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Abstract

In the context of a growing demand for sustainable transportation worldwide, Electri-
fied Vehicles (xEVs) represent a valuable solution to improve efficiency and reduce
pollutant emissions of the current vehicle fleet. In parallel with the electrification
trend, the synergistic benefits provided by the growing vehicle connectivity level
and the exploitation of Artificial Intelligence (AI) techniques may transform the
transportation sector in several dimensions with important societal and economic
impacts: reduced energy consumption, enhanced traffic flow, and improved road
safety are among them. In this framework, it is essential to develop multidisci-
plinary techniques and algorithms that can assess the increased opportunities for
energy-efficient driving with the deployment of connected and electrified vehicles.
Therefore, this dissertation constitutes, by means of numerical simulation, a feasi-
bility study on some innovative methodologies to support the design of these types
of vehicles, by presenting two relevant case studies and the assessment of some
innovative methodologies on them. The first case study is a plug-in Hybrid Electric
Vehicle (pHEV): an extensive experimental campaign provided the data used to
reverse engineer its control strategy and build its digital twin without having direct
access to its EMS. The virtual test rig was then used to assess the theoretical benefits
that the introduction of Vehicle-to-Everything (V2X) communication can have in
terms of energy and time savings in a real-world route. The vehicle’s digital twin was
later used to assess the potentialities of an advanced energy management strategy that
can exploit V2X information. The second case study is a state-of-the-art mid-size
electric SUV: Battery Management System (BMS) data from daily driving were
analyzed in order to generate on-the-fly Performance Indicators (PI), that can be
easily extracted from real-world driving and charging events and linked to battery
health. The results proved that the proposed approaches may be key enablers in
supporting the development of connected and electrified vehicles.
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ṁ Instantaneous Mass Flow
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Chapter 1

Introduction

In the last decades, the risks connected to climate change and the depletion of natural
resources have become strikingly evident and, as a consequence, public awareness
concerning environmental issues has dramatically raised. Worldwide, policymakers
have been brainstorming to define global frameworks and agreements to curb the
current trend of increasing Greenhouse Gas (GHG) emissions and mitigate the detri-
mental effect of global warming. Focusing on Europe, the European Commission
has pledged its commitment to this cause by adopting the European Green Deal:
a proposal aimed at transforming the EU into a modern, resource-efficient, and
competitive economy, ensuring, among the targets, zero net emissions of GHGs by
2050 [6]. In this framework, on July 14, 2021, the EC put forward the “Fit for 55"
regulatory proposals intended to secure an EU economy-wide GHG reduction of
at least 55% by 2030, compared to 1990 levels. Since transport is one of the most
energy-intensive sectors (it accounts for 35% of the worldwide energy consumption
[7]), one of the regulatory proposals lowers the current 2030 CO2 targets, from
-37.5% to -55% for new passenger cars and from -31% to -50% for new vans, both
relative to 1990 levels. In addition, the proposal introduces an even more challenging
target for new cars and vans starting from 2035: a 100% reduction of CO2 emissions.

In the light-duty vehicle sector, electrified mobility solutions featuring Li-ion
batteries represent the best option for automakers to achieve compliance with the
current legislation targets. The joint effects of an increased offer along with the
incentives and benefits provided for buying or owning an Electrified Vehicle (xEV)
[8] have led to an unprecedented growth of xEV sales in the European market. The
number of new xEVs registrations has seen a steady increase from 2010 to 2020
(from 600 to about 1.061.000 units - 11% of new registrations) but has surged in 2021
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when it reached 18% of newly registered passenger cars [9], and kept rising in 2022
[10]. Similar trends can also be observed in the other two big world players, i.e., the
United States and China, where new xEV registrations have more than doubled and
nearly tripled in 2021, respectively [10].

Among the xEVs, the popularity of Battery Electric Vehicles (BEVs) is constantly
on the rise, but substantial improvements are still needed in terms of performance,
cost, and longevity for ensuring parity with conventional vehicles. The limited range
of BEVs, as well as the long recharging times, and the inadequate infrastructure, still
make Hybrid Electric Vehicles (HEVs) and plug-in Hybrid Electric Vehicles (pHEVs)
the preferred solution in a mid-term scenario [11], since they can combine the desired
features of an electric and a conventional powertrain. However, HEV fuel economy is
highly dependent on the cooperation between the Internal Combustion Engine (ICE)
and the Electric Machines (EMs) installed on board and the inappropriate energy
management of the hybrid powertrain could jeopardize the benefits of powertrain
electrification. The Energy Management System (EMS) is in charge of judicious
control of the power actuators optimizing their power split [12], and computer-aided
software tools, allowing the virtual simulation of the powertrain behavior, are widely
adopted for energy optimization. A remarkable amount of research into EMS has
been conducted over the last decades [13] and the current trend is towards the quest
for finding real-time implementable and optimal strategies [3].

One critical need of all xEVs featuring Li-ion batteries is the accurate estimation
of the State of Health (SoH) to forecast the battery lifetime and degradation under
various operating conditions. This particularly rings true for BEVs, where the battery
SoH strongly affects the available driving range but plays a pivotal role also in
the energy management of HEVs and pHEVs since battery aging affects energy
efficiency [14]. Thus, if available, battery SoH indicators could also be included
in the cost function of the EMS in order to penalize actions that could undermine
battery health. However, monitoring battery health in the field through the signals
tracked by the Battery Management System (BMS) such as current, voltage, and
temperature is a multifaceted challenge and remains an open research conundrum.
Not to mention that the looming cobalt supply chain issues [15], the dependence on
critical earth materials [16], and the immaturity of the recycling infrastructure [17]
call for more emphasis on the judicious monitoring and usage of Li-ion batteries.

In parallel to the electrification trend, in recent years, research on vehicular
networks and communications has received a great deal of attention globally, and
several car companies and government institutions are making huge investments
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in this area. In the frame of the Intelligent Transportation System (ITS) [18], the
adoption of Connected and Automated Vehicles (CAVs) could lead to a major
technological revolution in the mobility sector that can effectively enhance safety
[19], traffic efficiency [20], and energy savings [21]. HEVs and pHEVs can benefit
the most from embedding them in an ITS since the powertrain control system can
gain access to relevant information on the future route and traffic conditions [22, 14].
Vehicle-to-Everything (V2X) communication along with cloud computing adoption
[23] may enable a change of paradigm of the energy management problem: from an
instantaneous optimization to globally minimizing it over the entire driver route by
jointly optimizing the speed trajectory and powertrain torque split [24].

Finally, in the midst of the so-called "Intelligence Revolution" [25], which is
deeply remodeling the fabric of our society, Artificial intelligence (AI) could not
leave untouched research in xEVs. The sharp increase in CPU processing capacity,
in addition to the possibility of scaling up computations on cloud platforms, has
led to increasing interest in the exploitation of Machine Learning (ML) techniques
for the development of energy control strategies for HEVs [3]. Thanks to their
ability to recognize high dimensional patterns in data, ML-based models have also
shown success in predicting battery lifetime under various operating conditions [26],
thus there has been plenty of research in devising models blending physical and
data-inspired algorithms [27].

In this framework, it is essential to develop multidisciplinary techniques and
algorithms that can assess the increased opportunities for energy-efficient driving
with the deployment of connected and electrified vehicles. This dissertation consti-
tutes a feasibility study on some innovative methodologies to support the design of
these types of vehicles. Considering the complexity and vastness of this topic, this
dissertation does not have the presumption to provide a comprehensive methodol-
ogy taking into account all the possible facets but will try to provide an exhaustive
overview of the state-of-the-art methodologies available in the literature along with
the description of the technical details. Then, this work will show two relevant case
studies and the assessment of some innovative methodologies on them.

The remainder of the dissertation is structured as follows:

• Chapter 2 provides a comprehensive overview of the theoretical background,
by describing xEVs and how they can be classified, the operating principles and
the aging of Li-ion batteries, the most common machine learning algorithms,
and the main pillars of an ITS;
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• Chapter 3 introduces the role and main features of energy management in
HEVs. It formalizes the problem using optimal control theory and describes the
most adopted model-based optimization techniques for the energy management
of HEVs. Finally, the current trend is described providing some hints about
future trends;

• Chapter 4 examines the numerical modeling of an xEV. The approaches for
modeling a vehicle at a system level are described, followed by the typical
approaches adopted for modeling the single components, i.e., ICE, EM, and
Li-ion battery, giving particular emphasis to the latter;

• Chapter 5 presents the first case study on which some innovative methodologies
for the energy management of HEVs are tested. The data gathered from an
extensive experimental campaign performed on a commercially available
pHEV are used to reverse engineer its control strategy and build a virtual
test rig without having direct access to its EMS. The virtual test rig is then
used to assess the theoretical benefits that the introduction of V2V and V2I
communication can have in terms of energy and time savings in a real-world
route. The vehicle digital twin is employed to assess the potentialities of
an innovative Adaptive Equivalent Consumption Minimization Strategy (A-
ECMS) algorithm: a Long Short-Term Memory (LSTM) deep learning model
finds the optimal equivalence factor depending on information about the future
vehicle driving patterns;

• Chapter 6 presents the second case study: BMS data from daily driving of an e-
SUV are analyzed in order to generate on-the-fly Performance Indicators (PI),
that can be linked to battery health and can be easily extracted from real-world
driving and charging events. These indicators rely on simple mathematical
operations, which are computationally inexpensive and easily implementable
on a BMS, and can be used as features for ML models to complement current
BMS strategies;

• Finally, Chapter 7 summarizes the conclusions, future work, and the intellec-
tual merits of this dissertation.



Chapter 2

Theoretical Background

2.1 Electrified Vehicles

2.1.1 Introduction

Electrified Vehicles (xEVs) refer to a range of technologies that use electricity to
propel a vehicle, replacing the components, that usually operate on a conventional
energy source, with components that operate on electricity. In general, vehicle
electrification refers to the powertrain and its auxiliary systems such as on-board and
off-board charging systems, as well as wireless power transfer. Many other vehicle
functionalities may be affected by electrification, such as power-assisted steering,
stability program, traction control, light system, suspension, and more. In a Battery
Electric Vehicle (BEV) the ICE is replaced by one or more Electric Machines (EMs)
powered by a lithium-ion battery. Due to limited range, long recharging times, and
inadequate infrastructure, it is challenging to completely replace a conventional
powertrain with an electric one while still meeting all consumer demands [11]. Not
to mention that, on the basis of the current electricity supply infrastructure and
operation, widespread adoption of BEVs will not lead to a substantial positive impact
on GHG emissions [28].

Hybrid Electric Vehicles (HEVs), combining the desired features of electric
and conventional powertrains, may be the preferred solution, at least in a mid-term
scenario. Thanks to the high energy density of fossil fuels, the ICE can guarantee
long-range capability, while the introduced ancillary energy reservoir can help share
the load with the ICE, shifting the engine working points towards more efficient or
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less polluting areas. Moreover, in HEVs, the ICE can be shut down when not needed,
and, with reference to a conventional vehicle, a smaller and less powerful engine
can be coupled to the EMs to improve the fuel economy (“downsizing”) without
compromising on performance. The vehicle kinetic energy dissipated during braking
can be partly recovered: the EMs can work as generators, recovering the kinetic
energy and converting it into electricity to be stored in the battery (“regenerative
braking”).

2.1.2 Classification

Between a conventional vehicle, where no electrification is present (apart from the
low-voltage battery) and only the ICE can deliver the power requested by the driver,
and the BEV different levels exist. A classification of xEVs based on the sizes of the
actuators is proposed in Figure 2.1. The bigger the EMs and battery sizes, the higher
the level of electrification. In a conventional vehicle, no electrification is present
(apart from the low-voltage battery): only the ICE can deliver the power requested by
the driver. Micro Hybrids feature a small EM that can shut down and restart the ICE
(reducing fuel consumption and emissions at idle). Mild hybrids and full hybrids
feature bigger EM and battery allowing further advantages, such as regenerative
braking and engine assist. In plug-in Hybrid Electric Vehicles (pHEVs), differently
from HEVs, the battery can also be recharged by an external electric power source:
they feature a bigger battery size that is usually designed for allowing the vehicle to
travel long distances with little or no help from the ICE. Finally, electric vehicles
can only rely on the EMs to deliver the power requested by the driver. The EM can
be powered by a fuel cell or a battery.

HEVs can also be classified according to their powertrain architecture. The
following three main categories can be identified:

• Series Hybrid:
Only the EMs are physically connected to the wheels, and the traction motor
is powered by a battery pack and/or a generator run by the ICE;

• Parallel Hybrid:
Both the ICE and the traction motor can supply their mechanical power to the
driven wheels, and the connection between ICE and EM is obtained by means
of a gear set, a chain, a belt, or a clutch;
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Fig. 2.1 Spectrum of vehicle electrification levels.

• Complex Hybrid:
This architecture is characterized by the coexistence of a parallel path with a
series one.

2.2 Electrochemical Batteries

2.2.1 Introduction

As already explained in Section 2.1, xEVs feature an electrochemical battery, i.e.,
an energy storage device that converts the chemical energy contained in the active
materials directly into electrical energy. Lithium-Ion Batteries (LIBs) are the most
common technology adopted as a Reversible Energy Storage System (RESS), thus
particular emphasis will be given to them. Since first developed by Dr. John
Goodenough et al. [29] and then commercialized by Sony in 1981 [30], they have
played a key role in the field of consumer electronics devices, but, in the last decade,
they also have become crucial in the electrification of conventional vehicles, thanks
to their high energy and power densities, good efficiency, and long lifespan. While
the term battery is often used inappropriately, it is important to note that the basic
electrochemical unit is a cell. Cells are then electrically connected in series and/or
parallel to compose a battery system. An electronic control unit, known as the Battery
Management System (BMS), is connected to the battery system and is responsible
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for the safe and reliable operation of the battery. It controls that the battery operates
within specified voltage and current limits, prevents over-charging, over-discharging,
and over-heating, performs cell balancing, and improves battery safety [31]. To
optimize battery performance and prolong useful life, the BMS needs an accurate
estimation of the battery State of Charge (SoC) and State of Health (SoH).

2.2.2 Operating Principles

As shown in Figure 2.2, a lithium-ion cell consists of five components, namely
negative electrode (anode), positive electrode (cathode), electrolyte, separator, and
current collectors. The separator is inserted between the two electrodes, while the
whole cell is soaked with a liquid electrolyte in which lithium ions can be transported.
The electrodes have porous structures to enlarge the surface area and reduce the
diffusion distances [32].
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Fig. 2.2 Schematic diagram of a lithium-ion cell.

The lithium-ion cell is powered by redox reactions occurring at the surface of the
electrodes resulting in a mechanism known as insertion or intercalation: this refers to
a reversible reaction that includes a molecule between two other molecules. During
discharge, the lithium ions are extracted from the anode and inserted into the cathode.
More precisely, lithium atoms at the surface of the anode give up electrons - collected
by the current collectors and conducted through the external circuit - and become
positive lithium ions, Li+, which dissolve into the electrolyte. Conversely, positive
lithium ions close to the surface of the cathode receive the electrons coming from
the external circuit, becoming charge-neutral lithium atoms that enter the crystal
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structure of the cathode. Supposing that the active material in the cathode is a generic
metal oxide (MO2), the reactions taking place are:

LiyC6 ⇌C6 + yLi+ye− (2.1)

Li1−yMO2 + yLi++ ye− ⇌ LiMO2 (2.2)

where Equation (2.1) is the anodic half-reaction and Equation (2.2) is the cathodic
half-reaction. During charge, the process is reversed; thus, lithium ions pass back
and forth between the electrodes during charging and discharging [33]. Presently,
the vast majority of commercial lithium-ion cells use some form of graphite (LiC6)
for the anode material, although lithium titanate and silicon have been used too [34].
There is much more variability in the choice of the metal oxides that are commonly
used in cathodes. They can be classified into three groups based on their structure
[35]:

• Ordered rock-salt, such as Lithium Cobalt Oxide (LCO), Nickel Cobalt Alu-
minum oxide (NCA), and Nickel Manganese Cobalt oxide (NMC);

• Spinel, such as Lithium Manganese Oxide (LMO);

• Olivine, such as Lithium iron -Fe- Phosphate (LFP).

A detailed comparison of the material properties of the different cathode materials
can be found in [36, 37], while a summary of each cell chemistry’s performance
and specifications is given in [38]. Regarding the current collectors, copper and
aluminum foils are typically used for anode and cathode, respectively.

A fundamental component of the controller for a vehicle featuring a Lithium-
Ion Battery (LIB) is an algorithm that provides an estimate of the battery State
of Charge (SoC), i.e., the available capacity (Q) expressed as a percentage of the
nominal capacity (Qn). In real-world applications, however, it is difficult to directly
measure the battery SoC because of the complicated electrochemical reactions and
the strong coupling characteristics. The most common approach to estimate the SoC
is Coulomb counting which integrates the current (I) measurement, according to the
following:

SoC(t) = SoC(t0)+
∫ t

t0

I(t)
Qn

dt (2.3)
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where Qn is the nominal capacity, SoC(t) and SoC(t0) are the SoC values at the
time t and the initial instant t0, respectively. In real-world applications, however,
the noise affecting the current measurement and the variation of battery capacity
under different aging levels may make Coulomb counting inaccurate. Therefore, the
accurate estimation of the SoC in real-time is critical functionality for a BMS, which
is attracting considerable research efforts, and a plethora of different techniques have
been proposed in the literature [39] [40].

2.2.3 Aging Mechanisms

Degradation of the cells of a LIB is the result of a complex interplay of unwanted
chemical side reactions and physical changes to the active materials. Aging is
generally irreversible and eventually results in cell failure. Figure 2.3 illustrates
some of the most commonly reported degradation mechanisms in Li-ion cells.

Fig. 2.3 Degradation mechanisms in Li-ion cells [1].

Degradation depends on a variety of aging mechanisms caused by different
intrinsic and extrinsic factors [41, 42]. Inconsistencies in manufacturing procedures
and in the materials used are intrinsic problems, however, they are now being reduced
by advancements in quality control, production procedures, and battery designs.
Extrinsic factors include inhomogeneous operating conditions, e.g., non-uniform
current or temperature distribution within the battery pack. The most important aging
effects occurring in LIBs are usually measured in terms of:

• Capacity fade:
it refers to the loss in discharge capacity that a battery demonstrates over time
(related to available driving range);
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• Power fade:
it is the decrease of the power capability caused by an increase in the internal
resistance/impedance of the cell (related to available power).

LIB degradation presents a major concern in long-term, reliable applications, includ-
ing xEVs, where long cycle life under demanding duty schemes is required. Indeed,
different degradation phenomena in LIBs lead to different aging patterns and failure
modes [43].

There are many different aging mechanisms that are commonly grouped into
four different degradation modes:

• Loss of Lithium Inventory (LLI):
Lithium ions are lost in parasitic reactions, such as surface film formation - e.g.,
growth of the Solid-Electrolyte-Interphase (SEI) - decomposition reactions,
lithium plating, etc. [44]. LLI generally leads to direct capacity fade, but
surface films may also cause power fade [1];

• Loss of Active Material (LAM) in the anode:
Particle cracking, loss of electrical contact, and blocking of active sites by re-
sistive surface layers make the active material in the anode no longer available
for the insertion of lithium. This leads to both capacity and power fade [1];

• LAM in the cathode:
Structural disordering, particle cracking, and loss of electrical contact make the
active material in the cathode no longer available for the insertion of lithium.
These processes can lead to both capacity and power fade [1];

• Conductivity Loss
Degradation of the electronic parts of the battery such as current collector
corrosion or binder decomposition leads to conductivity loss [45].

Figure 2.4 provides a more comprehensive list of degradation mechanisms, their
causes, effects, and links to degradation modes. Within the literature, several tech-
niques have been reported to identify and quantify the effects of degradation modes.
These are often classified into in-situ and ex-situ electrochemical techniques [41].
The in-situ techniques are not-invasive, potentially suitable for real-time applications
within a BMS. Some examples are Incremental Capacity (IC) and Differential Volt-
age (DV) [44, 46, 47], Electrochemical Impedance Spectroscopy (EIS) [48], and



2.2 Electrochemical Batteries 19

Fig. 2.4 Cause and effect of degradation mechanisms and associated degradation modes [1].

