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Exact 3D solutions and finite element 2D models
for free vibration analysis of plates and cylinders
Abstract: The paper proposes a comparison between clas-
sical two-dimensional (2D) finite elements (FEs) and an ex-
act three-dimensional (3D) solution for the free vibration
analysis of one-layered and multilayered isotropic, com-
posite and sandwich plates and cylinders. Low and high
order frequencies are analyzed for thick and thin simply
supported structures. Vibration modes are investigated to
make a comparison between results obtained via the finite
element method and those obtained by means of the ex-
act three-dimensional solution. The 3D exact solution is
based on the differential equations of equilibrium written
in general orthogonal curvilinear coordinates. This exact
method is based on a layer-wise approach, the continuity
of displacements and transverse shear/normal stresses is
imposed at the interfaces between the layers of the struc-
ture. The geometry for shells is considered without any
simplifications. The 2D finite element results are obtained
by means of a well-known commercial FE code. The dif-
ferences between 2D FE solutions and 3D exact solutions
depend on the considered mode, the order of frequency,
the thickness ratio of the structure, the geometry, the em-
bedded material and the lamination sequence.

Keywords: plates, shells, finite element method, ex-
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modes
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1 Introduction
The present paper investigates low and high frequencies
in the case of free vibration response of simply-supported
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one-layered and multilayered isotropic, composite and
sandwich plates and cylinders. The behavior and design
of vibrating shells and plates have been extensively dis-
cussed in the reports by Leissa [1, 2] and more recently in
the book by Werner [3] and in the work by Brischetto and
Carrera [4], among others.

The main aim of this work is the comparison between
results obtained by means of an exact three-dimensional
(3D) solution and those obtained by means of the clas-
sical two-dimensional (2D) finite element method (FEM).
The proposed exact 3D solution has been developed by
Brischetto in [5]-[7] where the differential equations of
equilibrium written in general orthogonal curvilinear co-
ordinates have exactly been solved by means of the expo-
nential matrix method. The 2D FE results have been ob-
tained by means of the commercial finite element code
MSC Nastran [8]. In the most general case of exact three-
dimensional analyses, the number of frequencies for a free
vibration problem is infinite: three displacement compo-
nents (3 degrees of freedomDOF) in each point (points are
∞ in the 3directions x, y, z) leads to3×∞3 vibrationmodes.
Assumptions are made in the thickness direction z in the
case of a two-dimensional plate/shellmodel, the three dis-
placements in each point are expressed in terms of a given
number of degrees of freedom (NDOF) through the thick-
ness direction z. NDOF varies from theory to theory. As a
result, the number of vibrationmodes is NDOF ×∞2 in the
case of exact 2Dmodels. For exact beammodels, the num-
ber of vibrationmodes isNDOF×∞1. In the case of compu-
tational models, such as the Finite Element (FE) method,
the number of modes is a finite number. This number co-
incides with the number of employed degrees of freedom:∑︀Node

1 NDOFi, where Node denotes the number of nodes
used in the FE mathematical model, and NDOFi is the
NDOF through the thickness direction z in the i-node. It
is clear that some modes are tragically lost in simplified
models (such as computational two-dimensional models)
[4]. In order to make a comparison between the 2D FE free
vibration results and the 3D exact free vibration results,
the investigation of the vibration modes is mandatory in
order to understand what are the frequencies that must be
compared.
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Themost relevantworks about three-dimensional free
vibration analysis of plates are shown below. Analytical
three-dimensional solutions for free vibrations of a simply
supported rectangular plate made of an incompressible
homogeneous linear elastic isotropic material were pro-
posed in Aimmanee and Batra [9] and in Batra and Aim-
manee [10]. A three-dimensional linear elastic, small de-
formation theory obtained by the direct method was de-
veloped in Srinivas et al. [11] for the free vibration of sim-
ply supported, homogeneous, isotropic, thick rectangular
plates. The samemethodwaspreviously proposed inSrini-
vas et al. [12] for the flexure of simply supported homoge-
neous, isotropic, thick rectangular plates under arbitrary
loads. Batra et al. [13] showeduseful comparisons between
two-dimensional models and an exact three-dimensional
solution for free vibrations of a simply supported rectan-
gular orthotropic thick plate. Ye [14] presented a three-
dimensional elastic free vibration analysis of cross-ply
laminated rectangular plates with clamped boundaries;
the analysis was based on a recursive solution. Compar-
isons between 2D-displacement-based-models and exact
results of the linear three-dimensional elasticity were pro-
posed in Messina [15] for natural frequencies, displace-
ment and stress quantities in multilayered plates. A global
three-dimensional Ritz formulation was employed in Che-
ung and Zhou [16] for the exact three-dimensional elas-
tic investigation of isosceles triangular plates, and in Liew
and Yang [17] for the three-dimensional elastic free vibra-
tion analysis of a circular plate. A set of orthogonal poly-
nomial series was used to approximate the spatial dis-
placements. Theoretical high frequency vibration analy-
sis is fundamental in a variety of engineering designs.
The importance of high frequency analysis of multilayered
composite plates was also confirmed in the literature [4].
Zhao et al. [18] introduced the discrete singular convolu-
tion (DSC) algorithm for high frequency vibration analysis
of plate structures, the Levy method was also employed to
provide exact solutions to validate the DSC algorithm. The
same investigation (comparison between DSC algorithm
and the Levy method) was also proposed in Wei et al. [19].
Taher et al. [20] computed the first nine frequency parame-
ters of circular and annular plates with variable thickness
and combined boundary conditions, the eigenvalue equa-
tion was derived by means of three-dimensional elasticity
theory and Ritz method. Xing and Liu [21] proposed the
separation of variables to solve the Hamiltonian dual form
of eigenvalue problem for transverse free vibrations of thin
plates. Vel and Batra [22] extended three-dimensional ex-
act models to free vibration of functionally graded mate-
rial plates.

Themost relevantworks about three-dimensional free
vibration analysis of shells are shown below. The cou-
pled free vibrations of a transversely isotropic cylindrical
shell embedded in an elastic medium were studied in [23]
where the three-dimensional elastic solution used three
displacement functions to represent the three displace-
ment components. Free vibrations of simply-supported
cylindrical shells were studied in [24] on the basis of three
dimensional exact theory. Extensive frequency parameters
were obtained by solving frequency equations. The free
vibrations of simply-supported cross-ply cylindrical and
doubly-curved laminates were investigated in [25]. The
three-dimensional equations of motion were reduced to
a system of coupled ordinary differential equations and
then solved using the power series method. The three-
dimensional free vibrations of a homogenous isotropic,
viscothermoelastic hollow sphere were studied in [26].
The surfaces were subjected to stress-free, thermally in-
sulated or isothermal boundary conditions. The exact
three-dimensional vibration analysis of a trans-radially
isotropic, thermoelastic solid sphere was analyzed in [27].
The governingpartial differential equations in [26] and [27]
were transformed into a coupled system of ordinary dif-
ferential equations. Fröbenious matrix method was em-
ployed to obtain the solution. Soldatos and Ye [28] pro-
posed exact, three-dimensional, free vibration analysis of
angle-ply laminated thick cylinders having a regular sym-
metric or a regular antisymmetric angle-ply lay-up. Arme-
nakas et al. [29] proposed a self-contained treatment of
the problem of plane harmonic waves propagation along
a hollow circular cylinder in the framework of the three-
dimensional theory of elasticity. A comparison between
a refined two-dimensional analysis, a shear deformation
theory, the Flügge theory and an exact elasticity analy-
sis was proposed in [30] for frequency investigation. Fur-
ther details about the Flügge classical thin shell theory
concerning the free vibrations of cylindrical shells with
elastic boundary conditions can be found in [31]. Other
comparisons between two-dimensional closed form solu-
tions and exact 3D elastic analytical solutions for the free
vibration analysis of simply supported and clamped ho-
mogenous isotropic circular cylindrical shells were also
proposed in [32]. Vel [33] extended exact elasticity solu-
tions to functionally graded cylindrical shells. The three-
dimensional linear elastodynamics equations were solved
using suitable displacement functions that identically sat-
isfy the boundary conditions. Loy and Lam [34] obtained
the governing equations using an energy minimization
principle.A layer-wise approachwasproposed to study the
vibration of thick circular cylindrical shells on the basis
of three-dimensional theory of elasticity. Wang et al. [35]
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proposed the three-dimensional free vibration analysis of
magneto-electro-elastic cylindrical panels. Further results
about three-dimensional analysis of shells, where the so-
lutions are not given in closed form, can be found in [36]
for the dynamic stiffness matrix method and in [37] and
[38] for the three-dimensional Ritz method for vibration of
spherical shells.

The papers of the literature discussed in this introduc-
tion show the three-dimensional analysis for free vibra-
tions of plates or shells. They separately analyze shell or
plate geometries and they do not give a general overview
for both structures. The proposed exact 3D model uses
a general formulation for several geometries (square and
rectangular plates, cylindrical and spherical shell pan-
els, and cylindrical closed shells). The equations of mo-
tion for the dynamic case are written in general orthog-
onal curvilinear coordinates using an exact geometry for
multilayered shells. The system of second order differen-
tial equations is reduced to a system of first order differ-
ential equations, and afterwards it is exactly solved us-
ing the exponential matrix method and the Navier-type
solution. The approach is developed in layer-wise form
imposing the continuity of displacements and transverse
shear/normal stresses at each interface. The exponential
matrix method has already been used in [15] for the three-
dimensional analysis of plates in rectilinear orthogonal
coordinates and in [28] for an exact, three-dimensional,
free vibration analysis of angle-ply laminated cylinders in
cylindrical coordinates. The equations ofmotionwritten in
orthogonal curvilinear coordinates are a general form of
the equations of motion written in rectilinear orthogonal
coordinates in [15] and in cylindrical coordinates in [28].
The present equations allow general exact solutions for
multilayered plate and shell geometries as already seen in
the past author’s works [5]-[7]. In the literature review pro-
posed in this introduction, only fewworks analyzes higher
order frequencies. Moreover, papers that discuss the com-
parison between 2D models and exact 3D models are even
less. The present work aims to fill this gap, it proposes a
comparison between the free frequencies for plates and
cylinders obtained by means of the commercial FE code
MSC NASTRAN and those obtained by means of the ex-
act 3D solution. The proposed 3D exact solution gives re-
sults for plates, cylindrical and spherical shell panels, and
cylindrical closed shells. However, the comparison with
the commercial FE code is proposed only for plates and
cylinders. This choice is made for the sake of brevity, and
further investigations for cylindrical and spherical shell
panels could be proposed in the future. The aim of the
present paper is to understand how to compare these two

different methods (exact 3D and numerical 2D solutions)
and also to show the limits of a classical 2D FE solution.

Figure 1: Geometry, notation and reference system for shells.

2 Exact elasticity solution for
shells

The three differential equations of equilibrium written for
the case of free vibration analysis of multilayered spheri-
cal shells made of NL layers with constant radii of curva-
ture Rα and Rβ are (the general form for variable radii of
curvature can be found in [39] and [40]):

Hβ
∂σααk
∂α + Hα

∂σαβk
∂β + HαHβ

∂σαzk
∂z +

(︂2Hβ
Rα

+ HαRβ

)︂
σαzk =

= ρkHαHβ ük , (1)

Hβ
∂σαβk
∂α + Hα

∂σββk
∂β + HαHβ

∂σβzk
∂z +

(︂
2Hα
Rβ

+
Hβ
Rα

)︂
σβzk =

= ρkHαHβ v̈k , (2)

Hβ
∂σαzk
∂α + Hα

∂σβzk
∂β + HαHβ

∂σzzk
∂z −

Hβ
Rα
σααk −

Hα
Rβ
σββk

(3)

+
(︂Hβ
Rα

+ HαRβ

)︂
σzzk = ρkHαHβẅk ,

where ρk is the mass density, (σααk , σββk , σzzk , σβzk , σαzk ,
σαβk) are the six stress components and ük, v̈k and ẅk indi-
cate the second temporal derivative of the three displace-
ment components. Each quantity depends on the k layer.
Rα and Rβ are referred to the mid-surface Ω0 of the whole
multilayered shell (see Figure 1 for further details about
shell geometry). Hα and Hβ continuously vary through the
thickness of the multilayered shell and they depend on
the thickness coordinate. The parametric coefficients for
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shells with constant radii of curvature are:

Hα = (1 + z
Rα

) = (1 + z̃ − h/2Rα
) ,

Hβ = (1 + z
Rβ

) = (1 + z̃ − h/2Rβ
) , Hz = 1 , (4)

Hα and Hβ depend on z or z̃ coordinate (see Figure 2 for further details).

