchmark 2 (B2), displacement components, moisture content profile, and stress components for a thick ( ∕ =R h 2β ) circular cylinder
embedding a single FGM layer ( =p 2.0). Maximum values: v in (a/2, 0); w, � , σββ, and σzz in (a/2, b/2); σαβ in (0,0).
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in the second column of Table 5. Different thickness ratios
are considered to better understand the effects of geome-
trical parameters. The thickness ratio varies from ∕ =R h 2α

to ∕ =R h 100α . The FGM law (Eq. (33)) has exponent =p 2.
In Figure 5, it is possible to see the bulk modulus and the
volume fraction trend. In Table 7, results are shown to
compare the 3D( c� , 3D) model, the 3D( c� , 1D) model,
the 3D( a� ) model, and the new 3D-u-θ model. The conclu-
sions for both thin and thick structures are the same seen
in the first benchmark. In Figure 6, the moisture content
profile is given for a moderately thin and a moderately
thick case. For the closed cylinder case, the differences
among the ( c� , 1D) profile, ( c� , 3D) profile, and the u-
� profile are also small for the moderately thick case.
Only the ( a� ) profile is always incorrect because the
hypothesis of linear profile is not true due to the material
and thickness layer effects. Figure 7 shows some variables
of interest to understand the main peculiarities of this case.
All the variables presented are continuous: it means the
correctness of the continuity conditions. The continuous
trends of these variables are a specific characteristic of
the FGMs. In addition, as no mechanical loads are applied,
the stress σzz is zero at the top and bottom surfaces.

The third benchmark (B3) proposes a sandwich cylindrical
shell panel with simply supported sides. The material config-
uration has a bottom face in Monel (thickness =h h0.1f ), a
top face in Zirconia (thickness =h h0.1f ), and a center core
in FGM (thickness =h h0.8c ). For this sandwich configura-
tion, the volume fraction of the ceramic phaseVc of the core
is 0 at the bottom (full metallic constituent) and 1 at the top
(full ceramic constituent); it varies with continuity from 0 to
1 in the FGM core. The exponent p adopted for the FGM law
is 0.5. The volume fraction Vc and the bulk modulus trends
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Figure 8: Benchmarks 3 and 4 (B3–B4), bulk modulus and volume fraction of the ceramic phase for a sandwich cylindrical shell panel and a sandwich
spherical shell panel embedding a FGM core ( =p 0.5).

Table 8: Benchmark 3 (B3), sandwich cylindrical shell panel embedding
a FGM core. 3D uncoupled hygro-elastic models [32] vs the 3D coupled
hygro-elastic model

∕∕R hβ
2 4 10 50 100

‒� [ ] at = + ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 0.5000 0.5000 0.5000 0.5000 0.5000
3D( c� , 1D) [32] 0.2263 0.2263 0.2263 0.2263 0.2263
3D( c� , 3D) [32] 0.1100 0.1813 0.2178 0.2260 0.2263
3D-u-� 0.1100 0.1813 0.2178 0.2260 0.2263

u [10 6‒ m] at = + ∕z h3 4˜ , =α 0, and = ∕β b 2

3D( a� ) [32] 0.000 0.000 0.000 0.000 0.0000
3D( c� , 1D) [32] 0.000 0.000 0.000 0.000 0.0000
3D( c� , 3D) [32] 0.000 0.000 0.000 0.000 0.0000
3D-u-� 0.000 0.000 0.000 0.000 0.0000

w [10 5‒ m] at = + ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 52.486 111.71 313.64 1670.1 3364.9
3D( c� , 1D) [32] 50.442 116.57 318.37 1653.2 3320.1
3D( c� , 3D) [32] 47.154 113.37 316.31 1652.8 3319.8
3D-u-� 47.154 113.37 316.31 1652.8 3319.8

