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A Comparative Study of TD3 and SAC Algorithms
for Robot Exploration and Navigation in Unseen

Environments*
Romisaa Ali

Abstract—This paper presents a comparison between twin-
delayed Deep Deterministic Policy Gradient (TD3) and Soft
Actor-Critic (SAC) reinforcement learning algorithms in the
context of training robust navigation policies for Jackal robots. By
leveraging an open-source framework and custom motion control
environments, the study evaluates the performance, robustness,
and transferability of the trained policies across a range of
scenarios. The primary focus of the experiments is to assess
the training process, the adaptability of the algorithms, and the
robot’s ability to navigate in previously unseen environments.
Moreover, the paper examines the influence of varying environ-
ment complexities on the learning process and the generalization
capabilities of the resulting policies. The results of this study
aim to inform and guide the development of more efficient and
practical reinforcement learning-based navigation policies for
Jackal robots in real-world scenarios.

Index Terms—Jackal Robot Environments, Reinforcement
Learning, TD3, SAC, Robust Navigation, Transferability, Custom
Environment

I. INTRODUCTION

In recent years, reinforcement learning (RL) has emerged
as a promising approach for developing intelligent and adap-
tive control policies for robotics and autonomous systems
[1]. A crucial aspect of these systems is their ability to
navigate and interact with complex and dynamic environ-
ments. Jackal robots, in particular, have been widely employed
for various applications in robotics due to their versatility,
robustness, and maneuverability [8]. Developing robust and
efficient navigation policies for autonomous robots, such as
Jackal robots, is a challenging task due to the complexity
and variability of real-world environments. The choice of
reinforcement learning algorithm used to train these policies
can significantly impact their performance, robustness, and
adaptability. In this context, two state-of-the-art algorithms,
Twin Delayed Deep Deterministic Policy Gradient (TD3) and
Soft Actor-Critic (SAC), have shown promising results for
various applications. However, their comparative performance
in the specific domain of Jackal robot navigation remains
underexplored. The objective of this study is to investigate
and compare the performance of TD3 and SAC in training
navigation policies for Jackal robots using an open-source
framework and custom motion control environments. The
scope of the research includes evaluating the robustness of the
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trained policies, their transferability across different scenarios,
and the ability of the robots to navigate in previously unseen
environments. This paper is organized as follows: Section 1
explores how reinforcement learning (RL) enhances Jackal
robot controls, while contrasting TD3 and SAC algorithms
in robot navigation tasks; Section 2 and 3 describes the
methodology, encompassing the open-source framework and
custom motion control environments, and introduces the static,
dynamic box, and dynamic wall environments, which are used
to evaluate the performance and adaptability of the TD3 and
SAC reinforcement learning algorithms aiming to test the
algorithms’ adaptability in unfamiliar static settings; Section
4 details the experiment design, covering the implementation
of TD3 and SAC algorithms, training and evaluation met-
rics, and training procedures and hyper-parameters; Section
5 presents the experiment results, including the comparison of
training performance, transferability and robustness analysis,
and navigation performance in unseen environments; Section
6 discusses the key findings and insights, limitations, and
challenges, and implications for future research.

II. MOTION CONTROL ENVIRONMENT

In this study, we employ the Motion Control Continuous
Laser environment, designed for various control algorithms
in robotic navigation, including classical and motion control
approaches. This environment serves as a challenging and
realistic setting for testing and evaluating reinforcement learn-
ing algorithms for continuous control tasks in robotics. The
environment focuses on integrating motion control, laser scan
data processing, and continuous action spaces to enable a
smooth and practical simulation experience [15].

A. Custom Motion Control Environment Design

The MotionControlContinuousLaser environment is imple-
mented for the Jackal robot in a Gazebo simulation [7] [14].
It provides a continuous action space that consists of linear
and angular velocities, allowing the robot to move smoothly
within the simulation. In addition, the environment processes
the reduced 249-dimensional laser scan data and incorporates
it into the observation space, ensuring that the agent has
access to essential sensory information for decision-making.
By integrating motion control and laser scan data processing
capabilities, the MotionControlContinuousLaser environment
presents a complex scenario for testing and evaluating rein-
forcement learning algorithms in a practical and real-world



context, paving the way for future advancements in robotic
control and navigation.

B. Jackal Robot Dynamics and Sensors

Sensors play a vital role in the training process of the Jackal
robot [8], and two primary sensors are used during the training
process.