Figure 2: Thickness coordinates and reference systems for plates and shells.

Figure 3: Geometries for assessments (structures a-d) and for benchmarks (structures a and b).

The geometrical relations written for shells with constant radii of curvature are obtained from the general strain-
displacement relations of the three-dimensional theory of elasticity in orthogonal curvilinear coordinates proposed in
[39] and [41]:

ϵααk =
1
Hα

∂uk
∂α + wk

HαRα
, (5)
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ϵββk =
1
Hβ

∂vk
∂β + wk

HβRβ
, (6)

ϵzzk =
∂wk
∂z , (7)

𝛾αβk =
1
Hα

∂vk
∂α + 1

Hβ
∂uk
∂β , (8)

𝛾αzk =
1
Hα

∂wk
∂α + ∂uk∂z −

uk
HαRα

, (9)

𝛾βzk =
1
Hβ

∂wk
∂β + ∂vk∂z −

vk
HβRβ

. (10)

Geometrical relations for spherical shells degenerate into geometrical relations for cylindrical shells when Rα or Rβ is
infinite (with Hα or Hβ equals one), and they degenerate into geometrical relations for plates when both Rα and Rβ are
infinite (with Hα=Hβ=1).

Three-dimensional linear elastic constitutive equations in orthogonal curvilinear coordinates (α, β, z) for or-
thotropic material in the structural reference system are given for a generic k layer of the multilayered structure:

σααk = C11kϵααk + C12kϵββk + C13kϵzzk + C16k𝛾αβk , (11)
σββk = C12kϵααk + C22kϵββk + C23kϵzzk + C26k𝛾αβk , (12)
σzzk = C13kϵααk + C23kϵββk + C33kϵzzk + C36k𝛾αβk , (13)
σβzk = C44k𝛾βzk + C45k𝛾αzk , (14)
σαzk = C45k𝛾βzk + C55k𝛾αzk , (15)
σαβk = C16kϵααk + C26kϵββk + C36kϵzzk + C66k𝛾αβk . (16)

The closed form of Eqs. (1)-(3) is obtained for simply supported shells and plates made of isotropic material or or-
thotropicmaterialwith0∘ or90∘ orthotropic angle (in both cases C16k = C26k = C36k = C45k = 0). The threedisplacement
components have the following harmonic form:

uk(α, β, z, t) = Uk(z)eiωt cos(ᾱα) sin(β̄β) , (17)
vk(α, β, z, t) = Vk(z)eiωt sin(ᾱα) cos(β̄β) , (18)
wk(α, β, z, t) = Wk(z)eiωt sin(ᾱα) sin(β̄β) , (19)

where Uk, Vk and Wk are the displacement amplitudes in α, β and z directions, respectively. i is the coefficient of the
imaginary unit, ω = 2πf is the circular frequency where f is the frequency value, t is the time. In coefficients ᾱ = mπ

a
and β̄ = nπ

b ,m and n are the half-wave numbers and a and b are the shell dimensions in α and β directions, respectively
(calculated in the mid-surface Ω0).

The systemof equations in closed form is obtained substituting Eqs. (5)-(10), (11)-(16) and (17)-(19) in the equilibrium
equations proposed in Eqs. (1)-(3):(︁

−
C55kHβ
HαR2α

− C55k
RαRβ

− ᾱ2
C11kHβ
Hα

− β̄2 C66kHαHβ
+ ρkHαHβω2

)︁
Uk +

(︁
− ᾱβ̄C12k − ᾱβ̄C66k

)︁
Vk+(︁

ᾱ
C11kHβ
HαRα

+ ᾱ C12kRβ
+ ᾱ

C55kHβ
HαRα

+ ᾱ C55kRβ

)︁
Wk +

(︁C55kHβ
Rα

+ C55kHαRβ

)︁
Uk,z +

(︁
ᾱC13kHβ+ (20)

ᾱC55kHβ
)︁
Wk,z +

(︁
C55kHαHβ

)︀
Uk,zz = 0 ,(︁

− ᾱβ̄C66k − ᾱβ̄C12k
)︁
Uk +

(︁
− C44kHα
HβR2β

− C44k
RαRβ

− ᾱ2
C66kHβ
Hα

− β̄2 C22kHαHβ
+ ρkHαHβω2

)︁
Vk+(︁

β̄ C44kHαHβRβ
+ β̄ C44kRα

+ β̄ C22kHαHβRβ
+ β̄ C12kRα

)︁
Wk +

(︁C44kHα
Rβ

+
C44kHβ
Rα

)︁
Vk,z +

(︁
β̄C44kHα+ (21)

β̄C23kHα
)︁
Wk,z +

(︁
C44kHαHβ

)︀
Vk,zz = 0 ,(︁

ᾱ
C55kHβ
HαRα

− ᾱ C13kRβ
+ ᾱ

C11kHβ
HαRα

+ ᾱ C12kRβ

)︁
Uk +

(︁
β̄ C44kHαHβRβ

− β̄ C23kRα
+ β̄ C22kHαHβRβ

+ β̄ C12kRα

)︁
Vk+
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(︁ C13k
RαRβ

+ C23k
RαRβ

−
C11kHβ
HαR2α

− 2C12k
RαRβ

− C22kHα
HβR2β

− ᾱ2
C55kHβ
Hα

− β̄2 C44kHαHβ
+ ρkHαHβω2

)︁
Wk+ (22)

(︁
− ᾱC55kHβ − ᾱC13kHβ

)︁
Uk,z +

(︁
− β̄C44kHα − β̄C23kHα

)︁
Vk,z +

(︁C33kHβ
Rα

+ C33kHαRβ

)︁
Wk,z+(︁

C33kHαHβ
)︁
Wk,zz = 0 .

The system of Eqs. (20)-(22) can be written in a compact form introducing coefficients Ask for each block
(︁)︁

with s from
1 to 19:

A1kUk + A2kVk + A3kWk + A4kUk,z + A5kWk,z + A6kUk,zz = 0 , (23)
A7kUk + A8kVk + A9kWk + A10kVk,z + A11kWk,z + A12kVk,zz = 0 , (24)
A13kUk + A14kVk + A15kWk + A16kUk,z + A17kVk,z + A18kWk,z + A19kWk,zz = 0 . (25)

The Eqs. (23)-(25) are a system of three second order differential equations. They are written for spherical shell panels
with constant radii of curvature but they automatically degenerate into equations for cylindrical shells and plates.

The system of second order differential equations proposed in Eqs. (23)-(25) can be reduced to a system of first order
differential equations using the method described in [42] and [43] (further details can also be found in past author’s
works [5–7]):⎡⎢⎢⎢⎢⎢⎢⎢⎣

A6k 0 0 0 0 0
0 A12k 0 0 0 0
0 0 A19k 0 0 0
0 0 0 A6k 0 0
0 0 0 0 A12k 0
0 0 0 0 0 A19k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Uk
Vk
Wk
U′
k

V′
k

W′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

′

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 A6k 0 0
0 0 0 0 A12k 0
0 0 0 0 0 A19k
−A1k −A2k −A3k −A4k 0 −A5k
−A7k −A8k −A9k 0 −A10k −A11k
−A13k −A14k −A15k −A16k −A17k −A18k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Uk
Vk
Wk
U′
k

V′
k

W′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

Eq. (26) can be written in a compact form for a generic k layer:

Dk
∂Uk
∂z̃ = AkUk , (27)

where ∂Uk
∂z̃ = U′

k and Uk = [Uk Vk Wk U′
k V ′

k W ′
k]. The Eq. (27) can be written as:

DkU′
k = AkUk , (28)

U′
k = D−1k Ak Uk , (29)

U′
k = A*k Uk , (30)

with A*k = D−1k Ak.
In the case of plate geometry coefficients A3k, A4k, A9k, A10k, A13k, A14k and A18k are zero because the radii of

curvature Rα and Rβ are infinite. The other coefficients A1k, A2k, A5k, A6k, A7k, A8k, A11k, A12k, A15k, A16k, A17k and
A19k are constant in each k layer because parametric coefficients Hα = Hβ = 1 and they do not depend on the thickness
coordinate z̃. Therefore, matrices Dk, Ak and A*k are constant in each k layer of the plate. The solution of Eq. (30) for the
plate case can be written as [43], [44]:

Uk(z̃k) = exp(A*k z̃k)Uk(0) with z̃k ϵ [0, hk] , (31)

where z̃k is the thickness coordinate of each layer from 0 at the bottom to hk at the top (see Figure 2). The exponential
matrix for the plate case (constant coefficients Ask) is calculated with z̃k = hk for each k layer as:

A**k = exp(A*khk) = I + A*k hk +
A*2k
2! h

2
k +

A*3k
3! h

3
k + . . . +

A*Nk
N! h

N
k , (32)

where I is the6×6 identitymatrix. This expansionhas a fast convergence as indicated in [45] and it is not time consuming
from the computational point of view. In the case ofNL layers for shell geometryA*k is not constant in each k layer because
Hα(z̃) and Hβ(z̃) are not constant.
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In the case of multilayered plates, NL − 1 transfer matrices Tk−1,k must be calculated using for each interface the
following conditions for interlaminar continuity of displacements and transverse shear/normal stresses:

ubk = utk−1 , vbk = vtk−1 , wbk = wtk−1 , (33)

σbzzk = σtzzk−1 , σbαzk = σtαzk−1 , σbβzk = σ
t
βzk−1 , (34)

each displacement and transverse stress component at the top (t) of the k-1 layer is equal to displacement and transverse
stress components at the bottom (b) of the k layer.

The Eqs. (33)-(34) can be grouped in a system (details can be found in [5], [6] and [7]):⎡⎢⎢⎢⎢⎢⎢⎢⎣

U
V
W
U′

V ′

W ′

⎤⎥⎥⎥⎥⎥⎥⎥⎦

b

k

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T1 0 T2 T3 0 0
0 T4 T5 0 T6 0
T7 T8 T9 0 0 T10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
k−1,k

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U
V
W
U′

V ′

W ′

⎤⎥⎥⎥⎥⎥⎥⎥⎦

t

k−1

, (35)

Eq. (35) in compact form is:
Ub
k = Tk−1,kU t

k−1 . (36)

The calculated Tk−1,k matrices allow to link U at the bottom (b) of the k layer with U at the top (t) of the k − 1 layer.
Eq. (36) can also be written as:

Uk(0) = Tk−1,k Uk−1(hk−1) , (37)

where Uk is calculated for z̃k = 0 and Uk−1 is calculated for z̃k−1 = hk−1. U at the top of the k layer is linked with U at the
bottom of the same k layer by means of the exponential matrix A**k :

Uk(hk) = A**k Uk(0) , (38)

Eq. (37) can recursively be introduced in Eq. (38) for the NL − 1 interfaces to obtain:

UNL (hNL ) = A**NL TNL−1,NL A
**
NL−1 TNL−2,NL−1 . . . . . . A**2 T1,2 A**1 U1(0) , (39)

the definition of the matrix Hm for the multilayered plate allows Eq. (39) to be written as:

UNL (hNL ) = Hm U1(0) , (40)

that links U calculated at the top of the last NL layer with U calculated at the bottom of the first layer. In the case of
multilayered plates, matrices Dk, Ak and A*k are constant in each k layer because Rα and Rβ are infinite and Hα and
Hβ equal 1. In the case of shell geometry matrices Dk, Ak and A*k are not constant in each layer because of parametric
coefficients Hα and Hβ that depend on z̃ coordinate (see Figure 2). A first method could be the use of hypothesis z

