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Robot Exploration and Navigation in Unseen
Environments Using Deep Reinforcement Learning

Romisaa Ali

Abstract—This paper presents a comparison between twin-delayed
Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic
(SAC) reinforcement learning algorithms in the context of training
robust navigation policies for Jackal robots. By leveraging an
open-source framework and custom motion control environments, the
study evaluates the performance, robustness, and transferability of
the trained policies across a range of scenarios. The primary focus
of the experiments is to assess the training process, the adaptability
of the algorithms, and the robot’s ability to navigate in previously
unseen environments. Moreover, the paper examines the influence
of varying environment complexities on the learning process and the
generalization capabilities of the resulting policies. The results of this
study aim to inform and guide the development of more efficient and
practical reinforcement learning-based navigation policies for Jackal
robots in real-world scenarios.

Keywords—Jackal robot environments, reinforcement learning,
TD3, SAC, robust navigation, transferability, Custom Environment.

I. INTRODUCTION

IN recent years, reinforcement learning (RL) has emerged

as a promising approach for developing intelligent and

adaptive control policies for robotics and autonomous systems

[1]. A crucial aspect of these systems is their ability to

navigate and interact with complex and dynamic environments.

Jackal robots, in particular, have been widely employed

for various applications in robotics due to their versatility,

robustness, and maneuverability [8]. Developing robust and

efficient navigation policies for autonomous robots, such as

Jackal robots, is a challenging task due to the complexity

and variability of real-world environments. The choice of

reinforcement learning algorithm used to train these policies

can significantly impact their performance, robustness, and

adaptability. In this context, two state-of-the-art algorithms,

Twin Delayed Deep Deterministic Policy Gradient (TD3) and

Soft Actor-Critic (SAC), have shown promising results for

various applications. However, their comparative performance

in the specific domain of Jackal robot navigation remains

underexplored. The objective of this study is to investigate

and compare the performance of TD3 and SAC in training

navigation policies for Jackal robots using an open-source

framework and custom motion control environments. The

scope of the research includes evaluating the robustness of the

trained policies, their transferability across different scenarios,

and the ability of the robots to navigate in previously unseen

environments.

This paper is organized as follows: Section I explores

how RL enhances Jackal robot controls, while contrasting
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Twin-Delayed Deep Deterministic Policy Gradient (TD3)

and Soft Actor-Critic (SAC) algorithms in robot navigation

tasks; Sections II and III detail the integration of the

ROS (Robot Operating System) framework with the OpenAI

Gym library, utilizing a DRL (deep reinforcement learning)

structure based on the PyTorch library. The TD3 and SAC

algorithms were employed due to their robustness and strong

exploration capabilities, which are essential for handling

complex and dynamic environments. Both algorithms are

widely implemented in ROS and OpenAI Gym, making them

well-suited for integration into our framework for real-time

motion control, the environments used for testing include

static, dynamic box, and dynamic wall motion control setups,

all simulated in real-time. Each environment was designed

with varying levels of difficulty to ensure that the robot

can adapt to and navigate through unseen situations. The

DRL algorithms act as decision-making agents, determining

and sending the appropriate control signals to the robot for

navigation, The robot’s performance was evaluated based

on three key metrics: success rate, collision rate, and the

average time required to complete one path. Section IV

details the experiment design, covering the implementation

of TD3 and SAC algorithms, training and evaluation metrics,

and training procedures and hyper-parameters. Section V

presents the experiment results, including the comparison of

training performance, transferability and robustness analysis,

and navigation performance in unseen environments. Section

VI discusses the key findings and insights, limitations, and

challenges, and implications for future research.

II. MOTION CONTROL ENVIRONMENT

In this study, we employed the Motion Control Continuous

Laser environment, designed for various control algorithms

in robotic navigation, including classical and motion control

approaches. This environment serves as a challenging and

realistic setting for testing and evaluating reinforcement

learning algorithms for continuous control tasks in robotics.

The environment focuses on integrating motion control, laser

scan data processing, and continuous action spaces to enable

a smooth and practical simulation experience [15].

A. Custom Motion Control Environment Design

The MotionControlContinuousLaser environment is

implemented for the Jackal robot in a Gazebo simulation

[7], [14]. It provides a continuous action space that consists

of linear and angular velocities, allowing the robot to

move smoothly within the simulation. In addition, the

environment processes the reduced 249-dimensional laser
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scan data and incorporates it into the observation space,

ensuring that the agent has access to essential sensory

information for decision-making. By integrating motion

control and laser scan data processing capabilities, the

MotionControlContinuousLaser environment presents a

complex scenario for testing and evaluating reinforcement

learning algorithms in a practical and real-world context,

paving the way for future advancements in robotic control

and navigation.

