
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(35.th cycle)

Machine Learning
Algorithms for Robotic

Navigation and Perception
and Embedded

Implementation Techniques

Francesco Salvetti
* * * * *

Supervisors
Prof. Marcello Chiaberge, Supervisor

Prof. Fabrizio Lamberti, Co-supervisor

Politecnico di Torino
2023

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that the contents and organization of this dissertation constitute
my own original work and do not compromise in any way the rights of third parties,
including those relating to the security of personal data.

. .
Francesco Salvetti

Turin, 2023

www.creativecommons.org

Summary

In the latest years, a lot of academic and industrial research interest has been
focused on the world of Artificial Intelligence. In particular, the rise of Machine
Learning and Deep Learning has revolutionized the AI world, setting a new stan-
dard for using data to solve a great number of tasks. Fields such as Computer
Vision, Pattern Recognition, Speech Recognition, Natural Language Understand-
ing, and many others have taken the greatest advantages from these new algorith-
mic paradigms, reaching new state-of-the-art results that outperformed classical
methodologies. In this context, also the robotic field can benefit from the adoption
of these modern AI approaches, in order to bring machine intelligence and au-
tonomous agents to a higher level. Among the different robotic categories, service
robots, defined as robots that perform useful tasks for humans or equipment, are
rapidly evolving. Service robotic prototypes can be applied to a number of different
contexts, ranging from smart agriculture to elderly assistance.

This thesis presents different methodologies that merge the AI world with ser-
vice robotics. Deep learning solutions are proposed to tackle several tasks from the
sensing to the application levels. An algorithmic pipeline for autonomous service
robotic navigation in smart agriculture contexts is presented, adopting multiple
deep learning methods in different levels of the stack. Moreover, learning-based
methodologies are adopted to solve perception tasks targeting different applica-
tions, such as object detection for precision agriculture, indoor localization, hu-
man action recognition from visual data, and efficient video streaming for remote
robotic teleoperation. All the proposed methods are explained from a theoretical
point of view and thoroughly tested with precise experimentation setup in order to
prove their effectiveness in solving the target tasks. State-of-the-art related works
present in the literature are deeply analyzed and used to build comparisons with
the proposed approaches. Moreover, great care is also given to the embedded im-
plementation of the algorithms, especially when they are needed to run directly
on the robots. Several approaches are used in order to increase the algorithmic
inference efficiency and different hardware platforms are analyzed in terms of their
ability to run machine learning methods in real-time. Collectively, this dissertation
constitutes a step toward the full integration between robotics and AI and paves
the way for future research in this direction.

3

Acknowledgements

I want to thank all the people with whom I collaborated during these years
at Politecnico di Torino. In particular, a big thank goes to my PhD tutor Prof.
Marcello Chiaberge, for giving me the opportunity to work with the PIC4SeR center
and for his support throughout the entire development of this work. My gratitude
goes also to all the people I met during these years, in particular the other PhD
students that shared with me the time and efforts needed to achieve our goals and
all the researcher that helped me work on the countless projects we developed. I
must express all my gratitude to my family for being always present and to all my
friends: you supported and encouraged me during these years. Thanks to Valeria
for being always by my side and having shared with me most of the happy and
difficult moments of these years. Finally, I want to dedicate this work to Rachele
that came into life during the last period of writing this thesis.

5

Contents

I Fundamentals 9

1 Introduction 11
1.1 Contributions . 13
1.2 How to read this work . 14

2 Basics of Machine Learning 15
2.1 Clustering . 16

2.1.1 K-means . 17
2.1.2 DBSCAN . 18

2.2 Artificial Neural Networks . 19
2.2.1 Artificial Neuron . 19
2.2.2 Multi-layer Perceptron . 20
2.2.3 Activation functions . 21
2.2.4 Training an Artificial Neural Network 26
2.2.5 Regularization techniques 30

2.3 Other ANN architectures . 34
2.3.1 Convolutional Neural Networks 34
2.3.2 Transformer-based networks 37

2.4 Edge execution of ANN . 40

II Navigation 45

3 A Deep Learning Driven Pipeline for Autonomous Navigation in
Row-based Crops 47
3.1 The pipeline . 48
3.2 Real-world experimentation . 54

4 RAMS: Multi-Image Super-Resolution using Residual Attention
Deep Neural Networks 57
4.1 Methodology . 59

4.1.1 Network architecture . 60

6

4.1.2 Residual attention blocks . 62
4.1.3 Temporal reduction blocks 64
4.1.4 Training process . 65

4.2 Experiments . 66
4.2.1 The Proba-V Dataset . 66
4.2.2 Data pre-processing . 67
4.2.3 Experimental settings . 68
4.2.4 Quantitative results . 70
4.2.5 Qualitative results . 75

5 Waypoint Generation in Row-based Crops with Deep Learning
and Contrastive Clustering 77
5.1 Methodology . 78

5.1.1 Backbone design . 80
5.1.2 Waypoint estimation . 80
5.1.3 Waypoint clustering . 82

5.2 Experimental Setting . 86
5.2.1 Dataset description . 86
5.2.2 Model training . 88

5.3 Results . 89
5.3.1 Waypoint estimation . 89
5.3.2 Waypoint clustering . 89
5.3.3 Qualitative results . 92

III Perception 95

6 A Real-Time Apple Detection System at the Edge 97
6.1 Methodology . 98

6.1.1 Network architecture . 99
6.1.2 A custom YOLOv3-tiny for small objects detection 101

6.2 Experiments . 103
6.2.1 Dataset description . 103
6.2.2 Experimental setting . 104
6.2.3 Quantitative results: detection performance 104
6.2.4 Quantitative results: embedded implementation 106
6.2.5 Qualitative results . 108

7 Robust Ultra-wideband Range Error Mitigation with Deep Learn-
ing at the Edge 111
7.1 The DeepUWB dataset . 113

7.1.1 Dataset analysis . 114
7.2 Methodology . 116

7

7.2.1 Network design . 117
7.2.2 Network optimization and quantization techniques 119

7.3 Experiments . 120
7.3.1 Experimental setting . 120
7.3.2 Quantitative results . 122

8 AcT: A Self-Attention Model for Short-Time Pose-Based Human
Action Recognition 129
8.1 The MPOSE2021 dataset . 131
8.2 Methodology . 134
8.3 Experiments . 136

8.3.1 Experimental settings . 136
8.3.2 Action recognition on MPOSE2021 137
8.3.3 Model introspection . 141
8.3.4 Real-time performance . 144

9 Generative Adversarial Super-Resolution at the Edge with Knowl-
edge Distillation 147
9.1 Methodology . 149

9.1.1 Network architecture . 150
9.1.2 Training methodology . 150
9.1.3 Knowledge distillation . 152
9.1.4 Model quantization . 153
9.1.5 Model interpolation . 153

9.2 Experiments . 154
9.2.1 Experimental setting . 154
9.2.2 Real-time performance . 156
9.2.3 Super-Resolution results . 159
9.2.4 Application to image transmission in mobile robotics 160

10 Conclusions 167
10.1 Future works . 168

Bibliography 176

8

Part I

Fundamentals

9

Chapter 1

Introduction

The International Organization for Standardization (ISO) defines, in the stan-
dard 8373 [107], a robot as a "programmed actuated mechanism with a degree of
autonomy to perform locomotion, manipulation or positioning". Among the differ-
ent categories, a service robot is defined as a "robot in personal use or professional
use that performs useful tasks for humans or equipment". The tasks performed
by a service robot include "handling or serving of items, transportation, physical
support, providing guidance or information, inspection, surveillance, cooking and
food handling, grooming, and cleaning". This class of robots is therefore charac-
terized by specialized machines that provide several services to human beings, and
it does not include applications such as industrial automation. Service robots can
be employed in a number of different operation areas [20, 74] such as household
management [54], smart cities [160], precision agriculture [186], defense [191], con-
struction [212], healthcare [95], leisure and recreation [244], logistics [261]. That
rich number of applications has led in recent years to a great interest in litera-
ture to service robotics, with several publications focusing on sensing, navigational,
mechanical, control, and software methodologies.

One of the key aspects of service robots is the ability to carry over the assigned
tasks autonomously. For the great majority of applications, where mobile robots
are adopted, this autonomy requirement includes the ability to navigate in the
environment, understand the surrounding conditions, recognize objects, obstacles
and people, reach the area of action, and perform the required task. All these
operations must be performed by the robotic platform with limited human inter-
vention and complying with assigned time requirements. Therefore, research and
development efforts must focus on making machines able to quickly and efficiently
process sensing information, plan navigational trajectories and operations, act ac-
cordingly in the given environment and respond effectively to sudden changes in
the working conditions. This collective software requirement can be summarized
as giving machines a certain degree of intelligence. Artificial Intelligence (AI) is
indeed an "interdisciplinary field, usually regarded as a branch of computer science,

11

Introduction

Figure 1.1: The Clearpath Robotics Jackal UGV while autonomously navigating
in an agricultural environment

dealing with models and systems for the performance of functions generally associ-
ated with human intelligence, such as reasoning and learning" [106]. Developments
in AI, and in particular in Machine Learning (ML) methodologies, that give the
ability to extract patterns and learn from data, have brought a high number of
contributions in this field, proposing novel approaches to solve a high number of
robotic-related tasks [170]. More recently, the Deep Learning (DL) [133] paradigm,
which focuses on designing multi-layer neural networks, has been proven to be very
effective in learning patterns from great collections of data, becoming the state-of-
the-art (SOTA) standard method to solve computer vision, speech, sensing, and
perception tasks.