Rα =
z
Rβ = 0 (it is valid only for very thin shells) that means Hα = Hβ = 1. In this case the solution is the same already seen
for the multilayered plate because matrices Dk, Ak and A*k are constant in each k layer. This method is not used in this
paper because it is an approximation that is valid only for very thin shells, and it does not consider the exact geometry of
the structure. The second method (used in this paper) is the introduction of several j fictitious layers in each k physical
layer where Hα and Hβ can exactly be calculated. Matrices A**j are constant in the j layer because they are evaluated
with Rα, Rβ, ᾱ and β̄ calculated in the mid-surface Ω0 of the whole shell, and with Hα and Hβ calculated in the middle
of each j fictitious layer. Matrices T j−1,j are also constant because they are calculated with Rα, Rβ, ᾱ and β̄ calculated
in the mid-surface Ω0 of the shell, and with Hα and Hβ calculated at each fictitious interface. In the present paper each
physical k layer of themultilayered shell is divided in j fictitious layers where we can recursively apply the Eqs. (36)-(40)
with index q=k× j in place of index k. The thickness of each fictitious layer is hq. The index q considers all the fictitious
and physical layers and it goes from 1 to P. N=3 for the exponentialmatrix in Eq. (32) for each q layer guarantees the exact
convergence for each shell investigated. The total number ofmathematical layers that will be used formultilayered shell
investigations will be P=102 or P=100 (it will depend on the analyzed case).
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The structures are simply supported and free stresses
at the top and at the bottom of the whole multilayered
shell, this feature means:

σzz = σαz = σβz = 0 for z = −h/2, +h/2 or z̃ = 0, h ,
(41)

w = v = 0, σαα = 0 for α = 0, a , (42)
w = u = 0, σββ = 0 for β = 0, b . (43)

Eqs. (41)-(43) in compact form to express the free stress
state at the top and bottom of the whole shell are (further
details can be found in [5], [6] and [7]):

BP(hP) UP(hP) = 0 , (44)
B1(0) U1(0) = 0 , (45)

Eq. (40) can be substituted in Eq. (44) considering a total
number of layers equals P (both physical and fictitious lay-
ers, and not only the physical layers NL):

BP(hP) Hm U1(0) = 0 , (46)
B1(0) U1(0) = 0 , (47)

Eqs. (46) and (47) can be grouped in the following system:[︃
BP(hP) Hm

B1(0)

]︃
U1(0) = 0 , (48)

and introducing the 6 × 6 E matrix, the Eq. (48) is:

E U1(0) = 0 . (49)

The Eq. (49) is also valid for plate case where the fictitious
layers are not introduced and BNL (hNL ) = BP(hP). Matrix
E has always 6 × 6 dimension, independently from the
number of layers P, even if the method uses a layer-wise
approach. The solution is implemented in a Matlab code
where only the spherical shell method is considered, it au-
tomatically degenerates into cylindrical open/closed shell
and plate geometries.

The free vibration analysis means to find the non-
trivial solution of U1(0) in Eq. (49), this means to impose
the determinant of matrix E equals zero:

det[E] = 0 , (50)

Eq. (50) means to find the roots of an higher order polyno-
mial in λ = ω2. For each pair of half-wave numbers (m,n)
a certain number of circular frequencies are obtained de-
pendingon theorderN chosen for each exponentialmatrix
A**q .

A certain number of circular frequencies ωl are found
whenhalf-wavenumbersmandnare imposed in the struc-
tures. For each frequencyωl, it is possible to find the vibra-
tion mode through the thickness in terms of the three dis-
placement components. If the frequency ωl is substituted

in the 6×6 matrix E, this last matrix has six eigenvalues.
We are interested to the null space of matrix E that means
to find the 6 × 1 eigenvector related to the minimum of the
six eigenvalues proposed. This null space is, for the cho-
sen frequency ωl, the vector U calculated at the bottom of
the whole structure:

U1ωl (0) =

=
[︁
U1(0) V1(0) W1(0) U′

1(0) V ′
1(0) W ′

1(0)
]︁T
ωl

,

(51)

T means the transpose of the vector and the subscript ωl
means that the null space is calculated for the circular fre-
quency ωl.

It is possible to find Uqωl (z̃q) (with the three displace-
ment componentsUqωl (z̃q), Vqωl (z̃q) andWqωl (z̃q) through
the thickness) for each q layer of themultilayered structure
using Eqs. (37)-(40) with the index q (in place of k) from 1
to P. The thickness coordinate z̃ can assume all the values
from the bottom to the top of the structure. For the plate
case the procedure is simpler because there are not the j
fictitious layers and the index q coincides with the index
k of the physical layers (in this case, the total number of
layers is NL and it is not P).

2.1 Validation of the 3D exact model

Before the comparison study between the 3D exact solu-
tion and the 2D FE solution, the proposed 3D exact model
has been validated by means of several comparisons with
other 3D results already given in the literature. The vali-
dation considers plates, cylinders, cylindrical panels and
spherical panels (see Figure 3 for further details). Both
one-layered andmultilayered configurations are analyzed.
The order of expansion employed for the exponential ma-
trix is N=3. P=100 fictitious layers have been used for the
investigation of one-, two- and four-layered structures.
P=102 fictitious layers have been used for the investigation
of three-layered structures. An appropriate convergence
study has already been proposed in [5], [6] and [7].

The first assessment considers a simply supported
one-layered square plate (a=b=10m)with thickness h=1m.
The only embedded layer is the isotropic aluminium alloy
with Young modulus E=70 GPa, Poisson ratio ν=0.3 and
mass density ρ=2702 kg/m3. The first six circular frequen-
cies are given in non-dimensional form ω̄ = ω a2

h

√︁
ρ
E for

half-wave numbers m=n=1. Table 1 compares the present
3D solution with 3D solutions by Vel and Batra [22] and
Srinivas et al. [12]. Compared results are identical for each
proposed vibration mode.
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Table 1: First assessment for the 3D exact solution, simply supported plate made of aluminium alloy with thickness ratio a/h=10. First six
circular frequencies ω̄ = ω a2

h

√︁
ρ
E for half-wave numbers m=n=1.

Mode I II III IV V VI
3D [22] 5.7769 27.554 46.503 196.77 201.34 357.42
3D [12] 5.7769 27.554 46.503 196.77 201.34 357.42
Present 3D 5.7769 27.554 46.502 196.77 201.34 357.42

The second assessment shows the free frequencies for
a simply supported one-layered cylinder with radii of cur-
vature Rα=1 m and Rβ = ∞, and circular dimension a =
2π Rα. Thematerial is isotropic (the same aluminium alloy
proposed in the first assessment). In Table 2, the proposed
thickness values are h=0.12 m and h=0.18 m, and the b di-
mensionvalues canbe 2mor 1m. Table 2 shows thefirst cir-
cular frequency in non-dimensional form ω̄ = ω h

π

√︁
ρ
G for

longitudinal half-wave number n=1 and several m circular
half-wave numbers. The present 3D solution is coincident
with 3D solutions byArmenakas et al. [29] andBhimaraddi
[30] for each proposed h/Rα and b/Rα ratios.

Table 2: Second assessment for the 3D exact solution, simply sup-
ported cylinder made of aluminium alloy with different thickness
ratios h/Rα. First circular frequency ω̄ = ω h

π

√︁
ρ
G for n=1 and several

m values.

h/Rα = 0.12
m 2 4 6 8

b/Rα = 2
3D [29, 30] 0.03730 0.02359 0.02462 0.03686
Present 3D 0.03730 0.02359 0.02462 0.03686

b/Rα = 1
3D [29, 30] 0.05853 0.04978 0.04789 0.05545
Present 3D 0.05853 0.04978 0.04789 0.05545

h/Rα = 0.18
m 2 4 6 8

b/Rα = 2
3D [29, 30] 0.05652 0.03929 0.04996 0.07821
Present 3D 0.05652 0.03929 0.04996 0.07821

b/Rα = 1
3D [29, 30] 0.09402 0.08545 0.09093 0.11205
Present 3D 0.09402 0.08545 0.09093 0.11205

The third assessment gives several frequencies for
a simply supported multilayered composite cylindrical
panel with radii of curvature Rα=10m and Rβ = ∞, and
dimensions a=b=5m. The thickness is h=0.5m (the shell
is moderately thick with a thickness ratio Rα/h=20). The
composite layers have properties E1 = 25E0, E2 = E3 = E0,

G12 = G13 = 0.5E0, G23 = 0.2E0, ν12 = ν13 = ν23 = 0.25
and ρ = 1500kg/m3. Non-dimensional circular frequen-
cies ω̄ = ωRα

√︁
ρ
E0 for several physical layers NL and lam-

ination sequence (0∘/90∘/0∘/90∘/ . . .) are given in Table
3. The imposed half-wave numbers m and n are indicated
in the table. For m=n=1 the first three modes are shown,
only the first mode is given for the other combinations of
half-wave numbersm and n. The present 3D solution is co-
incident with the 3D solution by Huang [25] for each pro-
posed half-wave number, vibration mode, and number of
physical layers NL embedded in the multilayered compos-
ite structure.

The last assessment considers several frequencies
for a simply supported multilayered composite spherical
panel with radii of curvature Rα=10m and Rβ=10m, dimen-
sions a=b=2m and thickness value h=0.2m (the shell is
moderately thin with a thickness ratio Rα/h=50). The com-
posite layers have the same properties already seen for
the third assessment. Non-dimensional circular frequen-
cies ω̄ = ωRα

√︁
ρ
E0 for several physical layers NL and lam-

ination sequence (0∘/90∘/0∘/90∘/ . . .) are given in Table
4. The present 3D solution gives the same results of the 3D
solution by Huang [25] for each proposed half-wave num-
ber and for each number of physical layers NL embedded
in themultilayered composite structure. The first vibration
mode is investigated for each combination of half-wave
numbers m and n.

The proposed 3D solution has successfully been val-
idated for each geometry (plate, cylinder, cylindrical and
spherical shell panels), lamination sequence, embedded
material, thickness ratio, vibration mode and imposed
half-wave numbers. Therefore, it can be used with confi-
dence to validate the FEmodels and also tomake the com-
parisons between the exact 3D solutions and the compu-
tational 2D models.

3 Finite element model
The 2D finite element results proposed in this paper have
been obtained bymeans of the FE commercial code known
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Table 3: Third assessment for the 3D exact solution, simply supported composite cylindrical panel with thickness ratio Rα/h = 20. Circular
frequencies ω̄ = ωRα

√︁
ρ
E0

for several physical layers NL, lamination sequence (0∘/90∘/0∘/90∘/ . . .) and half-wave numbers m and n.

NL = 2 NL = 4 NL = 10
m,n mode 3D [25] Present 3D 3D [25] Present 3D 3D [25] Present 3D
1,1 I 1.8971 1.8971 2.3415 2.3415 2.4930 2.4930
1,1 II 18.813 18.813 21.545 21.545 22.387 22.387
1,1 III 20.169 20.169 22.902 22.902 23.694 23.694
1,2 I 4.4492 4.4492 4.9620 4.9620 5.3017 5.3017
1,3 I 7.8195 7.8195 8.0752 8.0753 8.5254 8.5253
2,1 I 4.3485 4.3485 4.8493 4.8493 5.1853 5.1853
2,2 I 6.0384 6.0384 6.5486 6.5486 6.9739 6.9739
2,3 I 8.8895 8.8895 9.1438 9.1438 9.6347 9.6346
3,1 I 7.7503 7.7503 7.9573 7.9573 8.3952 8.3950
3,2 I 8.9012 8.9012 9.1290 9.1290 9.6122 9.6120
3,3 I 11.103 11.103 11.164 11.164 11.686 11.686

Table 4: Fourth assessment for the 3D exact solution, simply supported composite spherical panel with thickness ratio Rα/h = 50. Circular
frequencies ω̄ = ωRα

√︁
ρ
E0

for several physical layers NL, lamination sequence (0∘/90∘/0∘/90∘/ . . .) and half-wave numbers m and n.

NL = 2 NL = 4 NL = 10
m,n mode 3D [25] Present 3D 3D [25] Present 3D 3D [25] Present 3D
1,1 I 4.6238 4.6240 5.8070 5.8070 6.2293 6.2293
1,2 I 10.753 10.753 12.134 12.134 13.050 13.050
1,3 I 19.130 19.130 19.846 19.845 21.042 21.042
2,1 I 10.864 10.864 12.188 12.188 13.076 13.076
2,2 I 14.909 14.909 16.298 16.298 17.432 17.432
2,3 I 21.961 21.961 22.719 22.719 24.027 24.027
3,1 I 19.315 19.315 19.932 19.931 21.082 21.081
3,2 I 22.053 22.053 22.757 22.757 24.045 24.045
3,3 I 27.483 27.483 27.790 27.790 29.189 29.189

as MSC Nastran & Patran [8]. Only simple geometries are
analyzed in this paper (plates and cylinders). For these
structures a maximum number of 5000 elements is suffi-
cient for a correct convergence in the case of free vibration
analysis (as it will be demonstrated in the section about
the validation of the FE model). The 2D element employed
in the free vibration analysis is the SHELL QUAD4 element
of Nastran, it has four nodes for each element that are col-
located in the four corners. The kinematic model used by
Nastran in its 2D FEs is based on the Reissner-Mindlin hy-
potheses (equivalent single layer approach and constant
transverse displacement in the z direction).