Differential Thermal Voltammetry (DTV) [49]. Ex-situ methods, on the contrary,
study the cells internally by applying physicochemical and electrochemical invasive
techniques. Some examples are Scanning Electron Microscopy (SEM), Energy
Dispersive Spectrometry (EDS), and X-Ray Diffractometry (XRD) [50].

Incremental Capacity and Differential Voltage

DV and IC methods are used to identify and quantify changes in the electrochemical
properties of the cell from changes in the capacity or cell voltage. The DV curve is
computed as the derivative of V with respect to the charged or discharged capacity Q
and is defined as follows:

DV =
dV
dQ

(2.4)

The IC curve is defined as the inverse of Equation (2.4), i.e.,

IC =
1

DV
=

dQ
dV

(2.5)

The coexistence of phases in positive and negative electrodes leads to constant
chemical potentials resulting in a flat anode or cathode Open Circuit Potential (OCP)
[51] [52]. This information can be obtained from the cell Open Circuit Voltage
(OCV) since it derives from subtracting the OCP of the negative electrode from
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the positive one. IC and DV methods allow the transformation of the cell voltage
plateaus, corresponding to two-phase material regions, into valleys and peaks in DV
and IC curves, respectively [53]. Since the IC curve computes the evolution of cell
voltage versus capacity, voltage plateaus result in large capacity increments (dQ),
which lead to the formation of peaks in the IC curve and valleys in the DV curves.

A change in the IC-DV curves can be correlated with the most pertinent aging
mechanisms as suggested by [44]. Conductivity loss causes a shift of the curves
toward lower voltages (IC) and constant capacity (DV); LLI causes both a decrease
in the height of the peaks and a shift toward lower or higher voltages (IC) and a shift
toward lower capacities (DV); LAM causes a decrease of the height of the peaks (IC)
and a decrease of the depth of the valleys (DV) [44]. Since the shifting of the IC and
DV curves can be correlated to battery health, these techniques have been extensively
investigated in the literature to identify [47] and quantify [54] aging. According to
[55], the height and the position of the peaks in the IC curves are also affected by
temperature.

2.2.4 State of Health

One of the critical tasks of the BMS is monitoring the State of Health (SoH) of the
LIB to enforce safe operating bounds and enable health-conscious control strategies.
The SoH of a battery is a figure of merit to quantitatively assess the level of battery
aging, but it is not directly measurable and still lacks a holistic definition. Two
common definitions are conventionally used, in terms of capacity fade:

SoH =
Q
Qn

(2.6)

or in terms of internal resistance fade:

SoH =
R−Rn

Rn
(2.7)

where Q and Qn denote the actual and nominal capacity values, respectively, and
R and Rn denote the actual and rated internal resistances, respectively. In automotive
applications, the End of Life (EoL) is often specified as the point where measured
capacity reaches 80% of the pristine cell capacity and/or the internal resistance
reaches an increase of 100% (always with reference to the pristine cell resistance).
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In a laboratory setting, which is the most investigated in the literature, battery
aging tests are performed in well-controlled environments and the actual battery
capacity or internal resistance can be periodically measured with high-accuracy in-
struments to assess the ‘ground truth’ battery health [39]. However, standardized test
procedures conducted under laboratory conditions cannot reproduce what batteries
actually experience in real-world applications. They do not take into account the
variability induced in terms of electrochemical, thermal, and aging behavior between
cells in a battery pack. Moreover, field data from real-world scenarios exhibit varying
operating conditions, irregular cycling patterns, and path-dependent degradation
mechanisms, making reliable predictions difficult. This makes the prediction of the
Remaining Useful Life (RUL) even more challenging. In the field, future health
should be inferred from partial charge/discharge cycles and the corresponding signals
tracked by the BMS such as current, voltage, and temperature [56].

The most common health forecasting approaches are based on Physics-Based
(PB) models (see Section 4.5.1) that compute the evolution of the internal states of
the battery under an expected load and environment. While PB models can capture
accurately the electrochemical cycling behavior, they have limited applicability
for health forecasting. Recently, data-driven and Machine Learning (ML) - based
models (see Section 4.5.2) have shown success in predicting the RUL of Li-ion
cells under various load conditions. ML models operate by recognizing patterns in
high-dimensional databases and are agnostic to the underlying physical processes
but lack transferability to situations far beyond the available data on which they were
trained [27].

Hybrid Pulse Power Characterization Test

Among the laboratory reference performance tests, the Hybrid Pulse Power Charac-
terization (HPPC) Test is used for determining the dynamic power capability over the
device’s usable voltage range using a test profile that incorporates both discharge and
charge current pulses [57]. The pulses must be sufficiently short to avoid heat gener-
ation and/or change of SoC. The voltage response curve corresponding to the change
in current can be measured and used to compute the ohmic cell (high-frequency)
resistance, by means of their fraction:

R =
V (t2)−V (t1)
I(t2)− I(t1)

=
∆V
∆I

(2.8)
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where V (t1) and I(t1) are the voltage and current values at the beginning of the
pulse, V (t2) and I(t2) at the end of it. Since the voltage profile of the cell changes
with the aging, by repeating the test at different stages of the cell life, the high-
frequency resistance can be used to assess its aging [58]. However, laboratory tests
(such as the HPPC) can only have limited validity for real-life applications since they
require an ad hoc current profile and conditions far from what the battery experiences
under real operation in an xEV.

2.3 Artificial Intelligence

2.3.1 Introduction

In recent years, the sharp increase in Central Processing Unit (CPU) processing
capacity, in addition to the possibility of scaling up computations on cloud platforms,
has led to increasing interest in the exploitation of Artificial Intelligence (AI) in the
energy management of HEVs, and in predicting the RUL of Li-ion cells. AI lacks an
agreed-upon definition, but an appropriate one could be the following:

"Artificial Intelligence is that activity devoted to making machines intel-
ligent, and intelligence is that quality that enables an entity to function
appropriately and with foresight in its environment" [59].

Since first introduced for checkers playing by [60], Machine Learning (ML) has
become a very important area of AI. In line with general scientific reasoning, most
ML methods are based on inductive inferences, i.e., they construct hypotheses from
data. Deductive inferences follow necessarily and logically from their premises,
whereas inductive ones are hypotheses, which are always subject to falsification by
additional data. This distinction can be better clarified by means of the following
classical example: if a large set of data contains only instances of white swans and no
instances of black swans, then an ML algorithm might make the inductive inference
that all swans are white. This inference may be wrong because there may still be an
undiscovered island of black swans. However, inductive inferences, based on large
amounts of data, are extremely useful. This particularly rings true with the current
abundance of data availability in all fields.
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2.3.2 Classification

There is a considerable number of approaches that can be included in the ML family,
and according to data scientists, there is no single one-size-fits-all type of algorithm
that is best to solve a problem. The best-suited algorithm depends on the kind of
problem to be solved, the number of variables, etc. Several classifications can be
done among the ML techniques [61], but a commonly accepted classification can be
outlined by identifying three general families [62]:

• Supervised Learning:
These algorithms infer a function that maps an input (independent variables)
to an output (dependent variable) based on labeled training data. The input
dataset is usually divided into train and test datasets, and the algorithm must
learn some kind of patterns from the training dataset and apply them to the test
dataset for prediction or classification. Some examples of supervised learning
are Regression, Decision Trees, Random Forests, K-Nearest Neighbors (K-
NN), Logistic Regression, etc.;

• Unsupervised Learning:
These algorithms infer hidden patterns or intrinsic structures from unlabeled
data. Unlike supervised learning, there are no correct answers because there
are no labeled training data. Some examples of unsupervised learning are
K-Means Clustering, Apriori algorithm, etc.;

• Reinforcement Learning:
In Reinforcement Learning (RL) a computer program interacts with an envi-
ronment where it must perform a certain goal. The program receives feedback
in terms of a numerical reward signal as it navigates its problem space: it must
learn to maximize the reward signal. The learner is not told which actions to
take but instead must discover which actions yield the most reward by trying
them.

2.3.3 Neural Networks

Among the ML techniques, in the last decades Neural Networks (NNs) have received
a great deal of attention because many papers have proved their capabilities to solve
a variety of problems [63] (e.g., pattern recognition, clustering, classification, etc.,),
including the energy management of HEVs [64–66].
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NNs are inspired by and resemble the human nervous system and the structure of
the brain. The primary building block of a NN is the artificial neuron, or perceptron
(depicted in Figure 2.5) [67], which takes several binary inputs, x1, x2, ..., xN and
produces a single binary output, y, according to:

y = f (wi ∗ xi +b) (2.9)

where x and y are the inputs and the output, respectively; w are the weights of
the inputs; b is the bias vector; f (.) is the activation function.

w1x1

w2x2

w3x3

y=f(a)

x1

x2

x3

a = σ𝑖=1
3 w1x1

Fig. 2.5 Perceptron layout.

The nodes or units in each layer are connected to nodes in adjacent layers. Each
connection has a weight value. The inputs are multiplied by the respective weights
and summed at each unit. The sum then undergoes a transformation based on
the activation function, which could be a sigmoid function, a hyperbolic tangent,
or a Rectified Linear Unit (ReLU). During the training of the NN, the weights
and the bias are automatically adjusted to learn a highly nonlinear input/output
relationship by minimizing the actual and the predicted output patterns of a training
set [68]. Deep Neural Networks (DNNs) are modeled as multilayer perceptrons,
consisting of a higher or deeper number of processing layers. A breakthrough in
DNNs occurred with the advent of the back-propagation learning algorithm. It
was proposed in the 1970s [69] but it wasn’t until the mid-1980s [70] that it was
fully understood and applied to NNs. Self-directed learning was made possible
with a deeper understanding and application of the back-propagation algorithm.
The shift from shallow to deep learning has allowed for more complex and non-
linear functions to be mapped, as they cannot be efficiently mapped with shallow
architectures. This improvement has been complemented by the proliferation of
cheaper high-performance Graphic Processing Units (GPU) and large volumes of
datasets to use for training.
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2.3.4 Long Short-Term Memory Networks

Among the deep learning techniques, i.e., Deep Neural Networks (DNNs), Con-
volution Neural Networks (CNNs), and Recurrent Neural Networks (RNNs), the
latter can deal with temporal information of input data, thus can capture the hidden
correlations between speed values. Specifically, RNNs architecture can update the
current state based on the feedback of both the current input data and the past states
(the so-called “short-term memory) [71]. However, when dealing with a large gap
between the relevant input data, the error signals “flowing backward in time” tend to
either blow up or vanish. To overcome these error back-flow problems, and correctly
handle the so-called “long-term dependency”, in 1997 Hochreiter and Schmidhuber
proposed the Long Short-Term Memory (LSTM) layer [72]. Since they were first
introduced, LSTMs have been modified and used by many researchers for numer-
ous purposes [73, 74], including the energy management of HEVs [71]. Among
the several changes leading to the layout of the layer adopted in this work, it is
worth mentioning the introduction of gate f [75], which partially solves the gradient-
vanishing problem typical of RNNs by discarding or keeping the information in the
cell state.

Figure 2.6 shows a schematic of the standard LSTM cell. At time step t, the
block uses the current state of the network (ct−1, ht−1) and the following input of
the sequence to compute the output and update the cell state ct . The layer adds or
removes information from the cell state through the gates: i, f , and o denote input,
forget, and output gates, respectively, while g denotes the cell candidate. Based on
the connections shown in Figure 2.6, the LSTM cell can be mathematically expressed
as:



it = σg(Wixt +Riht−1 +bi)

ft = σg(Wf xt +R f ht−1 +b f )

gt = σc(Wgxt +Rght−1 +bg)

ot = σg(Woxt +Roht−1 +bo)

ct = ftct−1 + itgt

ht = otσc(ct)

(2.10)

where xt is the input at time step t, ct is the cell state, containing information
from the previous time steps, ht is the output state (also known as the hidden state),
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W R, and b are the input weights, the recurrent weights, and the bias, respectively,
and σ(.) is the activation function.

f g i o

forget update

output

ct-1 ct

ht-1

ht

xt

Fig. 2.6 LSTM layer layout: the predicted output patterns are assigned to the training set (the
observations).

2.4 Connected xEVs

2.4.1 Intelligent Transportation System

An Intelligent Transportation System (ITS) [18] is a system, in the field of road
transport, in which information and communication technologies can be easily
exchanged. In the frame of an ITS, Vehicle-to-Everything (V2X) connectivity is
one of its main pillars. V2X embraces all vehicle’s connected communications: the
on-board communication tools are used to deliver real-time traffic information so
that the vehicle can proactively react to changing road conditions, recognize road
signs and warnings, and more. Such communication can effectively enhance safety,
traffic efficiency, and energy saving. For instance, the driver could be warned of
potential hazards on the road and of issues with the vehicle itself. Moreover, by
having access to the internet and/or to a wireless local area network, connected cars
can get information from smartphones or, more generally, from Internet of Things
(IoT) devices, constantly updating the driver. V2X incorporates the following more
specific types of communication:

• Vehicle-to-Vehicle (V2V):
These technologies transmit data between vehicles to enable applications that
can warn drivers about potential collisions. Specifically, V2V-equipped cars
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would emit data on their speed, position, heading, acceleration, size, brake
status, and other useful data.

• Vehicle-to-Infrastructure (V2I):
These technologies transmit data between vehicles and the road infrastructure
to enable a variety of safety, mobility, and environmental applications. V2I
applications are designed to avoid or mitigate vehicle crashes, particularly
those crash scenarios not addressed by V2V alone, as well as to provide
mobility and environmental benefits. Some potential safety applications of
V2I are red light violation warnings, curve speed warnings, stop sign gap
assist, reduced speed zone warnings, spot weather information warnings, etc.
[76]

• Vehicle-to-Pedestrian (V2P):
These technologies transmit data between vehicles and pedestrians to enable
onboard safety monitoring tools and communication with a pedestrian’s mobile
device to avoid accidents. This could include people walking, riding bicycles,
and entering/exiting mass transit vehicles.

Toyota was the pioneer in this field. In 2016, it became the first automaker to
introduce automobiles equipped with V2X, which were only for sale in Japan. GM
followed suit a year later: in the US, it introduced a Cadillac model also equipped
with V2X. In 2019, Volkswagen presented the latest Golf generation: according to
VW, the Golf was the first Volkswagen to offer V2X communication as standard in a
mass-market model [77].

Two main standards are available for V2X communication. The first one is a
set of radio standards based on the IEEE 802.11p technology and is referred to as
Dedicated Short Range Communications (DSRC) [78]. The other standard is based
on communication using cellular technologies [79]. The 3GPP developed the first
Cellular V2X (C-V2X) standards based on the 4G mobile network [80]. The C-V2X
potentiality could be further boosted by a possible coupling with the new 5G mobile
network [81] or joint use of DSRC and C-V2X communication [82].

2.4.2 Connected Vehicle Control

The ability of connected vehicles to anticipate and predict possible future scenarios
opens the door to energy-efficient control approaches. Information from connected
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vehicles can be used to improve the energy efficiency of a vehicle at two different
levels [83]:

• Route optimization:
When a driver needs to move from a starting point A to a final point B, she/he
usually chooses the shortest travel distance or the fastest travel time route.
Apart from some recent exceptions [84], the same goes for most navigation
systems. However, this is not always the most energy-efficient route because
the shortest route may be congested, while the fastest route may be longer and
contain segments with higher speed limits. Hence, V2X information could
play a pivotal role in shifting from time-efficient driving to an energy-efficient
one;

• Eco-driving:
Once the most energy-efficient has been chosen, several speed profiles can be
chosen on the selected route. The optimal speed profile, in terms of energy
efficiency, is a constant speed: by reducing the occurrences and the intensity of
the acceleration phases, the energy demand can be reduced. However, this is
usually impossible to observe in real traffic conditions, especially in an urban
environment with traffic light signals, road congestion, pedestrians, cyclists,
road grade, different speed limits, etc. Also in this case, V2X information
can be used to predict the traffic evolution over the defined route and deduce
accordingly a vehicle speed profile as smooth and energy-efficient as possible.
For instance, as a vehicle approaches a signalized intersection, with V2X
technology it can access the Signal Phase and Timing (SPaT) of traffic lights
(i.e., information about the location of the intersection and the number of
seconds to switch from green to red light). With this information, the vehicle
can use the current distance from the intersection and SPaT of traffic lights to
calculate a vehicle speed profile that allows for avoiding unnecessary halts or
slows at traffic lights. Quite recently, data-driven techniques, such as MPC
[85] or RL algorithms [86, 87], have also been used to solve the eco-driving
problem.



Chapter 3

Energy Management of HEVs

3.1 Introduction

In an ICE-equipped vehicle, the driver decides, through the accelerator and brake
pedals, the instantaneous power delivery; then, a low-level controller, i.e., the Elec-
tronic Control Unit (ECU), converts her/his request into an amount of injected fuel.
On the other hand, in an HEV, an ICE is combined with one or more EMs, and an
additional control layer, namely the Energy Management System (EMS) and shown
in Figure 3.1, decides the instantaneous power split between the actuators. Due
to the increased complexity of an electrified powertrain, the benefits provided by
hybridization can be jeopardized by not optimizing the cooperation between the
power actuators. The scope of the energy management control strategy depends
on the specific application: the strategy is usually focused on fuel economy, but
its objective could also include other parameters, e.g., pollutant emissions, power
delivery, etc. [88, 89].

3.2 Optimal Control Problem

Energy management in an HEV is an implementation of optimal control: the branch
of control theory that deals with finding a control law for a given system such that
an objective function is optimized. Optimal control means that the searched control
law must achieve the best performance and respect the dynamics of the system
where optimality is usually defined according to a performance index. For HEVs,
the control law is represented by the instantaneous power split between the energy
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Fig. 3.1 The role of energy management system in a hybrid electric vehicle.

sources, and the performance index J f can be the total fuel consumption, the total
pollution emission, or any other meaningful cost function (or performance index)
over the entire driving cycle.

The traditional optimal control techniques can only be used with simple mathe-
matical models, and require a perfect knowledge of the entire optimization horizon,
i.e., the time frame over which the optimization is defined. As these two conditions
are not normally met by real systems, optimal control implementation in a physical
domain whose future is unknown, is necessarily sub-optimal, i.e., imperfect. In
formal terms [90, 91], an HEV can be considered as a dynamical system with the
state equation:

ẋ(t) = f (x(t),u(t), t) (3.1)

where x(t) ∈ Rn is the state variables vector, u(t) ∈ Rm is the control variables
vector, f is a function that describes the system, and t is the time variable. Consider-
ing an optimal control problem that has a fixed final time and a partially constrained
final state, the control law u(t) : [t0, t f ] ∈ Rm is optimal if it minimizes, in the time
interval t ∈ [t0, t f ], the cost function:

J = φ
(
x(t f ), t f

)
+

∫ t f

t0
L(x(t),u(t), t)dt (3.2)
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under the terminal conditions (boundary conditions on the state):

ψ
(
x(t f ), t f

)
= 0 (3.3)

where L(x(t),u(t), t)∈R is the instantaneous cost function, and φ
(
x(t f ), t f

)
∈R

is the terminal cost incurred at the end of the process. The cost function defined in
Equation (3.2) is subject to the following constraints:


G(x(t), t)≤ 0

x(t) ∈ X (t)

u(t) ∈ U (t)

∀t ∈ [t0, t f ] (3.4)

where G(x(t), t)≤ 0 denotes a generic instantaneous constraint, and X (t) and
U (t) denote the set of admissible state and control values, respectively, at time
t. L can be the instantaneous fuel consumption or any other instantaneous scalar
index: the cost function, for example, can take into account the emission rates of
the pollutants by introducing a weighting factor for each pollutant species [92], or
drivability issues by adding an anti-jerk term [93]. The optimization problem can be
subjected to additional local and integral constraints. Local constraints are imposed
to limit the state and control variables, e.g., the engine torque and speed, the motor
power, the battery SoC, etc. Integral constraints, instead, can be used for adding a
generic penalization at the end of the process. If, for example, the performance index
defined in Equation 3.2 just takes into account the engine fuel consumption, the
solution to the minimization problem is trivial: the performance index is minimized
by a purely electrical strategy, i.e., all the traction power is provided by the battery.
This choice, however, will completely discharge the battery at the end of the mission.
The integral constraints on the SoC can be used to correct this behavior. The integral
(or terminal) constraints can be enforced either as hard or soft constraints [12]. Hard
constraints consist in the boundary conditions (3.3) on the dynamic equations by
requiring that the energy stored at the end of the mission equal the value at the start
of the mission; soft constraints, on the other hand, modify the cost function (3.2)
with the term φ(x(t f ), t f ) in order to induce the final value of the constrained variable
to be close, but not necessarily identical, to the desired target.
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3.3 State-of-the-Art Control Strategies

This Section presents various approaches for the evaluation of the optimal control law.
In the literature, different categories of strategies have been proposed, and within this
variety, a general classification can be outlined by identifying three general trends:

• Global optimization methods:
The entire optimization problem is considered as a whole, and information
about past, present, and future driving conditions is assumed to be completely
known. This category includes Dynamic Programming (DP) [94] and Pontrya-
gin’s Minimum Principle (PMP) [95];

• Local optimization methods:
The global problem is reduced to a sequence of local problems (but not
necessarily instantaneous). In this case, information about the past and the
present conditions is used, while prediction of future driving conditions may be
used, for example in a receding-horizon approach. Model Predictive Control
(MPC) [96], Stochastic Dynamic Programming (SDP) [97], and Equivalent
Consumption Minimization Strategy (ECMS) [2] all belong to this category;

• Heuristic strategies:
A set of rules that, on the basis of some significant variables, decides the power
split among the on-board power sources. [98].