B. Jackal Robot Dynamics and Sensors

Sensors play a vital role in the training process of the Jackal

robot [8], and two primary sensors are used during the training

process.

1) Laser sensor: The laser sensor is integral to the training

process as it provides essential data for obstacle detection and

avoidance, as well as navigation in the environment. During

training, the robot collects laser scan data consisting of 249

beams, which is directly incorporated into the reinforcement

learning algorithm. These data enable the agent to learn how

to effectively navigate through the environment while avoiding

obstacles.

2) IMU sensor: While the IMU sensor data are not directly

fed into the reinforcement learning algorithm, it still plays

a crucial role in the training process. The IMU sensor

measures linear acceleration, angular velocity, and sometimes

orientation. These measurements are used by the robot’s

low-level control system, ensuring stability and proper motion

during navigation. The Gazebo simulator replicates the Jackal

robot’s dynamics by incorporating the IMU sensor data into

the simulation, providing a realistic environment for training

the agent.

III. TRAINING AND EVALUATION SCENARIOS

Our environment is based on the Motion Control Continuous

Environment and consists of three types of navigation

environments: static environments, dynamic box environments,

and dynamic wall environments. These environments were

used for both training and evaluation to assess the

environments. Our aim is to carry out a comprehensive

comparison between two distinct reinforcement learning

algorithms: the TD3 and the SAC. The primary objective of

this investigation is to delve into these algorithms’ abilities

to generalize and successfully operate within unseen static

environments.

A. Static Environments

These environments feature red cylindrical obstacles

representing obstacle-occupied spaces and blue cylindrical

barriers forming the borders, with an open side at the goal

place. The static environments challenge the agent to navigate

around fixed obstacles while learning the dynamics of the

robot. As shown in Fig. 1, the static environment provides

a controlled setup for evaluating the robot’s navigation

capabilities.

B. Dynamic Box Environments

These environments feature blue box-shaped obstacles

representing moving obstacles and blue barriers forming three

sides of the environment, leaving one side open. The dynamic

box environments challenge the agent to navigate around

these moving obstacles, which are randomly placed and move

within the environment. As shown in Fig. 2, the dynamic box

environment provides a complex setup for testing the robot’s

ability to adapt to dynamic changes and navigate efficiently.

C. Dynamic Wall Environments

These environments feature blue cylindrical barriers

forming three sides of the environment, leaving one side

open, and two long blue walls moving in opposite directions

with slight angles. The walls’ velocities are perpendicular

to the start-goal direction, creating a challenging navigation

scenario. The robot can only pass when the two walls are

moving apart. To challenge the agent, small variances are

added to each wall’s length, tilting angle, and magnitude of the

velocity. As depicted in Fig. 3, the dynamic wall environment

presents a unique challenge by introducing continuously

moving obstacles. Additional resources can be found at: [5],

[17], [18].

IV. EXPERIMENT DESIGN

In the original design of the Motion Control Continuous

Environment, the author employed three distinct types of

navigation environments: static, dynamic box, and dynamic

wall environments. These environments were developed to

offer varying levels of complexity, thereby facilitating the

reinforcement learning agent’s capacity to learn, adapt, and

navigate with efficiency. However, in the context of our

research, we have chosen to exclusively focus on the static

environments. Our aim is to carry out a comprehensive

comparison between two distinct reinforcement learning

algorithms: the TD3 and the SAC. The primary objective of

this investigation is to delve into these algorithms’ abilities

to generalize and successfully operate within unseen static

environments.

A. TD3 and SAC Robustness Overview

TD3, introduced by Fujimoto et al. at NeurIPS [16],

significantly advances actor-critic methodologies by

addressing overestimation bias and improving learning

speed in continuous control tasks. It features dual Critic

networks and delayed policy updates to enhance policy

quality and reduce overfitting risks. Moreover, TD3 utilizes

noise, specifically through the Ornstein-Uhlenbeck process,

to encourage action space exploration during training.