3.1 Validation of the 2D FE model

The FE model will be validated only for plates and cylin-
ders because in Section 4 comparisons will be made only

for these two geometries. This choice is due to the fact that
we want to compare several laminations, materials and
modes without lose in clarity and conciseness. The inves-
tigation for cylindrical and spherical panels could be the
topic of a future work.

The first assessment for the FE model considers a
simply supported one-layered square plate (dimensions
a=b=1m)with thickness ratios a/h=1000 and a/h=100. The
layer is made of an isotropic aluminium alloy with Young
modulus E=73 GPa, Poisson ratio ν=0.3 and mass den-
sity ρ =2800 kg/m3. The second assessment for the FE
model analyzes a simply supported two-layered cylinder
(radii of curvature Rα=10m and Rβ=∞, and dimensions
a = 2πRα and b=20m) with thickness ratios Rα/h=1000
and Rα/h=100. The isotropic layer at the bottom is the
same already seen for the first assessment about the one-
layered isotropic plate. The isotropic layer at the top is a
titanium alloy with Young modulus E=114 GPa, Poisson
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ratio ν=0.3 and mass density ρ = 2768kg/m3. The third
assessment for the FE model proposes the same geome-
try of the cylinder described in the second assessment.
In this third case, the structure is simply supported and
it is multilayered embedding three composite layers with
lamination sequence 90∘/0∘/90∘. The compositematerial
has Young modulii E1=132.38 GPa and E2=E3=10.756 GPa,
shear modulii G12=G13=5.6537 GPa and G23=3.603 GPa,
Poisson ratios ν12=ν13=0.24 and ν23=0.49, and mass den-
sity ρ = 1600 kg/m3. In each table and figure, the first two
frequencies obtained via the FE code are shown. The fre-
quency values are given in Hz.

The results for the first assessment are shown in Table
5. For both thickness ratios (a/h=1000 and a/h=100), the
first frequency is obtained with imposed half-wave num-
bers m=n=1, and the second frequency is obtained with
m=1 and n=2. FE results with a rare mesh are more rigid
than 3D results, therefore frequency values are bigger.
These frequency values decrease and they are coincident
with the 3D exact resultswhen themesh size increases. For
a 70×70mesh (thatmeans 4900 elements), the FE value is
very close to the 3D exact value for both frequencies (first
and second) and for both thickness ratios (a/h=1000 and
a/h=100). The error in percentage ∆(%) is always less than
0.1%. Results of Table 5 are also shown in graphical form
in Figures 4 and 5 for a/h=1000 and a/h=100, respectively.
The top image is for the first frequency and the bottom im-
age is for the second frequency.

The results for the second assessment are shown in
Table 6. The structure is two-layered with a transverse
anisotropy, the FE results converge to the 3D exact so-
lution when the mesh size increases. For the cylinder
with Rα/h=1000, the first frequency is obtained with cir-
cular half-wave number m=18 and longitudinal half-wave
number n=1, the second frequency is obtained with m=20
and n=1. For the thicker cylinder (Rα/h=100), the first fre-
quency is for m=10 and n=1, and the second frequency is
for m=12 and n=1. For a rare mesh, the error given by the
2D FE model is large, this error is almost zero for a refine-
ment of the mesh (127 × 38 that means 4826 elements).
These results are confirmed in graphical form in Figures
6 and 7 for thickness ratios Rα/h=1000 and Rα/h=100, re-
spectively. In this assessment, 2D frequencies are some-
times smaller than 3D frequencies. However, these differ-
ences are negligible (always less than | 0.1 | %).

The third assessment is a composite three-layered
cylinder, it is shown in Table 7. The first frequency is ob-
tained with m=22 and n=1 for thickness ratio Rα/h=1000,
and with m=12 and n=1 for Rα/h=100. The second fre-
quency is obtained with m=24 and n=1 for thickness ra-
tio Rα/h=1000, and with m=10 and n=1 for Rα/h=100. 2D
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Figure 4: First assessment for the 2D FE solution, simply supported
plate made of aluminium alloy with thickness ratio a/h=1000. Fre-
quency f[Hz] vs. number of elements for the mode (1,1) (at the top)
and for the mode (1,2) (at the bottom).

FE results with a rare mesh give bigger frequencies than
3D exact results. FE results converge to the 3D solution
when the mesh increases. There is a very small error (al-
ways ∆(%) ≤ 0.18%) when the mesh is 127 × 38. All these
results are confirmed in graphical form in Figures 8 and 9.

The 2D FE model has been validated for both geome-
tries (plates and cylinders) and for several lamination
sequences (one-layered, two-layered and three-layered
structures embedding isotropic or orthotropic materials).
The FE model correctly converges with a 70 × 70mesh for
the plate geometry, andwith a 127×38mesh for the cylin-
der. Such valueswill always be used in Section 4 for the de-
tailed comparison between the 3D exact solution and the
2D computational model.
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Table 5: First assessment for the 2D FE solution, simply supported plate made of aluminium alloy with thickness ratios a/h=1000 and
a/h=100. First two frequencies in Hz, comparison between the present 3D exact solution and the 2D FE solution via Nastran. The error is
calculated as ∆(%) = FE−3D

3D × 100.

a/h=1000
Mode I (1,1) Mode I (1,2)

Mesh Num.El. 2D FE 3D ∆(%) 2D FE 3D ∆(%)
5×5 25 4.982 4.854 2.64 13.77 12.13 13.5

10×10 100 4.873 4.854 0.39 12.43 12.13 2.47
20×20 400 4.857 4.854 0.06 12.20 12.13 0.58
30×30 900 4.855 4.854 0.02 12.16 12.13 0.25
40×40 1600 4.855 4.854 0.02 12.15 12.13 0.16
50×50 2500 4.855 4.854 0.02 12.14 12.13 0.08
60×60 3600 4.855 4.854 0.02 12.14 12.13 0.08
70×70 4900 4.854 4.854 0.00 12.14 12.13 0.08

a/h=100
Mode I (1,1) Mode I (1,2)

Mesh Num.El. 2D FE 3D ∆(%) 2D FE 3D ∆(%)
5×5 25 49.70 48.52 2.43 136.8 121.2 12.9

10×10 100 48.67 48.52 0.31 123.9 121.2 2.23
20×20 400 48.55 48.52 0.06 121.8 121.2 0.49
30×30 900 48.54 48.52 0.04 121.5 121.2 0.25
40×40 1600 48.53 48.52 0.02 121.4 121.2 0.16
50×50 2500 48.53 48.52 0.02 121.4 121.2 0.16
60×60 3600 48.53 48.52 0.02 121.3 121.2 0.08
70×70 4900 48.53 48.52 0.02 121.3 121.2 0.08

4 Results
This section proposes a detailed comparison between the
3D exact model discussed in this paper and 2D FE mod-
els obtained via the code MSC Nastran & Patran [8]. As
demonstrated in the sections about the validation of the
models, all the 3D exact results use an order of expansion
N=3 for the exponential matrix, and P=100 fictitious layers
for one-layered, two-layered and four-layered structures or
P=102 fictitious layers for three-layered geometries. The 2D
FE results use the SHELL QUAD4 element of Nastran with
a 70 × 70mesh for all the plate geometries and a 127 × 38
mesh for all the cylinder geometries. The comparisons will
be made only for plates and cylinders in order to focus our
attention to several laminations andmaterials. In thisway,
weare able to contain the lengthof thepaper andwedonot
lose in clarity. For shell geometries, frequencies with w= ̸0
are obtained twice by Nastran (for each couple of (m,n))
because the section of the cylinder is symmetric. However,
these two vibrationmodes are equal andwewill write only
one frequency in the table. Further geometries, such as
cylindrical and spherical shell panels, that have already

been validated in Section 2.1 via the 3D exact model, could
be the topic of a future comparison work.

4.1 Comparison between the two models

The first geometry considered in this investigation is a
simply supported square plate with dimensions a=b=1 m.
Thickness values are h=0.1 m, 0.05 m, 0.01 m and 0.001 m
that mean thickness ratios a/h=10, 20, 100 and 1000, re-
spectively. The second geometry is a simply supported
cylinder with radii of curvature Rα=10m and Rβ=∞. The
dimensions are a=2πRα and b=20 m. The thickness values
are h=0.01 m, 0.1 m, 1 m and 2 m that mean thickness ra-
tios Rα/h=1000, 100, 10 and 5, respectively. Both geome-
tries will be considered as isotropic one-layered (h1 = h),
isotropic two-layered (h1 = h2 = h/2), isotropic three-
layered (h1 = h2 = h3 = h/3), three-layered compos-
ite cross-ply 90∘/0∘/90∘ (h1 = h2 = h3 = h/3), four-
layered composite cross-ply 90∘/0∘/90∘/0∘ (h1 = h2 =
h3 = h4 = h/4) and three-layered sandwich (skins with
h1 = h3 = 0.2h and core with h2 = 0.6h). The one-
layered structures embed an aluminium alloy with Young
modulus E=73 GPa, Poisson ratio ν=0.3 and mass density
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Table 6: Second assessment for the 2D FE solution, simply supported cylinder made of aluminium alloy and titanium alloy with thickness
ratios Rα/h=1000 and Rα/h=100. First two frequencies in Hz, comparison between the present 3D exact solution and the 2D FE solution via
Nastran. The error is calculated as ∆(%) = FE−3D

3D × 100.

Rα/h=1000
Mode I (18,1) Mode I (20,1)

Mesh Num.El. 2D FE 3D ∆(%) 2D FE 3D ∆(%)
20×6 120 4.207 3.518 19.6 4.366 3.540 23.3
40×12 480 3.547 3.518 0.82 3.573 3.540 0.93
60×18 1080 3.523 3.518 0.14 3.542 3.540 0.06
70×21 1470 3.521 3.518 0.08 3.540 3.540 0.00
90×27 2430 3.519 3.518 0.03 3.538 3.540 -0.06
110×33 3630 3.518 3.518 0.00 3.538 3.540 -0.06
120×36 4320 3.518 3.518 0.00 3.538 3.540 -0.06
127×38 4826 3.518 3.518 0.00 3.538 3.540 -0.06

Rα/h=100
Mode I (10,1) Mode I (12,1)

Mesh Num.El. 2D FE 3D ∆(%) 2D FE 3D ∆(%)
20×6 120 11.01 10.76 2.32 12.15 11.65 4.11
40×12 480 10.76 10.76 0.00 11.61 11.65 -0.34
60×18 1080 10.75 10.76 -0.09 11.62 11.65 -0.26
70×21 1470 10.75 10.76 -0.09 11.62 11.65 -0.26
90×27 2430 10.75 10.76 -0.09 11.63 11.65 -0.17
110×33 3630 10.76 10.76 0.00 11.64 11.65 -0.08
120×36 4320 10.76 10.76 0.00 11.64 11.65 -0.08
127×38 4826 10.76 10.76 0.00 11.64 11.65 -0.08

ρ =2800 kg/m3. The two-layered structures have the bot-
tom layer in aluminum alloy and the top layer in titanium
alloy (E=114 GPa, ν = 0.3 and ρ =2768 kg/m3). The three-
layered isotropic structures have the bottom layer in alu-
minum alloy, the mid layer in titanium alloy and the top
layer in steel (E=210 GPa, ν = 0.3 and ρ =7850 kg/m3). The
composite material for the three-layered and four-layered
cross-ply structures has Youngmodulii E1=132.38 GPa and
E2=E3=10.756GPa, shearmoduliiG12=G13=5.6537GPa and
G23=3.603 GPa, Poisson ratios ν12=ν13=0.24 and ν23=0.49,
and mass density ρ =1600 kg/m3. Sandwich configura-
tions have the skins in aluminium alloy (see one-layered,
two-layered and three-layered isotropic structures) and
the core is in PVC (E=0.18 GPa, ν=0.37 and ρ =50 kg/m3).