1) Laser sensor: The laser sensor is integral to the training
process as it provides essential data for obstacle detection and
avoidance, as well as navigation in the environment. During
training, the robot collects laser scan data consisting of 249
beams, which is directly incorporated into the reinforcement
learning algorithm. This data enables the agent to learn how
to effectively navigate through the environment while avoiding
obstacles.

2) IMU sensor: While the IMU sensor data is not di-
rectly fed into the reinforcement learning algorithm, it still
plays a crucial role in the training process. The IMU sensor
measures linear acceleration, angular velocity, and sometimes
orientation. These measurements are used by the robot’s low-
level control system, ensuring stability and proper motion
during navigation. The Gazebo simulator replicates the Jackal
robot’s dynamics by incorporating the IMU sensor data into
the simulation, providing a realistic environment for training
the agent.

III. TRAINING AND EVALUATION SCENARIOS

Our environment is based on the Motion Control Continuous
Environment and consists of three types of navigation environ-
ments: static environments, dynamic box environments, and
dynamic wall environments. These environments were used
for both training and evaluation to assess the environments.
Our aim is to carry out a comprehensive comparison between
two distinct reinforcement learning algorithms: the TD3 and
the SAC. The primary objective of this investigation is to delve
into these algorithms’ abilities to generalize and successfully
operate within unseen static environments

A. Static Environments:

These environments feature black and white grid cells
representing obstacle-occupied and free spaces, respectively.
The grid cells are generated using a cellular automation
method, which results in environments that resemble real-
world obstacles. The static environments challenge the agent
to navigate around fixed obstacles while learning the dynamics
of the robot.

B. Dynamic Box Environments:

These larger obstacle fields provide the agent with more
time to respond to moving obstacles. The obstacles are ran-
domly generated, and their motion repeats once they move out
of the obstacle field. Each dynamic box environment contains
10 to 15 randomly generated obstacles, which the agent must
learn to navigate around efficiently.

C. Dynamic Wall Environments

These environments feature two long parallel walls moving
in opposite directions with velocities perpendicular to the start-
goal direction. The robot can only pass when the two walls
are moving apart. This manually designed navigation scenario
requires the agent to maintain a memory of past observations
and actions, as well as estimate the motion of the obstacles. To
challenge the agent, small variances are added to each wall’s
length, tilting angle, and magnitude of the velocity. Additional
resources can be found at: [5], [17], [18].

IV. EXPERIMENT DESIGN

In the original design of the Motion Control Continuous
Environment, the author employed three distinct types of nav-
igation environments: static, dynamic box, and dynamic wall
environments. These environments were developed to offer
varying levels of complexity, thereby facilitating the reinforce-
ment learning agent’s capacity to learn, adapt, and navigate
with efficiency. However, in the context of our research, we
have chosen to exclusively focus on the static environments.
Our aim is to carry out a comprehensive comparison between
two distinct reinforcement learning algorithms: the TD3 and
the SAC. The primary objective of this investigation is to delve
into these algorithms’ abilities to generalize and successfully
operate within unseen static environments.

A. TD3 and SAC Robustness Overview

TD3, introduced by Fujimoto et al. at NeurIPS [16], sig-
nificantly advances actor-critic methodologies by addressing
overestimation bias and improving learning speed in con-
tinuous control tasks. It features dual Critic networks and
delayed policy updates to enhance policy quality and reduce
overfitting risks. Moreover, TD3 utilizes noise, specifically
through the Ornstein-Uhlenbeck process, to encourage action
space exploration during training. Empirical evaluations on
OpenAI gym environments show that it outperforms several
state-of-the-art methods, including DDPG. They propose a
novel approach that combines the Twin Delayed Deep Deter-
ministic policy gradient algorithm (TD3) with a model-based
exploration strategy to enhance both learning efficiency and
performance, Zifan Xu and Bo Liu introduced paper includes
experiments on various benchmark environments from Ope-
nAI Gym, demonstrating the effectiveness of the proposed
approach in addressing the challenges of sample inefficiency
and exploration in continuous control tasks [3]. Numerous
papers have explored the utility of TD3 in various contexts.
For instance, the work by Jiaolv Wu and Q. M. Jonathan Wu
[9], as well as another paper by Yijian Tan, and others on
the application of TD3 for dynamic path planning [10]. These
studies provide further evidence of TD3’s versatility and effec-
tiveness in solving complex real-world problems. Introduced
by Haarnoja, Zhou, Abbeel, and Levine in 2018 [4] , Similarly,
Soft Actor-Critic (SAC), introduced by Haarnoja et al. in 2018.
Soft Actor-Critic (SAC) is a model-free deep reinforcement
learning method that utilizes a maximum entropy framework to
foster exploration while maximizing expected rewards. SAC’s