Some of the strategies studied in the literature are presented in the following
Sections, pointing out the assumptions on which they are based and the applications
for which they are suitable.

3.3.1 Dynamic Programming (DP)

Dynamic Programming (DP) [94] [90] is a numerical method for solving optimal
control problems that guarantees global optimality, regardless of the type of problem.
Unfortunately, it is non-casual (if applied to the energy management of HEVs, it
requires the entire driving cycle to be known in advance), and the required computa-
tional effort increases exponentially with the number of state and control variables of
the underlying dynamic system. When dealing with systems with continuous state
variables, the state space typically needs to be discretized. Even if it is possible to
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circumvent discretization, e.g., when the cost-to-go function can be expressed ana-
lytically, in general, discretization is the only viable option. Discretization, however,
introduces numerical errors, which degrade the accuracy of the solution [99].

DP algorithm is based on Bellman’s principle of optimality, which can be ex-
pressed as follows:

"An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision" [94].

This means that the optimal path from any of its intermediate steps to the final
one corresponds to the terminal part of the entire optimal solution. The mathematical
transliteration of this simple principle can yield the equations given below. Since
DP is discrete in nature, time, state space, and control space need to be discretized.
Consider a discrete-time system, with a fixed final time:

xk+1 = fk(xk,uk) (3.5)

with k = 0,1, . . . ,N −1, uk ∈ Uk, and xk ∈ Xk, and the control policy:

π = {u0,u1, . . . ,uN−1} (3.6)

The cost of π starting at time 0 (and state x0) to time N −1 is:

Jπ(x0) = LN(xN)+
N−1

∑
k=0

Lk(xk,uk) (3.7)

where Lk is the instantaneous cost function, i.e., the cost of applying the control
signal u at discrete time k to the dynamic system given by Equation 3.5. The optimal
cost function is the one that minimizes the total cost:

J∗(x0) = min
π

Jπ(x0) (3.8)

and the optimal policy π∗ = {u∗0,u
∗
1, . . . ,u

∗
N−1} is:

Jπ∗(x0) = J∗(x0) (3.9)
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Consider now the “tail subproblem” that minimizes the cost-to-go function from
time i (and state xi) to time N −1:

Vi = LN(xN)+
N−1

∑
k=i

Lk(xk,uk) (3.10)

and the “tail optimal policy” {u∗i ,u
∗
i+1, . . . ,u

∗
N−1}, i.e., the last part of the optimal

policy π∗. Bellman’s principle of optimality states that "the tail policy is optimal
for the tail subproblem". This statement is analytically proved by [90] where the
induction principle is used to show that Jk(xk) = J∗k (xk), where J∗k (xk) is the optimal
cost of the tail subproblem that starts at time k and state xk.

Bellman’s principle of optimality is used in the DP algorithm, where starting
from the final step N, the algorithm evaluates the optimal cost-to-go function Jk(xi)

at every node in the discretized time state space by proceeding backward in time
following the sequence of policies:

µ
∗
k = arg min

uk∈Uk
(Lk(xk,uk)+ Jk+1 ( fk(xk,uk))) k = N −1,N −2, . . . ,1,0 (3.11)

J0(x0), generated at the last step (actually, the first time step), is equal to the
optimal cost J∗(x0). Thus, Bellman’s principle of optimality proves that it is possible
to determine the optimal sequence of control actions proceeding backward from the
final state, choosing at each step the path that minimizes the cost-to-go (integral cost
from that time step until the final state).

DP can be used for determining the optimal power split of an HEV, as shown
in [100], where the policy is represented by the power split between the ICE and
the EM at successive time steps, while the objective function corresponds to the
overall energy consumption. Nevertheless, variations can be made to the definition
of the policy and the objective function, e.g., considering also the engine pollutant
emissions [101] or the CO2 emissions related to the battery recharge from the grid
[102]. Although DP offers the optimal solution, within the accuracy limits imposed
by the discretization, it is not applicable in a real vehicle for the following reasons:

• The entire driving cycle must be known a priori because the optimal solution
can only be calculated backward;
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• It is computationally demanding: it requires the backward solution of the
entire problem before being able to determine the first control action.

Despite these important shortcomings, DP can provide the closest approximation
to the optimal solution and is often used to determine the maximum potentiality of
a given architecture, thus serving as a benchmark for other control strategies, e.g.,
[100, 103–105].

3.3.2 Pontryagin’s Minimum Principle (PMP)

Pontryagin’s Minimum Principle (PMP) 1 [95] is a mathematical theorem that gives
a set of instantaneous necessary conditions of optimality. A control law u(t) that
satisfies the conditions of the minimum principle is called extremal. Being the
conditions of the minimum principle only necessary, the optimal solution, when
one exists, must be an extremal control. Conversely, not all extremal controls are
optimal.

There are several formulations of the principle [106]: the two most relevant for
the energy management problem of HEV will be discussed in this Section. In the
first formulation, no constraints are imposed on the state variable, which can assume
any value in its general domain x(t) ∈ Rn. Given the system equation (3.1), the cost
function (3.2), and the terminal constraints (3.3), the minimum principle states that
the optimal control law u∗(t) must satisfy the following necessary conditions [106]:

1. u∗(t) minimizes at each instant of time the Hamiltonian function, defined as:

H(x(t),u(t), t,λ (t)) = λ
T (t) · f (x(t),u(t), t)+L(x(t),u(t), t) (3.12)

where f (x(t),u(t), t) is the right-hand side of Equation 3.1, L(x(t),u(t), t) is
the instantaneous cost in Equation 3.2, and λ (t) ∈ Rn (same dimension as the
state vector x(t)) is a vector of optimization variables, also known as adjoint
states or co-states of the system. The optimal solution u∗(t) is such that:

u∗(t) = arg min
u∈U

(H(u(t),x(t),λ (t), t)) (3.13)

1The minimum principle was originally proposed as a maximum principle by the Russian mathe-
matician Lev Semenovich Pontryagin and his students in 1958 and later described in [95].
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2. The co-state must satisfy the dynamic equation

λ̇ (t) =− ∂H
∂x

∣∣∣∣
u∗(t)

(3.14)

3. The state variable x∗(t) must satisfy the terminal constraints

ψ
(
x(t f ), t f

)
= 0; (3.15)

Since no terminal conditions are imposed on the state, the terminal condition
is given as:

λ
∗(t f ) =

∂φ
(
x(t f ), t f )

)
∂x

∣∣∣∣∣
∗,t f

(3.16)

where φ
(
x(t f ), t f

)
is the terminal cost from (3.2).

In the second formulation, the state variables are constrained to remain within
some boundaries, which can be time-varying:

x(t) ∈ Ωx(t)⊂ Rn ∀t ∈ [t0, t f ] (3.17)

The state boundaries can be expressed by defining the set of admissible states,
satisfying the conditions G(x, t)≤ 0, i.e.:

Ωx(t) = {x ∈ Rn|G(x(t), t)≤ 0} (3.18)

where the function G(x(t), t) : Rn 7→Rp represents a set of p inequalities that the
components of the state vector must satisfy.

PMP is a rather powerful theorem because it expresses the global optimal control
problem in terms of local conditions, (3.1) and (3.14), and in terms of the instanta-
neous minimization (3.13). The problem, however, cannot be solved as a standard
dynamic evolution problem, because its global nature is hidden in the initial and final
boundary conditions. A limit of this technique is that the equations must be derived
using a system model expressed in a simple form, but, if excessively simplified, the
model may not be representative of the real system and the resulting optimal control
may be sub-optimal. Moreover, applying PMP requires the a-priori knowledge of
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the entire optimization horizon, which confines real-time implementation to cases in
which the vehicle mission is either perfectly known or predictable.

3.3.3 Equivalent Consumption Minimization Strategy (ECMS)

The Equivalent Consumption Minimization Strategy (ECMS) is a static technique
that relies on the instantaneous optimization of the powertrain energy flows. Since
it was first proposed by Paganelli in 1999 [107, 2], the ECMS has received a lot of
attention thanks to its potential to achieve sub-optimal results, while being feasible
in a vehicle ECU. The basic idea of the ECMS is to move from a global optimization
problem to a local minimization one: an equivalent fuel consumption, obtained by
summing the actual engine fuel consumption, ṁ f (t), to a "virtual" fuel consumption
(related to the use of the battery), ṁel(t), is minimized at each instant of time [107]:

ṁ f ,eq(t) = ṁ f (t)+ ṁel(t) = ṁ f (t)+
s(t)Pbatt(t)

QLHV
(3.19)

where Pbatt(t) is the instantaneous power provided (Pbatt > 0) or absorbed (Pbatt <

0) by the battery; QLHV [MJ/kg] is the fuel lower heating value (energy content per
unit of mass); s(t) is the instantaneous equivalence factor converting the battery
energy consumption into a corresponding (or "virtual") fuel consumption [108].
For any vehicle operating point (speed, power required from the powertrain) the
entire range of possible power splits is examined, and the equivalent fuel flows are
determined for every combination, using the actual efficiency maps of the engine
and electric machines. The combination with the lowest instantaneous fuel cost is
selected. This approach, however, requires the appropriate value of equivalence
factor s(t) to properly estimate the cost of the energy stored in the battery: its optimal
value, which entails the SoC balance at the end of the cycle, depends on both the
powertrain topology and the specific mission profile. A wrong guessing of this
parameter may jeopardize the benefits of the ECMS leading to results far from
optimality. Figure 3.2 depicts the paths followed by the power flow during discharge
(Figure 3.2a) and charge (Figure 3.2b), for a parallel HEV (in a series configuration
the power summation node is located in a different point).

The following remarks can be made:

• During discharge, the electric motor provides mechanical power. The dotted
route represents the energy that will be necessary to recharge the battery in the
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Fig. 3.2 Power flows during charge and discharge in a parallel HEV [2]

future. Since the operating point of this recharge cannot be known a priori, the
average efficiency should be used.

• During charge, the electric motor receives mechanical energy and converts it
into electrical energy that is stored in the battery. The dotted route represents
the surplus energy that can be used in the future to produce mechanical power:
since the EM will assist the ICE, this would allow less fuel to be used by the
ICE in the future.

The theoretical bases of the ECMS were expanded by subsequent studies that
demonstrated the correlation between the ECMS and PMP [109]. Thus, the ECMS
can generate a sub-optimal control law, but only with the a priori knowledge of
the entire mission profile, because the equivalence factor must be tuned, through a
numerical optimization procedure, according to the driving conditions to achieve
the charge sustainability. Despite its instantaneous formulation, the ECMS still
implicitly relies on information about the future: if this information is wrong, the
control still works, but the results are far from optimality. Therefore, since its initial
introduction, several improvements and modifications have been proposed to direct
the technique toward an online adaptation of the equivalence factor [110–112]. The
most common methodology for the adaptation of the equivalence factor relies on a
mathematical expression, which periodically modifies this parameter based on its
past values and the difference between actual and reference SoC [113]:

sk+1 =
1
2
(sk + sk−1)+ kp(SoC0 −SoC(t)) (3.20)
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with:

t = kT k = 1,2, ... (3.21)

where sk is the value of the equivalence factor currently used; sk−1 is the value
used in the previous time interval; sk+1 is the value that will be used in the subsequent
time interval; (SoC0 −SoC(t)) is the difference between reference and actual SoC
values, at the instant of the adaptation; kp is the proportional gain of the feedback
controller; T is the adaptation period. It should be noted that since the strategy
usually aims to achieve charge sustainability, the initial SoC is used as the reference
value.

3.3.4 Heuristic Strategy

The most common way of implementing supervisory control in an HEV is to in-
troduce a set of rules that, on the basis of the observed values of some meaningful
parameters, decide the power split among the on board power sources. Unlike the
ones based on optimal control, Rule-Based (RB) techniques [98, 114–116] do not
rely on formal models, but on rules based on engineering intuition: the objective is
to make each element of the powertrain work in high-efficiency conditions. Figure
3.3 depicts a simple RB structure.

The rules are usually in the form of if-then-else logic, based on efficiency maps
or fuzzy-logic methods. RB controllers depend only on instantaneous conditions
that take into account the local constraints (i.e., limitations on power, torque, speed,
etc.). The parameters of the RB controller (e.g., the threshold values that decide
when to switch from one mode to another) are usually obtained from a calibration
phase, where optimal control strategies, such as DP, can be used to benchmark or
validate the effectiveness of the strategy [111, 117] or as a guideline to determine the
control rules [98, 116, 118]. The main advantage of RB strategies is their conceptual
simplicity and their notably limited computational effort. On the other hand, the
presence of many thresholds and parameters makes it quite difficult to obtain an
appropriate calibration that works for a wide variety of driving conditions. Hence,
RB controllers cannot guarantee the optimality of the solution and cannot respect
the integral constraints as, for example, the charge sustainability: the rules can only
force a given integral measure (in this case, the SoC) to vary between two limits.
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SOC > 0.5
AND

Vveh < 55km/h

accveh > 0.1m/s2

AND
Pdmd < 7.5kW

Pdmd < 15kW

Parallel Mode

EV Mode

NO

NO

NO

YES

YES

YES

Fig. 3.3 An example of rule-based control.

3.4 EMS Enhancement

In the last decades, the EMSs of HEVs have been extensively studied and compared
[14]. As depicted in Figure 3.4, which summarizes the EMS evolution in the past
three decades based on the literature review carried out by [3], from the first proposed
RB strategies, performance has constantly increased, and the current trend is towards
real-time global optimum control. The advances in the field of AI (see Section
2.3), in addition to the possibility of scaling up computations on cloud platforms,
have led to increasing interest in the exploitation of ML techniques for the energy
management of HEVs. In particular, Reinforcement Learning (RL) is taking the
lead as the preferred control strategy since it combines real-time implementation
characteristics from RB methods and global optimum characteristics from DP [119].
The main challenge of current EMSs, though, is to attain optimal results in a real
cycle since they are generally devised under specific driving conditions.

In this context, vehicle speed prediction can play a key role in improving the
performance of the current strategies. In an ITS framework (see Section 2.4.1), HEVs
and pHEVs can benefit the most since the information from the surrounding environ-
ment can be used to optimize their control strategies, allowing the development of
the so-called predictive EMS.
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Fig. 3.4 Evolution of EMSs from 1993 to 2018 [3].

Although predicting the lead vehicle velocity can also be possible in the absence
of connectivity or under data-restricted cases [120], Vehicle-to-Everything (V2X)
communication along with cloud computing adoption may enable a change of
paradigm of the energy management problem: from an instantaneous optimization
to globally minimizing it over the entire driver route [121]. In this framework,
several works have investigated the opportunities provided by the integration of
vehicle speed prediction into the EMS of a hybrid powertrain [122, 123]. If the
vehicle speed can be predicted as accurately as possible by taking into consideration
traffic congestion and road slope, the EMSs can be effectively enhanced. Therefore,
incorporating dynamic traffic conditions into EMSs and investigating predictive
EMSs based on driving cycle prediction are possible future trends [14]. A deeper
overview of state-of-the-art predictive EMS can be found in [22].

Moreover, the energy management strategies are mainly aimed at minimizing fuel
economy and emissions, and they often neglect other performance factors, such as
battery SoH (see Section 2.2.4). However, battery aging affects energy efficiency and
fuel economy, and being able to incorporate these performance indexes to implement
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them in an integrated optimization is a key issue. Some exceptions will be given
below. Authors in [124] first proposed a variation of the PMP (see Section 3.3.2),
where the reduction of battery life deriving from its usage is treated as an additional
cost. In [125], the EMS problem is addressed and formalized as a mixed integer
convex problem and the cost function takes into account also electricity and battery
aging costs. Finally, in [126], an RL-based EMS for a pHEV is proposed that also
considers the battery health. Nevertheless, the definition of SoH indicators that
can exhaustively capture battery aging and that can be integrated into a real-time
implementable strategy still remains an open research issue.



Chapter 4

xEVs Modeling

4.1 Introduction

Up until quite recently, new product development required physical prototype testing,
with a huge amount of time and money invested by the manufacturers: months
or years are needed to collect and analyze experimental data. In the context of
increasing competitiveness, minimizing time and cost is key to the success of a new
product, and numerical simulation can play a pivotal role: physical systems can be
approximated by mathematical models, and the behavior of the physical system can
be studied by simulating it in a virtual environment. Moreover, numerical methods
enable solving complex mathematical systems, even when an analytical solution
cannot be found, e.g., non-linear systems.

Moreover, in the last decades, the increasing concerns about environmental issues
have made energy efficiency and pollutant emissions reduction among the primary
selling points for automobiles, and numerical simulation is necessary at every stage
of the design process in order to develop fast, efficient, and cost-effective engines
[127]. Focusing on xEVs, the design and the optimization of these systems require
numerical simulation support since, due to their complexity, the direct experimental
analysis of different configurations and control strategies will be impossible.

4.2 Vehicle Modeling

Detailed simulation models are usually available and routinely used for the de-
velopment of single components or subsystems (e.g., 1D-CFD models for ICE or
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3D-CFD models for in-cylinder phenomena). At the vehicle level, however, the
system complexity and the necessity to simulate the fuel consumption (or pollutant
emissions) over long-duration driving cycles, a detailed 1D model will result in
excessive computational cost. In these cases, vehicle-level energy analysis is more
suitable and look-up tables are commonly used for simulating fuel consumption and
pollutant emissions.

4.2.1 Equations of Motion

When the vehicle’s longitudinal dynamics are investigated, the vehicle can be con-
sidered as a point mass. By applying the equilibrium to the point mass, as shown in
Figure 4.1, its equilibrium equation can be written as:

𝛼

𝐹𝑟𝑜𝑙𝑙

𝐹𝑎𝑒𝑟𝑜

𝑀𝑣𝑒ℎ𝑔
𝐹𝑡𝑟𝑎𝑐

𝐹𝑔𝑟𝑎𝑑𝑒
𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎

Fig. 4.1 Forces acting on a vehicle.

Mveh
dv
dt

= Finertia (4.1)

where Mveh is the total vehicle mass (considering all the driveline components’
inertia), v is the longitudinal vehicle velocity, and Finertia is the inertial force. The
latter can be rewritten by considering its different components:

Finertia = Fpwt −Fbrk −Froll −Faero −Fgrade (4.2)

where Fpwt is the tractive force generated by the powertrain, Fbrk is the resistive
force coming from the brakes, Froll is the rolling resistance, Faero is the aerodynamic
resistance, and Fgrade is the resistant force due to road slope. The rolling resistance
force is usually modeled as [12]:

Froll = crollMvehgcosα (4.3)



4.2 Vehicle Modeling 45

where g is the gravitational acceleration, α is the road slope angle, and croll is the
rolling resistance coefficient. The latter is a function of vehicle speed, tire pressure,
and external temperature and can be modeled as:

croll = c0 + c1v+ c2v2 + c3v3 (4.4)

where ci are the coefficients linking croll to the vehicle speed. The aerodynamic
resistance can be expressed as:

Faero =
1
2

ρairA fCdv2 (4.5)

where ρair is the air density, A f the vehicle frontal area, Cd the aerodynamic drag
coefficient. Finally, the resistant force due to road slope can be expressed as:

Fgrade = Mvehgsinα (4.6)

Aerodynamic and rolling resistances are usually experimentally determined in a
so-called coast-down test: i.e., a free vehicle deceleration test. In these conditions, the
deceleration is only due to aerodynamic and rolling resistances, and, by measuring
the instantaneous vehicle speed, the total drag force acting on the vehicle can be
evaluated as:

Froll+aero =C0 +C1v+C2v2 (4.7)

where C0, C1, and C2 are called Coast-Down coefficients [127].