For all the benchmarks, the comparison is proposed
calculating the first ten frequencies via the 2D FE code.
From the visualization of these ten vibrations modes, it
is possible to understand the half-wave numbers in the α
and β directions. Therefore, these half-wave numbers have
been used to calculate the same ten frequencies via the 3D
exact model. There are some frequencies missed by the FE
code, but they have not been investigated via the 3D exact
model because this is not the main aim of the paper. The

main aim of the paper is to understand the differences be-
tween the 2D FE and the 3D exact model for the first ten
frequencies given by the 2D FE code. It is also important
to understand what are the features that influence these
differences (geometry of the structures, materials, lamina-
tion sequences, thickness ratios, order of frequencies, vi-
bration modes).

The first benchmark considers a one-layered isotropic
plate (see Table 8 and Figure 10). For plate geometry the
first ten frequencies for thin structures (a/h=1000 and
a/h=100) are obtained with all the possible combinations
of half-wave numbers in α and β directions from 1 to 4.
The 3D model obtains such frequencies as the first mode
for each couple of (m,n). The FE code works very well for
thin plates (a/h=1000 and 100), where the error is mean-
ingless (always less than 0.3%) for all the first ten fre-
quencies. In the case of thick plates (a/h=20 and 10), the
FE code works well only for low frequencies and it gives
significant errors for higher order frequencies (reaching
an error of 2.31% for the tenth frequency of the a/h=10
plate). For thick plates, the FE code gives somemodes that
have the transverse displacement w=0 (they are in-plane
modes). The 3D model also gives such values (mode II for
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Table 7: Third assessment for the 2D FE solution, simply supported composite cylinder 90∘/0∘/90∘ with thickness ratios Rα/h=1000 and
Rα/h=100. First two frequencies in Hz, comparison between the present 3D exact solution and the 2D FE solution via Nastran. The error is
calculated as ∆(%) = FE−3D

3D × 100.

Rα/h=1000
Mode I (22,1) Mode I (24,1)

Mesh Num.El. 2D FE 3D ∆(%) 2D FE 3D ∆(%)
20×6 120 4.224 2.743 54.0 4.514 2.754 63.9
40×12 480 2.829 2.743 3.13 2.830 2.754 2.76
60×18 1080 2.771 2.743 1.02 2.774 2.754 0.73
70×21 1470 2.763 2.743 0.73 2.767 2.754 0.47
90×27 2430 2.754 2.743 0.40 2.760 2.754 0.22
110×33 3630 2.750 2.743 0.25 2.757 2.754 0.11
120×36 4320 2.749 2.743 0.22 2.756 2.754 0.07
127×38 4826 2.748 2.743 0.18 2.755 2.754 0.04

Rα/h=100
Mode I (12,1) Mode I (10,1)

Mesh Num.El. 2D FE 3D ∆(%) 2D FE 3D ∆(%)
20×6 120 8.271 7.717 7.18 8.653 8.151 6.16
40×12 480 7.783 7.717 0.85 8.250 8.151 1.21
60×18 1080 7.740 7.717 0.30 8.193 8.151 0.51
70×21 1470 7.734 7.717 0.22 8.182 8.151 0.38
90×27 2430 7.727 7.717 0.13 8.170 8.151 0.23
110×33 3630 7.724 7.717 0.09 8.163 8.151 0.15
120×36 4320 7.723 7.717 0.08 8.162 8.151 0.13
127×38 4826 7.722 7.717 0.06 8.161 8.151 0.12

(0,1), (1,0) and (1,1)) even if it also gives other frequencies
that have not been calculated by the 2D FE code. For in-
plane modes (w=0), the error obtained with the FE code
is almost zero because the 3D effects are not important in
vibration modes with w=0. Left part of Figure 10 shows
the first five vibrationmodeswith transverse displacement
w≠0 obtained via the FE code. These modes are important
to understand the half-wave numbers (m,n) to use for the
3D exact investigation. The 3D exactmodel gives the vibra-
tion modes in terms of displacement components u, v and
w in the thickness direction z (right side of Figure 10) be-
cause the behavior in α and β directions is already known
(via the imposed half-wave numbers (m,n) obtained from
the FE analysis).

The second benchmark is a a one-layered isotropic
cylinder embedding the samematerial already seen for the
benchmark 1. Frequencies and vibrationmodes are shown
in Table 9. Even if the employed material is the same,
the behavior is completely different due to the coupling
caused by the radius of curvature Rα. For each thickness
ratio the lowest frequency is obtained for different cou-
ples of half-wave numbers (m,n), these values decrease
when the thickness of the shell increases. For such a struc-

ture the vibration behavior is not a priori predictable be-
cause there is not a regular sequence of (m,n) that gives
the first ten frequencies for thin structures (Rα/h=1000and
Rα/h=100). In this case, it is fundamental to obtain the
first ten frequencies via the FE code because the mode vi-
sualization of Nastran allows to understand what are the
half-wave numbers (m,n) to use in the 3D exact model.
The cylinder has a symmetric geometry, for this reason
for each couple of (m,n) the frequencies with w≠0 are
twice given. However, only one value is written in the ta-
bles. For thin cylinders (Rα/h=1000 and 100) the 2D FE re-
sults are coincident with the 3D exact results (the error
∆(%) is always negligible). For thick cylinders (Rα/h=10
and Rα/h=5), there are some FE frequencies that are quite
different from the corresponding 3D frequencies (see for
example the tenth frequency for Rα/h = 10). These differ-
ences are not a priori predictable because the frequencies
do not monotonously increase with the increasing of half-
wave numbers (m,n). For thick cylinders, the 2D FE code
gives some modes with w=0 that are also given by the 3D
model.

The third benchmark considers a two-layered
isotropic plate, see Table 10. In the plate case there is not
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Figure 5: First assessment for the 2D FE solution, simply supported
plate made of aluminium alloy with thickness ratio a/h=100. Fre-
quency f[Hz] vs. number of elements for the mode (1,1) (at the top)
and for the mode (1,2) (at the bottom).

any coupling due to the curvature, therefore the frequen-
cies have the same behavior already seen for the bench-
mark 1 (they monotonously increase with the increasing
of the half-wave numbers (m,n)). Therefore, the vibration
behavior can be predicted for these structures. Errors for
thin plates (a/h=1000 and 100) are small, but these errors
for thick plates (a/h=20 and 10) are bigger even when low
frequencies are investigated. For thick plates, there are
some in-plane modes with w=0 that are coincident with
the values given by the 3D model. However, some modes
given by the 3D code have tragically been lost by the FE
code (e.g., see mode I for m=0 and n=1 or m=1 and n=0 in
the case of a/h=20 and a/h=10 plates).

The fourth benchmark analyzes the free vibrations for
a simply supported two-layered isotropic cylinder. Results
are shown in Table 11 and in Figure 11. The radius of cur-
vature Rα gives a coupling between the displacement com-
ponents. In this way, the vibration behavior is not a priori
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Figure 6: Second assessment for the 2D FE solution, simply sup-
ported multilayered cylinder made of aluminium alloy and titanium
alloy with thickness ratio Rα/h=1000. Frequency f[Hz] vs. number of
elements for the mode (18,1) (at the top) and for the mode (20,1) (at
the bottom).

predictable, as already seen for the second benchmark for
the one-layered cylinder. The considerations are the same
seen for the one-layered cylinder even if some errors given
by the 2D FE model are bigger because there is a trans-
verse anisotropy due the presence of these two different
isotropic layers (see Table 11 for further details). Nastran
gives some modes with w=0 for thick shells (Rα/h=10 and
Rα/h=5). The 3D model gives such results but it also gives
further frequencies that are not obtained by the 2DFE code
(e.g., the mode I with m=0 and n=1 for Rα/h=5). Figure 11
shows the first five frequencieswithw≠0 obtained via Nas-
tran (on the left side) and the corresponding first five fre-
quencieswithw= ̸0obtained via the 3Dexactmodel (on the
right side). 3D modes are plotted only through the thick-
ness directionbecause the behavior in α and β directions is
known (imposed half-wave numbers (m,n)). However, all
the first ten vibration modes given in the tables have been
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Figure 7: Second assessment for the 2D FE solution, simply sup-
ported multilayered cylinder made of aluminium alloy and titanium
alloy with thickness ratio Rα/h=100. Frequency f[Hz] vs. number of
elements for the mode (10,1) (at the top) and for the mode (12,1) (at
the bottom).

plotted via Nastran in order tomake easier the comparison
with the 3D exact results.

The fifth benchmark about a three-layered isotropic
plate is discussed in Table 12 and in Figure 12. From the Ta-
ble 12, it is clear how the behavior is similar to that already
seen for the one-layered and two-layered plates even if the
transverse anisotropy is different from the one-layered and
two-layered cases. For the sake of clarity, the first five vi-
bration modes with w= ̸0 are shown in Figure 12 for the 2D
FE analysis (left side) and the 3D exact model (right side).
The behavior is the same already seen for the first bench-
mark, the introduction of further layers does not change
the vibration modes in terms of half-wave numbers (m,n).
For thick plates, the 2D FE code gives some in-planemodes
(w=0) that are also calculated by the 3D model. However,
the 3D model also gives further frequencies (e.g., for m=1
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Figure 8: Third assessment for the 2D FE solution, simply supported
composite cylinder 90∘/0∘/90∘ with thickness ratio Rα/h=1000.
Frequency f[Hz] vs. number of elements for the mode (22,1) (at the
top) and for the mode (24,1) (at the bottom).

and n=0, or m=0 and n=1) that have not been calculated
by the 2D FE code.

The sixth benchmark proposes a three-layered
isotropic cylinder (see Table 13), the behavior is the same
already seen for the one-layered cylinder in benchmark
two and for the two-layered cylinder in benchmark four.
The behavior of the vibrationmodes obtained with the im-
posed half-wave numbers (m,n) is not a priori predictable.
The presence of three different isotropic layers gives a
bigger transverse anisotropy. Therefore, FE results give
bigger errors, in particular for thicker structures and for
some vibration modes. In the case of thick cylinder, there
are some modes with transverse displacement w=0 that
are not present for thin geometries.

The seventh benchmark considers a three-layered
composite cross-ply 90∘/0∘/90∘ plate. The frequency re-
sults for this symmetric laminated plate are given in Ta-
ble 14. Even if a plate geometry is considered, the half-
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Figure 9: Third assessment for the 2D FE solution, simply supported
composite cylinder 90∘/0∘/90∘ with thickness ratio Rα/h=100.
Frequency f[Hz] vs. number of elements for the mode (12,1) (at the
top) and for the mode (10,1) (at the bottom).

wave number (m,n) for the first ten frequencies are differ-
entwith respect to the three-layered isotropic plate already
proposed. This feature is due to the fact that there is an or-
thotropy. For this reason, the imposition of a certain value
for half-wave number m in x direction is different from the
n value in y direction. Therefore, the first ten frequencies
for thin plates are not given by the first ten possible com-
binations of m and n from 1 to 4. For thick plates (a/h=20
and a/h=10), the FE code gives some in-plane modes with
w=0. The 3D model also obtains such modes, but it also
gives further vibration modes (e.g., the first ones for (0,1)
and (0,2)) that are not given by the FE code. The transverse
anisotropy in the thickness direction is smaller than the
isotropic cases that have three layers embedding different
materials. For this reason, the errors given by the 2D FE
model are smaller than errors seen in benchmarks three
and five. Bigger errors are given for thick plate (a/h=20 and

10) but these errors are negligible for the in-plane modes
with w=0 that have not any 3D effects.

The eight benchmark analyzes a three-layered com-
posite cross-ply90∘/0∘/90∘ cylinder (see Table 15 and Fig-
ure 13). The errors given by the 2D FE code are smaller
than those seen for benchmarks four and six. In fact, in the
case of two-layered and three-layered isotropic cylinders
the transverse anisotropy is bigger. The 2D FE code seems
to give acceptable errors for all the thickness ratios and for
each frequency (from the first to the tenth). The first five
modes with transverse displacement w= ̸0 for this cylinder
are shown in Figure 13 for both 2D FE and 3D exact analy-
ses. There are not big differenceswith respect to themodes
already plotted for the two-layered isotropic cylinder. The
half-wave numbers (m,n) to calculate the first five modes
withw= ̸0 changewith respect to the isotropic case, but the
general behavior remains the same. Some vibrationmodes
with w=0 are calculated by the FE code in the case of thick
cylinder. For thickness ratio Rα/h=5, the FE code gives a
mode with w=0 for m=4 and n=0. The 3Dmodel also gives
such a value but it also proposes a lower vibration mode
for m=4 and n=0 that has not been calculated by the 3D
FE code.