In this dissertation, we leverage Machine Learning and Deep Learning methods
to address service robotic tasks fundamental to build autonomous navigation and
perception stacks. As an example, one of the key methods proposed in this disser-
tation focuses on the development of an algorithmic pipeline to tackle autonomous
navigation in agricultural contexts, that adopts Deep Learning methodologies at
different levels: first to refine satellite images to synthetically increase the spatial
resolution, then to propose waypoint candidates to generate a global path, finally to
locally control the robot movements by processing visual data onboard in the target
environment. Fig. 1.1 shows an example of an unmanned ground vehicle (UGV)
performing an autonomous navigation task, for service robotic agricultural applica-
tions. Together with the other proposed methodologies, this approach can represent

12

1.1 – Contributions

a step forward in leveraging cutting-edge advancements in the Deep Learning field
in order to solve complex applied tasks in the service robotic context.

1.1 Contributions
The main contributions of this thesis can be summarized as follows:

• analyze Machine Learning and Deep Learning state-of-the-art methodologies
for computer vision and pattern recognition applicable to solve robotic tasks

• propose a novel multi-step algorithmic pipeline for robotic path planning and
navigation in an agricultural context that combines satellite images processing
and a global waypoint-based path planner with different visual-based local
navigation controls

• present different learning-based methods to solve robotic perception tasks such
as object detection, super-resolution, human action recognition, and error mit-
igation

• apply different levels of optimization strategies to optimize the inference effi-
ciency of neural networks with minimal loss of accuracy

• deploy Deep Learning-based models on several embedded platforms and bench-
mark their real-time performance

Most of the works presented in this thesis have been published on peer-reviewed
journals [172, 214, 10, 173, 33, 11, 171] and conferences [32, 213, 12, 167], that
gather state-of-the-art researches in the Machine Learning and Robotics fields.
This dissertation can be seen as a summary of my work performed at PIC4SeR,
the Politecnico di Torino Interdepartmental Center for Service Robotics, in a num-
ber of different projects, collaborating with other PhD students and researches.
I contributed to all these works both in the methodological and in the experi-
mental phases of the different projects. During these years as a PhD student, I
also contributed to more general artificial intelligence and computer vision top-
ics, not strictly related to the scope of the thesis. In particular, we proposed
an efficient method for image classification with Capsule networks [174], we stud-
ied how domain generalization is influenced by backbone pre-training [9], we de-
signed a DL-based robotic arm system playing Jenga [163], a reinforcement learning
based point-to-point navigation system with ultra-wideband integration [235] and
a person-following method based on computer vision [26]. All these works have col-
lectively contributed to my experience in the AI and robotics fields and therefore
represent important steps in my doctoral career.

13

Introduction

1.2 How to read this work
This thesis is divided into three main parts. Part I presents this introduction, as

well as the theoretical background on Machine Learning and Deep Learning (DL)
for Computer Vision applications in Chapter 2, which gives a practical overview
of clustering methods and neural networks. Moreover, Section 2.4 gives a brief
presentation on methods useful for edge execution of neural networks, particularly
relevant for onboard deployment of AI algorithms in robotic applications. All the
theoretical concepts presented in Chapter 2 represent fundamental related works
for the successive parts of the thesis, and can therefore be referenced for their full
and complete understanding.

Part II is focused on robotic navigation and presents a Deep Learning based al-
gorithmic pipeline for autonomous navigation in an agricultural context. Chapter 3
presents the main ideas behind the proposed pipeline, as well as its main algorith-
mic blocks, also referencing some early in-field experimental results. On the other
hand, Chapters 4 and 5 enter more in detail on two specific modules of the pipeline
based on DL, that focus on satellite remote sensing and path generation.

Finally, Part III deals with robotic perception, presenting DL-based methodolo-
gies related to data acquisition and sensor processing for mobile robotic platforms.
In particular, Chapter 6 proposes an apple identification system based on object
detection that can represent a valuable example of a perception task performed by
a robot within the navigational context presented in Part II. Chapter 7 focuses on
DL-based error compensation of range measurements with ultra-wideband sensors,
that can be used in localization tasks. Chapter 8 presents a model for human action
recognition suitable for real-time onboard execution, while Chapter 9 proposes a
method based on efficient real-time Super-Resolution to tackle image transmission
in low-bandwidth scenarios for robotic teleoperation.

The last Chapter 10 draws some conclusions, as well as indicates possible direc-
tions for future research in the field.

14

Chapter 2

Basics of Machine Learning

According to ISO 2382, Machine Learning (ML) can be defined as the "process
by which a functional unit improves its performance by acquiring new knowledge
or skills [...]" [106]. In particular, ML techniques are focused on recognizing pat-
terns and extracting knowledge from big amounts of data. This chapter focuses on
presenting basic concepts about ML algorithms related to this dissertation. The
concepts defined in the following sections are the foundations on which the works
presented in Parts II and III have been developed and can therefore be a useful
reference for the reader.

Creating a taxonomy of ML techniques is not an easy task. Algorithms can be
subdivided into different categories, depending on the characteristics under atten-
tion. A basic tentative taxonomy can depend on the learning strategy adopted.
There are multiple ways to extract knowledge from data, but, in general, each ML
algorithm can fall under one of the following groups:

• supervised learning: these techniques try to learn from the experience of
several input-output pairs, trying to predict the expected outcome for each
input sample and to minimize the error with respect to given labels;

• unsupervised learning: these techniques try to recognize patterns and
groups from a big set of unlabeled data; an example of unsupervised meth-
ods are the clustering algorithms, that focus on separate data into coherent
groups of samples;

• semi-supervised learning: the midpoint of the previous two groups; usually
refer to methods that can rely only on a little fraction of labeled data, and a
big quantity of unlabeled data;

• self-supervised learning: these techniques are usually adopted to learn vec-
torial representations of the input data, by trying to reconstruct parts of the
input by extracting meaningful features from it; in this case, the labels are
directly derived by the input data itself and do not need manual annotation;

15

Basics of Machine Learning

• reinforcement learning: methods that rely on learning by trial and error,
analyzing the feedback, or reward, of the environment received by an agent,
following a specific action in a certain state; these algorithms do not required
labeled data, but usually are based on the ability to simulate an environment
and its evolution following a set of agent actions.

Another possible categorization can depend on the task to be solved given a certain
set of data samples:

• classification aims at finding a discrete assignment, called class, for each
sample in the dataset; usually, classification methods learn the probability
distribution of belonging to each class; the classification is defined as binary
if there is just a positive and negative class and the algorithm learns a one-
dimensional distribution; in multi-class classification, there a number of possi-
ble classes and each sample has just a single target; in multi-label classification,
each sample can be assigned to multiple categories;

• regression aims at predicting a continuous output for each input sample;
regression algorithms should learn a generic non-linear mapping between the
inputs and the outputs;

• clustering methods aim at separating samples into coherent groups, called
clusters; differently from classification, in clustering there is not a unique target
assignment, and there is no guarantee that the final groups have a strong
semantic meaning;

• representation learning aims at learning a dense vectorial representation
for the input data, by projecting it into a new n-dimensional latent space; this
space usually must respect a set of constraints, for which similar represen-
tations must have a close semantic relation, while dissimilar representations
should be semantically uncorrelated.

The following sections present some ML techniques relevant to this work. Sec 2.1
focuses on two widely used clustering methods, while Section 2.2 provides basic con-
cepts on Artificial Neural Networks. Finally, Section 2.4 presents some techniques
used for the Edge execution of ML algorithms on specific hardware accelerators.

2.1 Clustering
Clustering methods aim at separating samples into groups according to a certain

spatial criterion. Unlike classification, this is entirely done in an unsupervised
way, and the cluster assignment criterion is learned not from external given labels,
but from internal data patterns. There are a really huge number of clustering
approaches in literature [109, 218, 65]. In this chapter, we focus on the two methods
used in the next chapters of this thesis: K-means and DBSCAN.

16

2.1 – Clustering

Figure 2.1: Example of K-means clustering: 2 centroids with Gaussian data samples
(left) and 3 centroids with anisotropic samples (right). K-means, being based on
Euclidean distance from a cluster center, does not perform well in the case of
distributions with non-equal axis variances.