Empirical evaluations on OpenAI gym environments show

that it outperforms several state-of-the-art methods, including

DDPG. They propose a novel approach that combines the

Twin Delayed Deep Deterministic policy gradient algorithm

(TD3) with a model-based exploration strategy to enhance

both learning efficiency and performance, Xu and Liu

introduced a paper that includes experiments on various
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Fig. 1 Static Box Environment

Fig. 2 Dynamic Box Environment

benchmark environments from OpenAI Gym, demonstrating

the effectiveness of the proposed approach in addressing

the challenges of sample inefficiency and exploration in

continuous control tasks [3]. Numerous papers have explored

the utility of TD3 in various contexts; for instance, the work

by Wu and Wu [9], as well as another paper by Tan, and

others on the application of TD3 for dynamic path planning

[10]. These studies provide further evidence of TD3’s

versatility and effectiveness in solving complex real-world

problems. Similarly, Soft Actor-Critic (SAC), introduced by

Haarnoja et al. in 2018 [4], is a model-free deep reinforcement

learning method that utilizes a maximum entropy framework

to foster exploration while maximizing expected rewards.

SAC’s architecture includes two critic networks (Q1 and

Q2) and target networks, which enhance stability and reduce

overestimation. These features have allowed SAC to achieve

consistent performance across different random seeds and

surpass other methods on continuous control benchmark

tasks. In the paper ’Hierarchical Foresight: Self-Supervised

Learning of Long-Horizon Tasks via Visual Subgoal

Generation’ by Sermanet et al. [2], SAC is integrated with a

hierarchical architecture for learning complex, long-horizon

tasks through the generation of visual subgoals. Another

work, ’Addressing Sample Inefficiency and Exploration in

Model-Based Reinforcement Learning’ by Srivastava et al.

[6], focuses on enhancing sample efficiency and exploration

in the broader context of model-based reinforcement

learning. Together, these works demonstrate the versatility

and robustness of SAC in handling a variety of complex

challenges. Numerous researchers have investigated SAC’s

utility in diverse applications. Papers by Nakhleh and Raza

have contributed to the literature on SAC [11], as have works

by Martin and Chekroun [12]. Another noteworthy study by

Chavali and Gupta has also provided valuable insights into

the algorithm’s performance and applicability [13]. These

studies further underline the versatility and efficacy of SAC

in tackling complex real-world challenges.

B. Training and Evaluation Metrics

A comparative analysis of TD3 and SAC will be conducted

using a range of performance indicators. Metrics such as

Fig. 3 Dynamic wall Environment

success rate, collision rate, episode length and return, along

with the time-averaged number of steps, will be employed.

These parameters will provide an extensive assessment of

the performance and robustness of each algorithm within

reinforcement learning environments.

C. Training Procedure and Hyperparameter

This section highlights the application of both the

Soft Actor-Critic (SAC) and Twin Delayed DDPG (TD3)

algorithms. Both algorithms employ critical hyperparameters

like actor and critic learning rates, specific exploration

parameters in policy arguments, and distinct reward structures.

A unique feature of these implementations is their

parallelization strategy, utilizing isolated environments within

Singularity containers [19]. Here, up to 10 actors run

simultaneously, promoting efficient and extensive exploration.

Furthermore, the training, implemented in a ROS operating

system, involves the collection of trajectories and subsequent

deep neural network calculations at regular intervals,

effectively optimizing the policy and enhancing learning

robustness.

V. EXPERIMENT RESULTS

A. Training Performance Comparison

During the training phase, the TD3 demonstrated a higher

average success rate throughout the entire training period

compared to the SAC. However, it was the SAC that recorded

the peak success rate of 77%, while TD3 reached a peak of

6%. At the conclusion of the training period, the average

success rate of SAC exceeded that of TD3, registering at

69% against TD3’s 67% in the final logged data but the

TD3 is more stable in the average value. Both algorithms

exhibited remarkable stability throughout the training, with

minor oscillations around a central value, indicating reliable

and robust performance. Although the convergence rate

was relatively slow for both algorithms, the steadiness of

their performance was notable. Interestingly, SAC seemed

to initiate the training with a higher success rate, but over

time, TD3 gradually surpassed it, as shown in Fig. 4. This

underscores the distinct characteristics and capabilities of these

two reinforcement learning algorithms in terms of training

performance. During the training process, both TD3 and

SAC algorithms initially demonstrated a high number of

steps required to complete a single path. Particularly, SAC

peaked at approximately 257 steps at the 170,000th training

step. However, as the training continued, TD3 consistently

needed fewer steps to complete a path, thereby exhibiting

superior efficiency compared to SAC. The duration required
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Fig. 4 Success rate

Fig. 5 Robot average path length

Fig. 6 The average return

Fig. 7 The collision rate
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for each episode mirrored the episode length, showcasing the

strong correlation between the number of steps and time.