σzz [103 Pa] at = + ∕z h 4˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] ‒14157 ‒1173.1 66.489 47.729 26.056
3D( c� , 1D) [32] ‒1629.3 321.95 ‒77.335 ‒43.159 ‒23.078

3D( c� , 3D) [32] 2422.9 480.71 ‒83.679 ‒43.275 ‒23.094

3D-u-� 2422.9 480.71 ‒83.679 ‒43.275 ‒23.094

σββ [103 Pa] at =z 0˜ , =α 0, and =β 0

3D( a� ) [32] 10,924 61,711 44,781 42,437 42,487
3D( c� , 1D) [32] 11,090 ‒15,730 ‒23,684 ‒24,007 ‒23,851

3D( c� , 3D) [32] ‒16,516 ‒23,828 ‒24,986 ‒24,058 ‒23,864

3D-u-� ‒16,516 ‒23,828 ‒24,986 ‒24,058 ‒23,864

γ
αz

[10 8‒ ] at = + ∕hz 3˜ , =α 0, and = ∕β b 2

3D( a� ) [32] 0.000 0.000 0.000 0.000 0.0000
3D( c� , 1D) [32] 0.000 0.000 0.000 0.000 0.0000
3D( c� , 3D) [32] 0.000 0.000 0.000 0.000 0.0000
3D-u-� 0.000 0.000 0.000 0.000 0.0000
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can be seen in Figure 8. The mechanical and hygroscopic
properties are the same used for B1 and B2. The geometrical
characteristics are shown in the third column of Table 5.
Table 8 shows results for the four different models and
for different ∕R hα ratios (from thick to thin case). Even for
the sandwich configuration, the thick cases ( ∕ =R h 2α and

∕ =R h 4α ) show the accordance between the 3D( c� , 3D)
model and the 3D-u-� model. The reason is to be sought
in the caption of the thickness effect that is crucial for thick
structures. The 3D( c� , 1D) cannot grasp the thickness layer
effect but only the material layer effect that is not so much
influent for these configurations. The 3D( a� ) model is
always inadequate for thick structures because the moisture
content profile assumed as linear is not the actual one. For
the thin structure case, as the thickness layer effect is less
important, the 3D( c� , 1D) model is similar to the 3D
( c� , 3D) and the 3D-u-� models. These conclusions can
also be seen in Figure 9 where the moisture content profiles
are computed for a moderately thick and a moderately thin
configuration. In Figure 10, six variables are proposed: two
displacements, the moisture content profile calculated with
the 3D-u-� model, and two stresses. Even for the sandwich
case, all the variables are continuous as a consequence of
the continuous variation in the thickness direction of the
FGM properties. In addition, the transverse shear stress

σαz fulfills the external load conditions because no mechan-
ical loads are applied at the external surfaces.

The last benchmark (B4) considers a sandwich sphe-
rical shell panel with simply supported sides. The sand-
wich lamination, the thickness values of the three layers,
and the FGM law are the same seen in B3 (see also Figure 8).
The hygro-elastic properties are given in Table 1, and the
geometrical data are proposed in the fourth column of
Table 5. Table 9 presents some results for different thickness
ratios and for different variables. The considerations dis-
cussed for the B3 are the same. In Figure 11, it is possible
to see the moisture content profile for a moderately thick
and a moderately thin sandwich spherical shell configura-
tion. It may be easily noted the fact that the ( c� , 1D) profile
has an important difference with respect to the ( c� , 3D)
and u-� profiles because it does not take into account some
important effects acting on this case. For what concerns the
moderately thin case, the ( c� , 1D) is sufficiently accurate. In
the end, Figure 12 shows six variables in the thickness direc-
tion. The correct imposition of the continuity conditions are
confirmed. The transverse shear stress σβz and the trans-
verse normal stress σzz satisfy the load boundary conditions
because no mechanical loads are applied at the external
surfaces.
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Figure 9: Benchmark 3 (B3), moisture content profile α β z, ,� ( ) at = + ∕α a 2 and = + ∕β b 2 for a moderately thick ( ∕ =R h 4β ) and a moderately thin
( ∕ =R h 50β ) configuration. Sandwich cylindrical shell panel embedding a FGM core ( =p 0.5).
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Figure 10: Benchmark 3 (B3), displacement components, moisture content profile, and stress components for a thick ( ∕ =R h 2β ) sandwich cylindrical
shell panel embedding a FGM core ( =p 0.5). Maximum values: u in (0, b/2); w, � , σαα , and σββ in (a/2, b/2); σαz in (0, b/2).