These equations represent the starting point for vehicle modeling and can be
sufficiently accurate if the parameters are correctly identified. The three most
common approaches suitable for this application will be briefly described.

4.2.2 Backward Kinematic Analysis

The backward approach is usually adopted for predicting a vehicle’s fuel economy
or pollutant emissions during a driving cycle. The vehicle speed and the road grade
are supposed to be known and imposed on the vehicle. The internal powertrain
dynamics are neglected because efficiency, power loss, and fuel consumption maps
are used to model the components, e.g., the ICE returns a value of instantaneous fuel
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consumption and of emission rate in function of its angular speed and torque. Despite
the introduced simplifications, the look-up tables approach is widely adopted, be-
cause it is computationally efficient, and the overall fuel consumption and emissions
predictions over the driving cycles have acceptable accuracy, especially for a first
preliminary estimation. This approach, however, neglects all the dynamic phenom-
ena considering transient conditions as a sequence of stationary states: during highly
dynamic events, the simulation results can significantly differ from the experimental
data. The typical information flow of a backward analysis can be easily understood
with the block diagrams shown in Figure 4.2.

Force

Speed

Torque

Ang. Speed

Torque

Ang. Speed
Fuel

Fig. 4.2 Information flow in a backward kinematic approach.

4.2.3 Forward Dynamic Analysis

In the forward dynamic approach, the ICE is modeled through detailed 0D or 1D
fluid-dynamic models: the ICE behavior is simulated with satisfactory accuracy even
during highly dynamic events, e.g., a tip-in maneuver that accelerates the vehicle
from a standstill. Contrary to the backward analysis, the vehicle speed is not imposed
but is seen as a target value, and the driver model - a Proportional-Integral-Derivative
(PID) controller - decides the instantaneous power delivery through the brake and
accelerator pedals in order to achieve the target speed. Then, the vehicle dynamics
equation is used to compute vehicle acceleration and speed. The forward analysis
information flow is shown in Figure 4.3.

The quasi-static approach can be considered a particular case of the forward
dynamic approach since system dynamics are taken into account. The main differ-
ence is that look-up tables are adopted for modeling the behavior of the powertrain
components, i.e., ICE, EM, and battery. The quasi-static approach can predict the
fuel consumption of a vehicle performing a driving cycle with reasonable accuracy,
but cannot be suitable for other applications, such as soot emissions prediction,
fast transients, and turbocharging system response simulation, because of their
non-linearity.
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Force
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Driver 
command

Speed 
Target

Fig. 4.3 Information flow in a forward dynamic approach.

4.3 ICE Modeling

A mathematical model correctly describing the physical phenomenon is a sine qua
non for numerical simulation. Depending on the timescale and the nature of the
modeled system, different degrees of detail can be adopted for ICE modeling. In
Figure 4.4 the main engine modeling methodologies are shown: the y-axis represents
the real-time factor, i.e., the ratio between simulation and real-life cycle duration.

X Real Time

Model Detail

1000

100

10

1

0.1 Black Box Model

0/1-D Mean Value Model

1-D Gas Exchange

3-D CFD

(real time)

CPU TIME

Fig. 4.4 Main engine modeling methodologies: model detail vs. computational time.

As evident from Figure 4.4, the 3D-CFD is the most complete and detailed
approach, but it requires enormous computational effort. It is routinely adopted
for modeling in-cylinder phenomena (e.g., combustion process, direct fuel injec-
tion, mixture formation, gas flow through intake and exhaust valves, etc.) as well
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as for modeling flow dynamics of intake and exhaust systems. However, since
the computational time increases with the volume of the discretized system, this
methodology is usually applied to a specific engine component, and almost never to
system-level simulations. On the other hand, 1D-CFD models are generally used
to provide a system-level perspective: a network of ducts connected by junctions
is used to model the engine intake and exhaust systems. For each element of the
network, the equations governing the conservation of mass, momentum, and energy
are solved by means of a finite difference technique. A good level of prediction can
be achieved both under steady-state operating conditions and during transient phases,
while not requiring excessive computational time. Finally, map-based models can
obtain a significant reduction in computational time, at the expense of less detail.
The ICE is modeled by means of experimental steady-state maps where the engine
efficiency, power loss, and fuel consumption are defined, and the instantaneous
fuel consumption and emissions rates are obtained by maps interpolation. This
approach is routinely used for fuel consumption and emissions calculations on type
approval driving cycles, where the smooth transients can be approximated by means
of a sequence of stationary states. However, map models are unsuitable for fast
transients or turbocharging system response simulation, given their non-linearity.
1D fluid-dynamic models would certainly be more appropriate because the map
models neglect most of the engine dynamic phenomena. On the other hand, the
computational effort of 1D fluid-dynamic models is more demanding, making it
improper for long-lasting simulations, e.g., for driving cycles.

4.4 EM Modeling

When a system-level approach is adopted, EMs are typically modeled via a map-
based methodology, i.e., their behavior is described by means of torque and efficiency
maps. Due to the high speed at stake, the only element that is dynamically modeled
is the rotor inertia: the electrical dynamics are much faster than the inertial or the
engine ones. Depending on the model, power or torque can be used as a control input,
and the relation between mechanical torque and electric power can be provided by
an efficiency map (as a function of speed and torque/power). The efficiency of the
power electronics system can be modeled by means of an ad hoc efficiency map or
can be included in the EM efficiency map.

When in traction mode, the power needed at the shaft, Pmech, can be calculated
from the electric power command, Pelec, and the efficiency map, η :
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Pmech =
Pelec

η
(4.8)

On the contrary, when in generator mode, the electric power can be calculated
from the mechanical one:

Pmech = Pelecη (4.9)

The power can be either positive or negative depending if the EM works in
traction or generator mode, respectively. The power loss is always positive and is
formulated as follows:

Ploss = Pelec −Pmech (4.10)

4.5 Battery Modeling

A significant scientific effort has been made to create high-fidelity battery models
in response to the growing interest in xEVs. These models are helpful in designing
BMS algorithms for diagnostic, prognostic, and control applications as well as for
forecasting and evaluating cell behavior and enhancing cell design. However, the
nonlinear correlations between all its major parameters make modeling a device like
a battery a challenging task. Two general approaches can be outlined in the literature,
i.e., physics-based models and data-driven models, giving particular emphasis to
Li-Ion batteries, the most common types used in xEVs.

4.5.1 Physics-Based Models

In the physics-based approach, the models are built from first principles, and the
parameters are tuned using a relatively small number of tests. As shown in Figure
4.5, different degrees of detail can be adopted with a trade-off between more detailed
insights and less computational complexity. Generally speaking, the predictive ability
and accuracy of a model are inversely proportional to its length scale. As a result,
the smaller the length scale, the higher the computational effort and complexity
of the model. At the atomic scale, the models can be used to simulate material
properties [37], such as diffusion; alternatively, phase-field approaches can be used
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to study phase changes on a molecular scale [4], and microscale models using non-
equilibrium thermodynamics can be used to simulate the 3D microstructures of
porous electrodes [128]. From a system perspective, other typologies of models are
more appropriate, e.g., Equivalent Circuit Model (ECM) or electrochemical models.
Some of these models are presented in the following Sections, pointing out the
assumptions on which they are based and the applications for which they are best
suited.

C
o

m
p

le
xi

ty

Accuracy

SPM

ECM

ESPM

P2D

Atomistic

Electrochemical Models

Fig. 4.5 The spectrum of battery models in the literature with a trade-off between more
detailed insights and less computational complexity: ECM, SPM, ESPM, P2D, and Atomistic
[4].

Equivalent Circuit Model (ECM)

The Equivalent Circuit Model (ECM) is the most popular approach for cell modeling:
it uses an electrical-circuit analogy to approximate the cell’s voltage response to
different input-current stimuli. The circuit acts as a description of the cell’s behavior,
and the various circuit elements act as analogs to some of the internal processes
[33]. A typical ECM is represented in Figure 4.6. The resistance R0 represents the
Ohmic losses due to the resistance of the wires, the resistance of the electrodes, and
the dissipative phenomena that reduce the power available at the terminals. The
resistance R1 and the capacitance C1 are used to model the dynamic response of the
battery. The model depicted in Figure 4.6 is a first-order approximation (one R-C
branch), but more R–C branches can be used to increase the model accuracy.
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𝐼R0

𝑉R1

C1

+

Fig. 4.6 Battery equivalent circuit-based model (second-order).

The voltage at the terminals can be expressed as:

VL =Voc −R0I −
n

∑
i=1

Vi (4.11)

where Voc is the Open Circuit Voltage (OCV), i.e., the voltage measured at the
terminals when the cell is unloaded and in complete equilibrium, Vi is the voltage
across the ith R–C branch (characterized by the resistance Ri and the capacitance Ci),
n is the order of the dynamic model considered, i.e., the number of R–C branches (in
the example shown n = 1). The behavior of the R-C branch can be described with
the 1st-order differential equation:

Ci
dVi

dt
= I − Vi

Ri
(4.12)

The capacitance Ci and the resistance Ri can, in principle, change with the
direction of the current (charge or discharge) and with other operating conditions,
such as temperature. The values of the parameters, i.e., R0, Ri, and Ci, are estimated
using curve fitting of experimental data, and the number of parameters to be identified
increases with the model accuracy. Due to their simplicity, the ECM models allow
for fast computation and are best suited for real-world applications: at present, the
majority of Battery Management Systems (BMS) use ECM as a basis for maintaining
the proper operating boundaries for the cells and for estimating internal cell states.
Despite its conceptual simplicity, however, parameter identification is a non-trivial
step: the parameters are a function of multiple variables and are generally a function
of the operating conditions, i.e., temperature, SoC, etc. Although these models
can be very accurate in specific situations, their validity is limited to the specific
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operating conditions in which they have been calibrated and therefore they may lack
generality.

Electrochemical Models

Electrochemical models are derived from the porous electrode and concentrated
solution theory, via volume-averaging [129], or homogenization theory [130], and
predict the system-level response of a cell from a fundamental characterization of the
physical phenomena involved in the process. Because mass transport occurs mainly
through diffusion, the dynamics of the ionic concentrations are described by Partial
Differential Equations (PDEs). This represents a significant increase in complexity,
with respect to the ECM, and solving the equations typically requires the adoption
of numerical methods.

Pseudo-Two-Dimensional (P2D) Model

The most popular electrochemical model is the so-called Pseudo-Two-Dimensional
(P2D) model - also known as Doyle-Fuller-Newman (DFN) model. It was developed
by Newman et al. [129], and it simulates the lithium transport and diffusion both
in the electrolyte and the electrodes. As shown in Figure 4.7, the two dimensions
are the solid phase - the electrode particles are considered in a spherical domain -
and the liquid phase - the electrolyte is considered in a linear domain. This allows a
concentration gradient over the thickness of an electrode depending on the electrolyte
transport and a gradient inside the particle depending on solid diffusion. The four
governing laws that describe the battery dynamics within the solid and electrolyte
phases [129, 131] are listed below.

1. Conservation of mass in the solid phase and respective boundary conditions:

∂cs, j

∂ t
= Ds, j

[
∂ 2cs, j

∂ r2 +
2
r

∂cs, j

∂ r

]
(4.13)

∂cs, j

∂ r

∣∣∣∣
r=0

= 0 (4.14)

∂cs, j

∂ r
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r=R j

=
−iint, j

Ds, jas, jF
(4.15)



4.5 Battery Modeling 53

where t and r are the temporal and radial coordinates, respectively, j ∈ [p,n]
in the solid phase represents the positive or negative electrode, cs, j is the
lithium-ion concentration of each electrode, Ds, j is the diffusion coefficient,
iint, j is the intercalation current, as, j is the specific interfacial surface area,
R j is the radius of the spherical particle, and F is the Faraday constant. The
boundary conditions are defined at the center (r = 0) and the surface (r = R j)
of the solid particle. The flux of lithium ions at the center is zero, and the flux
at the surface is equal to the rate at which lithium ions are transported between
solid and electrolyte phases.

2. Conservation of charge in the solid phase and respective boundary conditions:

∂

∂x

(
σe f f ,i

∂φs, j

∂x

)
−as, jiint, j = 0 (4.16)

∂φs, j

∂x

∣∣∣∣
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=
Ibatt

σe f f ,i
(4.17)

∂φs, j

∂x

∣∣∣∣
x=Ln

=
∂φs, j

∂x
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x=Ln+Ls

= 0 (4.18)

where x is the linear Cartesian coordinate (it is defined in x ∈ [0,L], with
L = Ln+Ls+Lp), φs, j is the solid phase potential and σe f f ,i is the effective
electronic conductivity.

3. Conservation of mass in the electrolyte phase and respective boundary condi-
tions:

εe, j
∂ce, j

∂ t
=

∂

∂x

(
De f f

e, j
∂ce, j

∂x

)
+(1− t+0 )

±iint, j

F
(4.19)
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where j ∈ [p,n,s] in the electrolyte phase represents the cathode, the anode,
or the separator, ce, j is the lithium-ion concentration, t+0 is the transference
number, De f f

e, j is the electrolyte phase effective diffusion coefficient. Note that
a zero flux boundary condition is imposed at the current collectors, while con-
tinuity of concentration and flux is assumed between the anode, the separator,
and the cathode.

4. Conservation of charge in the electrolyte phase and respective boundary condi-
tions:

κ
e f f
j

∂ 2φe, j

∂x2 −κ
e f f
D, j

∂ 2 lnce, j

∂x2 +as, jiint, j = 0 (4.23)

∂φe, j

∂x

∣∣∣∣
x=0

=
∂φe, j

∂x
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x=Ln+Ls+Lp

= 0 (4.24)

where φe, j is the electrolyte phase potential, κ
e f f
j is the effective ionic conduc-

tivity in the electrolyte phase, and κ
e f f
D, j is the diffusional conductivity.

Despite being highly accurate for simulating charge-discharge cycles, the P2D
model has a complex mathematical structure, including algebraic constraints, and
requires a big parametrization effort and significant computing resources. These
models are unsuitable for real-time applications: to become more widely adopted for
lifetime estimation, the computational time needs to be reduced, either through the
development of reduced-order models or numerical methods [132].
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Fig. 4.7 Schematic representation of the Pseudo-Two-Dimensional (P2D) model.
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Enhanced Single-Particle Model (ESPM)

The ESPM is a reduced-order electrochemical model that approximates the behavior
of the entire electrode by a single spherical particle as represented in Figure 4.8.
In this model, the law of charge conservation in the solid phase is relaxed under
the assumption of infinite conductivity. Therefore, the ESPM is governed by only
three conservation laws: the mass conservation laws in the solid (Equation 4.13)
and electrolyte phase (Equation 4.19), and the charge conservation in the electrolyte
phase (Equation 4.23). The solid particle concentration is described along the radial
dimension r, while along x only the electrolyte concentration and potential are
considered (the variation of electrochemical potential in the solid particles along x
is ignored) [133]. The computational effort required to simulate charge-discharge
cycles is greatly reduced if compared to a P2D model.
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Fig. 4.8 Schematic representation of the Enhanced Single-Particle Model (ESPM).

Single-Particle Model (SPM)

The Single-Particle Model (SPM) was first used for modeling lithium-ion batteries
in [134], and represents a further approximation of the ESPM: as shown in Figure
4.9 it does not only approximate each electrode with a single spherical particle with
uniform current distribution (like the ESPM) but also assumes uniform lithium con-
centration in the electrolyte phase, thereby neglecting the electrolyte dynamics. Thus,
the conservation of mass in the solid phase (Equation 4.13) is the only physical law
governing the SPM dynamics. This approximation further reduces the computational
effort making it suitable for the design of real-time observers and controllers for
on-board applications. Despite this approximation, the SPM predicts well the battery
behavior at low C-rates [135]: the SPM model can simulate entire charge-discharge
cycles within seconds, thus allowing to understand how lithium-ion cells respond
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Table 4.1 Comparison of the governing laws in the electrochemical models.

Governing Laws P2D ESPM SPM

Conservation of mass in solid phase ✓ ✓ ✓

Conservation of mass in electrolyte phase ✓ ✓ ✗

Conservation of charge in solid phase ✓ ✗ ✗

Conservation of charge in electrolyte phase ✓ ✓ ✗

to different input stimuli, and it can be used within control designs to give good
estimates of the SoC. Nevertheless, since it ignores the dynamics of electrolyte
concentration and potential, the SPM model can simulate reasonably well only thin
electrodes and low current conditions but fails at high current conditions [32]. Table
4.1 compares the governing laws that describe the battery dynamics for the P2D,
ESPM, and SPM.
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Fig. 4.9 Schematic representation of the Single-Particle Model (SPM).

4.5.2 Data-driven Models

Heuristic or data-driven techniques are model-free approaches that, creating corre-
lations from experimental data, can be used to estimate battery SoH and predict its
Remaining Useful Life (RUL). These techniques require limited battery knowledge
and only need repeatable events. The recent advances in computational power and
data generation have led to increasing interest in the application of Machine Learning
(ML) techniques for predicting the RUL of batteries using data collected in both
laboratory and online environments [136, 137]. ML approaches appear to be par-
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ticularly attractive for high-rate operating conditions, where first-principles models
may lack accuracy. Opportunities for improving the prediction capabilities include
higher accuracy, earlier prediction, greater interpretability, and broader application
to a wide range of cycling conditions.

In a purely data-driven approach, very few assumptions are made about the
underlying principles governing the behavior of the battery, and machine learning
models are trained with raw input signals (current, voltage, temperature, etc.), e.g., in
[138]. Other types of data-driven methods extract features from the voltage, current,
temperature, impedance, or power profiles that are used as inputs to machine learning
models, e.g., in [26]. The feature-based models are commonly less complex than
those trained with raw data, thus requiring less training data and being more readily
applicable to lifetime estimation. All the data-driven approaches, however, suffer
from the so-called ‘curse of dimensionality’: the amount of data needed to capture all
combinations of operating conditions grows quickly with the number of conditions
being investigated. This is compounded by the relatively slow rate at which battery
lifetime data can be acquired, taking several months or years of experiments for each
change in chemistry, form factor, or manufacturing process.

Finally, considering that ML and PB models both offer qualities that are distinct
but complementary to each other, there is a growing trend of studies that tries to
blend these two models to achieve better battery life prediction [56, 27]. These
hybrid architectures are particularly promising since they could potentially combine
physics-based and data-driven approaches to extrapolate outside the training data
and allow accelerated development.

4.6 Modeling Tools

This Section will give some technical details about the software adopted in this work.
Concerning the first case study, the data analysis and the reverse engineering of
the strategy (see Section 5.1.3) were carried out in MATLAB®. For the virtual test
rig development (Section 5.1.4), since fuel consumption and energy flows are the
main subjects of this study, a quasi-static approach (see Section 4.2.3) was used. In
particular, the software used for implementing the simulator is GT-SUITE® [139],
a mono-dimensional (1D) fluid-dynamic numerical code developed by Gamma
Technologies. The simulator is purely longitudinal: it does not account for any
lateral or vertical motion. Steady-state efficiency maps were used for modeling the
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powertrain components, i.e. ICE, EM, and battery. Since MATLAB® and Simulink®

allow higher flexibility in the control design, the energy management system of the
HEV was implemented in this software. MATLAB® was also employed for the
vehicle speed optimization (see Section 5.2). The DP, relying on the open-source
MATLAB® code developed at ETH-Zurich [140] was used for solving the optimal
control problem, but it requires a simplified version of the vehicle model, relying
on a backward kinematic model (see Section 4.2.2), which was built in Matlab®.
This model features a lower order of dynamics in comparison with the GT-SUITE®

model, i.e., it neglects any slip of the clutch and considers an instantaneous start
and stop of the engine. This allows for reducing the computational requirement and
satisfactorily capturing the energy flows in the vehicle.