Fig. 1. Static Box Environment

Fig. 2. Dynamic Box Environment

Fig. 3. Dynamic wall Environment

architecture includes two critic networks (Q1 and Q2) and
target networks, which enhance stability and reduce overesti-
mation. These features have allowed SAC to achieve consistent
performance across different random seeds and surpass other
methods on continuous control benchmark tasks. In the paper
’Hierarchical Foresight: Self-Supervised Learning of Long-
Horizon Tasks via Visual Subgoal Generation’ by Sermanet
et al. [2] , SAC is integrated with a hierarchical architecture
for learning complex, long-horizon tasks through the gener-
ation of visual subgoals. Another work, ’Addressing Sample
Inefficiency and Exploration in Model-Based Reinforcement
Learning’ by Srivastava et al. [6], focuses on enhancing
sample efficiency and exploration in the broader context of
model-based reinforcement learning. Together, these works
demonstrate the versatility and robustness of SAC in handling
a variety of complex challenges. Numerous researchers have
investigated SAC’s utility in diverse applications. Papers by
Khaled Nakhleh and Minahil Raza have contributed to the
literature on SAC [11], as have works by Jesus Bujalance
Martin and Raphaël Chekroun [12]. Another noteworthy study
by Lalitha Chavali and Tanay Gupta has also provided valuable
insights into the algorithm’s performance and applicability
[13] . These studies further underline the versatility and
efficacy of SAC in tackling complex real-world challenges.

B. Training and Evaluation Metrics

A comparative analysis of TD3 and SAC will be conducted
using a range of performance indicators. Metrics such as

success rate, collision rate, episode length and return, along
with the time-averaged number of steps, will be employed.
These parameters will provide an extensive assessment of
the performance and robustness of each algorithm within
reinforcement learning environments.

C. Training Procedure and Hyperparameter

The ’Training Procedure and Hyperparameters’ section
highlights the application of both the Soft Actor-Critic (SAC)
and Twin Delayed DDPG (TD3) algorithms. Both algorithms
employ critical hyperparameters like actor and critic learning
rates, specific exploration parameters in policy arguments, and
distinct reward structures. A unique feature of these imple-
mentations is their parallelization strategy, utilizing isolated
environments within Singularity containers. Here, up to 10
actors run simultaneously, promoting efficient and extensive
exploration. Furthermore, the training, implemented in a ROS
operating system, involves the collection of trajectories and
subsequent deep neural network calculations at regular inter-
vals, effectively optimizing the policy and enhancing learning
robustness.

V. EXPERIMENT RESULTS

A. Training Performance Comparison

During the training phase, the TD3 demonstrated a higher
average success rate throughout the entire training period
compared to the SAC. However, it was the SAC that recorded
the peak success rate of 77%, while TD3 reached a peak of 6%.
At the conclusion of the training period, the average success
rate of SAC exceeded that of TD3, registering at 69% against
TD3’s 67% in the final logged data but the TD3 is more stable
in the average value. Both algorithms exhibited remarkable sta-
bility throughout the training, with minor oscillations around
a central value, indicating reliable and robust performance.
Although the convergence rate was relatively slow for both
algorithms, the steadiness of their performance was notable.
Interestingly, SAC seemed to initiate the training with a higher
success rate, but over time, TD3 gradually surpassed it, as
shown in Figure 4. This underscores the distinct characteristics
and capabilities of these two reinforcements learning algo-
rithms in terms of training performance. During the training
process, both TD3 and SAC algorithms initially demonstrated
a high number of steps required to complete a single path.
Particularly, SAC peaked at approximately 257 steps at the
170,000th training step. However, as the training continued,
TD3 consistently needed fewer steps to complete a path,
thereby exhibiting superior efficiency compared to SAC. The
duration required for each episode mirrored the episode length,
showcasing the strong correlation between the number of steps
and time. Hence, an increase in steps directly resulted in longer
episode durations, as illustrated in Figure 5. Therefore, TD3’s
proficiency in minimizing episode length also translated into
a reduction in episode duration, effectively demonstrating its
time efficiency. When comparing the average return through-
out the training process, TD3 demonstrated a swift rise in
average return from the beginning of training, consistently