20  Salvatore Brischetto and Domenico Cesare



Table 9: Benchmark 4 (B4), sandwich spherical shell panel embedding a FGM core. 3D uncoupled hygro-elastic models [32] vs the 3D coupled hygro-
elastic model

∕∕R hβ
2 4 10 50 100

‒� [ ] at = + ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 0.5000 0.5000 0.5000 0.5000 0.5000
3D( c� , 1D) [32] 0.2263 0.2263 0.2263 0.2263 0.2263
3D( c� , 3D) [32] 0.0664 0.1492 0.2097 0.2256 0.2262
3D-u-� 0.0664 0.1492 0.2097 0.2256 0.2262

v [10 6‒ m] at = + ∕z h 3˜ , =α 0, and = ∕β b 2

3D( a� ) [32] ‒472.2 ‒348.1 ‒161.6 165.5 116.4
3D( c� , 1D) [32] ‒146.8 ‒97.22 22.91 166.0 104.0
3D( c� , 3D) [32] 8.931 ‒41.05 30.36 165.9 104.0
3D-u-� 8.931 ‒41.05 30.36 165.9 104.0

w [10 6‒ m] at = + ∕z h 2˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 451.5 909.6 2,454 6,323 6,380
3D( c� , 1D) [32] 348.0 763.5 1,972 4,188 3,983
3D( c� , 3D) [32] 293.3 694.9 1,926 4,182 3,981
3D-u-� 293.3 694.9 1,926 4,182 3,981

σzz [103 Pa] at = + ∕z h 3˜ , = ∕α a 2, and = ∕bβ 2

3D( a� ) [32] ‒42,890 ‒5394.8 ‒488.01 586.86 426.57
3D( c� , 1D) [32] ‒8096.9 2494.6 897.29 620.14 390.30
3D( c� , 3D) [32] 7524.4 3999.2 932.31 619.62 390.19
3D-u-� 7524.3 3999.2 932.31 619.62 390.19

σβz [103 Pa] at = + ∕z h2 3˜ , =α 0, and = ∕β b 2

3D( a� ) [32] 28,381 15,367 7733.1 ‒439.9 ‒755.8

3D( c� , 1D) [32] 11,029 4217.1 1656.3 ‒1,591 ‒1,171

3D( c� , 3D) [32] 1946.1 1388.9 1339.1 ‒1593 ‒1,171

3D-u-� 1946.0 1388.9 1339.1 ‒1,593 ‒1,171

εαα [10 6‒ ] at = +z h˜ , = ∕α a 2, and = ∕β b 2

3D( a� ) [32] 89.66 ‒50.19 ‒57.30 ‒160.8 ‒276.8

3D( c� , 1D) [32] ‒156.0 ‒294.3 ‒326.1 ‒476.0 ‒566.4

3D( c� , 3D) [32] ‒369.0 ‒384.8 ‒346.3 ‒476.9 ‒566.6

3D-u-� ‒369.0 ‒384.8 ‒346.3 ‒476.9 ‒566.6
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Figure 11: Benchmark 4 (B4), moisture content profile α β z, ,� ( ) at = + ∕α a 2 and = + ∕β b 2 for a moderately thick ( ∕ =R h 4β ) and moderately thin
( ∕ =R h 50β ) configuration. Sandwich spherical shell panel embedding a FGM core ( =p 0.5).
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Figure 12: Benchmark 4 (B4), displacement components, moisture content profile and stress components for a thick ( ∕ =R h 2β ) sandwich spherical
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4 Conclusion