Concerning the second case study, MATLAB® was used for developing the
data pre-processing pipeline, and also for analyzing the processed field data. The
simulations were run on Sherlock high-performance computing cluster at Stanford
University [141].



Chapter 5

Case Study 1: Innovative EMS

The main control strategies for the energy management of HEVs, described in
Chapter 3, can be used as a basis for developing advanced energy management
strategies. In this context, it is of paramount importance to assess the state-of-the-art
strategies already existing in the market. On the contrary, given the novelty of hybrid
powertrains and their intrinsic complexities, car manufacturers are very jealous of
their technical know-how, which is not usually disclosed. In this framework, this
Chapter aims to propose innovative energy management strategies that are tested on
a virtual test rig of a real case study. Figure 5.1 depicts the flowchart of the procedure
carried out and the structure of the Chapter is summarized below:

• In Section 5.1, a digital twin of a commercially available pHEV is built. The
data gathered from an extensive experimental campaign performed on the
vehicle are post-processed and used to reverse engineer its control strategy and
build a virtual test rig without having direct access to its EMS. This activity is
described more in detail in [142];

• In Section 5.2 the virtual test rig is used to perform a vehicle speed optimization
and assess, in a real-world scenario, the benefits that could be obtained by V2X
connectivity and cloud computing on energy consumption and travel time. This
activity, described more in detail in [143], proposes a Variable Grid Dynamic
Programming (VGDP) that modifies the variable state search grid on the basis
of V2X information allowing a drastic reduction in the DP computation burden
by more than 95% if compared to the standard optimization performed with a
fixed grid;
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• The virtual test rig is then used to assess the potentialities of two advanced
energy management strategies. The first one, which is described more in
detail in [144], proposes an innovative deep learning-based EMS where the
optimal solutions, provided by DP, are used to train RNNs to efficiently handle
the energy management of the pHEV, achieving sub-optimal results. The
second one, which was first proposed in [145] and further developed in [146],
proposes an innovative A-ECMS algorithm. The information about future
vehicle driving patterns, which could be obtained from V2X connectivity, is
used by an LSTM deep learning model to find the optimal equivalence factor.
For the sake of brevity only the work presented in [146] will be described in
Section 5.3.

POWERTRAIN 
CHARACTERIZATION

ADVANCED 
EMS

VEHICLE SPEED 
OPTIMIZATION

VIRTUAL TEST RIG 
DEVELOPMENT

Fig. 5.1 Flowchart of the procedure carried out: powertrain characterization, virtual test rig
development, vehicle speed optimization, and advanced energy management strategies.

5.1 Vehicle Digital Twin

In this Section, a virtual test rig of a commercially available pHEV is built. The
data gathered from an extensive experimental campaign performed on the vehicle
are carefully analyzed and post-processed in order to extract the strategy adopted
by the EMS, pointing out any dependency of its decisions on the powertrain’s main
operating variables.

5.1.1 Test Case

The vehicle used in this Section as a case study is a Mercedes E300de, a state-of-the-
art diesel pHEV available in the European market. Figure 5.2 schematically shows
the powertrain layout and Table 5.1 summarizes the main vehicle and powertrain
characteristics. It features a P2 architecture where a Euro 6d-temp 2.0-liter diesel ICE
is coupled, through an auxiliary clutch (K0), with a 90 kW EM of PM synchronous
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type. Both the ICE and the EM are connected, through a Torque Converter (TC)
and a 9-speed Automatic Transmission (AT), to the rear axle. The powerful 90 kW
EM, powered by a 13.5 kWh Li-Ion Nickel-Manganese-Cobalt-oxide (Li-NMC) HV
battery, allows an all-electric range of 54 km, and a maximum speed, in all-electric
mode, of 130 km/h. A DC/DC converter allows the HV battery to feed the 12V
battery and all the Low Voltage (LV) loads (i.e., the 12V starter and the electrical oil
pump for gearbox lubrication).

ICE: Internal Combustion Engine HPCU: Hybrid Power Control Unit K0: Separation Clutch 

EM: Electric Machine PTC: Positive Temperature Coefficient TC: Torque Converter

AT: Automatic Transmission A/C: Air Conditioning 
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Fig. 5.2 Powertrain layout: a diesel engine is connected through an auxiliary clutch to an EM.
Both the ICE and the EM are connected to the transmission by means of a torque converter.

Typically, a pHEV can operate in two different modes:

• Charge Depleting (CD):
When the battery is sufficiently charged, the vehicle is mainly propelled in
fully electric mode;

• Charge Sustaining (CS):
When the battery SoC reaches a lower boundary, the ICE is used for propulsion
and the SoC is maintained within a small window.

In the investigated vehicle, a Hybrid Power Control Unit (HPCU) is connected to
the HV inverter, which handles the energy flows between the EM and the HV battery
pack. The HPCU allows the driver to select between four different driving modes:
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Table 5.1 Vehicle and powertrain main specifications.

Vehicle
Curb Weight [kg]

Power [kW] @ 100 km/h
2060
14.9

Transmission Type 9-AT w/ Torque Converter

ICE

Type
Displacement [cm3]

Max Power [kW] @ 3800 rpm
Max Torque [Nm] @ 1600-2800 rpm

Compression Ratio

In-line 4 cylinders Turbo Diesel
1950
143
400

15.5:1

EM

Type
Max Power [kW] @ 2000 rpm
Max Torque [Nm] @ 1750 rpm

Max Speed [rpm]

PM Synchronous Motor
90
440

6000

HV Battery

Type
Rated Voltage [V]

Cacapity [kWh]/[Ah]
Cooling System

Li-NMC
365

13.5/37
Water Cooled

• Hybrid Drive:
It is the default setting; the EMS autonomously decides the powertrain operat-
ing mode depending on the driving situation and the route profile;

• Electric Drive:
This setting ensures zero local emissions because it is performed in CD mode;
the power necessary to propel the vehicle is provided by the EM;

• E-Save Drive:
This mode ensures the charge sustaining of the battery SoC, in order to al-
low the electric drive at a later stage; thus, the EM propels the vehicle in
combination with the ICE;

• Charge Drive:
This mode ensures that only the ICE propels the vehicle, while constantly
charging the battery.

It is worth mentioning that during the test campaign, the hybrid drive was always
selected so that the ECU of the vehicle autonomously decided the power split. In
particular, two different operating modes are considered:

• EV Mode:
The EM delivers all the required torque;



5.1 Vehicle Digital Twin 63

(a)

(b)

Fig. 5.3 Vehicle tested over the NEDC - (a): Vehicle speed profile along with the operating
modes: EV mode (green) and parallel mode (blue) – (b): Engine state: 1 (on) and 0 (off).

• Parallel Mode:
Both the ICE and the EM deliver the required torque.

The engagement of the clutch K0 between ICE and EM (see Figure 4.1) is
chosen as a discriminator between the two modes. During the EV mode, the clutch is
disengaged and the ICE is off, while during the parallel mode, the clutch is engaged
and the ICE is coupled to the EM and the transmission. Figure 5.3 depicts the
typical layout of the NEDC vehicle speed profile as a function of time, where the
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Table 5.2 Characteristic values of the cycles performed during the experimental campaign.

Cycle Time Distance Avg.
Speed

Max
Speed

Avg.
Acc.

Max
Acc.

Required
Energy

Test
Bench

[s] [km] [km/h] [km/h] [m/s2] [m/s2] [Wh/km] [−]

NEDC 1180 11 34 120 0.38 1.42 184 ✓
WLTC 1800 23 47 131 0.41 1.84 222 ✓

RDE1 838 13 57 161 0.74 5.56 274 ✗

RDE2 4322 69 57 128 0.36 1.74 258 ✗

RDE3 4327 68 56 144 0.37 1.91 273 ✗

RDE4 6657 89 48 126 0.30 1.68 207 ✓

RDE5 6666 89 48 126 0.29 1.69 215 ✓

RDE6 5926 97 59 139 0.38 3.41 225 ✗

RDE7 5532 97 63 138 0.35 4.22 223 ✗

parallel and EV modes are represented with blue and green points, respectively. The
above-mentioned classification will be used hereinafter, but it should be noted that
it is just a preliminary differentiation between the operating modes; more details
about power split, load point moving, e-assist, etc., will be discussed in the following
paragraphs.

5.1.2 Experimental Campaign

The vehicle was tested during an extensive experimental campaign. Most of the tests
were carried out on an All-Wheel Drive (AWD) chassis dynamometer, but some
additional measurements were performed in real-world scenarios, equipping the
vehicle with a Portable Emissions Measurement System (PEMS), as described in
detail in [147].

The characteristic values of the most representative cycles performed during
the experimental campaign are shown in Table 5.2. As far as regulatory driving
cycles are concerned (i.e., NEDC and WLTC), measurements were performed on the
chassis dynamometer following the type-approval procedure [148]. For a pHEV, the
guidelines defined in the UNECE Regulation 83 require two tests [5]:

• Condition A:
At the beginning of the test, the HV battery must be fully charged;
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Table 5.3 Trip composition of the RDE7.

Section Duration Distance Distance Share Average Speed

[s] [km] [%] [km/h]

Urban 3067 30.4 31.5 33.9

Rural 1405 31.0 32.2 76.1

Motorway 1060 35.1 36.4 113.9

Total Trip 5532 96.4 [-] 63.1

• Condition B:
At the beginning of the test, the HV battery must be fully discharged.

According to the Regulation, Condition B was repeated both featuring a hot
engine (i.e., immediately after Condition A) and a cold engine (i.e., performed one
day after Condition A). The Real Driving Emissions (RDE) cycles, instead, were
performed to fully characterize the powertrain control logic. As shown in Table 5.2,
some cycles were conducted on the test bench by following real-driving mission
profiles, while others were conducted on public roads on the outskirts of the Italian
city of Turin (denoted with the ✗ symbol in Table 5.2). The experimental campaign
allowed us to test the vehicle in a wide spectrum of driving conditions.

By way of example, the RDE7 is illustrated in Figure 5.4, along with its vehicle
speed plotted as a function of time. It is a pre-defined RDE-compliant route [149],
and it will be used as a test case in the following Sections. The route, shown in
Figure 5.4a, was obtained from Portable Emissions Measurement System (PEMS)
and combined with a topographic map. It lasts approximately 92 minutes and is 96
kilometers long. In the test, a rural and a motorway operation follow the urban one,
involving mild uphill and downhill sections and the trip composition is summarized
in Table 5.3. In an RDE-compliant cycle, like this one, each section, i.e., urban, rural,
and motorway, must cover a distance higher than 16 km, while the distance share
must be contained in the (23–43)% range, for the rural and motorway sections, and
in the (29–44)%, for the motorway one.
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(a) (b)

Fig. 5.4 RDE7 - (a) Vehicle position obtained from PEMS and combined with a topographic
map (Courtesy of Google Maps). The route lasted approximately 92 minutes and was 96
kilometers long; (b) Vehicle speed as a function of time divided into urban, rural, and
highway sections.

5.1.3 Reverse Engineering

The hybrid powertrain was fully characterized without performing a complete ve-
hicle teardown. The Controller Area Network (CAN)-bus protocol, the On-Board
Diagnostic (OBD) system, and additional sensors installed in strategic locations
were used to collect data. For a detailed description of the vehicle instrumentation
see [147]. The ICE was characterized in terms of Brake Specific Fuel Consumption
(BSFC) maps, while the EM was characterized by combining the measurements of
the electrical energy on the DC side with data available from the CAN-bus protocol.
The torques and rotational speeds of ICE and EM were acquired from CAN. In fact,
because of the system complexity and the huge effort required in the data acquisition,
the EM was not instrumented. The maps used for modeling ICE and EM are shown
in Figure 5.5. The engine BSFC is interpolated from the map reported in Figure 5.5a,
as a function of engine speed and BMEP, while the EM losses are reported in Figure
5.5b as a function of speed and power.

Also for the HV battery, it was not possible to perform a detailed characterization
of the battery chemistry. During the experimental campaign, a wide range of battery
SoC, current, and voltage was explored by performing charge-discharge cycles to
characterize the battery OCV and the internal resistance. The battery was modeled
by means of an ECM, whose parameters are plotted in Figure 5.6 as a function of
SoC. Since the EMS of the actual vehicle could not be accessed, the SoC variable
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(a) (b)

Fig. 5.5 (a): BSFC of the Internal Combustion Engine; (b): Efficiency of the Electric
Machine.

Fig. 5.6 High-voltage battery cell data: internal resistance in charge and discharge (orange
line) and OCV (blue line) as a function of SoC.

used for the analysis is the dashboard displayed value which was acquired from the
CAN network. Hence, the SoC varies in the range of 0-100% and is an indication of
the actual energy capacity available to the user.

This Section focuses on the methodology carried out for reverse engineering the
control strategy implemented in the hybrid powertrain without direct access to the
EMS, and without a detailed characterization of the ICE, the EM, and the HV battery.
The data coming from the experimental campaign described in Section 5.1.2 were
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carefully analyzed and post-processed in order to extract the strategy adopted by the
EMS, pointing out any dependency of its decisions on the main powertrain operating
variables.

GPS Information Dependency

According to the car manufacturer, the vehicle EMS employs an intelligent operating
strategy that takes into account navigation data, topography, speed limits, and traffic
conditions of the planned route, in order to activate the electric driving mode when
it is most appropriate [150]. RDE2 and RDE3 are specific tests aimed at assessing
the reliance of the EMS decisions on the Global Positioning System (GPS) infor-
mation: they feature the same real-world route with the vehicle navigation system
alternatively switched ON and OFF. Figure 5.7a represents the RDE3 (navigation
system switched OFF), while Figure 5.7b represents the RDE2 (navigation system
switched ON). In both plots, the vehicle speed is plotted as a function of distance
highlighting the operating modes, along with the battery SoC profile. When the
navigation system is OFF, more than 40 km are covered in CD phase, leading to an
almost linear SoC depletion. The ICE is switched ON only when the power requested
by the driver exceeds the max performance of the EM. On the contrary, when the
navigation system is ON, the EMS changes its strategy ensuring that the last stage
of the journey (the urban one) can be covered in all-electric mode. As illustrated in
Figure 5.7b, although the battery is fully charged at the beginning of the test, the
highway section is performed in parallel mode, and the battery SoC remains almost
constant. Then, the urban section is performed in EV mode, and the battery SoC is
linearly depleted. Nevertheless, the battery is not fully discharged at the end of the
test, and the hybrid potentiality is not fully exploited.

More details can be obtained from Figure 5.8. It depicts, during the highway
section, the vehicle speed as a function of time highlighting the operating modes,
along with the power delivered by the ICE and the EM. As evident from Figure 5.8a,
when the navigation system is switched OFF, the ICE is started only when the power
requested by the driver exceeds the max performance of the EM. On the contrary, as
illustrated in Figure 5.8b, when the navigation system is switched ON, the highway
section is almost entirely performed in parallel mode (the EM propels the vehicle
only during low speed and acceleration phases). Moreover, when the ICE is switched
on, the vehicle is propelled in ICE-only mode, e.g., in the interval 650-1100s, and
the power delivered by the EM is almost null.
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(a) (b)

Fig. 5.7 Above: Vehicle speed plotted as a function of distance highlighting the operating
modes: EV mode (green) and parallel mode (blue) – Below: Battery SoC profile as a function
of distance. (a): GPS OFF; (b): GPS ON.

(a) (b)

Fig. 5.8 Above: Vehicle speed plotted as a function of time highlighting the operating modes:
EV mode (green) and parallel mode (blue) – Below: ICE and EM power profiles plotted as a
function of time. (a): GPS OFF; (b): GPS ON.

Figure 5.9, instead, displays the trade-off between CO2 emissions and final SoC
values for the two cases with the navigation system alternatively switched ON and
OFF. When the navigation system is ON, although the EMS employs an intelligent
operating strategy that activates the electric driving mode when it is most appropriate,
it does not employ all the electrical energy stored on board since the battery is not
fully depleted at the end of the driving cycle. This leads to higher CO2 emissions
if compared to the case with the navigation system switched OFF, which, on the
contrary, completely discharges the battery at the end of the driving cycle. Therefore,
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Fig. 5.9 Tradeoff between CO2 emissions and final SoC with GPS ON (blue circle) and OFF
(black square).

the comparison between the two strategies is not meaningful due to the different
depths of discharge, and the real potential of the intelligent operating strategy, in
terms of fuel savings, cannot be fully assessed given the limited dataset available.

Normal Operation

The current work aims to build a virtual test rig that can reproduce the vehicle
behavior in normal operation. Some particular conditions entailing variations in
the rules followed by the EMS will not be taken into account henceforth, e.g., the
missions where the driver communicates the vehicle route to the EMS through the
GPS navigation system, or the type-approval procedure featuring a cold engine (i.e.,
the cycle performed one day after Condition A).

If the battery at the beginning of the mission profile is fully or partially charged,
the vehicle is propelled in EV mode (some exceptions will be seen in Section 5.1.3).
The parallel mode is enabled only when the battery reaches low values of the SoC.
Figure 5.10 shows the WLTC repeated several times according to the Regulation
[5], where the colors follow the convention explained in Section 5.1.1. The vehicle
performs twice the WLTC in EV mode (marked with a dashed area), and the ICE is
switched on only at the end of the second cycle. The following Sections will analyze,
more in detail, the rules followed by the control logic in CD and CS conditions. For
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the sake of simplicity, the rules will be mainly shown on the WLTC, although also
the other cycles were used in the overall procedure followed to extract them.

Fig. 5.10 WLTC repetitions according to the Regulation [5] - Above: Vehicle speed profile
plotted as a function of time highlighting the operating modes: EV mode (green) and parallel
mode (blue) – Below: Battery SoC profile as a function of time. The dashed area highlights
the section performed in CD mode.

Rules in Charge Depleting

As already mentioned, if the battery at the beginning of the mission profile is fully or
partially charged, the EMS chooses a CD strategy. From the analysis of the WLTC
repetitions (black box in Figure 5.10), it can be noted that all the CD phase is carried
out in EV mode: the ICE is never switched on and the EM delivers all the required
power. A different behavior can be seen for the RDE3 test (represented in Figure
5.11): also during the CD phase, the ICE is switched on (red dots) if higher loads are
required.

A more granular analysis can be done from Figure 5.12, where all the EM
operating points are plotted on its efficiency map. The same color convention of
Figure 5.3 is adopted, i.e., green, blue, and red denote EV mode, parallel mode,
and ICE switching on, while all the gray dots represent the transition phases during
which the engine and the clutch engagement status are changing. It is eye-catching
that, during the CD phase, the ICE is usually switched on (red dots) when the EM
reaches its max performance. Moreover, in parallel mode, once the ICE is switched
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Fig. 5.11 RDE3 - Above: Vehicle speed profile along with the operating modes: EV mode
(green) and parallel mode (blue) – Below: Battery SoC profile as a function of time. The
ICE switching on during the CD phase is denoted with red dots.

on, the EM spends most of the time at very low loads, implying that the vehicle is
operating in a pure ICE drive.

The same behavior can be more clearly understood from Figure 5.13, where the
EM power is plotted as a function of the powertrain power. As expected, all the
green points lay on the bisector: thus, in EV mode, all the power is provided by the
EM. In parallel mode, however, the behavior is surprising: most of the blue points
lay on the x-axis. Thus, in parallel mode during the CD phase, the driver power
request is almost totally fulfilled by the ICE.

Rules in Charge Sustaining

As evident from Figures 5.10 and 5.11, it can be noted that there is a turning point
causing a switch from CD to CS mode. Indeed, from the analysis of the SoC
trajectory over different mission profiles, it may be deduced that the EMS uses an
SoC threshold of about 13%, for switching from CD to CS mode.

During the CS phase, since the energy must be ultimately provided by the ICE,
the control strategy drastically changes if compared to the CD phase. Figure 5.14
shows the WLTC performed during the CS phase, where all the engine switch on
and off are depicted (red and blue bullets, respectively) on the vehicle speed profile.
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Fig. 5.12 RDE3 - EM working points in speed (x-axis) power (y-axis) map and full-load
curve. Green dots: EV mode; blue dots: parallel mode; red dots: engine switching on; grey
dots: transition phases, i.e., the engine status and the clutch engagement are changing.