The four-layered composite cross-ply 90∘/0∘/90∘/0∘

plate for the benchmark nine is analyzed in Table 16, and
the first five vibrationmodeswith transverse displacement
w= ̸0 are given in Figure 14. In this case the lamination
is not symmetric and the bottom 0∘ layer is able to com-
pensate the behavior of the top 90∘ layer. For this rea-
son, even if an orthotropic material is employed, results
for half-wave numbers (1,2) are equal to those for (2,1),
those for (1,3) are equal to those for (3,1), and so on. FE re-
sults are quite correct for each vibration mode. For thick
plates (a/h=20 and a/h=10), the FE code gives some in-
plane modes (w=0) for half-wave numbers (0,1) and (1,0),
and (0,2) and (2,0). The 3Dmethodalso gives such frequen-
cies but it also gives furthermodes (the first I for (1,0), (0,1),
(2,0) and (0,2)) that are not obtained by the FE code. Figure
14 about vibrationmodeswithw= ̸0confirm that thebehav-
ior is a priori predictable. Themodes through the thickness
show a transverse anisotropy (zigzag form of the displace-
ments). However, this transverse anisotropy is small.

The tenth benchmark is about the four-layered com-
posite cross-ply 90∘/0∘/90∘/0∘ cylinder. Results shown
in Table 17 confirm the same behavior already seen for
the other cylinder configurations. Moreover, the errors ob-
tained via the 2D FE analysis are smaller with respect to
the two-layered and three-layered isotropic cases because
there is a smaller transverse anisotropy. For the thick cases
with Rα/h=10 or 5, there are some vibration modes with
w=0 for half-wave numbers (2,0) and (0,1). For Rα/h=5

Brought to you by | Interscientia S.A.S.
Authenticated

Download Date | 1/7/15 11:04 AM



76 | Salvatore Brischetto and Roberto Torre

Figure 10: First benchmark, simply supported plate made of aluminium alloy with thickness ratio a/h=10. First five frequencies (with trans-
verse displacement w= ̸0) via 2D FE solution (on the left) and via 3D exact solution (on the right).

shell, the FE code gives a frequency with w=0 for half-
wave numbers (4,0). This frequency is also obtained by the

3D method. The 3D solution also gives another lower fre-
quency for (4,0).

Brought to you by | Interscientia S.A.S.
Authenticated

Download Date | 1/7/15 11:04 AM



Exact 3D solutions and finite element 2D models for free vibration analysis of plates and cylinders | 77

Figure 11: Fourth benchmark, simply supported cylinder made of aluminium alloy and titanium alloy with thickness ratio Rα/h=10. First five
frequencies (with transverse displacement w= ̸0) via 2D FE solution (on the left) and via 3D exact solution (on the right).

The eleventh benchmark considers a square sandwich
plate with isotropic aluminium skins and an isotropic core
in PVC. In this case the transverse anisotropy is very big
because the elastic and mechanical properties of the core

are completely different from those of the skins. This fea-
ture is confirmed by the results given in Table 18. The er-
rors given by the 2D FE code are acceptable only for thin
plates (a/h=1000 or 100) but they are too large for thick
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Figure 12: Fifth benchmark, simply supported plate made of aluminium alloy, titanium alloy and steel with thickness ratio a/h=10. First five
frequencies (with transverse displacement w= ̸0) via 2D FE solution (on the left) and via 3D exact solution (on the right).

plates (a/h=20 or 10) for each frequency investigated (from
the first to the tenth). The simple 2D kinematic model em-

ployed in the MSC Nastran code is not able to investigate
thick and moderately thin sandwich structures with a big
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Figure 13: Eight benchmark, simply supported composite cylinder 90∘/0∘/90∘ with thickness ratio Rα/h=10. First five frequencies (with
transverse displacement w= ̸0) via 2D FE solution (on the left) and via 3D exact solution (on the right).

transverse anisotropy. The 3D element of Nastran could
give better results but is is not used in this work because
the main aim is the comparison between 3D exact models
and 2D FEmodels. This 2D element of Nastran gives wrong

frequencies that are smaller than 3D results, and this fea-
ture demonstrates how the code does not work in a cor-
rect way for such a benchmark. The plate is isotropic in the
plane and for this reason the vibration behavior is a priori
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Figure 14: Ninth benchmark, simply supported composite plate 90∘/0∘/90∘/0∘ with thickness ratio a/h=10. First five frequencies (with
transverse displacement w= ̸0) via 2D FE solution (on the left) and via 3D exact solution (on the right).

predictable. In this benchmark, the FE code does not give
any in-plane frequency (see all the thickness ratios a/h).

The same considerations seen in Table 18 for the
sandwich plate are confirmed in Table 19 for the sand-
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Figure 15: Twelfth benchmark, simply supported sandwich cylinder embedding isotropic skins and PVC core with thickness ratio Rα/h=10.
First five frequencies (with transverse displacement w= ̸0) via 2D FE solution (on the left) and via 3D exact solution (on the right).

wich cylinder. FE results are acceptable for thin shells
(Rα/h=1000 and 100) but they are completely wrong for
thick shells (Rα/h=10 and 5). This feature is due to the
big transverse anisotropy of this configuration. This trans-

verse anisotropy is confirmed by Figure 15 where the
first five frequencies with w≠0 obtained by the 3D exact
model exhibit an important zigzag behavior for displace-
ment components through the thickness. The cylinder is
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isotropic but its behavior in terms of vibration modes and
half-wave numbers is not easily predictable because of
the coupling given by the radius of curvature Rα. In this
last case there are not in-plane frequencies given by the
FE code for thick cylinders. The FE results are completely
wrong for thick shells as demonstrated by the values of fre-
quency that are smaller than 3D values.

Figures 16-19 show how the first (I) 3D frequency val-
ues change with the half-wave numbers (m,n) in the case
of simply supported one-layered and two-layered isotropic
plates and cylinders. Figure 16 gives frequencies for one-
layered isotropic plates with thickness ratios a/h equal
1000, 100 and 10. For n=1, frequency increases with the
increasing of half-wave number m. The same behavior is
confirmed for the curves related to n=2 andn=3.Whenn in-
creases the curvesmove to higher values of frequency. Fig-
ure 17 shows frequencies for one-layered isotropic cylin-
ders with thickness ratios Rα/h equal 1000, 100 and 10.
The coupling between displacement components due to
the curvature Rα gives the minimum value of frequency
for a circumferential half-wave number different from one
(e.g., m=18 for longitudinal half-wave number n equals
1 and thickness ratio Rα/h = 1000). When the longitu-
dinal half-wave number n increases, the curves move to
higher values of frequency and theminimum in frequency
moves to higher values of m. When the thickness ratio of
the cylinder decreases (thicker shells), the values of cir-
cumferential half-wave number m that give the minimum
of frequency also decrease. For example, for longitudinal
half-wave number n=1, there is a minimum in frequency
for m=18 for thickness ratio Rα/h = 1000, m=10 for Rα/h =
100, and m=6 for Rα/h = 10. The behavior of the two-
layered structures (Figures 18-19) is the same already seen
for the corresponding one-layered structures (Figures 16-
17), only the numerical values are different.

5 Conclusions
This paper has proposed an exact three-dimensional
model for the free vibration analysis of one-layered and
multilayered plates, cylinders, cylindrical and spherical
shell panels. Comparisons with a commercial finite ele-
ment code have been proposed (for the cases of plates and
cylinders) in order to explain the method used for such a
comparison and to see the possible differences between an
exact 3D solution and a numerical 2D solution.

The exact 3D solution gives infinite vibration modes
(for all the possible combinations of half-wave numbers
(m,n)). A 2D FE code gives a finite number of vibration
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Figure 16: First benchmark, simply supported plate made of alu-
minium alloy with thickness ratios a/h=1000 (top), a/h=100 (mid-
dle) and a/h=10 (bottom). First (I) 3D frequencies versus half-wave
numbers m (from 1 to 10) and n (from 1 to 3).

modes because it uses a finite number of degrees of free-
dom in the plane and in the thickness direction. A possible
method to make a 3D versus 2D comparison is to calculate
the frequencies via the 2D FE code and then to evaluate
the 3D exact frequencies bymeans of the appropriate half-
wave numbers (obtained via a correct visualization of the
vibration modes via FE). It is obvious that the 3D analysis
could give some frequencies that are missed by the 2D FE
code, but this is not the aim of the paper. The paper tries
to explain what could be the limitations of a commercial
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Figure 17: Second benchmark, simply supported cylinder made of
aluminium alloy with thickness ratios Rα/h=1000 (top), Rα/h=100
(middle) and Rα/h=10 (bottom). First (I) 3D frequencies versus half-
wave numbers m (values around that for minimum frequency) and n
(from 1 to 3).

2D FE code. A typical 2D FE code uses a Reissner-Mindlin
model for the approximation of displacement components
through the thickness direction. Results in this paper show
how this model employed by commercial FE codes could
give errors for thick andmoderately thick structures, com-
plicated lamination sequences, higher order frequencies
and particular vibration modes. In these cases, the use of
3D finite elements or refined 2D finite elements is manda-
tory.
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Figure 18: Third benchmark, simply supported plate embedding
aluminium alloy and titanium alloy with thickness ratios a/h=1000
(top), a/h=100 (middle) and a/h=10 (bottom). First (I) 3D frequen-
cies versus half-wave numbers m (from 1 to 10) and n (from 1 to 3).

The behavior of frequency values and vibrationmodes
versus imposed half-wave numbers has been investigated
via the 3D exact model. The behavior is simple and eas-
ily predictable for plate structures because the increas-
ing of m and/or n values gives bigger frequency values.
In the case of cylinder geometry there is a coupling be-
tween the displacement components due to the curva-
ture. For this reason, when longitudinal half-wave num-
ber n is imposed, the minimum of frequency is obtained
for a value of circumferential half-wave number m differ-
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Figure 19: Fourth benchmark, simply supported cylinder embedding
aluminium alloy and titanium alloy with thickness ratios Rα/h=1000
(top), Rα/h=100 (middle) and Rα/h=10 (bottom). First (I) 3D fre-
quencies versus half-wave numbers m (values around that for mini-
mum frequency) and n (from 1 to 3).

ent from 1. Such values decrease when the thickness ratio
decreases (thicker cylinders). When the longitudinal half-
wave number n increases the curves frequency versus m
move to higher values of frequencies and the minimum in
frequency moves to higher values of the circumferential
half-wave number m. These last considerations are very
similar for one-layered and multilayered structures.

Table 8: First benchmark, simply supported plate made of alu-
minium alloy with thickness ratios a/h=1000, a/h=100, a/h=20
and a/h=10. First ten frequencies in Hz, comparison between the
present 3D exact solution and the 2D FE solution via Nastran. The
error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
a/h=1000

4.854 4.854 I 1,1 0.00
12.14 12.13 I 1,2 0.08
12.14 12.13 I 2,1 0.08
19.42 19.42 I 2,2 0.00
24.30 24.27 I 1,3 0.12
24.30 24.27 I 3,1 0.12
31.57 31.55 I 2,3 0.06
31.57 31.55 I 3,2 0.06
41.36 41.26 I 1,4 0.24
41.36 41.26 I 4,1 0.24

a/h=100
48.53 48.52 I 1,1 0.02
121.3 121.2 I 1,2 0.08
121.3 121.2 I 2,1 0.08
194.0 193.9 I 2,2 0.05
242.7 242.3 I 1,3 0.16
242.7 242.3 I 3,1 0.16
315.1 314.8 I 2,3 0.09
315.1 314.8 I 3,2 0.09
412.6 411.4 I 1,4 0.29
412.6 411.4 I 4,1 0.29

a/h=20
241.0 240.6 I 1,1 0.17
596.6 594.0 I 1,2 0.44
596.6 594.0 I 2,1 0.44
944.7 938.9 I 2,2 0.62
1174 1164 I 1,3 0.86
1174 1164 I 3,1 0.86
1511 1496 I 2,3 1.00
1511 1496 I 3,2 1.00
1584 1583 II(w=0) 0,1 0.06
1584 1583 II(w=0) 1,0 0.06

a/h=10
472.3 469.5 I 1,1 0.60
1137 1122 I 1,2 1.34
1137 1122 I 2,1 1.34
1583 1583 II(w=0) 0,1 0.00
1583 1583 II(w=0) 1,0 0.00
1754 1724 I 2,2 1.74
2146 2102 I 1,3 2.09
2146 2102 I 3,1 2.09
2239 2239 II(w=0) 1,1 0.00
2701 2640 I 2,3 2.31
2701 2640 I 3,2 2.31