2.1.1 K-means
The K-means [149] method consists in finding k centroids that serve as mean

for the data clusters to be found. For this method, the number of clusters must be
decided in advance and thus represents a strong assumption on the nature of the
data to be clustered. The algorithm iteratively tries to refine an initial estimation of
the clusters until it converges to a stable solution. Given n data samples, denoted
as xj, we can define the ith centroid at iteration t as c(t)

i and the set of points
belonging to cluster i as S(t)

i . The standard K-means algorithm is based on the
following steps:

1. randomly initialize the k centroids, c(0)
1 , c

(0)
2 , . . . , c

(0)
k

2. assign each data sample to the cluster of the closest centroid, according to the
Euclidean distance:

S
(t)
i =

{︃
xj | i = min

p
∥xj − c(t)

p ∥2 , ∀j ∈ 1, ..., n
}︃

(2.1)

3. update the centroids with the mean of the cluster samples:

c
(t+1)
i = 1

|S(t)
i |

∑︂
xj∈S(t)

i

xj (2.2)

4. repeat steps 2 and 3 until convergence is reached

Steps 2 and 3 can be seen as a special case of the expectation-maximization
(EM) algorithm [49], used to estimate parameters of statistical models by max-
imizing the log-likelihood. Therefore, K-means can be considered as a Gaussian

17

Basics of Machine Learning

Figure 2.2: Example of DBSCAN clustering: 2 clusters with Gaussian data sam-
ples (left) and 3 clusters with anisotropic samples (right). Being density-based,
DBSCAN is more suitable for clustering non-isotropic data, but suffers from a high
number of unclustered points (outliers, in black), in the case of clusters with highly
different densities.

Mixture Model [201], with the exception that it is only using sample means and
not sample covariance matrices. For this reason, K-means equiprobability bound-
aries are always circular, and cannot fit well elliptical or anisotropic data, as shown
in Fig. 2.1.

2.1.2 DBSCAN
DBSCAN [63] is a density-based clustering algorithm, that, instead of relying on

the distance between a cluster center, computes all the relative distances between
points and clusters those that are more closed together. Differently from K-means,
the number of clusters k is not defined a priori, but depends on the nature of the
data and on the two main hyper-parameters of the algorithm: ε, the maximum
distance at which two points are considered as neighbors, and nmin, the minimum
number of points required to form a dense region.

The algorithm visits all the n data points xj and classifies each in one of the
following categories:

• core point: if | {xp | ∥xj − xp∥2 ≤ ε , ∀j ∈ 1, ..., n} | ≥ nmin, i.e. there are at
least nmin points within distance ε from xj;

• reachable point: if ∃xp | ∥xj − xp∥2 ≤ ε ∧ xp is a core point , i.e. xj is within
distance ε from a core point;

• outliers: all the non-reachable points.

If xj is a core point, it forms a cluster together with all the core and non-core
points that are reachable from it. All the non-core reachable points form the edge of

18

2.2 – Artificial Neural Networks

Figure 2.3: Artificial neuron model.

the cluster and cannot be used to reach further points. The output of DBSCAN is
therefore a variable number of clusters, depending on the chosen hyper-parameters,
and a set of unclustered outliers. The main advantages of this clustering method
are the ability to form arbitrary-shaped clusters and its robustness to outliers, as
opposed to K-means. However, it suffers when data present clusters with highly dif-
ferent densities, since it only admits one (ε, nmin) combination, as shown in Fig. 2.2.

2.2 Artificial Neural Networks
Artificial Neural Networks (ANNs) currently represent the state-of-the-art in

a huge number of data processing applications, in particular for computer vision,
speech recognition, natural language processing, pattern recognition, and many
more [2, 253, 286, 188, 85, 37, 159]. Starting from some pioneering works published
in the past century [175, 206, 215], ANN research gained a lot of momentum,
especially after the backpropagation algorithm [209, 210] was proposed to efficiently
train complex networks. With the advent of the so-called Deep Learning (DL) [133,
75], together with the great technological development and the availability of a big
quantity of labeled data [50], ANN became the SOTA approach in a number of
applications. In this section, the basics of ANN models are presented, followed by
a brief introduction to current popular architectures, such as Convolutional Neural
Networks [132] and Transformers [250].

2.2.1 Artificial Neuron
An ANN is a mathematical structure that models a generic function y = f(x)

between some input variable x and some output variable y. The basic unit of an
ANN is the artificial neuron, which approximates the basic behavior of biological
neurons. A neuron is excited if the inputs it receives from other neurons are above a

19

Basics of Machine Learning

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Figure 2.4: Multi-layer Perceptron with p inputs, two hidden layers and q outputs.
The signal flows from left to right. Biases are omitted for simplicity.

certain level. Mathematically, this is implemented as a weighted sum of the inputs
x, followed by an activation function ϕ(·):

y = ϕ(wx + b) = ϕ(
N∑︂
i=1

wixi + b) = ϕ(z) (2.3)

where w is the vector of the weights and b is the neuron bias. In general, an artificial
neuron has N + 1 parameters, where N is the number of inputs. Fig. 2.3 shows
a representation of the artificial neuron model, where the bias term b is simply
treated as an additional weight w0 with unitary input.

2.2.2 Multi-layer Perceptron
Multiple neurons can be combined together to create a layer. Feed-forward

Neural Networks (FNN), the most common type of ANN, are made of a succession
of multiple layers of neurons with the signal flowing from the first layer toward
the last one. A layer in which all the neurons take as input all the neurons of
the preceding layer is defined as a Fully Connected (FC) or Dense layer. All the
weights and biases in a FC layer with M neurons can be aggregated into a matrix

20

2.2 – Artificial Neural Networks

W = [w1,w2, . . . ,wM]T and a vector b = (b1, b2, . . . , bM), respectively. Thus the
layer output vector y can be computed with matrix multiplication as follows:

y = ϕ(W x + b) = ϕ(z) (2.4)

where the activation function ϕ(·) is applied pointwisely to all the layer neurons.
This idea of combining multiple Dense layers to create a single model is at the

core of the Multi-layer Perceptron (MLP) [210], an evolution of the first proposed
Perceptron [206]. This model is made of an input layer, that stores the input vector
x, followed by a number of hidden layers and a final output layer, that computes
the model output vector y. The intermediate layers are defined as hidden since
they are not visible from outside the model. Figure 2.4 shows an example of an
MLP with two hidden layers.

It has been proved that this kind of architecture is theoretically able to model
any non-linear function, regardless of the number of inputs and outputs [96], given
a proper number of hidden units. However, this does not mean that MLPs are
suitable to solve any ML task since properly optimizing them, given a generic noisy
dataset, is a complex task, and will probably result in an under-performing solution.
For this reason, other architectures have been investigated in the literature.

2.2.3 Activation functions
Given a generic layer of neurons, a wide number of different functions can be used

as activation functions ϕ(·), depending on a number of factors, such as the linearity,
the output domain, the computation speed, the level of sparsity and others. A list
of relevant activations related to the present dissertation is the following:

21

Basics of Machine Learning

Linear

ϕ(z) = z (2.5)

It does not add any non-linearity; mainly used for regression tasks in which the
output domain is unbounded.

Sigmoid

ϕ(z) = 1
1 + e−x (2.6)

Derived by logistic regression; bounded between 0 and 1; mainly used to model
the probability of belonging to a class in binary or multi-label classification.

22

2.2 – Artificial Neural Networks

Softmax

ϕ(zj) = ezj∑︁
k ezk

,
M∑︂
j=1

ϕ(zj) =
M∑︂
j=1

ezj∑︁
k ezk

=
∑︁
j e

zj∑︁
k ezk

= 1 (2.7)

A generalization of the sigmoid activation over a layer of multiple neurons;
bounded between 0 and 1; used to model probability distributions for multi-class
classification. Given a layer with M neurons, Eq. 2.7 is applied to all the neurons
zj. This activation normalizes the output space of the layer, ensuring that the sum
of the outputs is always 1.

Tanh

ϕ(z) = ez − e−z

ez + e−z (2.8)

Bounded between -1 and 1; mainly used to model relative continuous values or
as activation in hidden layers.

Rectified Linear Unit (ReLU) [180, 72]

ϕ(z) = z+ = max(0, z) (2.9)

23

Basics of Machine Learning

The positive part of its arguments; when the z ≤ 0 the unit is said to be inactive
and the output is 0, for z > 0, the unit is linear; very common as hidden layers
activation; very fast to compute; it can lead to the dead neuron effect when a unit
always outputs zero for all the possible inputs.

Leaky ReLU [155, 269] and Parametric ReLU (PRelu) [88, 269]

ϕ(z) = max(αz, z) (2.10)

Variants of ReLU to avoid the dead neuron effect and ensure gradient flow for
negative values. For Leaky ReLU, α is predetermined; for PReLU, α is considered
a parameter of the network and learned together with the weights and the biases.

Continuous variants of ReLU Several activations have been proposed in the
literature in order to ensure the continuity of the function for z = 0 and have a
smooth transition to the inactive range:

• Exponential Linear Unit (ELU) [43]

ϕ(z) =

⎧⎨⎩α(ez − 1) if z ≤ 0
z otherwise

(2.11)

• Gaussian Error Linear Unit (GELU) [90]

24

2.2 – Artificial Neural Networks

ϕ(z) = zΦ(z) = zP (Z ≤ z)

= 1
2

[︃
1 + erf(z/

√
2)
]︃

(2.12)

where Z ∼ N (0, 1), Φ(z) is the standard Gaussian cumulative distribution
function, erf(·) is the Gaussian error function.