Fig. 5.13 RDE3 - EM power plotted as a function of the powertrain power. Green dots: EV
mode; blue dots: parallel mode; grey dots: transition phases, i.e., the engine status and the
clutch engagement are changing.

Some meaningful variables were analyzed in order to highlight some threshold
values determining the engine switch on or off. From Figure 5.15 (above), where all
the engine ignition points during the WLTC are plotted as a function of the vehicle
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Fig. 5.14 WLTC performed during the CS phase, where all the engine switch ON and OFF
are depicted (red and blue bullets, respectively) on the vehicle speed profile.

acceleration and speed, a clear pattern (hyperbola branch) can be identified. As
expected, the higher the acceleration required by the driver the lower the vehicle
speed threshold for ICE switching on. Similarly, Figure 5.15 (below) depicts all the
engine shutdown points (always for the WLTC) plotted as a function of powertrain
torque and vehicle acceleration. These two variables seem to be correlated through a
linear trend because the lower the torque required by the driver the higher the vehicle
deceleration threshold for ICE switching off. This control rule may be implemented
for safety reasons since the combinations of engine inertia, pumping, and friction
losses can provide additional braking power to the drivetrain that may be helpful
during higher decelerations. Some additional constraints were observed on the
minimum time for the engine to stay on and off: for all the investigated cycles it was
observed that the ICE stayed on for at least 5 seconds and off for at least 4 seconds.

As already done for the CD mode, a more specific analysis was conducted to
characterize the power split in CS mode. Figure 5.16 depicts all the engine operating
points during the WLTC as a function of the torque delivered by the powertrain
(ICE+EM) and the torque delivered by the ICE. The points that lay on the red
line (PICE = PPWT ) represent an ICE-only mode; above the red line, the powertrain
operates in Load Point Moving (LPM), i.e., the ICE works at higher loads to allow
battery recharging; under the red line, an e-boost is performed. As evident from
Figure 5.16, the ICE works most of the time in the LPM zone, boosting the battery
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Fig. 5.15 Mapping of engine switching on and off during a WLTC - Above: Engine switch-on
points as a function of vehicle acceleration and speed – Below: Engine shutdown points as a
function of powertrain torque and vehicle acceleration.

Fig. 5.16 WLTC – ICE torque represented as a function of the total powertrain torque.
Blue dots: parallel mode; grey dots: transition phases, i.e., the engine status and the clutch
engagement are changing.

recharge. This allows compensation of the energy provided by the battery in EV
mode, to reach charge sustainability at the end of the cycle. On the contrary, an
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e-boost is almost never performed since, as already mentioned, all the grey points
represent only transitional phases.

An almost linear relationship can be identified between the torque delivered by
the ICE and the total torque delivered by the powertrain. In particular, the lower the
requested power, the bigger the shift of the engine operation toward higher loads.
This may be performed to counterbalance the BSFC worsening at low ICE loads.
From a more granular analysis, however, the rule governing the torque split during
the CS phase appeared to change according to the SoC trend. This behavior can be
more clearly understood from Figure 5.17, where different sections of the WLTC are
analyzed separately depending on the SoC values. Specifically in sections 1 and 4,
marked by blue and red boxes, respectively, the SoC is higher than 15%, while in
sections 2 and 3, marked by yellow and green boxes, respectively, lower than 13%.

Fig. 5.17 WLTC subdivision in different time intervals depending on the SoC values. For
each section, the correspondent torque split law is shown.

It seems that different relationships between the ICE and the total torque can be
highlighted depending on SoC values. In fact, if the SoC is above the mentioned
threshold (sections 2 and 3), the torque delivered by the engine appears to be closer
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to the red line (apart from section 1 where a different behavior may be attributed
to the engine warm-up). As a consequence, the ICE power exceeding the traction
request, thus available for battery recharging, is quite limited, and for this reason,
this rule will hereafter be referred to as the “weak rule.” On the other hand, when
the SoC is below the mentioned threshold (section 3), the torque split between ICE
and EM seems to follow a different rule, with a higher deviation from the red line.
As a consequence, a higher ICE power is available for battery recharging, and for
this reason, this rule will hereafter be referred to as the “strong rule”. For the sake
of clarity, Figure 5.18 shows an enlargement of the two rules governing the torque
split, i.e., the abovementioned “weak” and “strong” rules. The evidence from all the
analyzed cycles suggests that the observed strategy that decides the torque split in
the CS phase is aimed at guaranteeing charge sustainability while keeping the SoC
in the range of 13%-15%.

(a) (b)

Fig. 5.18 Extraction of the rules governing the torque split - (a): “weak rule” entailing softer
recharge of the battery – (b): “strong rule” entailing stronger recharge of the battery.

Rule-Based Supervisory Controller

The rules extracted in the previous Sections have been summarized in Figure 5.19.
Although the control strategy implemented in the actual vehicle could be more
complex, the flowchart explains quite well the overall behavior of the rule-based
strategy. “Rule ON” and “Rule OFF" are the thresholds for switching on and off
the engine; they were described in Section 5.1.3 and are represented in Figure 5.15.
The minimum SoC that can be reached in CD operation triggering the passage from
CD to CS operation is equal to 13%. The max SoC value for CS operations (i.e.,
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the system exits from CS operation as soon as the SoC reaches this value) is 20%.
In summary, if the battery is fully or partially charged, the vehicle operates in EV
mode (i.e., only the EM provides the required power). If the power request exceeds
the max EM capacity, the ICE is switched on, and the vehicle operates in parallel
mode until the rule governing the ICE switching off is not triggered. This rule
does not differ too much from the one governing the CS phase illustrated in Figure
5.15. When the battery SoC reaches a value of 13%, it triggers the passage from
CD to CS strategy. In CS operation, the ICE is switched on according to the law
shown in Figure 5.15, and is switched off according to the rule illustrated in Figure
5.15. Finally, through the combination of an LPM strategy (see Figure 5.18) and an
additional condition inhibiting the ICE switching on above a certain SoC threshold,
the charge sustainability is guaranteed.

Parallel Mode

Parallel Mode

Charge Depleting

Charge Sustaining

Rule ON

YES

SoC ≤ 17%

YES
NO

Rule OFF

NO

YES
PEM > PEM,max

YES
NO

Rule OFF

NO

YES

NO

EV Mode

EV Mode

SoC ≤ 13%

Fig. 5.19 Flowchart describing the overall behavior of the rule-based strategy extracted from
the actual vehicle.

5.1.4 Validation

Vehicle Modeling

As shown for the WLTC, the procedure described in the previous Sections was carried
out on the other driving cycles to obtain a set of comprehensive rules, capturing the
vehicle behavior in a wide range of driving conditions. The extracted rules were
used to build a virtual test rig of the tested vehicle. The model was developed in the
GT-SUITE® [151] software environment using a quasi-static approach (see Section
4.2.3): the virtual vehicle driver compares the actual vehicle speed to a target one
and generates a power demand profile to follow the target speed. The code computes
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the actual vehicle speed by solving the longitudinal vehicle dynamics, while fuel
consumption is calculated based on steady-state performance maps. The powertrain
parameters along with the performance maps are described in Sections 5.1.1 and
5.1.3. Regarding the HV battery, it was modeled as a simple ECM. Knowing its
chemistry, i.e., Li-NMC battery technology, the OCV, and the internal resistance
were modeled, as a function of the cell SoC and temperature, using data available in
the scientific literature [152, 153] as a starting point. Then, the model parameters
were experimentally tuned by matching the experimental charge-discharge tests.
Finally, the RB control strategy was implemented in the Simulink® environment and
then coupled with the GT-SUITE vehicle model. The ICE switching on and off is
governed by the rules presented in the previous Section, while a weighted average
of the two LPM laws, based on the instantaneous battery SoC, is implemented to
introduce a smooth transition between strong and weak conditions (see Figure 5.18).

In order to properly estimate the amount of energy recovered through regenerative
braking and consequently replicate the experimental SoC trajectory, it is of paramount
importance to capture the powertrain contribution to the vehicle braking system.
In a hybrid vehicle, during braking maneuvers, the braking control logic depends
on comfort and safety levels, and on the battery current limits. In particular, for a
rear-wheel drive configuration, such as the test case, particular attention should be
paid to vehicle dynamics since the EM contributes to the rear axle braking. The
braking system was modeled through static maps, experimentally obtained in [147],
where the braking power ratio, i.e., regenerative braking power over total braking one,
is expressed as a function of vehicle speed and acceleration. As already mentioned,
the virtual test rig was aimed at reproducing the vehicle behavior in standard driving.
Some particular conditions entailing variations in the rules followed by the EMS
were not taken into account.

Model Validation

The model validation was mainly carried out along the regulatory driving cycles,
but, in order to prove its capabilities in predicting the vehicle behavior also in a
real-driving scenario, the model validation will be only shown for the RDE7 cycle.
It should be added that, in order to give more robustness to the model validation,
this cycle was not included in the procedure followed for reverse engineering the
vehicle control strategy. Figures 5.20 and 5.21 show the simulation results (red line)
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Table 5.4 Comparison between experimental data and simulation results for the battery final
SoC and the vehicle CO2 emissions over the RDE7

CO2 Specific Emissions [g/km] Final SoC [%]
Exp Sim Exp Sim
95 96 19 18

+1.0% −4.7%

compared to the experimental measurements (black dashed line), with the plots on
the right representing an enlargement of the highlighted area on the left.

Figures 5.20a and 5.20b display the vehicle speed profile: despite being a dy-
namic model, i.e., the speed is not imposed but seen as a target, the model results
excellently match the experimental value, even during erratic speed variations. Fig-
ures 5.21a and 5.21b prove that the ICE rotational speed is well captured over the
entire cycle, and, apart from some occasional cases, the model correctly predicts
the ICE on and off events. Moreover, as evident from Figure 5.20e, the transition
from CD to CS mode is well captured. Although the cycle is highly transient, the
operating points of ICE and EM are correctly reproduced in terms of speed and load.
As a result, the battery SoC profile – Figures 5.20e and 5.20f – show a remarkable
agreement with the measured data: for the majority of the trip, the difference between
measurement and simulation lies within the ±5% limit.

Figures 5.20 and 5.21 prove the robustness of the strategy obtained from the
reverse engineering of the actual vehicle. Furthermore, the limited errors in both
the battery final SoC and the total vehicle CO2 emissions (see Table 4) prove the
reliability of the vehicle model in reproducing, in a virtual environment, the behavior
of the actual vehicle. Although the final SoC discrepancy may appear quite significant
(4.7%), it should be noted that this value is almost negligible (0.44%) if compared
with the energy required for the entire driving cycle: less than 0.1 kWh over 21.6
kWh. Hereinafter, the extracted control logic will be indicated as RB and will be
used as a reference for the assessment of the performance of the advanced control
energy management strategies.
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Fig. 5.20 Comparison between numerical simulation (red line) and experimental measure-
ments (black dashed line) for the RDE7 – (a) (b): Vehicle speed – (c) (d): EM torque; (e) (f):
Battery SoC. The plots on the right represent an enlargement of the highlighted area on the
left.
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Fig. 5.21 Comparison between numerical simulation (red line) and experimental measure-
ments (black dashed line) for the RDE7 – (a) (b): ICE speed; (c) (d) ICE torque; (e) (f) Fuel
rate. The plots on the right represent an enlargement of the highlighted area on the left.
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5.2 Vehicle Speed Optimization

As already mentioned, the development of the virtual test rig was aimed at obtaining
a high-fidelity test bench in which several optimization analyses could be performed.
The first analysis was aimed at assessing the theoretical benefits that the introduction
of V2V and V2I communication can have, in a real-world route, in terms of energy
and time savings. With the recent advances in ITS technology that could empower
vehicles to share information with the surrounding environment, vehicles can have
realistic information about speed limits and Expected Time of Arrival (ETA). In
this context, a Variable Grid Dynamic Programming (VGDP) is proposed which by
modifying the variable state search grid on the basis of the V2X information allows
a drastic reduction in the DP computation burden by more than 95% if compared to
the standard optimization performed with a fixed grid. For this analysis, a simplified
version of the vehicle model, relying on a backward kinematic model (see Section
4.2.2) was developed in MATLAB®. Moreover, since this analysis was focused at the
vehicle level, the energy is minimized and powertrain agnostic results are obtained,
i.e., adaptable for each type of vehicle: ICEV, HEV, pHEV, BEV, etc.

5.2.1 Scenarios Generation

The cycle selected as the Reference Scenario is the RDE7, a pre-defined RDE-
compliant route [149], while the simulation scenarios are generated by assuming
two different levels of penetration of V2X technologies. Scenario #1 was designed
supposing that a global optimization algorithm can choose the vehicle speed in the
real-world mission profile, still respecting all the full stops imposed by traffic and/or
infrastructure. Thus, starting from the Reference Scenario, several intersections,
regulated by a stop sign, were introduced every time the vehicle comes to a full stop.
As depicted in Figure 5.22a, it is assumed that the vehicle can have full access to
infrastructure and traffic information. As shown in Figure 5.23, the optimizer is
allowed to range in a vehicle speed window that takes into account the effects of
speed limits and mild traffic conditions in a realistic scenario. Specifically, the upper
and lower boundaries were obtained, starting from the speed profile of the Reference
Scenario, by applying a moving average of ± 20 km/h over a section of 500 meters.
It should be noted that the upper boundary never exceeds 135 km/h, and both the
upper and lower ones merge to zero whenever a full stop sign is introduced.
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Fig. 5.22 Scenarios generation - (a): Scenario #1: generated starting from the Reference
Scenario and assuming an intersection regulated by a stop sign every time the vehicle comes
to a full stop; – (b): Scenario #2: generated starting from Scenario #1 and converting all the
stop signs into traffic lights.

Scenario #2 was designed starting from Scenario #1 and converting all the
stop signs into smart traffic lights. The duty cycle of the traffic lights was chosen
following the guidelines provided for urban areas in [154]: cycle lengths of 60–90
seconds and a 3:2 ratio (for the amount of green time) are suggested to improve
pedestrian compliance and decrease congestion on surrounding streets. Following
these guidelines, the traffic lights were modeled through square waves with a period
of 1 minute and a green phase of 60%, but, for the sake of simplicity, only red
and green phases were considered. To introduce variability, the initial phase was
randomly assigned. The speed boundaries were modified allowing a time-dependent
upper boundary where the traffic lights are located. The upper boundary assumes the
moving average value or zero if the traffic light has a green or red phase, respectively.
As depicted in Figure 5.22b, it is assumed that SPaT information is deterministic
and given; thus, the optimizer can have a-priori access to infrastructure and traffic
information via V2I communication.
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Fig. 5.23 Speed boundaries: the upper and lower boundaries of the window were thought to
merge the effects of speed limits and mild traffic conditions in a realistic scenario.

5.2.2 Optimal Control Problem

The eco-driving problem can be formalized as an optimal control problem (see Sec-
tion 3.2), where the optimizer can have access to both the vehicle’s GPS coordinates
(e.g., total trip length, road grade, and speed limits) and V2X information (e.g., SPaT,
traffic conditions). Since the position of all the route features varies in a time-based
perspective but remains fixed in a distance-based one, it is beneficial to express
the model equations in distance-based coordinates: distance l (instead of time t)
becomes the independent variable. Equation 3.2 can be reformulated as follows:

J = Φ(x(l f ), l f )+
∫ l f

l0
L(x(l),u(l), l) dl (5.1)

subject to the following constraints:


G(x(l), l)≤ 0

x(l) ∈ X(l)

u(l) ∈U(l)

∀ l ∈ [l0, l f ] (5.2)
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Table 5.5 State and control variables for Scenario #1 and Scenario #2.

Scenario #1 Scenario #2

State Variables Speed Speed,Time

Control Variables Acceleration Acceleration

The optimization framework includes information coming from the surrounding
environment, e.g., traffic lights state, speed limits, distance to travel, etc. Starting
from the optimal control problem defined in distance-based coordinates (Equation
5.1), the cost function of this problem was defined according to the following:

J =
∫ l f

l0
β

e f d(x(l),u(l), l)
E f d

+(1−β )
t(x(l),u(l), l)

T
dl (5.3)

where β is a calibration factor that weighs the influence of the energy demand
at the expense of the traveling time; e f d and t denote, respectively, the energy and
time demand at the single distance step; E f d and T denote, respectively, the energy
and time demand along the entire cycle. The constraints for the specific problem
are the physical limitations of the actuators (maximum deliverable power), limits
from road infrastructure, e.g., speed limits and traffic lights stop, and maximum
acceleration and deceleration values (imposed to enhance the driver’s comfort in the
vehicle). Table 5.5 shows the chosen state and control variables. In Scenario #1, the
vehicle speed is the only state variable and vehicle acceleration is the only control
one. In Scenario #2, since the SPaT is time-dependent, the time must be added as
a state variable increasing the computational burden. For speed, acceleration, and
time variables a discretization resolution of 1km/h, 0.01m/s2, and 0.5s were used,
respectively, while a discretization resolution of 5m was used for the independent
variable, i.e., distance.

5.2.3 Variable Grid Dynamic Programming

In this work, Dynamic Programming (DP) [90] is used to solve the associated
energy minimization problem. In particular, the open-source MATLAB® code
developed at ETH-Zurich [140] was used for solving the optimal control problem.
In n-dimensional state and m-dimensional control spaces, the number of discrete
grid points rises exponentially with the dimensions of n and m [155]. These large



5.2 Vehicle Speed Optimization 87

computing power requirements have made the DP usage for the eco-driving problem
largely limited to asserting an offline performance benchmark. However, with the
recent advances in ITS technology that could allow vehicles to share information with
the surrounding environment, it seems feasible that the vehicles can have realistic
information about speed limits and ETA. In this context, the VGDP can use the
average traffic information and the ETA to reduce the space of the states to only
those feasible: this allows for drastically reducing the computation burden of this
algorithm. Figure 5.24 shows the definition of the variable grid in the urban section
of Scenario #1. Specifically, the variable speed grid was defined according to the
upper and lower boundaries (supposing that the vehicle can never exceed those
limits), while the variable time grid was defined allowing the optimizer to sufficiently
vary around a predicted time of arrival. The introduction of the variable state search
grid is particularly relevant for Scenario #2 (two control variables). As shown in
Figure 5.25, it allows a reduction in the computational time of more than 95% if
compared to the standard optimization performed with a fixed grid. It should be
noted that an increase of the interval chosen for the distance discretization, despite
degrading the accuracy of the solution, can be beneficial for the computational time:
a preliminary investigation showed that a 10x increase in the distance step can lead
to an 11x reduction in the computational time. The computational times here shown
refer to a workstation with the following specifications: Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz, 64 GB RAM.

Fig. 5.24 Variable state search grid: the variable speed grid was defined according to the
upper and lower boundaries, supposing that the vehicle can never exceed those limits. The
variable time grid was defined allowing the optimizer to sufficiently vary around an Estimated
Time of Arrival (ETA).
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Fig. 5.25 Scenario #2: computational time for the optimal control problem with a fixed state
search grid (grey) and a variable state search grid (light blue). The variable grid allows a
reduction in the computational time of more than 95%.

5.2.4 Scenario #1 Optimization

In this Section, the vehicle speed optimization for Scenario #1 is analyzed. Figure
5.26 shows the optimized vehicle speed for Scenario #1 (blue line) compared to the
Reference Scenario (black dotted line). The optimizer chooses an almost constant
speed only in the rural section, while, in the urban and highway sections, the vehicle
speed lies as much as possible on the lower and upper boundaries, respectively. From
Figure 5.27, where a detail of the urban section is shown, it can be seen that the
optimal speed presents smoother accelerations and decelerations if compared to the
Reference Scenario, still respecting all the full stops imposed by the infrastructure.

Figure 5.28 shows the achievable reductions in terms of travel time and energy for
Scenario #1. Nearly 30% of energy reduction can be obtained while decreasing the
travel time by almost 10%. It should be mentioned that, for simplicity, regenerative
braking is not considered in this analysis: all the energy required for braking is
considered lost.