Brought to you by | Interscientia S.A.S.
Authenticated

Download Date | 1/7/15 11:04 AM



Exact 3D solutions and finite element 2D models for free vibration analysis of plates and cylinders | 85

Table 9: Second benchmark, simply supported cylinder made of alu-
minium alloy with thickness ratios Rα/h=1000, Rα/h=100, Rα/h=10
and Rα/h=5. First ten frequencies in Hz, comparison between the
present 3D exact solution and the 2D FE solution via Nastran. The
error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
Rα/h=1000

3.123 3.123 I 18,1 0.00
3.153 3.154 I 20,1 -0.03
3.392 3.391 I 16,1 0.03
3.405 3.407 I 22,1 -0.06
3.813 3.816 I 24,1 -0.08
4.047 4.045 I 14,1 0.05
4.335 4.339 I 26,1 -0.09
4.942 4.947 I 28,1 -0.10
5.219 5.216 I 12,1 0.06
5.620 5.625 I 30,1 -0.09

Rα/h=100
9.557 9.558 I 10,1 -0.01
10.41 10.41 I 12,1 0.00
11.28 11.28 I 8,1 0.00
12.84 12.85 I 14,1 -0.08
16.20 16.22 I 16,1 -0.12
16.68 16.68 I 6,1 0.00
19.41 19.45 I 14,2 -0.21
20.23 20.26 I 18,1 -0.15
20.34 20.34 I 12,2 0.00
20.65 20.73 I 16,2 -0.39

Rα/h=10
28.74 28.72 I 6,1 0.07
30.21 30.19 I 4,1 0.07
41.45 41.42 I 8,1 0.07
49.07 49.08 I 2,1 -0.02
50.41 50.42 I(w=0) 2,0 -0.02
57.94 57.69 I 6,2 0.43
61.37 61.20 I 10,1 0.28
63.20 62.90 I 4,2 0.48
64.22 64.06 I 8,2 0.25
76.03 75.72 I 2,2 0.41

Rα/h=5
35.84 35.85 I 4,1 -0.03
47.58 47.66 I 6,1 -0.17
49.89 49.91 I 2,1 -0.04
50.42 50.48 I(w=0) 2,0 -0.12
75.03 74.93 I 8,1 0.13
79.40 78.47 I 4,2 1.18
79.41 79.16 I(w=0) 0,1 0.32
79.87 79.63 II 0,1 0.30
85.97 85.35 I 6,2 0.73
86.05 84.74 I 2,2 1.55

Table 10: Third benchmark, simply supported plate made of alu-
minium alloy and titanium alloy with thickness ratios a/h=1000,
a/h=100, a/h=20 and a/h=10. First ten frequencies in Hz, compar-
ison between the present 3D exact solution and the 2D FE solution
via Nastran. The error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
a/h=1000

5.409 5.409 I 1,1 0.00
13.53 13.52 I 1,2 0.07
13.53 13.52 I 2,1 0.07
21.64 21.64 I 2,2 0.00
27.08 27.05 I 1,3 0.11
27.08 27.05 I 3,1 0.11
35.18 35.16 I 2,3 0.06
35.18 35.16 I 3,2 0.06
46.09 45.98 I 1,4 0.24
46.09 45.98 I 4,1 0.24

a/h=100
54.08 54.07 I 1,1 0.02
135.2 135.1 I 1,2 0.07
135.2 135.1 I 2,1 0.07
216.2 216.1 I 2,2 0.05
270.4 270.0 I 1,3 0.15
270.4 270.0 I 3,1 0.15
351.2 350.8 I 2,3 0.11
351.2 350.8 I 3,2 0.11
459.8 458.4 I 1,4 0.30
459.8 458.4 I 4,1 0.30

a/h=20
268.6 268.1 I 1,1 0.19
664.8 661.9 I 1,2 0.44
664.8 661.9 I 2,1 0.44
1053 1046 I 2,2 0.67
1309 1298 I 1,3 0.85
1309 1298 I 3,1 0.85
1684 1668 I 2,3 0.96
1684 1668 I 3,2 0.96
1797 1797 II(w=0) 0,1 0.00
1797 1797 II(w=0) 1,0 0.00

a/h=10
526.3 523.1 I 1,1 0.61
1266 1250 I 1,2 1.28
1266 1250 I 2,1 1.28
1797 1797 II(w=0) 0,1 0.00
1797 1797 II(w=0) 1,0 0.00
1955 1922 I 2,2 1.72
2391 2344 I 1,3 2.00
2391 2344 I 3,1 2.00
2541 2540 II(w=0) 1,1 0.04
3010 2945 I 2,3 2.21
3010 2945 I 3,2 2.21
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Table 11: Fourth benchmark, simply supported cylinder made of alu-
minium alloy and titanium alloy with thickness ratios Rα/h=1000,
Rα/h=100, Rα/h = 10 and Rα/h=5. First ten frequencies in Hz,
comparison between the present 3D exact solution and the 2D FE
solution via Nastran. The error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
Rα/h=1000

3.518 3.518 I 18,1 0.00
3.538 3.540 I 20,1 -0.06
3.810 3.812 I 22,1 -0.05
3.835 3.834 I 16,1 0.03
4.259 4.263 I 24,1 -0.09
4.585 4.583 I 14,1 0.04
4.837 4.841 I 26,1 -0.08
5.511 5.516 I 28,1 -0.09
5.920 5.917 I 12,1 0.05
6.265 6.271 I 30,1 -0.10

Rα/h=100
10.76 10.76 I 10,1 0.00
11.64 11.65 I 12,1 -0.09
12.78 12.77 I 8,1 0.08
14.31 14.33 I 14,1 -0.14
18.05 18.07 I 16,1 -0.11
18.93 18.92 I 6,1 0.05
21.81 21.86 I 14,2 -0.23
22.53 22.56 I 18,1 -0.13
22.96 22.97 I 12,2 -0.04
23.12 23.20 I 16,2 -0.34

Rα/h=10
32.07 32.11 I 6,1 -0.12
34.21 34.21 I 4,1 0.00
45.89 45.94 I 8,1 -0.11
55.81 55.77 I 2,1 0.07
57.05 57.07 I(w=0) 2,0 -0.03
65.01 64.74 I 6,2 0.42
67.80 67.78 I 10,1 0.03
71.37 70.94 I 4,2 0.61
71.52 71.41 I 8,2 0.15
86.03 85.43 I 2,2 0.70

Rα/h=5
40.33 40.39 I 4,1 -0.15
52.56 52.79 I 6,1 -0.44
56.83 56.76 I 2,1 0.12
56.91 56.99 I(w=0) 2,0 -0.14
82.46 82.61 I 8,1 -0.18
89.08 87.89 I 4,2 1.35
90.19 89.32 I 0,1 0.97
91.56 91.32 II(w=0) 0,1 0.26
95.68 95.04 I 6,2 0.67
96.93 95.00 I 2,2 2.03

Table 12: Fifth benchmark, simply supported plate made of alu-
minium alloy, titanium alloy and steel with thickness ratios
a/h=1000, a/h=100, a/h=20 and a/h=10. First ten frequen-
cies in Hz, comparison between the present 3D exact solution
and the 2D FE solution via Nastran. The error is calculated as
∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
a/h=1000

4.914 4.913 I 1,1 0.02
12.29 12.28 I 1,2 0.08
12.29 12.28 I 2,1 0.08
19.66 19.65 I 2,2 0.05
24.60 24.57 I 1,3 0.12
24.60 24.57 I 3,1 0.12
31.96 31.94 I 2,3 0.06
31.96 31.94 I 3,2 0.06
41.86 41.76 I 1,4 0.24
41.86 41.76 I 4,1 0.24

a/h=100
49.12 49.12 I 1,1 0.00
122.8 122.7 I 1,2 0.08
122.8 122.7 I 2,1 0.08
196.3 196.3 I 2,2 0.00
245.6 245.2 I 1,3 0.16
245.6 245.2 I 3,1 0.16
318.9 318.6 I 2,3 0.09
318.9 318.6 I 3,2 0.09
417.6 416.4 I 1,4 0.29
417.6 416.4 I 4,1 0.29

a/h=20
243.9 243.6 I 1,1 0.12
603.5 601.3 I 1,2 0.37
603.5 601.3 I 2,1 0.37
955.4 950.5 I 2,2 0.51
1187 1179 I 1,3 0.68
1187 1179 I 3,1 0.68
1527 1515 I 2,3 0.79
1527 1515 I 3,2 0.79
1687 1687 II(w=0) 0,1 0.00
1687 1687 II(w=0) 1,0 0.00

a/h=10
477.6 475.2 I 1,1 0.50
1148 1136 I 1,2 1.06
1148 1136 I 2,1 1.06
1685 1687 II(w=0) 0,1 -0.12
1685 1687 II(w=0) 1,0 -0.12
1771 1745 I 2,2 1.49
2165 2129 I 1,3 1.69
2165 2129 I 3,1 1.69
2724 2673 I 2,3 1.91
2724 2673 I 3,2 1.91
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Table 13: Sixth benchmark, simply supported cylinder made of
aluminium alloy, titanium alloy and steel with thickness ratios
Rα/h=1000, Rα/h=100, Rα/h = 10 and Rα/h=5. First ten fre-
quencies in Hz, comparison between the present 3D exact solu-
tion and the 2D FE solution via Nastran. The error is calculated as
∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
Rα/h=1000

3.256 3.257 I 20,1 -0.03
3.259 3.259 I 18,1 0.00
3.487 3.489 I 22,1 -0.06
3.575 3.574 I 16,1 0.03
3.886 3.889 I 24,1 -0.08
4.292 4.290 I 14,1 0.05
4.404 4.408 I 26,1 -0.09
5.013 5.018 I 28,1 -0.10
5.551 5.548 I 12,1 0.05
5.695 5.701 I 30,1 -0.10

Rα/h=100
9.952 9.962 I 10,1 -0.10
10.65 10.67 I 12,1 -0.19
11.94 11.94 I 8,1 0.00
13.03 13.06 I 14,1 -0.23
16.40 16.43 I 16,1 -0.18
17.76 17.76 I 6,1 0.00
20.13 20.18 I 14,2 -0.25
20.45 20.50 I 18,1 -0.24
21.18 21.27 I 16,2 -0.42
21.36 21.38 I 12,2 -0.09

Rα/h=10
29.32 29.47 I 6,1 -0.51
31.98 31.99 I 4,1 -0.03
41.40 41.68 I 8,1 -0.67
52.49 52.17 I 2,1 0.61
53.38 53.07 I(w=0) 2,0 0.58
59.89 59.77 I 6,2 0.20
60.98 61.35 I 10,1 -0.60
65.08 65.26 I 8,2 -0.28
66.43 66.02 I 4,2 0.62
80.25 80.66 I 10,2 -0.51

Rα/h=5
37.33 37.41 I 4,1 -0.21
47.33 47.84 I 6,1 -1.07
53.08 52.50 I(w=0) 2,0 1.10
53.51 52.88 I 2,1 1.19
73.68 74.43 I 8,1 -1.01
81.95 80.89 I 4,2 1.31
84.12 83.04 I 0,1 1.30
86.93 86.66 I 6,2 0.31
87.36 84.05 II(w=0) 0,1 3.94
89.80 87.80 I 2,2 2.28

Table 14: Seventh benchmark, simply supported composite plate
90∘/0∘/90∘ with thickness ratios a/h=1000, a/h=100, a/h=20
and a/h=10. First ten frequencies in Hz, comparison between the
present 3D exact solution and the 2D FE solution via Nastran. The
error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
a/h=1000