Hence, an increase in steps directly resulted in longer episode

durations, as illustrated in Fig. 5. Therefore, TD3’s proficiency

in minimizing episode length also translated into a reduction in

episode duration, effectively demonstrating its time efficiency.

When comparing the average return throughout the training

process, TD3 demonstrated a swift rise in average return

from the beginning of training, consistently achieving higher

values throughout. On the other hand, SAC’s average return

did not show significant growth until after 200Ktraining steps,

remaining relatively stable during the initial stages. As shown

in Fig. 6, TD3 surpasses SAC in terms of higher average

return across the training period. In terms of collision rates, an

interesting dynamic was observed between the SAC and TD3

algorithms throughout the training period. SAC exhibited a

significant reduction in collisions, reaching an improvement

of approximately 40% prior to the 400,000th step. However,

this lower collision rate was not consistently maintained

beyond that point. Over the entirety of the training process,

it was TD3 that demonstrated a lower average collision rate,

surpassing SAC’s performance. These findings are illustrated

in Fig. 7. Table I presents an overview of the metrics,

specifically reflecting the averages from the last training logs.

This summary table encapsulates essential parameters like

success rate, episode length, and collision rate, providing

an easy-to-reference comparison between the TD3 and SAC

algorithms. By offering a snapshot of the complete training

performance.

B. Transferability and Robustness Analysis

This involves using a different world scenario from the

repository, which was not included in the training stage see

the robot navigation in Figs. 8 and 9. In this unfamiliar

environment, 1,000 robot paths are created for evaluation. Key

performance indicators, including collision rates, successful

path completions, and average time taken for path completion

are assessed for each algorithm. This analysis aids in

understanding the capability of the algorithms to adjust and

perform in new environments.

C. Unseen Environment Navigation Performance

The TD3 algorithm successfully completed 52% of the

paths in the new environment, with an average time of 141.58

seconds for each path completion. However, it encountered a

collision rate of 48%. On the other hand, the SAC algorithm

had a slightly lower success rate, completing 46% of the

paths. Despite its lower success rate, it was found to take a

significantly longer time for each path completion, averaging

at 243.63 seconds. The SAC algorithm also experienced a

higher collision rate of 54%. From these findings, the TD3

algorithm demonstrated a higher ability to generalize and

perform in the unfamiliar environment, with a higher success

rate and lower average time compared to the SAC algorithm,

see Table II, Figs. 8 and 9.

TABLE I
SUMMARY OF TRAINING PERFORMANCE METRICS FOR TD3 AND SAC

ALGORITHMS

Metric TD3 SAC
Collision Rate 21% 26%
Steps per path 28.4 72.3
Average return 20.7 21.4
Success Rate 67% 69%
Time per path 5.7 172.0

TABLE II
PERFORMANCE SUMMARY OF TD3 AND SAC IN UNSEEN STATIC

ENVIRONMENTS

Algorithm Success Rate Collision Rate Average Time (sec)
TD3 52% 48% 141.58
SAC 46% 54% 243.63

VI. CONCLUSION AND RECOMMENDATION

To sum up, the TD3 algorithm consistently outperformed

SAC, making it a more effective choice for tasks that

require adaptability, efficiency, and resilience when faced with

changes in the environment. While SAC achieved the highest

success rate at certain points during the training process, TD3

demonstrated more stability in maintaining a high success rate

throughout the entire training. This consistency highlights the

robustness of TD3, both in its efficient path completion during

training and its superior ability to generalize in new, unseen

environments. Importantly, TD3 not only had a higher success

rate in the transferability tests but also completed paths in less

time on average, demonstrating its strong capability to adapt

to and efficiently navigate unseen environments. This time

efficiency advantage was a consistent feature of TD3, apparent

in both the training and testing stages, suggesting its potential

superiority in situations that require fast responses and efficient

path planning. Although both algorithms have their unique

strengths, these findings suggest a potential preference for

TD3 in tasks requiring consistent high performance, quick

execution, and adaptability to new environments. In future

studies, it would be beneficial to enhance and fine-tune these

reinforcement learning algorithms under a more diverse set of

scenarios. This would facilitate a deeper understanding of their

effective applications and aid in selecting the most suitable

algorithm for different tasks.
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Fig. 8 Start point of the Jackal robot’s path in the Gazebo simulation in an unseen environment

Fig. 9 End point of the Jackal robot’s path in the Gazebo simulation in an unseen environment
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