Fig. 4. Success rate

Fig. 5. Robot average path length

Fig. 6. The average return

achieving higher values throughout. On the other hand, SAC’s
average return did not show significant growth until after
200Ktraining steps, remaining relatively stable during the
initial stages. As shown in Figure 6, TD3 surpasses SAC in
terms of higher average return across the training period. In
terms of collision rates, an interesting dynamic was observed

between the SAC and TD3 algorithms throughout the training
period. SAC exhibited a significant reduction in collisions,
reaching an improvement of approximately 40% prior to the
400,000th step. However, this lower collision rate was not
consistently maintained beyond that point. Over the entirety
of the training process, it was TD3 that demonstrated a lower



Fig. 7. The collision rate

average collision rate, surpassing SAC’s performance. These
findings, illustrated in Figure 7. Table 1 presents an overview
of the metrics, specifically reflecting the averages from the
last training logs. This summary table encapsulates essential
parameters like success rate, episode length, and collision rate,
providing an easy-to-reference comparison between the TD3
and SAC algorithms. By offering a snapshot of the complete
training performance.

B. Transferability and Robustness Analysis
This involves using a different world scenario from the

repository, which was not included in the training stage see
the robot navigation in figure 8 and figure 9. In this unfamiliar
environment, 1,000 robot paths are created for evaluation. Key
performance indicators, including collision rates, successful
path completions, and average time taken for path completion
are assessed for each algorithm. This analysis aids in under-
standing the capability of the algorithms to adjust and perform
in new environments.

C. Unseen Environment Navigation Performance
The TD3 algorithm successfully completed 52% of the

paths in the new environment, with an average time of 141.58
seconds for each path completion. However, it encountered a
collision rate of 48%. On the other hand, the SAC algorithm
had a slightly lower success rate, completing 46% of the
paths. Despite its lower success rate, it was found to take a
significantly longer time for each path completion, averaging
at 243.63 seconds. The SAC algorithm also experienced a
higher collision rate of 54%. From these findings, the TD3
algorithm demonstrated a higher ability to generalize and
perform in the unfamiliar environment, with a higher success
rate and lower average time compared to the SAC algorithm,
see table .2 and the figure 8, and Figure 9.

VI. CONCLUSION AND RECOMMENDATION

To sum up, the TD3 algorithm consistently outperformed
SAC in several important measures, making it a more ef-
fective choice for tasks that require adaptability, efficiency,

TABLE I
SUMMARY OF TRAINING PERFORMANCE METRICS FOR TD3 AND SAC

ALGORITHMS

Metric TD3 SAC
Collision Rate 21% 26%
Steps per path 28.4 72.3
Average return 20.7 21.4
Success Rate 67% 69%
Time per path 5.7 172.0

TABLE II
PERFORMANCE SUMMARY OF TD3 AND SAC IN UNSEEN

STATIC ENVIRONMENTS

Algorithm Success Rate Collision Rate Average Time (sec)
TD3 52% 48% 141.58
SAC 46% 54% 243.63

and resilience when faced with changes in the environment.
While SAC achieved the highest success rate at certain points
during the training process, TD3 demonstrated more stability
in maintaining a high success rate throughout the entire
training. This consistency highlights the robustness of TD3,
both in its efficient path completion during training and its
superior ability to generalize in new, unseen environments.
Importantly, TD3 not only had a higher success rate in the
transferability tests but also completed paths in less time on
average, demonstrating its strong capability to adapt to and
efficiently navigate unseen environments. This time efficiency
advantage was a consistent feature of TD3, apparent in both
the training and testing stages, suggesting its potential supe-
riority in situations that require fast responses and efficient
path planning. Although both algorithms have their unique
strengths, these findings suggest a potential preference for
TD3 in tasks requiring consistent high performance, quick
execution, and adaptability to new environments. In future
studies, it would be beneficial to enhance and fine-tune these
reinforcement learning algorithms under a more diverse set of



scenarios. This would facilitate a deeper understanding of their
effective applications and aid in selecting the most suitable
algorithm for different tasks.
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Fig. 8. Start point of the Jackal robot’s path in the Gazebo simulation in an unseen environment.

Fig. 9. End point of the Jackal robot’s path in the Gazebo simulation in an unseen environment.
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