• Swish [196]

ϕ(z) = z ·sigmoid(z) (2.13)

• Mish [176]

ϕ(z) = z · tanh(softplus(z))

(2.14)

25

Basics of Machine Learning

2.2.4 Training an Artificial Neural Network
An Artificial Neural Network learns by finding its optimal parameters to solve

the target task. For example, in a generic MLP model, the set of parameters p is
the collection of all the weights and all the biases of the model neurons. To tune
these parameters, supervised or self-supervised approaches are usually adopted.
Independently by the type of learning process, how well the task to be performed
is achieved is expressed by a certain loss function L(x,p). This function maps
the input x to a negative estimation of the model performance, given a certain
set of network parameters p. The learning process is therefore represented as the
minimization of the loss for all the inputs. The main difference between supervised
and self-supervised methods lies in how this loss is computed, i.e. computing an
error with respect to given labels (supervised) or using the input data itself to
derive the target output (self-supervised). For all the following sections, we will
refer to a supervised condition, but the same approach holds for a self-supervised
problem since the only difference lies in the loss computation. Moreover, we will
refer to a generic loss function L, that represents the cumulative loss for all the
available inputs x in the considered dataset, given the parameters p).

For binary classification tasks, binary cross-entropy is usually adopted as loss,
in combination with sigmoid activation (Eq. 2.6). Given a label y and the model
prediction ŷ, the loss is computed as:

L = y log(ŷ) + (1− y) log(1− ŷ) (2.15)

Instead, in case of K classes, categorical cross-entropy, together with softmax
(Eq. 2.7), is mainly adopted:

L = −
K∑︂
k=1

yk log(ŷk) (2.16)

On the other hand, for regression tasks, the most adopted loss is the ℓ-norm of
the error. Given a d-dimensional label y and its network estimation ŷ, the loss is
computed as:

L = ∥y − ŷ∥ℓ =
d∑︂
j=1

(︂
|yj − ŷj|ℓ

)︂1/ℓ

(2.17)

with the special cases of Mean squared error (MSE) with ℓ = 2 and Mean absolute
error (MAE) with ℓ = 1.

Gradient Descent

Given a generic ANN with parameters p = (p1, p2, . . . , pn), where n is the total
number of parameters, we want to optimize the corresponding loss function L, in

26

2.2 – Artificial Neural Networks

order to find its global minimum, that represents the best model to solve the target
task. To do this, we want to iteratively update the parameters in order to slowly
converge toward the optimum. Gradient descent (GD) is an algorithm that allows
converging towards the minimum of a generic high-dimensional function, following
the negative direction of the gradients. If we consider a generic small variation of
the parameters p, we can approximate the corresponding change in the loss function
as follows:

∆L ≈ ∂L
∂p1

∆p1 + ∂L
∂p2

∆p2 + ...+ ∂L
∂pn

∆pn = ∇L ·∆p (2.18)

where ∇L =
(︂
∂L
∂p1
, ∂L
∂p2
, ..., ∂L

∂pn

)︂
is the vector of the gradients of the loss function

with respect to the parameters at the current point. In order to decrease the loss
function, we should look for an update ∆p such that

∇L ·∆p < 0 (2.19)

Thus, a possible good choice is:

∆p = −η∇L ⇒ ∇L ·∆p = −η ∥∇L∥2 < 0 if η > 0 (2.20)

This means that if move in the direction of the negative gradient, we reduce the
loss. Equation 2.20 is called gradient descent and, when used to compute the
parameters update, is referred to as an optimizer. The quantity η is called learning
rate and should always be positive. The choice of a good learning rate is vital,
since a too small value causes a really slow convergence or confinement in a poor
local minimum; while a too large value can cause unstable behavior and divergence.
Usually, the learning rate is decreased during the training process when the loss
tends to stagnate, in order to allow a more fine search for the global minimum.
To take into consideration these learning rate variations, specific algorithms are
adopted, called learning rate schedulers, in order to tune the η value according to
predetermined rules or functions.

Due to practical limitations, the computation is usually not performed for all the
input samples at the same time, but we iteratively update the parameters using
only a subset of the input data, called a batch. When we only use one sample
at a time, GD gets the name of stochastic gradient descent (SGD). On the other
hand, when we use a generic batch size higher than 1, we refer to it as mini-batch
gradient descent. In almost all applications, optimization is currently performed
by computing mini-batch gradients. A complete pass over the full dataset over
subsequent optimization steps is called training epoch. This process is usually
repeated for multiple epochs until convergence is reached at a minimum loss point.

27

Basics of Machine Learning

Backpropagation

To apply GD we have to compute the partial derivatives of L with respect to
each of the n parameters. This operation would require a big computational effort
if we have many layers with a high number of neurons, but the backpropagation
algorithm allows to speed up the process. This procedure was applied to train
an ANN for the first time in the 1980s [210] and is based on the chain rule of
derivatives to efficiently reuse computations performed in a certain layer to obtain
the gradients of previous layers.

If we consider a generic neuron layer of the last layer of the network, with m
inputs, the output is obtained with Eq. 2.3:

y = ϕ(wx + b) = ϕ(
m∑︂
i=1

wixi + b) (2.21)

To apply GD, we should first compute the derivative δ of the loss with respect
to the activation function defined as δ1 = ∂L

∂ϕ
. Then, applying the chain rule of

derivatives, we can obtain the derivatives with respect to the parameters:

∂L
∂wi

= ∂L
∂ϕ

∂ϕ

∂wi
= δ1

∂ϕ

∂wi

∂L
∂b

= ∂L
∂ϕ

∂ϕ

∂b
= δ1

∂ϕ

∂b
(2.22)

If we have another layer before with activation ψ(·), we can get the derivative
of the loss with respect to ψ as :

δ2 = ∂L
∂ψ

= ∂L
∂ϕ

∂ϕ

∂ψ
= δ1

∂ϕ

∂ψ
(2.23)

This δ2 can then be used to get derivatives with respect to this layer’s parameters.
Thus, we can use the computation of δ1 performed for the last layer also for the
derivatives of the previous layer. Iterating this approach for all the parameters
in all the layers, also for more complex networks, the complete backpropagation
algorithm can be derived.

Other optimizers

Together with the plain GD optimizer (Eq. 2.20), several other algorithms have
been proposed in the literature for computing the parameters update, given the
gradients of the loss [208].

Momentum [193] This method helps accelerate GD in the relevant direction,
damping oscillations in the others. This method slightly changes the update equa-
tion, keeping a memory of the direction of the previous updates and giving inertia
to the current update. The update vector of the current step mt is built with the
current gradient and with a fraction γ of the previous step update vector mt−1.

28

2.2 – Artificial Neural Networks

mt = γmt−1 + η∇L
∆p = −mt

(2.24)

The parameter γ, called momentum term, is always positive and lower than 1.

Nesterov accelerated gradient (NAG) [181] Instead of computing the loss
in the current point L(p), NAG anticipates the application of momentum and
computes the gradient in the point L(p− γmt−1), then it applies Eq. 2.24:

mt = γmt−1 + η∇L(p− γmt−1)
∆p = −mt

(2.25)

Root Mean Squared Propagation (RMSprop) [91] This algorithm, together
with others like AdaGrad [61] or AdaDelta [278], adapts the learning rate to the
different parameters, performing updates proportional to the frequency of the as-
sociated features. The principle of the algorithm is to divide the learning rate by a
quantity that is different for each parameter and is related to the previous updates.
A running average Et at time step t is defined recursively as:

Et = γEt−1 + (1− γ)(∇L)2 (2.26)

The term γ is similar to the momentum term and is always positive and lower
than 1. The running average accumulates a fraction of the previous squared value
of the gradients. If a particular parameter pi has been updated a lot in the past
steps (i.e had a high gradient), the corresponding running average value Et,i will
be high. After some steps with small updates, Et,i will then start to decrease.

The update vector is computed by dividing the learning rate by the square root
of Et plus a little value ϵ, to avoid dividing by 0. In this way, a frequently updated
parameter will have a lower learning rate, while a rarer one will have a higher
learning rate.

∆p = − η√
Et + ϵ

∇L (2.27)

Adaptive moment estimation (Adam) [122] This algorithm computes adap-
tive learning rates like RMSprop, also adding momentum into account. In addition
to a running average of the squared gradients Et, Adam also keeps a running av-
erage of the gradients mt, that can be seen as a sort of momentum with friction.
The two averages at each time step t are defined as:

29

Basics of Machine Learning

mt = β1mt−1 + (1− β1)(∇L)
Et = β2Et−1 + (1− β2)(∇L)2 (2.28)

Since the two vectors are initialized with zeros, they are biased towards 0, espe-
cially during the first steps, and if the two parameters β1 and β2 are close to 1. To
decrease the effects of these biases, the two values are corrected as:

m̂t = mt

1− (β1)t

Êt = Et

1− (β2)t
(2.29)

In this way, when t is small, i.e. in the first steps, if the values start from 0,
almost the entire value of the gradient is used to compute the two averages. As t
increases, the denominators tend to 0, making the bias correction irrelevant. The
parameter update is then computed as:

∆p = − η√︂
Êt + ϵ

m̂t (2.30)

Alternatives to Adam, such as AdaMax [122], NAdam [60], AdamW [153] and
RAdam [145], has been proposed, with slight variations to the original formulation.
However, it has been found that the actual best optimizer to adopt is highly depen-
dent on the architecture and the dataset under consideration and must be verified
experimentally.