A full coupled hygro-elastic 3D exact shell model for the
static analysis of FGM structures has been shown. The
moisture content along the thickness direction is evaluated
in steady-state conditions. The moisture content profile is
a primary variable of the problem together with the dis-
placement components. The 3D Fick diffusion equation
for spherical shells allows a moisture content profile that
takes into account both thickness layer and material layer
effects. The coupled system is solved in a closed form using
the exponential matrix method and a layer wise approach.
Different results, in terms of displacements, stresses, and
moisture content profiles, have been discussed for several
thickness ratios, geometrical properties, FGM configura-
tions (sandwich or single layer), and moisture content
impositions. These analyses showed a very comforting
match between the past 3D uncoupled model that sepa-
rately solved the 3D Fick diffusion equation and the pre-
sent 3D full coupled model. The main advantage of this
new coupled formulation is the introduction of both thick-
ness and material layer effects using a simpler and more
elegant mathematical formulation having a faster conver-
gence: in fact, a reduced number of fictitious layers F is
requested in comparison with the uncoupled 3D model.

Funding information: This research received no external
funding.

Author contributions: Methodology, S.B.; software, S.B.;
validation, D.C.; formal analysis, D.C.; investigation, D.C.;
data curation, S.B.; writing – original draft, D.C.; writing
– review and editing, S.B. All authors have read and agreed
to the published version of the manuscript.

Conflict of interest: The authors declare no conflict of
interest.

References

[1] Bouadi H. Hygrothermal effects on complex moduli of composite
laminates [dissertation]. Gainesville (FL): University of
Florida; 1998.

[2] Vodicka R. Accelerated environmental testing of composite mate-
rials. DSTO - Aeronautical and Maritime Research Laboratory.
DSTOTR-0657. Commonwealth of Australia: Melbourne; 1997.

[3] Tabrez S, Mitra M, Gopalakrishnan S. Modeling of degraded com-
posite beam due to moisture absorption for wave based detection.
CMES - Comput Model Eng Sci. 2007;22(1):77–90.

[4] Gawin D, Sanavia L. A unified approach to numerical modeling of
fully and partially saturated porous materials by considering air

dissolved in water. CMES - Comput Model Eng Sci.
2009;53(3):255–302.

[5] Aria AI, Friswell MI. Computational hygro-thermal vibration and
buckling analysis of functionally graded sandwich microbeams.
Compos Part B. 2019;165:785–97.

[6] Garg A, Chalak HD, Belarbi MO, Zenkour AM. Hygro-thermo-
mechanical based bending analysis of symmetric and unsymmetric
power-law, exponential and sigmoidal FG sandwich beams.
Mechanics Adv Mater Struct. 2022;29(25):4523–45.

[7] Li Y, Tang Y. Application of Galerkin iterative technique to nonlinear
bending response of three-directional functionally graded slender
beams subjected tohygro-thermal loads. Compos Struct.
2022;115481:290.

[8] Liu B, Mohammadi R. Effects of nonlinear hygro-thermo-mechan-
ical loading on the bending response of nanobeams using
nonlocal strain gradient theory. Waves Random Complex Media.
2022:1–17.

[9] Nguyen TK, Nguyen BD, Vo TP, Thai HT. Hygro-thermal effects on
vibration and thermal buckling behaviors of functionally graded
beams. Compos Struct. 2017;176:1050–60.

[10] Tang Y, Ding Q. Nonlinear vibration analysis of a bi-directional
functionally graded beam under hygro-thermal loads. Compos
Struct. 2019;225:111076.

[11] Dastjerdi S, Malikan M, Dimitri R, Tornabene F. Nonlocal elasticity
analysis of moderately thick porous functionally graded
plates in a hygro-thermal environment. Compos Struct.
2021;255:112925.