5.2.5 Scenario #2 Optimization

In this Section, the vehicle speed optimization for Scenario #2 is analyzed. Since
the major benefits of a smart infrastructure can be obtained in an urban environment,
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Fig. 5.26 Scenario #1: optimized vehicle speed (light blue) compared to the Reference
Scenario (dashed black) on the RDE-compliant route.

Fig. 5.27 Scenario #1: optimized vehicle speed (light blue) compared to the Reference
Scenario (dashed black) on the urban section of the RDE-compliant route.

only this section will be analyzed. Figure 5.29 shows the optimized vehicle position
as a function of time along with all the traffic light phases. Since the SPaT of the
traffic lights is communicated to the optimizer, the chosen speed trajectory allows
crossing all the intersections at a green light. As evident from Figure 5.30, an almost
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(a) (b)

Fig. 5.28 Scenario #1: (a) - Achievable time reduction on the RDE-compliant route; (b) -
Achievable energy reduction on the RDE-compliant route.

constant speed is preferred: the results suggest that a stop sign (or in general a full
stop of the vehicle) is detrimental to both the travel time and the required energy.
The deceleration and acceleration phases preceding and following a full stop of the
vehicle cause a major reason for energy loss that should be avoided.

Figure 5.31 quantifies the maximum achievable reductions in terms of energy and
travel time in a framework of connected vehicles able to exploit V2X information
in a smart infrastructure. The introduction of smart infrastructure can lead to a
further reduction both in terms of travel time and energy if compared to Scenario
#1. In an urban environment, the energy required by the vehicle can be halved while
decreasing the travel time by more than 35%.

5.2.6 Sensitivity Analysis

An additional sensitivity analysis was performed to assess the impact that the weight-
ing factor can have on the results. Three different cases were considered: Case 1
(β = 0.2) prioritizes travel time at the expense of energy; Case 2 (β = 0.5) gives
equal weight to travel time and energy (results shown in Sections 5.2.4, 5.2.5); Case
3 (β = 0.8) prioritizes energy at the expense of travel time. Figure 5.32 shows the
Pareto front, between energy and travel time, that is obtained by varying the value of
β in Scenarios #1 and #2, while Table 5.6 and Table 5.7 provide more granularity by
displaying the numerical comparison of the effect of using different values of β .
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Fig. 5.29 Scenario #2: vehicle position as a function of time along with all the traffic light
phases. The optimizer chooses the best speed trajectory in order to cross all the intersections
at a green light.

Fig. 5.30 Scenario #2: optimized vehicle speed (orange) compared to the Reference Scenario
(dashed black) on the urban section of the RDE-compliant route.

Focusing on Scenario #1 (light blue marks), the energy consumed to perform
the cycle is reduced in all three cases if compared to the Reference Scenario. For
Case 3 (light blue diamond), however, the excessively conservative driving style
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(a) (b)

Fig. 5.31 (a) - Achievable time reduction on the RDE-compliant route for Scenario #1 (light
blue) and #2 (orange); (b) - Achievable energy reduction on the RDE-compliant route for
Scenario #1 (light blue) and #2 (orange).

Table 5.6 Scenario #1: numerical comparison of the effect of different β values on the energy
consumption and travel time.

Ref. Case 1 Case 2 Case 3

Energy [MJ] 9.3
8.3

-11%
6.6

-29%
4.7

-50%

Travel Time [min] 30
22

-26%
24

-24%
29

-1%

Table 5.7 Scenario #2: numerical comparison of the effect of different β values on the energy
consumption and travel time.

Ref. Case 1 Case 2 Case 3

Energy [MJ] 9.3
4.4

-53%
4.3

-54%
3.9

-59%

Travel Time [min] 30
18

-38%
19

-38%
21

-28%

leads to an increase in travel time if compared to the Reference Scenario. Focusing
on Scenario #2 (orange marks), Figure 5.32 proves that the introduction of a smart
infrastructure, i.e., connected traffic lights, can further improve the trade-off between
required energy and total travel time. Moreover, Figure 5.32 shows that the variation



5.3 A-ECMS based on V2X 93

Fig. 5.32 Pareto front between energy and travel time for both Scenario #1 (light blue) and
Scenario #2 (orange) when varying the value of the weighting factor β .

of the weighting factor in Scenario #2 leads to a much more restrained variation in
the trade-off energy/time.

5.3 A-ECMS based on V2X

In the last decade, the availability of cloud computing platforms and the introduction
of look-ahead technologies, such as V2X connectivity, have paved the way for
reliable predictions of future driving conditions. In this Section, the virtual test rig
obtained in Section 5.1 will be used to assess the potentialities of an advanced energy
management strategy that exploits these technologies. An innovative Adaptive V2X
connectivity-based ECMS (A-V2X-ECMS) uses a limited set of future operating
conditions to obtain, from LSTM networks, the optimal equivalence factor. The
novelty of this work is the algorithm proposed for the equivalence factor selection:
differently from other studies, it only uses vehicle speed prediction and does not
need any calibration, except the preliminary training of the ML models that must be
performed off-line. In this work, V2X connectivity is assumed to provide a reliable
speed prediction, and, since it represents a preliminary assessment of the algorithm
potentiality, a perfect knowledge of the future speed profile is assumed (e.g., the
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uncertainties related to the estimation of traffic conditions are neglected). This work
is described more in detail in [146].

5.3.1 Database Expansion

Since the experimental tests performed on the real vehicle had been limited due to
time and money constraints (see Section 5.1.2), the only available experimental data
would not have been sufficient to fully exploit the potentialities of ML algorithms.
To cover a wider spectrum of driving patterns, a database expansion was performed:
the virtual test rig, obtained through the model validation, was used as a test bench
where the vehicle could virtually perform several mission profiles. The database
consisted of traces available from experimental tests carried out on other vehicles and
type-approval procedures available from the literature (i.e., EPA tests [156], - such
as US06, FTP, etc. - Artemis cycles [157] and RTS95 [158]). Moreover, concerning
the gearshift logic, the experimental tests were used for training NNs in mimicking
the experimental behavior and later used to reproduce the gearshift logic of the
actual vehicle on the tests performed with the digital twin. The database expansion
led to an increase in the time of vehicle testing from 510 min (experimental) to
1927 min (experimental + virtual). Figure 5.33 displays all the cycles as a function
of two main energetic indices: the square of the average vehicle velocity and the
product of average vehicle velocity and average vehicle acceleration. They can be
considered indicators of the average energy required in a cycle, and the driving cycle
aggressiveness, respectively. It should be noted that the area covered in the plot is
considerably widened thanks to the database expansion and that the cycles selected
for testing the proposed strategy (green dots) are well distributed over the plot.

5.3.2 Strategies Comparison

The performance of the proposed strategy is assessed by comparing it with the
following strategies:

• Rule-Based:
Rules extracted from the actual vehicle (see Section 5.1.3. The strategy
comprises simple rules, thus it is easily implementable in a vehicle ECU;

• Optimal ECMS:
ECMS (see Section 3.3.3) where the equivalence factor is properly calibrated
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Fig. 5.33 Database expansion: cycles plotted as a function of squared vehicle velocity and
velocity times acceleration.

through an offline optimizer. Since this strategy requires the a-priori knowledge
of the entire vehicle mission profile. it will only be used as a reference for
optimal results;

• Standard A-ECMS:
ECMS where the equivalence factor is periodically updated based on its past
values and the difference between actual and reference SoC (see Equation 3.20.
In this work, kp = 1, and coherently with [113], T = 120s;

• A-V2X-ECMS:
The strategy proposed in this work uses vehicle speed prediction to guess the
optimal equivalence factor.

5.3.3 Proposed A-V2X-ECMS

The overall structure of the proposed methodology is shown in Figure 5.34. The
initial value of the equivalence factor is provided by an LSTM network, that using
information about future vehicle driving patterns and the current SoC level, chooses
the appropriate value of the equivalence factor. Then, the value of the equivalence
factor is kept constant until some trigger events occur, i.e., a radical change of driving
pattern (e.g., a vehicle moving from an urban to a rural condition) or a high deviation
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of the SoC from the reference value. As far as the change in the driving patterns is
concerned, a methodology was developed for defining one or more energetic indices
that can capture it. When a trigger event occurs, the LSTM network is used to update
the value of the equivalence factor depending on the new conditions. By comparing
this methodology to the standard law proposed in [113], we can introduce proactive
behavior thanks to the information coming from V2X connectivity.

𝑠0

Step 1
LSTM

sopt

Step 2 Trigger events

Step 3
New equivalence factor estimation

Initial equivalence factor estimation

Sequence 

1. Change of driving pattern 2. SoC deviation

SoC0

ΔSoCmax

LSTM

sopt
Sequence 

Future interval

Future interval

Fig. 5.34 The overall structure of the proposed A-V2X-ECMS methodology.

Driving Pattern Recognition

For a given vehicle configuration, the characteristics of a certain driving scenario
can be directly related to the energy required by the powertrain, which strongly
affects its efficiency. Therefore, since the equivalence factor represents the efficiency
of the powertrain energy flows, it is possible to find a mathematical correlation
between its optimal value and the driving conditions. Thus, it could theoretically be
possible to identify one or more energetic indices that can fully characterize a certain
driving scenario. In the proposed methodology, an unsupervised learning technique
is adopted to cluster the driving conditions in three different groups. The number of
clusters was chosen coherently with the typical classification used by the European
Regulation in the RDE cycles (namely, urban, rural, and highway) [149].
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Table 5.8 Energetic indices used for collecting information about the driving patterns of the
driving cycles.

Energetic Index Symbol Unit Energetic Index Symbol Unit

1. ∑
N
i=1 vi
N v [m

s ] 8.
∫ t f

ti
v2(t)dt∫ t f

ti
v(t)dt

v2 [m
s ]

2.
√

1
N ∑

N
i=1 (vi − v)2

σv [m
s ] 9.

∫ t f
ti

a2(t)dt∫ t f
ti

v(t)dt
a2 [m

s3 ]

3. ∑
N
i=1 ai
N a [m

s2 ] 10.
∫ t f

ti
v(t)a(t)dt∫ t f

ti
v(t)dt

va [m
s2 ]

4.
√

1
N ∑

N
i=1 (ai −a)2

σa [m
s ] 11. FFT1 P1 [Hz]

5.
∫ t f

ti
v2(t)dt

t f −ti
I2
v [m2

s2 ] 12. FFT2 P2 [Hz]

6.
∫ t f

ti
a2(t)dt

t f −ti
I2
a [m2

s4 ] 13. FFT3 P3 [Hz]

7.
∫ t f

ti
v(t)a(t)dt
t f −ti

Iva [m2

s3 ] 14. FFT4 P4 [Hz]

Each driving cycle comprising the database described in Section 5.3.1 was
subdivided into sub-cycles, lasting 120s each: this time interval represents a tradeoff
between the lengths of a reliable speed prediction and a reliable characterization of
the driving pattern. The indices, chosen for collecting information about the driving
pattern of each sub-cycle, are listed in Table 5.8. They are obtained from simple
statistical formulas applied to the vehicle speed and acceleration, while the FFTi

denote the first four harmonics obtained by applying the Fast Fourier Transform
(FFT) algorithm to the velocity signal. In Table 5.8, v(t) is the vehicle speed, a(t) is
the vehicle acceleration, t f is the final time, ti is the initial time, and N is the number
of sampling points.

The k-means algorithm [159] was chosen for this application. This technique
partitions data into k number of mutually exclusive clusters: a point is assigned
to a specific cluster if, in the hyperplane described by the features (the energetic
indices in our case), the distance between the point and the center of the cluster
is minimized; then, each center is recomputed as the center of mass of all points
assigned to it. These two passages (assignment and center calculation) are repeated
until the process reaches convergence. By way of example, Figure 5.35 show the
driving pattern recognition performed on the RDE7. As previously explained, the
cycle is first subdivided into intervals 120s long, then the energetic indices listed in
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Table 5.8 are computed and used as input to the k-means algorithm. As evident from
Figure 5.35, this procedure allows for correctly recognizing the different driving
patterns. The first portion of the driving cycle, which is conducted in an urban
environment, is identified as the first cluster (that we call urban). The second portion
of the driving cycle, which occurred in extra-urban driving conditions, is subdivided
into two other clusters (that we call rural and highway, respectively). These results,
along with the ones coming from other mission profiles, proved that the k-means
algorithm, using the defined energetic indices, can correctly recognize the different
driving patterns.

Fig. 5.35 Driving pattern recognition performed on the RDE7 with a k-means algorithm.

Dimensionality Reduction

In order to investigate the influence of the energetic indices on driving pattern
recognition, a Principal Component Analysis (PCA) [160] was performed. This
technique represents the variables (in our case the energetic indices) as a set of
new orthogonal variables, called "principal components". Its goal is to extract the
important information from the variables and capture most of the variance with
the first few principal components. Figure 5.36a depicts the Pareto chart, where
each bar represents the weight of a principal component, while Figure 5.36b depicts
the relative weights of the indices (the rows) for each component (the columns):
the darker the blue, the bigger the weight. It may be seen that the first principal
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component alone can describe all the variability among the dataset and that this
component is mainly composed of the energetic index I2

v (#5 in Table 5). The results
coming from the PCA seem to suggest that, given a vehicle speed profile, a k-means
algorithm using only the I2

v index can correctly recognize the correct driving pattern.
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Fig. 5.36 PCA performed on the energetic indices. (a): Pareto chart of the principal compo-
nents; (b): Heat map of the principal components - the colors represent the relative weights
of the indices (the rows) for each component (the columns).

Online Driving Pattern Recognition

The procedure previously described can only provide a posteriori cluster identi-
fication of the driving patterns, but a different approach is necessary to obtain a
real-time adjustment of the equivalence factor. Therefore, some threshold levels
were identified for the I2

v index, by computing, over the entire dataset, the average
values that the k-means algorithm associates to a change of driving pattern (i.e.,
urban, rural, and highway). By way of example, Figure 5.37a shows the I2

v index
profile along with the obtained threshold levels on the RDE7. Coherently with the
subdivision performed in Section 5.3.3, the I2

v index at a specific time t is computed
on the interval [t÷t+120s]. The threshold levels regulate the transitions between the
driving patterns: 1 → 2 from urban to rural and vice versa 2 → 1; 2 → 3 from rural
to highway and vice versa 3 → 2, and Figure 5.37b depicts the vehicle speed profile
by highlighting the driving patterns with different colors. The striking similarities
between Figures 5.35 and 5.37b prove that the I2

v index thresholds can achieve an
online cluster identification consistent with the one obtained a posteriori with the
k-means algorithm.
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2 → 3

3 → 2

2 → 1

1 → 2

(a) (b)

Fig. 5.37 (a): I2
v index computed on the RDE7 along with the defined thresholds. (b): Speed

profile of the RDE7 plotted as a function of time: the passage from one pattern to another is
highlighted by a change in color.

LSTM Deep Neural Networks Training

The LSTM networks were trained with the same database used for the driving pattern
identification. For this analysis, the driving cycles were subdivided into sub-cycles of
various lengths reasonably assigned to urban, rural, and highway clusters. For each
sub-cycle, 7 different levels of initial SoC were considered between 0.1 and 0.25.
The SoC levels were added to consider, also in the training phase, different initial
discrepancies between actual and target SoC values. Considering all the sub-cycles
and the corresponding SoC levels, the database consisted of 1169 observations.
Each sub-cycle was considered as a set of sequences, i.e., vehicle speed, vehicle
acceleration, required power, and initial SoC.

On the other hand, the virtual test rig validated in Section 5.1.4 was used for
computing the optimal equivalence factor. A genetic algorithm optimization was
implemented aimed at minimizing the difference between actual and target final SoC
values. In the optimization, the optimal equivalence factor could vary between 1.5
and 3.0, but all the cases featuring a boundary value, i.e., 1.5 or 3.0 were discarded,
since a boundary value means that the final SoC target could not be reached due
to the excessive difference from the imposed initial value. This selection led to a
reduction in the number of observations from 1169 to 944. As shown in Figure
5.38, the LSTM network was trained by assigning the predicted output patterns (the
optimal equivalence factors) to the training set (the observations). The experiment
manager app [161] was used in the design of the network hyperparameters, i.e., all
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the fixed parameters chosen by the user and not tuned during the training phase. After
defining the allowed range of variation, this tool can optimize the hyperparameters
under multiple initial conditions. For this analysis, a Bayesian optimization was used
and the obtained hyperparameters are shown in Table 5.9.

Speed

Acceleration

Power

SoC

Sequences Virtual Test Rig

NN Training

Database

sopt

Fig. 5.38 Training of the LSTM network: the predicted output patterns (the optimal equiva-
lence factors) are assigned to the training set (the observations).

The topology of the LSTM network is shown in Figure 5.39: the input layer
features 4 nodes and receives, as inputs, vehicle speed, vehicle acceleration, required
power, and initial SoC. Then, two fully connected layers, with 40 and 28 nodes,
respectively, are followed by the dropout and the regression output layers.

Computational Time

It is worth noting that the proposed methodology does not require an increase in
computational time if compared to a standard ECMS formulation. In fact, the NNs
require an additional computational effort only when a trigger event occurs and the
equivalence factor value must be updated. Table 5.10 displays the computational
time required for performing the simulations along with the Real-Time (RT) factor,
i.e., the ratio between simulation and real cycle duration. The computational time
is shown for all the Artemis driving cycles: Artemis Urban, Road, and Motorway
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Table 5.9 Hyperparameters of the LSTM network used in the A-V2X-ECMS model.

Hyperparameters Value

Deep 2

nNodes1 40

nNodes2 28

Dropout 0.5418

Learn Rate 0.001

Regularization Factor 1.0620e-9

…

… Dropout

4 nodes

40 nodes

28 nodes

1 nodeVehicle Speed

Required Power

State of Charge

Vehicle Acceleration

Equivalence 
Factor

Fig. 5.39 Topology of the LSTM network: input layer, 2 fully connected layers, dropout
layer, and regression output layer.

last 993s, 1082s, and 1028s, respectively. It is evident that, in all the simulations,
the RT factors of the proposed A-V2X-ECMS are almost identical to the ECMS
ones, making this strategy feasible in a vehicle ECU. On the contrary, A-V2X-
ECMS-C displays the case in which the NNs are used for continuously updating the
equivalence factor; in this case, the computational time drastically increases, leading
to a non-feasible strategy. The computational times here shown refer to a PC with
the following specifications: Intel (R) Core (TM) i7-2600 CPU @ 3.40GHz, 3.40
GHz, 16 GB RAM.
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Table 5.10 Comparison of the computational time for different simulations featuring a
standard ECMS, the proposed A-V2X-ECMS, and an A-ECMS where NNs are used to
continuously update the equivalence factor.

ECMS A-V2X-ECMS A-V2X-ECMS-C
Duration RT Factor Duration RT Factor Duration RT Factor

Artemis
Urban

6min 57s 0.42 7min 11s 0.43 7h 59min
19s

29.0

Artemis
Road

8min 10s 0.45 8min 1s 0.44 8h 40min
4s

28.8

Artemis
Motorway

7min 25s 0.42 7min 52s 0.44 8h 32min
17s

28.8

5.3.4 Results

The fuel economy potential of the A-V2X-ECMS was assessed on the Artemis
driving cycles [157] and over the RDE7 cycle to prove its capabilities in a driving
scenario that follows all the requirements of the RDE Regulation [149]. It is worth
mentioning that the cycles used for testing the LSTM network were never used
during the training phase. For the sake of brevity, this dissertation will present only
the results over the RDE7 cycle, comparing them with the ones coming from the
RB logic, the Standard A-ECMS, and the ECMS featuring the optimal equivalence
factor. Regarding the RB strategy, it should be noted that, while the model validation
was performed in CD+CS operation (see Section 5.1.4), only the CS strategy will
be considered for this analysis. Figure 5.40a depicts the SoC profile for the RB
strategy (dashed black), Standard A-ECMS (light blue), optimal ECMS (yellow),
and A-V2X-ECMS (red), while Figure 5.40b shows the corresponding equivalence
factor profile. Figure 5.41, instead, displays the trade-off between CO2 emissions
and final SoC values for all four cases.