2.2.5 Regularization techniques
One key problem when dealing with ANN is their ability to generalize to unseen

data and avoid overfitting the training set. A common interpretation of this gener-
alization error is the so-called bias-variance decomposition [124], which states that
it is the sum of three terms:

• the bias error, that comes from wrong assumptions in the model, i.e. the
model is too simple and does not capture the correct input-output relation
(underfitting);

• the variance error, that comes from a too high sensitivity for small fluctuations
in the training set, i.e. the model is too complex and is learning noise in
addition to actual knowledge from data (overfitting);

• the irreducible error, that is intrinsic in the problem itself.

30

2.2 – Artificial Neural Networks

An effective training procedure should look into reducing both bias, by increasing
the network complexity, and variance by avoiding overfitting. Among the different
strategies to reduce overfitting, such as increasing the training set or adopting
an effective data augmentation strategy, one of the most important is network
regularization. Regularizing a model means constraining its parameter space, thus
reducing its ability to capture high-frequency fluctuations such as noise. The final
objective of regularization is reducing the generalization error, without affecting
the training error [75].

L♣ regularization This method adds a term to the loss that penalizes the
♣-norm of the parameters:

Lreg = L+ α

♣
∥p∥♣

♣
= L+ α

♣

n∑︂
i

|pi|♣ (2.31)

In this way, the learning process tends to select solutions with parameters around
zero, reducing the model ability to generate high-degree non-linear boundaries. The
constant α, called regularization parameter, controls how much regularization is
added to the loss. Usually, L1, also called Lasso regularization, and L2, also called
Ridge regularization, are used, that penalize the sum of absolute values and the
sum of squared values of parameters, respectively.

A particular type of regularization, called Elastic Net, adds both L1 and L2
regularizations to the loss term as follows:

Lreg = L+ rα ∥p∥1 + (1− r)α2 ∥p∥
2
2 = L+ rα

n∑︂
i

|pi|+ (1− r)α2

n∑︂
i

p2
i (2.32)

where the parameter r controls the ratio between the two regularization terms: for
r = 1, it is equivalent to L1, while for r = 0, it is equivalent to L2.

Dropout When Dropout [93, 232] is applied to a layer of the network, at each
training step every neuron of that layer has an independent probability d, called
dropout rate, to be inactivated, i.e. to give a zero output. That prevents co-
adaptation, which is a phenomenon in which a certain neuron is only helpful in
a context with other active neurons, and pushes feature redundancy. At infer-
ence time, all the neurons are kept active, enabling the full potential of the model.
This approach can be considered as a sort of ensemble training of multiple simpler
dependent models, in which certain connections are randomly dropped. For this
reason, Dropout can be considered a regularization technique and is very effective
in reducing model variance and overfitting.

More recently, another approach, called Monte Carlo (MC) Dropout [70], has
been proposed. In this case, several predictions are subsequently performed keep-
ing Dropout active. In this case, a proper ensemble is adopted, and the average

31

Basics of Machine Learning

prediction is used. This can further push test performance, by reducing overfitting,
but at the cost of multiplying inference cost. This method also allows to compute
an estimation of the mean and the variance of the output distribution, thanks to
the stochastic nature of the predictions.

Activations normalization This class of methods regularizes the model by nor-
malizing the layer activations. This ensures that data flowing inside the computa-
tional graph is re-centered and re-scaled and, in general, that leads to more stable
training and less prone to overfitting. The most popular normalization method is
the Batch Normalization (BN, BatchNorm) [104]. This method normalizes acti-
vations channel-wise on the entire batch, and then applies a linear transformation
to re-center and re-scale them. Taking as example a batched 2D tensor x with
dimensions N ×T ×C, first the channel-wise mean and the standard deviation are
computed as follows:

µ(c) =
NT∑︂
i=1

x
(c)
i , σ(c) =

NT∑︂
i=1

(︂
x

(c)
i − µ(c)

)︂
∀c ∈ 1, . . . , C (2.33)

where xi is iterated on both the batch dimension N and on the first data dimension
T , and (c) denotes the c-th channel on the last dimension C. Then, the normaliza-
tion is applied with the computed channel-wise statistics:

x̂(c) = x(c) − µ(c)√︃(︂
σ(c)

)︂2
+ ε

∀c ∈ 1, . . . , C (2.34)

where x̂ is the normalized tensor and ε is an arbitrary small constant added for
numerical stability. Eq. 2.34 performs a zero-centering and unitary-variance scaling
of the channel-wise sub-tensors. Finally, the tensor is linearly re-centered and re-
scaled with channel-wise parameters γ and β:

y(c) = γ(c)x̂(c) + β(c) ∀c ∈ 1, . . . , C (2.35)
where γ and β parameters are learnt with back-propagation.

Since µ(c) and σ(c) represent the mean and standard deviation computed on the
training batch dimension, they cannot be properly computed at inference time,
where usually the batch is unitary. For this reason, a running average of these two
quantities is aggregated with all the training steps in order to have an estimate for
the population mean E[x(c)] and the variance Var[x(c)], as follows:

E[x(c)] = E[µ(c)] , Var[x(c)] = N

N − 1 E[
(︂
σ(c)

)︂2
]

y
(c)
inf = γ(c) x

(c)
inf − E[x(c)]√︂
Var[x(c)] + ε

+ β(c) ∀c ∈ 1, . . . , C
(2.36)

32

2.2 – Artificial Neural Networks
H

, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2.5: Activations normalization methods on batched 3D image tensors. C is
the number of channels, H,W the spatial dimensions, N the number of samples
in the batch. Data is re-centered and re-scaled independently on the highlighted
sub-tensors. Batch Norm is the only method to normalize on the batch, therefore
it requires the population statics accumulation for inference. Image is from [263].

This approach also ensures that deterministic output is always guaranteed at
inference time. Overall, each BN layer adds a total of 2C learnable parameters
(γ and β) and 2C non-learnable parameters (estimate of the population mean and
variance).

Other types of normalization have been proposed in the literature, that re-center
and re-scale activations with respect to different sub-tensors. The more relevant
normalization methods are the following:

• Layer Norm [17]: it normalizes each sample individually on all the channels,
i.e. the entire layer; mean and standard deviation computed sample-wise;

• Instance Norm [245]: it normalizes each sample on each channel individ-
ually; mean and standard deviation computed sample-and-channel-wise, i.e.
just on the first data dimension T ;

• Group Norm [263]: it normalizes each sample on subsets of g channels
together, called groups; mean and standard deviation computed sample-and-
group-wise.

Unlike Batch Norm, all these methods normalize activations on each sample
independently, therefore they do not require any population mean and variance
accumulation and do not present any execution difference during training and in-
ference. A graphical representation of the different normalization methods is shown
in Fig. 2.5. In this case, the data type is a batched 3D image tensor with dimensions
N ×H ×W × C.

Early stopping This regularization technique simply consists in stopping the
training algorithm as soon as the validation loss begins to increase. Any further

33

Basics of Machine Learning

Figure 2.6: Graphical representation of a 2D convolution, with input shape 5×5×1,
kernel size Kh = Kw = 3, padding ph = pw = 1 and strides sh = sw = 1. Input is
in blu, output in green. Image is from [62].

learning is considered to be just overfitting of the training set, and therefore only
contributes to an increase in the model variance. For this reason, it is always im-
portant to monitor both training and validation losses during the learning process.

2.3 Other ANN architectures
2.3.1 Convolutional Neural Networks

A particular type of feed-forward ANN are the Convolutional Neural Networks
(CNNs). This type of model has emerged since the 1980s for image recognition
applications [69, 134, 135] and has been developed starting from the study of par-
ticular neuron cells present in the visual cortex of animals. A CNN is based on
convolutional neurons, that react to information coming only from specific regions
of the input image and to simple geometric patterns. Following neurons then, have
a bigger receptive field and can recognize more complex patterns, building a hi-
erarchical feature extraction model. In this way, a locality prior is added to the
network, stating that data that are close to each other in the input 2D reference
system have a high probability to be correlated. This approach ensures locality and
weight sharing in the convolutional layers, which also has the advantage of shrink-
ing the network parameters and increasing efficiency. CNNs were first developed
to manage 2D data, such as images, but later they were generalized to 1D and
3D data. In this section, 2D convolutions are presented, together with common
architectures to build SOTA feature extractors.