[12] Lee CY, Kim JH. Hygrothermal postbuckling behavior of functionally
graded plates. Compos Struct. 2013;95:278–82.

[13] Sobhy M. Differential quadrature method for magneto-hygro-
thermal bending of functionally graded graphene/Al sandwich-
curved beams with honeycomb core via a new higher-order theory.
J Sandw Struct Mater. 2021;23:1662–700.

[14] Sobhy M. 3-D elasticity numerical solution for magneto-hygro-
thermal bending of FG graphene/metal circular and annular plates
on an elastic medium. Eur J MechA Solids. 2021;88:104265.

[15] Zhao J, Hu J, Wang T, Li H, Guan J, Liu J, et al. A unified modeling
method for dynamic analysis of GPLs-FGP sandwich shallow shell
embedded SMA wires with general boundary conditions under
hygrothermal loading. Eng Struct. 2022;250:113439.

[16] Daia T, Yanga Y, Daia HL, Tang H, Lina ZY. Hygrothermal mechanical
behaviors of a porous FG-CRC annular plate with variable thickness
considering aggregation of CNTs. Compos Struct.
2019;215:198–213.

[17] Saadatfar M, Aghaie-Khafri M. Hygrothermal analysis of a rotating
smart exponentially graded cylindrical shell with imperfect
bonding supported by an elastic foundation. Aerosp Sci Technol.
2015;43:37–50.

[18] Nie B, Ren S, Li W, Zhou L, Liu C. The hygro-thermo-electro-
mechanical coupling edge-based smoothed point interpolation
method for the response of functionally graded piezoelectric
structure under hygrothermal environment. Eng Anal Bound Elem.
2021;130;29–39.

[19] Akbarzadeh AH, Chen ZT. Hygrothermal stresses in one-dimen-
sional functionally graded piezoelectric media in constant mag-
netic field. Compos Struct. 2013;97:317–31.

[20] Ebrahimi F, Barati MR. Small-scale effects on hygro-thermo-
mechanical vibration of temperature-dependent
nonhomogeneous nanoscale beams. Mech Adv Mater Struct.
2017;24:924–36.

Coupled hygro-elastic 3D model for steady-state analysis of FG plates and shells  23



[21] Ebrahimi F, Barati MR. A unified formulation for dynamic analysis
of nonlocal heterogeneous nanobeams in hygro-thermal environ-
ment. Appl Phys A. 2016;122:792.

[22] Jouneghani FZ, Dimitri R, Tornabene F. Structural response of
porous FG nanobeams under hygro-thermo-mechanical loadings.
Compos Part B. 2018;152:71–8.

[23] Penna R, Feo L, Lovisi G. Hygro-thermal bending behavior
of porous FG nano-beams via local/nonlocal strain and
stress gradient theories of elasticity. Compos Struct.
2021;263:113627.

[24] Wang S, Kang W, Yang W, Zhang Z, Li Q, Liu M, et al. Hygrothermal
effects on buckling behaviors of porous bi-directional functionally
graded micro-/nanobeams using two-phase local/nonlocal strain
gradient theory. Eur J Mech/A Solids. 2022;94;104554.

[25] Allam MNM, Radwan AF, Sobhy M. Hygrothermal deformation of
spinning FG graphene sandwich cylindrical shells having an auxetic
core. Eng Struct. 2022;251:113433.

[26] Arshid E, Soleimani-Javid Z, Amir S, DinhDuc N. Higher-order hygro-
magneto-electro-thermo-mechanical analysis of FG-GNPs rein-
forced composite cylindrical shells embedded in PEM layers.
Aerosp Sci Tech. 2022;126:107573.

[27] Karimiasla M, Ebrahimia F, Akgözb B. Buckling and post-buckling
responses of smart doubly curved composite shallow shells
embedded in SMA fiber under hygro-thermal loading. Compos
Struct. 2019;223:110988.