4.697 4.696 I 1,1 0.02
7.898 7.895 I 2,1 0.04
14.45 14.43 I 3,1 0.14
16.76 16.74 I 1,2 0.12
18.79 18.78 I 2,2 0.05
23.52 23.50 I 3,2 0.09
24.10 24.04 I 4,1 0.25
31.63 31.58 I 4,2 0.16
36.71 36.57 I 5,1 0.38
37.09 37.03 I 1,3 0.16

a/h=100
46.90 46.89 I 1,1 0.02
78.87 78.83 I 2,1 0.05
144.2 143.9 I 3,1 0.21
166.6 166.5 I 1,2 0.06
186.9 186.8 I 2,2 0.05
234.0 233.7 I 3,2 0.13
240.2 239.5 I 4,1 0.29
314.6 313.9 I 4,2 0.22
365.4 363.7 I 5,1 0.47
366.1 365.5 I 1,3 0.16

a/h=20
227.1 226.7 I 1,1 0.18
382.3 380.9 I 2,1 0.37
688.9 684.1 I 3,1 0.70
738.1 736.1 I 1,2 0.27
832.9 829.1 I 2,2 0.46
940.0 939.9 II(w=0) 0,1 0.01
1051 1043 I 3,2 0.77
1119 1107 I 4,1 1.08
1407 1393 I 4,2 1.00
1443 1440 I 1,3 0.21

a/h=10
416.3 414.5 I 1,1 0.43
702.7 696.3 I 2,1 0.92
940.0 939.9 II(w=0) 0,1 0.01
1145 1144 I 1,2 0.09
1222 1205 I 3,1 1.41
1315 1308 I 2,2 0.53
1686 1668 I 3,2 1.08
1880 1880 II(w=0) 0,2 0.00
1882 1851 I 4,1 1.67
1959 1977 I 1,3 -0.91
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Table 15: Eighth benchmark, simply supported composite cylinder
90∘/0∘/90∘ with thickness ratios Rα/h=1000, Rα/h=100, Rα/h =
10 and Rα/h=5. First ten frequencies in Hz, comparison between
the present 3D exact solution and the 2D FE solution via Nastran.
The error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
Rα/h=1000

2.748 2.743 I 22,1 0.18
2.755 2.754 I 24,1 0.04
2.889 2.887 I 26,1 0.07
2.894 2.887 I 20,1 0.24
3.123 3.122 I 28,1 0.03
3.218 3.209 I 18,1 0.28
3.434 3.435 I 30,1 -0.03
3.748 3.738 I 16,1 0.27
3.807 3.809 I 32,1 -0.05
4.231 4.233 I 34,1 -0.05

Rα/h=100
7.722 7.717 I 12,1 0.06
8.161 8.151 I 10,1 0.12
8.407 8.406 I 14,1 0.01
9.919 9.923 I 16,1 -0.04
9.949 9.938 I 8,1 0.11
12.01 12.02 I 18,1 -0.08
13.44 13.43 I 6,1 0.07
14.53 14.54 I 20,1 -0.07
14.58 14.57 I 14,2 0.07
14.60 14.62 I 16,2 -0.14

Rα/h=10
20.79 20.81 I 6,1 -0.10
22.34 22.38 I 4,1 -0.18
26.29 26.27 I 8,1 0.08
29.92 29.93 I(w=0) 2,0 -0.03
32.61 32.64 I 2,1 -0.09
36.49 36.39 I 10,1 0.27
47.01 46.99 I(w=0) 0,1 0.04
47.27 47.28 I 6,2 -0.02
49.08 49.09 I 8,2 -0.02
49.73 49.51 I 12,1 0.44

Rα/h=5
27.54 27.65 I 4,1 -0.40
29.93 29.97 I(w=0) 2,0 -0.13
32.14 32.17 I 6,1 -0.09
34.47 34.56 I 2,1 -0.26
45.22 45.11 I 8,1 0.24
47.14 46.99 I(w=0) 0,1 0.32
59.84 59.93 II(w=0) 4,0 -0.15
63.20 62.90 I 10,1 0.48
65.21 65.39 I 4,2 -0.27
65.99 66.12 I 6,2 0.20

Table 16: Ninth benchmark, simply supported composite plate
90∘/0∘/90∘/0∘ with thickness ratios a/h=1000, a/h=100, a/h=20
and a/h=10. First ten frequencies in Hz, comparison between the
present 3D exact solution and the 2D FE solution via Nastran. The
error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
a/h=1000

4.412 4.411 I 1,1 0.02
12.24 12.24 I 1,2 0.00
12.24 12.24 I 2,1 0.00
17.65 17.64 I 2,2 0.06
26.24 26.20 I 1,3 0.15
26.24 26.20 I 3,1 0.15
30.04 30.00 I 2,3 0.13
30.04 30.00 I 3,2 0.13
39.75 39.69 I 3,3 0.15
46.04 45.92 I 4,1 0.26

a/h=100
44.07 44.06 I 1,1 0.02
122.0 121.9 I 1,2 0.08
122.0 121.9 I 2,1 0.08
175.8 175.7 I 2,2 0.06
260.4 259.9 I 1,3 0.19
260.4 259.9 I 3,1 0.19
298.1 297.7 I 2,3 0.13
298.1 297.7 I 3,2 0.13
393.8 393.3 I 3,3 0.13
454.3 452.9 I 4,1 0.31

a/h=20
215.1 215.0 I 1,1 0.05
566.1 565.1 I 1,2 0.18
566.1 565.1 I 2,1 0.18
803.0 802.5 I 2,2 0.06
940.0 939.9 II(w=0) 0,1 0.01
940.0 939.9 II(w=0) 1,0 0.01
1116 1112 I 1,3 0.36
1116 1112 I 3,1 0.36
1277 1276 I 2,3 0.08
1277 1276 I 3,2 0.08

a/h=10
401.3 401.3 I 1,1 0.00
940.0 939.9 II(w=0) 0,1 0.01
940.0 939.9 II(w=0) 1,0 0.01
947.2 947.9 I 1,2 -0.07
947.2 947.9 I 2,1 -0.07
1305 1312 I 2,2 -0.53
1655 1665 I 1,3 -0.60
1655 1665 I 3,1 -0.60
1880 1880 II(w=0) 0,2 0.00
1880 1880 II(w=0) 2,0 0.00
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Table 17: Tenth benchmark, simply supported composite cylin-
der 90∘/0∘/90∘/0∘ with thickness ratios Rα/h=1000, Rα/h=100,
Rα/h = 10 and Rα/h=5. First ten frequencies in Hz, comparison
between the present 3D exact solution and the 2D FE solution via
Nastran. The error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
Rα/h=1000

3.558 3.552 I 18,1 0.17
3.624 3.619 I 20,1 0.14
3.788 3.780 I 16,1 0.21
3.924 3.920 I 22,1 0.10
4.368 4.358 I 14,1 0.23
4.398 4.395 I 24,1 0.07
5.001 4.999 I 26,1 0.04
5.364 5.353 I 12,1 0.20
5.705 5.704 I 28,1 0.02
6.492 6.491 I 30,1 0.01

Rα/h=100
9.679 9.665 I 10,1 0.14
10.19 10.17 I 8,1 0.20
11.26 11.24 I 12,1 0.18
13.22 13.20 I 6,1 0.15
14.25 14.24 I 14,1 0.07
17.24 17.22 I 12,2 0.12
18.16 18.15 I 14,2 0.05
18.19 18.18 I 16,1 0.05
18.35 18.33 I 10,2 0.11
19.55 19.54 I 4,1 0.05

Rα/h=10
21.85 21.78 I 4,1 0.32
25.37 25.20 I 6,1 0.67
29.92 29.93 I(w=0) 2,0 -0.03
32.04 32.03 I 2,1 0.03
38.95 38.70 I 8,1 0.65
43.95 43.72 I 6,2 0.53
46.69 46.47 I 4,2 0.47
47.01 46.99 I(w=0) 0,1 0.04
51.63 51.44 I 8,2 0.37
57.21 56.89 I 10,1 0.56

Rα/h=5
26.73 26.54 I 4,1 0.72
29.93 29.97 I(w=0) 2,0 -0.13
32.81 32.78 I 2,1 0.09
38.93 38.63 I 6,1 0.78
47.14 46.99 I(w=0) 0,1 0.32
58.01 57.54 I 4,2 0.82
59.57 59.36 I 8,1 0.35
59.84 59.93 II(w=0) 4,0 -0.15
62.06 61.81 I 6,2 0.40
68.88 68.44 I 2,2 0.64

Table 18: Eleventh benchmark, simply supported sandwich plate
embedding isotropic skins and PVC core with thickness ratios
a/h=1000, a/h=100, a/h=20 and a/h=10. First ten frequen-
cies in Hz, comparison between the present 3D exact solution
and the 2D FE solution via Nastran. The error is calculated as
∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
a/h=1000

6.705 6.704 I 1,1 0.01
16.75 16.74 I 1,2 0.06
16.75 16.74 I 2,1 0.06
26.77 26.76 I 2,2 0.04
33.47 33.43 I 1,3 0.12
33.47 33.43 I 3,1 0.12
43.43 43.41 I 2,3 0.05
43.43 43.41 I 3,2 0.05
56.82 56.69 I 1,4 0.23
56.82 56.69 I 4,1 0.23

a/h=100
62.79 62.79 I 1,1 0.00
144.2 144.2 I 1,2 0.00
144.2 144.2 I 2,1 0.00
214.4 214.7 I 2,2 -0.14
256.8 257.3 I 1,3 -0.19
256.8 257.3 I 3,1 -0.19
314.7 315.9 I 2,3 -0.38
314.7 315.9 I 3,2 -0.38
384.6 386.4 I 1,4 -0.47
384.6 386.4 I 4,1 -0.47

a/h=20
157.3 161.6 I 1,1 -2.66
267.0 287.6 I 1,2 -7.16
267.0 287.6 I 2,1 -7.16
344.4 387.5 I 2,2 -11.1
387.7 448.1 I 1,3 -13.5
387.7 448.1 I 3,1 -13.5
444.8 534.2 I 2,3 -16.7
444.8 534.2 I 3,2 -16.7
511.5 643.2 I 1,4 -20.5
511.5 643.2 I 4,1 -20.5

a/h=10
172.1 193.7 I 1,1 -11.1
277.8 361.1 I 1,2 -23.1
277.8 361.1 I 2,1 -23.1
353.2 513.2 I 2,2 -31.2
395.7 611.6 I 1,3 -35.3
395.7 611.6 I 3,1 -35.3
451.9 756.7 I 2,3 -40.3
451.9 756.7 I 3,2 -40.3
517.7 947.5 I 1,4 -45.4
517.7 947.5 I 4,1 -45.4
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Table 19: Twelfth benchmark, simply supported sandwich cylinder embedding isotropic skins and PVC core with thickness ratios
Rα/h=1000, Rα/h=100, Rα/h = 10 and Rα/h=5. First ten frequencies in Hz, comparison between the present 3D exact solution and the
2D FE solution via Nastran. The error is calculated as ∆(%) = FE−3D

3D × 100.

2D FE 3D Mode m,n ∆(%)
Rα/h=1000

3.642 3.644 I 18,1 -0.05
3.687 3.687 I 16,1 0.00
3.919 3.922 I 20,1 -0.08
4.171 4.170 I 14,1 0.02
4.420 4.425 I 22,1 -0.11
5.075 5.082 I 24,1 -0.14
5.233 5.230 I 12,1 0.06
5.846 5.855 I 26,1 -0.15
6.709 6.721 I 28,1 -0.18
7.122 7.119 I 10,1 0.04

Rα/h=100
10.68 10.69 I 10,1 -0.09
11.68 11.68 I 8,1 0.00
12.18 12.19 I 12,1 -0.08
14.94 14.98 I 14,1 -0.27
16.63 16.62 I 6,1 0.06
18.32 18.40 I 16,1 -0.43
20.96 21.03 I 14,2 -0.33
21.40 21.41 I 12,2 -0.05
22.04 22.17 I 18,1 -0.59
22.37 22.51 I 16,2 -0.62

Rα/h=10
18.30 19.79 I 8,1 -7.53
19.63 20.04 I 6,1 -2.05
20.47 23.70 I 10,1 -13.6
23.85 29.48 I 12,1 -19.1
27.60 36.36 I 14,1 -24,1
28.41 28.46 I 4,1 -0.18
30.71 37.10 I 12,2 -17.2
31.26 34.84 I 10,2 -10.3
31.48 44.15 I 16,1 -28.7
32.15 42.10 I 14,2 -23.6

Rα/h=5
18.65 24.68 I 8,1 -24.4
19.91 21.93 I 6,1 -9.21
20.81 32.50 I 10,1 -36.0
24.15 42.96 I 12,1 -41.4
27.87 55.27 I 14,1 -49.6
28.57 28.83 I 4,1 -0.90
30.96 52.38 I 12,2 -40.9
31.50 44.69 I 10,2 -29.5
31.72 69.01 I 16,1 -54.0
32.39 63.30 I 14,2 -48.8
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