2D convolutions

The basic element of a CNN is the convolutional layer, that takes as input a
3D tensor X, with shape H ×W × C, where H and W are the height and width
(in pixels) of the image, and C the number of channels. The first big difference of
CNNs with respect to fully-connected NNs is that neurons have a receptive field,

34

2.3 – Other ANN architectures

which means that they are connected to only a part of the input matrix. This
receptive field is a rectangular area of Kh × Kw pixels on the spatial dimensions
and all the channels C on the last dimension. A neuron in position i, j has receptive
field in positions [i, i+ 1, . . . , i+Kh − 1], [j, j + 1, . . . , j +Kw − 1] of the previous
layer output. The operation implemented by a neuron is the same as Eq. 2.3, i.e.
a weighted sum of the inputs, followed by an activation function ϕ(·). The weight
matrix is called convolutional kernel and is shared between all the neurons of the
layer, such that their receptive fields are applied with a single-pixel shift. The
kernel is also called filter, since the operation is similar to the application of filters
as in classical image processing. It is possible to change how the kernel is applied,
by sliding the window every [sh, sw] pixels, called strides. In this way, fewer neurons
are needed to cover the whole image, performing a spatial subsampling. Together,
all the neurons sharing the same kernel, output again a 3D tensor, called feature
map. Usually, each convolutional layer learns a certain number F of feature maps,
each with a different convolutional kernel. Overall, a convolutional layer performs
the following operation:

zijk =
Kh−1∑︂
t=0

Kw−1∑︂
u=0

C−1∑︂
v=0

wtuvkx(i·Sh+t)(j·Sw+u)(v) + bk

⎧⎪⎪⎨⎪⎪⎩
∀i ∈ 0, . . . , ⌊(H −Kh)/Sh⌋
∀j ∈ 0, . . . , ⌊(W −Kw)/Sw⌋
∀k ∈ 1, . . . , F

(2.37)
where w is the weight tensor that aggregates the kernel for all the feature maps, with
shapeKH×KW×C×F . The total number of parameters for a convolutional layer is,
therefore, KH ·KW ·C ·F +F biases. If the kernel sizes are not unitary, the output
feature maps have smaller spatial dimensions with respect to the input tensor.
To avoid this, inputs are often padded of [Ph, Pw] values before and after each
spatial axis. If Ph = ⌊Kh/2⌋ and Pw = ⌊Kw/2⌋, the padding perfectly compensate
the kernel effect. The padding is usually performed by simply adding constant
zeros values, but more sophisticated padding strategies are possible. On the other
hand, the strides [sh, sw] perform a spatial subsampling by dividing the output
dimensionality with a factor proportional to the stride values. The final output
spatial dimensions H ′ and W ′ can be computed as follows:

H ′ =
⌊︃
H −Kh + 2Ph

Sh

⌋︃
+ 1 , W ′ =

⌊︃
W −Kw + 2Pw

Sw

⌋︃
+ 1 (2.38)

Figure 2.6 shows the corner operations of a convolutional filter with input shape
5× 5× 1, kernel size Kh = Kw = 3, padding Ph = Pw = 1 and strides Sh = Sw = 1.
The output matrix has the same dimension as the input.

35

Basics of Machine Learning
7

x7
 c

o
n

v
,

6
4

,
/2

p
o

o
l,

 /
2

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 1
2

8
,

/2

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v,

 2
5

6
,

/2

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v,

 5
1

2
,

/2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

a
v

g
 p

o
o

l

fc
 1

0
0

0

im
a

g
e

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
6

4

3
x3

 c
o

n
v

,
6

4

p
o

o
l,

 /
2

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

p
o

o
l,

 /
2

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

p
o

o
l,

 /
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

p
o

o
l,

 /
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

p
o

o
l,

 /
2

fc
 4

0
9

6

fc
 4

0
9

6

fc
 1

0
0

0

im
a

g
e

o
u

tp
u

t

si
ze

:
1

1
2

o
u

tp
u

t

si
ze

:
2

2
4

o
u

tp
u

t

si
ze

:
5

6

o
u

tp
u

t

si
ze

:
2

8

o
u

tp
u

t

si
ze

:
1

4

o
u

tp
u

t

si
ze

:
7

o
u

tp
u

t

si
ze

:
1

V
G

G
-1

9
3

4
-l

a
y

e
r

p
la

in

7
x7

 c
o

n
v

,
6

4
,

/2

p
o

o
l,

 /
2

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x3

 c
o

n
v,

 6
4

3
x

3
 c

o
n

v,
 1

2
8

,
/2

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x3

 c
o

n
v

,
1

2
8

3
x

3
 c

o
n

v,
 2

5
6

,
/2

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x3

 c
o

n
v

,
2

5
6

3
x

3
 c

o
n

v,
 5

1
2

,
/2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

3
x3

 c
o

n
v

,
5

1
2

a
v

g
 p

o
o

l

fc
 1

0
0

0

im
a

g
e

3
4

-l
a

y
e

r
re

si
d

u
a

l

Figure 2.7: Architecture of a ResNet34 CNN. The model is based on residual con-
nections and progressively halves the spatial dimension with stride 2 convolutions
and pooling. After the backbone, an FC layer projects the extracted features in
the output space (1000 classes). Image is from [87].

Pooling layers

Other frequently used layers in CNN are pooling layers. These operations spa-
tially downsample the feature maps by aggregating values over a rectangular spatial
window whose dimensions are called pool size. The spatial window is applied to
the whole image in the same way as a convolutional kernel but with default strides
equal to the pool size. Therefore, following Eq. 2.38, pooling layers divide the spa-
tial dimensions of a factor equal to the pool sizes. Max Pooling takes the maximum
value over the spatial window, while Average Pooling takes the mean value, there-
fore being equivalent to a convolution with a kernel made of all 1 and dimensions
equal to the strides. In case the pool window has dimensions equal to the input
spatial dimensions H and W , the pooling layers take the name of Global Max
Pooling (GMP) and Global Average Pooling (GAP), respectively. These poolings
reduce the tensor to unitary spatial dimensions and are therefore frequently used
before a flattening operation to vectorize the extracted features.

CNN architectures

Typical CNN architectures have a lot of convolutional layers stacked one after
the other. In classification problems, the input space is usually quickly reduced by
avoiding padding, adopting non-unitary strides, and using pooling layers. After a
feature extraction backbone characterized by convolutions and pooling, usually, a
classification head is used, made of FC layers with a final softmax layer that models
the probability distribution among the classes. This kind of architecture has been
followed by a lot of SOTA methods, such as LeNet5 [134], AlexNet [125], Google-
LeNet [236], VGG [229] and ResNet [87]. Several methodologies have been pro-
posed in the literature to help CNN feature extraction and generalization. Among
the most relevant, it is worth mentioning inception blocks [236], residual connec-
tions [87], dense connections [101], depthwise separable convolutions [42], squeeze-
and-excitation [99], channel and spatial attention [262]. Figure 2.7 shows a graph-
ical representation of a ResNet34, as an example of a typical CNN architecture.

36

2.3 – Other ANN architectures

2.3.2 Transformer-based networks
Another popular ANN architecture is the Transformer [250]. It has been origi-

nally proposed for sequence-to-sequence problems for Natural Language Processing
(NLP) embedding translation. Traditionally, sequential data has been processed
with 1D CNNs or recurrent neural networks (RNNs), such as long short-term mem-
ory (LSTM) networks [94]. The Transformer is instead based on a structure inspired
by autoencoders [3], made of an Encoder block, that extracts a vectorial representa-
tion of the input in a latent space, and a Decoder, that translates this representation
into the output sequence. This kind of architecture has quickly reached the state-
of-the-art for natural language processing [52], automatic speech recognition [79],
but also computer vision with the Vision Transformer model [59].

Multi-head self-attention

The fundamental operation at the basis of the Transformer is the multi-head
self-attention (MSA). This operation allows to escape the locality of convolutions
and relate different positions in the sequence, even at a high temporal distance. On
the contrary, CNNs are based on a sliding kernel and are therefore able to extract
local patterns only.

Given three input sequence X with shape T × Dmodel, self-attention is com-
puted with the so-called scaled dot-product attention, in H independent heads
with dimensionality Dh = Dmodel/H. As first step, three representations of the input
sequence are obtained, namely query (Q), key (K) and value (V):

Qi = XW
(q)
i , Ki = XW

(k)
i , V i = XW

(v)
i ∀i ∈ 1, . . . , H (2.39)

where W
(q)
i ,W (h)

i ,W (v)
i are weight vectors of FC layers with shape Dmodel × Dh.

Then, the self-attention can be computed as:

Ai = SA(Q,K,V) = softmax
(︃

QKT

√
Dh

)︃
V (2.40)

Finally, the output is obtained by concatenation of the different heads and a
linear projection:

Y = MSA(X) = [A1,A2, . . . ,AH]W y (2.41)

where W y has shape Dmodel ×Dmodel, since H ·Dh = Dmodel.