As evident from Figure 5.40a, the RB strategy does not achieve charge sustain-
ability: since the ICE is excessively used to charge the battery during the cycle, this
strategy does not exploit the full potential of the hybrid powertrain, leading to higher
CO2 emissions. In the Standard A-ECMS, although the charge sustainability is
satisfyingly respected, the continuous adaptation of the equivalence factor introduces
oscillations that lead to SoC swings. On the contrary, the A-V2X ECMS reaches a
final SoC value not so far from the optimal ECMS, and the Standard A-ECMS ones,
but, updating the equivalence factor only when a trigger event occurs, the oscillations
of the equivalence factor are strongly decreased. Its value is confined in an interval
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Fig. 5.40 Comparison of the results over the RDE7 cycle for RB, ECMS optimized for CS
conditions, Standard A-ECMS, and A-V2X-ECMS – (a): SoC as a function of time – (b):
Equivalence factor as a function of time.

much closer to the optimal equivalence factor if compared to the Standard A-ECMS.
In terms of charge sustainability, the two methodologies are quite comparable (see
5.40a), but for the A-V2X-ECMS the SoC is confined in a smaller interval around the
target value over the entire mission profile, thus leading to a better trade-off between
CO2 emissions and final SoC. In fact, the A-V2X-ECMS chooses the most appropri-
ate equivalence factor for each section, and eventually reaches better performance in
terms of fuel economy over the entire cycle.
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Fig. 5.41 Comparison of the results over the RDE7 cycle for RB, ECMS optimized for CS
conditions, Standard A-ECMS, and A-V2X-ECMS: Tradeoff between CO2 emissions and
final SoC.

The differences between the four strategies in optimizing the engine operation
can be more clearly understood from Figure 5.42, where the engine operating points,
over the RDE7, are plotted on its BSFC map. The operating points are represented
by means of circle markers whose size is proportional to the time spent by the engine
in that region. By analyzing Figure 5.42a, it is evident that, when the power split
is decided by the RB strategy, the ICE is operated in a wider area; instead, when
the power split is decided by one of the strategies adopting the ECMS computation,
the ICE is mainly operated in a region closer to the Optimal Operating Line (OOL),
and the operating points at the lowest BMEP values are avoided. The robustness
of the A-V2X-ECMS can be confirmed by Figure 5.42d: the power split chosen by
this strategy is similar to the optimal ECMS one. The proposed strategy can obtain
performance similar to the case in which all the mission profile is a priori known.
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(a) (b)

(c) (d)

Fig. 5.42 Comparison of the ICE operating points over the RDE7 cycle reported on the BSFC
map – (a): RB – (b): ECMS optimized for CS conditions – (c): Standard A-ECMS – (d):
A-VX-ECMS.



Chapter 6

Case Study 2: Battery SoH

An accurate estimation of the State of Health (SoH) of a LIB may provide valuable
insights that can be used by the BMS to enforce safe operating bounds and enable
health-conscious control strategies. This particularly rings true for BEVs, where the
battery SoH strongly affects the available driving range but plays a pivotal role also
in the energy management of HEVs and pHEVs since battery aging affects energy
efficiency. Thus, if available, battery SoH indicators could also be included in the
cost function of the EMS in order to penalize actions that could undermine battery
health. However, monitoring battery health in the field through the signals tracked
by the BMS such as current, voltage, and temperature is a multifaceted challenge
and remains an open research conundrum.

In this framework, this Chapter analyzes the battery pack data collected from a
real operating BEV in order to define Performance Indicators (PI), that are linked to
health and can be extracted and monitored from real-time vehicle operation. Figure
6.1 depicts the flowchart of the procedure carried out. It should be noted that the set
of presented PIs can be easily extended to assess the health of the battery of a pHEV,
like the first case study (see Chapter 5).

The work presented in this Chapter is part of a project, sponsored by Volkswagen
Group of America (VWoA) on which I worked while I was a visiting student at
Stanford University, and is described more in detail in [162]. Moreover, three
U.S. patents application have been filed featuring these techniques [163–165]. The
structure of the Chapter is summarized below:

• In Section 6.1, the case study is described, giving particular emphasis to the
battery topology and hierarchy;
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• In Section 6.2, the data and the pre-processing pipeline are described: the
signals are grouped in a structured way to reduce dimensionality, and to create
the basis for analysis and data-driven model development;

• In Section 6.3, a new set of PIs is obtained, showing how these indicators are
intricately related to the operating conditions, namely the battery temperature;

• In Section 6.4 some additional comments are made on the PIs highlighting the
major contributions of this work.

Data Analysis

Driving

Charging

Algorithm
CC Charge

Peaks 
Detection 
Algorithm

Estimate SOH

BMS

Fig. 6.1 Flowchart of the procedure carried out: data collected from a real operating BEV is
analyzed in order to define Performance Indicators (PI) that can be correlated to health.

6.1 Test Case

The vehicle used in this work is an Audi e-tron, a state-of-the-art mid-size electric
SUV, powered by a 95 kWh Li-ion battery pack. The battery pack has a nominal
voltage of 396 V and a total capacity of 240 Ah. As shown in Figure 6.2, the battery
contains 36 modules connected in series, each comprising 12 lithium-ion pouch cells
with 4p3s topology and a rated capacity of 60 Ah.

The BMS has a primary-secondary architecture and each module is equipped with
three voltage sensors, i.e., vm,1,vm,2,vm,3, that measure the voltage across each group
of four cells in parallel, and two temperature sensors. i.e., tm,1, tm,2, that measure the
temperature at the module level. The BMS and the components within utilize the
CAN bus to serially communicate the measured signals and control variables among
each other, and to communicate with various other relevant electronic control units
in the vehicle.
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Fig. 6.2 Schematic of the battery pack containing 36 modules connected in series, each
comprising 12 lithium-ion pouch cells with 4p3s topology. The available current, voltage,
and temperature sensors are shown.

6.2 Data

In this work, BMS data from daily driving of the Audi e-tron are used and analyzed.
As shown in Figure 6.3, the vehicle was driven in the San Francisco Bay Area, CA,
from November 2019 to October 2020. The gap in the data between February and
May 2020 is due to COVID-19 restrictions, that did not allow any testing of the
vehicle. The logged data lasts approximately 3750 hours, and the percentage of
charging, driving, and idle time, i.e., the time in which the vehicle is parked and
the battery is not charged, is shown in Figure 6.4. It should be noted how idle time
constitutes more than 90% of the total percentage: this suggests that, during normal
operation of BEVs, the importance of calendar aging should not be undervalued.

The dataset used in this work consists of 2 TB of data. The BMS transmits
1655 signals, but the exact composition is proprietary: the signals include voltage,
current, temperature, SoC, and other categorical information necessary for safe and
reliable battery operation. A pre-processing pipeline was applied in order to clean,
re-sample, and group the signals in a structured way to reduce dimensionality. By
using the Sherlock high-performance computing cluster at Stanford University [141],
the cardinality of the dataset was compressed from 2 TB to 22.1 GB. The MAT-files
obtained as a result of the pre-processing pipeline were then used to perform the
following analysis.
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Fig. 6.3 Data from driving the vehicle from November 2019 to October 2020. The gap in the
data between February and May 2020 is due to COVID-19 restrictions, that did not allow
any testing of the vehicle.

6.3 Performance Indicators

In this Section, a set of Performance Indicators (PIs) that can be easily extracted from
real-world driving events (i.e., braking and acceleration) and charging conditions are
presented, and their dependency on temperature and time is shown.

6.3.1 High-Frequency Resistance

Abrupt changes in the battery pack current (herein referred to as “current peaks”)
can be considered as close as possible to a pulse. This study proposes a procedure
to compute the battery’s high-frequency resistance during the vehicle’s braking and
acceleration phases, similarly to the HPPC test (see Section 2.2.4). The voltage
response curve corresponding to the change in current can be measured and used to
compute the high-frequency resistance as:

R =−V (t2)−V (t1)
I(t2)− I(t1)

=−∆V
∆I

(6.1)

where V (t1) and I(t1) are the voltage and current values at the beginning of the
pulse, while V (t2) and I(t2) at the end of it. However, differently from the HPPC test,
acceleration and braking events do not have standardized pulses, since they strongly
depend on the driver, i.e., how strongly he pushes the pedals, and the braking and
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Fig. 6.4 Percentage of charging, driving, and idle time, i.e., the time in which the vehicle is
parked and the battery is not charged, in the database used for this work.

acceleration events must be sufficiently short to avoid heat generation and/or change
of SoC. For these reasons, in order to obtain reproducible and consistent results, the
following algorithm was developed:



a) −thr < I1 < thr

b)

Acc : I >= 0

Br : I <= 0
∀ t ∈ [t1, t2]

c)

Acc : (dI
dt ) f >= 0

Br : (dI
dt ) f <= 0

∀ t ∈ [t1, t2]

d) | I2 − I1 | > ∆A

e) (t2 − t1) = ∆t

(6.2)

The algorithm for the peak detection is composed of the set of conditions written
in Equation (6.2). A peak is detected if it features an increase (or decrease) of
current of at least ∆A - Condition (d) of Equation (6.2) - lasting ∆t - Condition (e).
Moreover, the absolute value of I1 (the current at the beginning of the peak) must
be smaller than the threshold thr - Condition (a) - and the current should never
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change sign during the peak, i.e., always positive or negative for acceleration and
braking events, respectively - Condition (b). Finally, to capture the phases in which
the current is consistently increasing or decreasing, the derivative of the current
must never change sign during the peak - Condition (c). To avoid being affected
by the noise present in the current signal, the derivative of the current is filtered by
means of a moving average on a window of 100s. The parameters of the algorithm
were optimized in order to detect a congruous number of peaks that are as much as
possible consistent among themselves. The following set of parameters was used:



a)

Acc : thr = 5 [A]

Br : thr = 2 [A]

d) ∆A = 100 [A]

e) ∆t = 1 [s]

(6.3)

The operation of the peaks detection algorithm is explained in Figure 6.5, where
it has been applied on a small dataset (approximately 1 hour). All the peaks detected
during the acceleration phases are highlighted in blue, while the ones detected during
braking are in red. The zoom below illustrates more in detail the detection of a peak
during a braking phase. In the current profile, the sequence of values that respect
the algorithm conditions is shown in red. The peak lasts 1s, and the corresponding
voltage values are shown in light blue.

Figure 6.6 shows two examples of peak detection during acceleration (a) and
braking (b). Hereinafter, the resistance values computed during braking and accelera-
tion events will be indicated with RBR and RACC, respectively. Over the entire dataset,
392 RBR values and 529 RACC values have been computed. Figure 6.7 shows all the
resistance values computed over the entire dataset as a function of date and tempera-
ture, i.e., the date (in the form of epoch time) and battery temperature recorded by
the BMS during the detected braking or acceleration event. The temperature, as it
will be shown later, seems to affect the resistance values, while time seems to have a
marginal effect on data collected over one year of EV operation.

Seasonality and temperature dependence for RBR and RACC are shown in Figure
6.8. All values of RBR and RACC are sorted into bins depending on temperature
(buckets of 1 [◦C]) and date (buckets of individual months). The average value of
all the resistances in a bucket was computed and plotted as a rhombus in Figure
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Fig. 6.5 Operation of the peaks detection algorithm: the peaks detected during the acceleration
phases are highlighted in blue, and the ones detected during braking in red. The zoom below
illustrates more in detail the detection of a peak during a braking phase.
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Fig. 6.6 (a): Example of a peak detected during an acceleration phase; (b): Example of a
peak detected during a braking phase.

6.8. A negative correlation between high-frequency resistance and temperature can
be observed across all months. Instead, no clear evidence of correlation can be
detected between high-frequency resistance values and months. In fact, the lower
high-frequency resistance values observed from June to September can be mainly
attributed to the higher temperatures (no bins at lower temperatures). These results
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Fig. 6.7 High-frequency resistance computed during peaks in acceleration (above) and
braking (below) events: the resistances are plotted as a function of date and pack temperature.

suggest that for the first year of EV operation, the temperature has a dominant effect
on the high-frequency resistance and outwins time.

Figure 6.9 shows with more granularity the dependence of the high-frequency
resistance on temperature. All the RBR and RACC values are sorted into temperature
buckets of 1 [◦C]. The average value of all the resistances in a bucket is computed
and plotted as a green rhombus (braking) or a red square (acceleration). RBR and
RACC have the same trend and are negatively correlated with temperature. This
result is supported by the fact that, at lower temperatures, the transport processes
are slower and the overpotential is higher, resulting in higher values of the high-
frequency resistance. Moreover, the good overlapping of the RBR and RACC values
seems to corroborate the procedure developed for peak detection and high-frequency
resistance computation.
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Fig. 6.8 High-frequency resistance in acceleration (on the top right) and braking (in the
bottom right) as a function of time and pack temperature. On the left-hand side plots, the
high-frequency resistance is shown to be negatively correlated with the pack temperature.

6.3.2 Charging Impedance

While current profiles during driving are based on decisions made by the user, battery
charging operations are standardized. During charging events, the battery current is
constant and is used in this work to compute the battery charging impedance as the
change in voltage due to the applied constant current over a predefined time window
∆t. The charging data is divided into 53 charging events by making the following
assumptions: a profile is considered as a single charging event if it is separated from
the previous and next charging events by at least 2 minutes. Moreover, if the average
current is almost null, the charging event is discarded. As shown in Figure 6.10, the
resulting charging events are divided into three different sets as a function of the
C-rate: C/240, C/20, and C/2.

The charging impedance is introduced as a method to investigate the aging
phenomena and capacity fade of the battery pack during charging events at a constant
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Fig. 6.9 High-frequency resistance plotted as a function of temperature: all the values are
sorted into buckets of 1 [◦C] and then averaged. A clear correlation between the resistance
computed during acceleration and braking can be seen.

current. As shown in Figure 6.11, the charging impedance, measured in ohm, is
computed by taking the ratio between the voltage difference and the applied current:

ZCHG =−V (t2)−V (t1)
I

=−∆V
I

(6.4)

where V is the battery pack voltage during charge measured at the time instants
(carefully tuned by the user), t1 and t2, and the voltage difference ∆V is computed as
the difference between V (t2) and V (t1). According to our convention, the current is
negative during charge: the minus sign is used to ensure that ZCHG >= 0.

The charging impedance curves depend on the C-rate. On the basis of a sensitivity
analysis (not mentioned here for the sake of brevity), the C/20 charge events were
chosen to compute the charging impedance, and a time window of ∆t = 100s was
used. Moreover, the initial section of each charging profile (almost 1 hour) was
discarded since the voltage profile features a different slope. Figure 6.12 shows
the charging impedance profiles for all the C/20 charge events (after filtering via a
moving average filter tuned at 500s to further reduce the noise).

The impedance variation over consecutive charging events can be remapped in
the modifications of peaks and valleys in the ZCHG-SoC plane. Notably, focusing
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Fig. 6.10 The average charging rate used during the one-year period of data acquisition:
C/240, C/20, and C/2.
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𝑍𝐶𝐻𝐺,1

Fig. 6.11 Example of charging impedance computed during a charging event performed at
constant current: it is computed by taking the ratio between the voltage difference and the
applied current.
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Fig. 6.12 Battery impedance plotted for all the charging events at C/20 as a function of SoC
and temperature: curves are obtained considering ∆t = 100s and by filtering the signals
obtained from Equation 6.4 via a moving average filter tuned at 500s. The black box shows
a zoom in the SoC window 56-61%

on the SoC region between 50 and 60% (black box in Figure 6.12), it can be seen
that the pack impedance peak is sensitive to temperature and decreases with it. The
tracking of impedance peaks and valleys over time has striking similarities with
DV and IC analyses (see Section 2.2.3). The following mathematical link between
charging impedance and the DV curve can be provided:

ZCHG =
∆V
∆Q

∆t = DVpack∆t (6.5)

where ∆t represents a scaling factor. Since DV curves are generally defined
at half-cell or full-cell level [44], when scaling up to pack-level, interconnection
resistances must be taken into account [55]. In this framework, DVpack blends
information from the interconnected cells constituting the battery pack. This link
provides a physical interpretation of the impedance curve and could enable its use as
an on-board performance indicator of the battery pack.
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6.4 Discussion

Section 6.3 developed tools to extract key information on battery pack performance
using data collected from the BMS of an EV. The peak detection algorithm, to
compute the high-frequency resistance during braking and acceleration events, and
the impedance, computed during charging, rely on simple mathematical operations,
which are computationally inexpensive and easily implementable on a BMS. These
indicators have general applicability across chemistries and applications (EVs, fleets,
grid storage, portable electronics, etc.), as they rely on measurements already avail-
able on-board during field operation.

The results showed in Section 6.3 reveal how convoluted time and temperature
are when it comes to quantifying battery performance and degradation from field data.
Unexpectedly, data collected over one year of EV operation shows that temperature
has a dominant effect on PIs and outwins time. The coupling between battery
performance and temperature makes the definition of reliable indicators challenging
and, since current SoH algorithms are not developed to account for this convoluted
behavior, it could also aggravate heterogeneities within the pack. The PIs proposed
in this work – intrinsically accounting for temperature and time – could be used
to decouple these effects, for example, by analyzing charging impedance profiles
computed only at one specific temperature and tracking modifications of peaks and
valleys over time. Finally, these indicators could be linked to capacity and power
fade and used as features for ML models to complement current BMS strategies.
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Conclusions and Future Work

The demanding CO2 targets are pushing the development of cost-effective solutions
to improve powertrain efficiency. In this context, Electrified Vehicles (xEVs) rep-
resent a valuable solution to improve efficiency and reduce pollutant emissions of
the current vehicle fleet. Among the xEVs, Hybrid Electric Vehicles (HEVs) and
plug-in Hybrid Electric Vehicles (pHEVs) have been identified as key players since
they can combine the desired features of an electric and a conventional powertrain.
Nevertheless, they feature greater complexity, and an additional level, namely the
Energy Management System (EMS), must be added to the vehicle control hierarchy
to optimize the energy flows in the powertrain. Numerical simulation can play a
significant role in the development of models for the investigation of different control
strategies. Moreover, to obtain compelling and affordable xEVs featuring Li-ion bat-
teries, an accurate State of Health (SoH) estimation is needed to characterize battery
faults and update the Battery Management System (BMSs) algorithms. In parallel
with the electrification trend, the growing connectivity level of the last-generation
vehicles, as well as the exploitation of Artificial Intelligence (AI) techniques in the
energy management of xEVs, have proved to be capable of effectively enhancing
safety, traffic efficiency, and energy savings of the actual vehicle fleets.

In this framework, it is fundamental to develop multidisciplinary techniques and
algorithms that can assess the increased opportunities for energy-efficient driving
with the deployment of connected and electrified vehicles. This dissertation con-
stitutes a feasibility study on some innovative methodologies that can support the
design of these types of vehicles. In particular, Chapter 5 proposed some innovative
methodologies for the energy management of HEVs that have been tested on a virtual
test rig of a real case study. The data gathered from an extensive experimental cam-
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paign performed on a commercially available pHEV were used to reverse engineer
its control strategy and build a vehicle digital twin without having direct access to its
EMS. After validating the virtual test rig against the experimental data, it was used
to assess the theoretical benefits that the introduction of V2X communication can
have in terms of energy and time savings in a real-world route. The vehicle digital
twin was later used to assess the potentialities of an advanced energy management
strategy that can exploit V2X information. Chapter 6 presented the second case
study: BMS data from daily driving of an e-SUV were analyzed in order to define an
innovative set of Performance Indicators (PIs), that are linked to battery health and
can be easily extracted from real-world driving and charging events. The presented
PIs, which can be linked to capacity and power fade, rely on simple mathematical
operations, which are computationally inexpensive and easily implementable on a
BMS. Therefore, they could also be adopted in the EMS of an HEV, like the first
case study, in order to take into account also battery aging in the cost function and
penalize the actions that could undermine battery health.

Future work will be aimed at achieving the targets discussed here below:

• The development of an integrated framework, exploiting a remote cloud com-
puting environment, that can further enhance the fuel economy of an HEV
over a given driving route through a synergistic optimization of both velocity
profile and power split between the power actuators;

• Implementing real-time V2V and V2I information with the cloud-based opti-
mization to recalculate the optimal velocity profile in real time in response to
external traffic disturbances;

• Enhancing the energy management of the pHEV, presented in Chapter 5, by
incorporating the defined PIs in its EMS in order to develop a comprehensive
strategy that can take into account also battery aging.
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