[28] Zidi M, Tounsi A, Houari MSA, Bedia EAA, AnwarBég O. Bending
analysis of FGM plates under hygro-thermo-mechanical loading
using a four variable refined plate theory. Aerosp Sci Tech.
2014;34:24–34.

[29] Zenkour AM, Radwanc AF. Bending response of FG plates resting
on elastic foundations in hygrothermal environment with poros-
ities. Compos Struct. 2019;213:133–43.

[30] Tang H, Dai HL, Du Y. Effect of hygrothermal load on amplitude
frequency response for CFRP spherical shell panel. Compos Struct.
2022;281:114978.

[31] Mudhaffar IM, Tounsi A, Chikh A, Al-Osta MA, Al-Zahrani MM, Al-
Dulaijan SU. Hygro-thermo-mechanical bending behavior of
advanced functionally graded ceramic metal plate resting on a
viscoelastic foundation. Structures. 2021;33:2177–89.

[32] Brischetto S, Torre R. 3D stress analysis of multilayered functionally
graded plates and shells under moisture conditions. Appl Sci.
2022;12:512.

[33] Brischetto S. A general exact elastic shell solution for bending analysis
of funcionally graded structures. Compos Struct. 2017;175:70–85.

[34] Brischetto S. A 3D layer-wise model for the correct imposition of
transverse shear/normal load conditions in FGM shells. Int J Mech
Sci. 2018;136:50–66.

[35] Brischetto S. Exact elasticity solution for natural frequencies of
functionally graded simply-supported structures. CMES - Comput
Model Eng Sci. 2013;95:391–430.

[36] Brischetto S, Torre R. 3D hygro-elastic shell model for the analysis of
composite and sandwichstructures. Compos Struct. 2022;285:115162.

[37] Brischetto S, Torre R, Cesare D. Three dimensional coupling between
elastic and thermal fields in the static analysis of multilayered com-
posite shells. CMES Comput Model Eng Sci. 2023;136:2551–94.

[38] Brischetto S, Cesare D, Torre R. A layer-wise coupled thermo-elastic
shell model for three-dimensional stress analysis of functionally
graded material structures. Technologies. 2023;11:35.

[39] Brischetto S, Cesare D. Hygro-elastic coupling in a 3D exact shell
model for bending analysis of layered composite structures. J
Compos Sci. 2023;7:1–27.

[40] Özişik MN. Heat conduction. New York (NY), USA: John Wiley &
Sons, Inc; 1993.

[41] Povstenko Y. Fractional thermoelasticity. Cham, Switzerland:
Springer International Publishing; 2015.

[42] Moon P, Spencer DE. Field Theory Handbook. Including Coordinate
Systems, Differential Equations and Their Solutions. Berlin,
Germany: Springer-Verlag; 1988.

[43] Mikhailov MD, Özişik MN. Unified analysis and solutions of heat and
mass diffusion. New York (NY), USA: Dover Publications Inc.; 1984.

[44] Boyce WE, DiPrima RC. Elementary differential equations
and boundary value problems. New York (NY), USA: John Wiley &
Sons, Ltd.; 2001.

[45] Open document. Systems of differential equations. [Internet].
http://www.math.utah.edu/gustafso/. [Accessed on 30 May 2013].

[46] Reddy JN, Cheng ZQ. Three-dimensional thermomechanical defor-
mations of functionally graded rectangular plates. Eur J Mech/A
Solids. 2001;20:841–55.

24  Salvatore Brischetto and Domenico Cesare

http://www.math.utah.edu/gustafso/

	1 Introduction
	2 3D coupled hygro-elastic model for FGM shells
	2.1 Geometrical and constitutive equations
	2.2 3D equilibrium equations for spherical shells
	2.3 Solution procedure

	3 Results
	3.1 Comparisons for validations
	3.2 New benchmarks

	4 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