Transformer model

As already said, a Transformer is made of two main blocks: an Encoder and
a Decoder. Both these blocks are based on N subsequent self-attention modules

37

Basics of Machine Learning

Figure 2.8: Architecture of the Transformer model for sequence-to-sequence tasks.
Image is from [250].

and MLP modules that re-project the sequence vectors after attention. All these
modules are arranged in a residual fashion and normalized with a Layer Norm [17].
Moreover, both the Encoder and the Decoder present an initial positional embed-
ding layer, that mathematically encodes relative positions in the sequence vector by
adding a vector to the input embedding. These positional embeddings can be learn-
able or made of constant geometric progressions. The main architectural difference
between the Encoder and the Decoder is that the latter presents two attention
modules:

• the masked self-attention performs an MSA on the decoded sequence, ensuring
that each generic position i in the sequence can only attend past positions
j ≤ i;

• the encoder-decoder attention performs an MSA between queries from the De-
coder sequence and keys and values from the Encoder output.

Moreover, at the end of the N Decoder blocks, an FC classification head with

38

2.3 – Other ANN architectures

Transformer Encoder

MLP
Head

Vision Transformer (ViT)

*

Linear Projection of Flattened Patches
* Extra learnable

 [c l ass] embedding

1 2 3 4 5 6 7 8 90Patch + Position
Embedding

Class
Bird
Ball
Car
...

Embedded
Patches

Multi-Head
Attention

Norm

MLP

Norm

+L x

+

Transformer Encoder

Figure 2.9: Architecture of the Vision Transformer (ViT). Image is from [59]

softmax activation predicts the next embedding in the output sequence. At in-
ference time, the decoding process is iteratively performed until a pre-determined
stopping embedding is predicted. The decoded sequence is initialized with a pre-
determined starting embedding and, at each iteration, the embedding predicted in
the last available sequence position is added to the Decoder input. Figure 2.8 shows
the Transformer architecture, as presented in the original paper [250].

Transformers for computer vision

The Vision Transformer (ViT) [59] is an adaptation of the Transformer model
for computer vision tasks. Due to the sequential nature of this kind of architec-
ture, the input image with dimensions H ×W , is subdivided into N patches of a
certain dimension P × P , such that N = HW/P 2. The patches are then flattened
and linearly projected by an FC layer to reach the target dimensionality Dmodel.
An additional embedding, called class token, is prepended to sequence to encode
the class representation. The obtained sequence is then processed with a standard
Transformer Encoder architecture, with pre-normalization, i.e. Layer Norm si ap-
plied at the beginning of the residual unit, before the main module (MSA or MLP).
A final classification head is used to predict the output distribution using the class
token state, only. Figure 2.9 shows the ViT model architecture.

This kind of architecture has been proven very effective for computer vision tasks,
reaching state-of-the-art performances. Several variants has been proposed such as
the DeiT [242], the ConViT [47], the LeViT [78] and the Swin Transformer [147].

39

Basics of Machine Learning

2.4 Edge execution of ANN
ANN are usually executed on general purpose graphic processing units (GP-

GPU), thanks to specialized libraries, such as Nvidia CUDA1, that allow for very
efficient parallel matrix computations. However, for robotic applications, an impor-
tant factor to be considered is the possibility of running ML and ANN algorithms
directly on-board, using the robot’s main computing platform with limited power,
memory, and computational ability. All the techniques conceived to deploy AI
algorithms on low-power embedded platforms come under the name of Edge-AI.
Following such an approach can bring enormous advantages in terms of latency,
privacy, and connectivity requirements since the AI computation is performed di-
rectly where the data is collected and the result is needed. To this aim, several
graph optimization and quantization methods have been investigated, to both de-
crease model size and computational cost. In the literature, different techniques
to increase ANN efficiency can be found [73, 80, 83, 84, 108]. In particular, the
relevant approaches for this dissertation are the following:

• network pruning and layer fusing that consists in optimizing the graph by
removing low-weight nodes that give almost no contribution to the outcome
and fuse different operations to increase efficiency;

• weights quantization that consists of reducing the number of bits required to
represent each network parameter;

• activations quantization, that reduces the representation dimension of values
during the feed-forward pass, thus reducing also the computational demand;

• quantization-aware training, in which the network is trained considering a-
priori the effect of quantization trying to compensate it;

• knowledge distillation, which consists in transferring knowledge from a large
model to a smaller one.

An implementation of different optimization and quantization methods is avail-
able with the TFLite library2. For what concerns the different quantization schemes,
TFLite allows for several approaches. The first is the float16 quantization of
weights, in which the model is still executed with float operations, but each weight
will require half the memory. Weights can also be quantized to 8-bit precision, a
method referred to as dynamic range quantization, to allow for almost 4 times re-
duction of model size, with minimal loss in precision. Another approach is the full

1https://developer.nvidia.com/cuda-zone
2https://tensorflow.org/lite

40

https://developer.nvidia.com/cuda-zone
https://tensorflow.org/lite

2.4 – Edge execution of ANN

integer quantization, which converts both weights and activations to 8-bit fixed-
point integers. This allows for a great reduction in model size, as well as a good
boost in inference speed. However, this approach can cause a significant drop in
accuracy, depending on the specific application. This scheme can also be followed
using quantization-aware training, which adds fake nodes to the network graph to
simulate quantization effects during training. In this way, the gradient descent pro-
cedure can consider the integer loss in precision, reducing the accuracy drop, at the
cost of a more complex training setup. All these methodologies can be used to tar-
get specific mobile GPUs or for simple CPU execution. Another library, TensorRT3,
developed by Nvidia, allows instead to optimize models to target GP-GPUs.

Full-integer quantization

This strategy is the most radical to increase network efficiency by changing the
representation of both weights and activations to 8-bit integers, greatly reducing
memory and computational demands due to the high efficiency of integer compu-
tations. The only exception are the biases parameters that are quantized as 32-bit
integers. This reason behind this choice is to preserve good end-to-end neural net-
work accuracy: since biases are added to many output activations, having a big
quantization error in the bias vectors would mean introduce an overall bias error
to network output [108]. Moreover, this quantization scheme is acceptable since
biases account for only a tiny fraction of the parameters in a neural network, so
the their memory footprint is limited. According to the methodology presented by
Jacob et al. [108], each floating point value is quantized with the following scheme:

r = S(q − Z) (2.42)
where r is the original floating-point value, q the integer quantized value, and S
and Z are the quantization parameters, respectively scale and zero point. The zero
point has the same type of q and represents the quantized value corresponding to
the real value r = 0.

A fixed-point multiplication approach is adopted to cope with the non-integer
scale of S. Thus, all computations are performed with integer-only arithmetic
making inference possible on devices that do not support floating-point operations.
Given a multiplication between two real values r1 and r2, using Eq. 2.42, we can
write:

r3 = r1r2

S3(q3 − Z3) = S1(q1 − Z1)S2(q2 − Z2)
q3 = Z3 +M(q1 − Z1)(q2 − Z2)

(2.43)

3https://developer.nvidia.com/tensorrt

41

https://developer.nvidia.com/tensorrt

Basics of Machine Learning

where the multiplierM = S1S2
S3

is the only non-integer value involved. This approach
can be extended for generic matrix multiplications, having a single scale for each
tensor. M can be computed offline since it only depends on the quantization
parameters, not on the actual activations, and it is experimentally in the (0,1)
range. Therefore it can be normalized as:

M = 2−nM0 (2.44)

with M0 ∈ [0.5,1) and n integer. M0 can be represented as a 32-bit fixed point with
an int32 value and multiplied with a fixed-point multiplication [108]. On the other
hand, the 2−n multiplication can be simply implemented as a shift right operation.
With this approach, all the operations involve integers-only operations and can be
executed on specific hardware that does not support floating points.

Knowledge distillation

Knowledge distillation (KD) [92] is a methodology to transfer knowledge from
one model, the teacher, to another one, the student. If used between a large model
and a smaller one, it can be considered a way to decrease the model computational
complexity and therefore speed up inference and reduce memory footprint. The
classical distillation approach adds a contribution to the student loss that takes
into account the teacher probability distribution. Denoting the logits distribution
of the student and the teacher as zs and zt and the softmax activation as ϕ(·), the
loss is computed as:

Ls = (1− α) CE(ϕ(zs),y) + ατ 2 KL(ϕ(zs/τ), ϕ(zt/τ)) (2.45)

where the first part is the standard cross-entropy loss with respect to the labels y,
while the second is the Kullback-Leibler divergence [126] loss between the student
and teacher logits distributions. τ is a temperature coefficient for the KD softmax
activation and produces soft labels for distilling the knowledge between the teacher
and the student. λ is the parameter balancing the two loss contribution.

Touvron et al. [242] introduced a hard label KD for training a data-efficient ViT,
denoted as DeiT. In this case, a simple cross-entropy contribution is added to the
loss, without temperature, to match the student output distribution to the teacher
hard prediction yt, using an additional distillation token:

Ls = 1
2 CE(ϕ(zs),y) + 1

2 CE(ϕ(zs),yt) (2.46)

Several other strategies for distillation have been proposed in the literature such
as distilling intermediate representations [204] or attention-based distillation [277].

42

2.4 – Edge execution of ANN

Hardware devices for Edge-AI

ANN models can be optimized for inference on a generic CPU allowing their edge
execution on almost every possible robotic platform. However, especially for very
deep image processing neural networks, it may not be enough, causing inference
with very low frames per second (fps). Certain applications, such as visual-based
robotic control, require very low-latency predictions to ensure real-time execution
and prompt response to sudden changes in environmental conditions. For this
reason, specific computing platforms can be selected, in order to accelerate the
execution of AI models. Among the different commercially available solutions,
those particularly relevant for the present dissertation are:

• Intel Movidius VPU (Vision Processing Unit): processors specifically designed
for accelerating computer vision and AI models;

• Nvidia Jetson platforms: single-board computers with dedicated embedded
GPUs to accelerate matricial operations with the CUDA library software;

• Coral Edge TPU (Tensor Processing Unit): integrated circuit designed for
neural network fast inference; since it is limited to integer-only operations, it
requires full-integer model quantization.

These devices present very different features in terms of inference performance,
supported data types, power consumption, physical characteristics, and price. Tab. 2.1
presents an overview of different AI-oriented platforms. Considering the require-
ments of the specific application, the most suitable device can be selected for the
onboard ANN deployment.

43

Basics of Machine Learning

M
ov

id
iu

s
N

C
S†

M
ov

id
iu

s
N

C
S

2†
Je

ts
on

N
an

o
Je

ts
on

A
G

X
X

av
ie

r
C

or
al

U
SB

A
cc

el
er

at
or

†
C

or
al

D
ev

B
oa

rd

H
W

A
cc

el
er

at
or

M
yr

ia
d

2
VP

U
M

yr
ia

d
X

VP
U

12
8-

co
re

Nv
id

ia
M

ax
we

ll
G

PU
51

2-
co

re
Nv

id
ia

Vo
lta

G
PU

Ed
ge

TP
U

Ed
ge

TP
U

C
om

pu
ta

tio
na

l
pe

rf
or

m
an

ce
10

0
G

FL
O

PS
15

0
G

FL
O

PS
47

2
G

FL
O

PS
16

TF
LO

PS
4

TO
PS

4
TO

PS

In
fe

re
nc

e
da

ta
ty

pe
FP

16
FP

16
FP

32
FP

32
IN

T8
IN

T8

C
PU

N.
A.

N.
A.

Q
ua

d-
co

re
Ar

m
Co

rt
ex

-A
57

O
ct

a-
co

re
NV

ID
IA

Ca
rm

el
Ar

m
N.

A.
Q

ua
d-

co
re

Ar
m

Co
rt

ex
-A

53

M
em

or
y

4G
B

LP
DD

R3
4G

B
LP

DD
R3

4G
B

LP
DD

R4
16

G
B

LP
DD

R4
8

M
B

SR
AM

1
/

4
G

B
LP

DD
R4

+
8

M
B

SR
AM

(E
TP

U)

St
or

ag
e

N.
A.

N.
A.

16
G

B
eM

M
C

32
G

B
eM

M
C

N.
A.

8
G

B
eM

M
C

Po
w

er
co

ns
um

pt
io

n
1

W
1.

5
W

5
/

10
W

10
/

15
/

30
W

2
W

8.
5

W

Si
ze

73
x

26
m

m
73

x
27

m
m

70
x

45
m

m
10

0
x

87
m

m
65

x
30

m
m

88
x

60
m

m

Pr
ic

e
$

70
$

74
$

99
$

69
9

$
60

$
13

0
/

17
0

Table 2.1: Main specifications of some AI-oriented embedded platforms. Each
device is reported with its related commercial price at the time of writing.
†: this device requires an additional system with a CPU (e.g. Raspberry Pi single-
board computer).

44

Part II

Navigation

45

Chapter 3

A Deep Learning Driven
Pipeline for Autonomous
Navigation in Row-based
Crops

Agriculture 4.0 is introducing digital tools and technologies in precision farming.
According to this innovative paradigm, Big Data, Artificial Intelligence and robotics
play a key role in increasing the economic, environmental, and social sustainability
of agricultural processes, thanks to the efficient and automatic data collection and
the processing tools they provide. In the last years, DL research has been substan-
tially contributing to the development of new technologies for precision agriculture
applications. Self-driving machines represent a crucial component in reducing the
costs of agricultural processes by providing autonomous, full-time and weather-
independent operators. In this context, designing a reliable autonomous navigation
system in constrained row-based crops such as vineyards and orchards is funda-
mental, since the ability to autonomously navigate in the fields with full coverage
represents the very first step to perform any agricultural task.

Building on the latest DL research for computer vision and signal processing, in
this part of the thesis, we present a complete algorithmic pipeline for autonomous
navigation in row-based crops. The proposed robust solution is explicitly designed
to ensure complete coverage of the field in different situations and make use of a
combination of out-field steps to generate a suitable path to be followed and in-field
robotic navigation control. Firstly, we adopt a robust data-driven methodology to
generate a viable path for the autonomous machine, covering the full extension of
the crop, starting from a bird-eye view of the region-of-interest obtained either by
satellite data or drone footage, from which the occupancy grid map information is

47

A Deep Learning Driven Pipeline for Autonomous Navigation in Row-based Crops

Super-Resolution Vineyard Semantic
Segmentation

Local Navigation
Control

Waypoint Estimation
and Clustering

Path Planning

Figure 3.1: Scheme of the proposed pipeline for robotic autonomous navigation in
row-based crop fields.

extracted. Successively, using the previously planned trajectories, the navigation
control can be achieved using different strategies, such as a purely Global Navigation
Satellite System (GNSS) path following or vision-based navigation algorithms that
make use of a low-cost RGB-D camera to navigate. It must be underlined how
the proposed approach allows to autonomously navigate through row-based crops,
adopting a low cost GPS sensor for the intra-row navigation, since it uses vision as
main source of information; however a more expensive Real-Time Kinematic (RTK)
sensor is still needed to take care of the inter-row segments that connect one row to
the other. Future work may investigate alternative approaches to handle end-of-row
turns, in order to completely avoid the need for this expensive hardware.

3.1 The pipeline
Fig. 3.1 shows a graphical representation of the proposed pipeline. The au-

tonomous system is organized into several modules that should collaborate with
each other in order to obtain effective and reliable driverless navigation through-
out the whole field. The input of the system is a generic image X in ∈ RH×W×C ,
with H and W are the height and width in pixels and C the number of channels
(3 for RGB data). This image should contain a georeferenced bird-eye view of
the target row-based field and can be obtained with remote sensing methodologies
such as satellite monitoring or drone imagery. Georeferentiation allows to translate
each pixel coordinate in the GNSS reference frame, allowing for successive in-field
matching between the robot position and the path to be followed.

48

3.1 – The pipeline

Super-Resolution

This optional module can increase the input resolution in case it is needed.
Depending on the specific input sensor adopted, the image resolution can be non-
optimal for the successive path planning operation. For example, the European
Space Agency (ESA) Sentinel-2 satellite1 provides resolutions up to 10 m per pixel,
depending on the bandwidth. To solve this problem, several methodologies, referred
to as Super-Resolution (SR), can be adopted in order to reconstruct an upsampled
version XHR of the input. Due to the quite stable conditions of the agricultural
environments, several views of the same region-of-interest can be taken with lim-
ited variations in space and time, in order to adopt the so-called Multi-Image SR
(MISR) strategy, which exploits these multiple sources of non-redundant informa-
tion, in order to better estimate the higher resolution image. A state-of-the-art
methodology for MISR applied to remote sensing data is presented in Chapter 4.

Vineyard Semantic Segmentation

This module has the objective of obtaining an occupancy grid of the target field,
that is a binary map Xocc, that marks with 1 the plant rows and with 0 the free
terrain. Semantic segmentation is a very well established task in DL, in which the
objective is to predict masks to classify pixels on a semantic basis. Differently from
standard image classification tasks, which simply assign a label to the whole image,
in this kind of problems, labels are assigned on pixel scale. Classical approaches
to this task are based on fully-convolutional networks organized in an encoder-
decoder fashion [151, 205]. A methodology for vineyard segmentation, together
with a specific dataset based on row-based field remote-sensed images, is presented
in [225], where a U-net [205] with a ResNet50 [87] backbone and HRNet+OCR [274]
networks are compared on the specific task. This work has been developed as a
master thesis in our research center and has been focused in order to be easily
integrated into the proposed pipeline.

Waypoint Estimation and Clustering

This module has the objective to estimate N navigational waypoints P = {pi ∈
R2 ∀ i ∈ 1, . . . , N} that should be touched by the path in order to perform full-
coverage navigation. These waypoints can be clustered into the row starting/ending
groups, and the final order is simply obtained following an A-B-B-A scheme between
the two. To achieve this, a DNN is used to perform both waypoint estimation and
clustering, adopting a custom synthetic occupancy grid dataset for training, and
real-world satellite images for testing. This module is presented and detailed in
Chapter 5.

1https://sentinel.esa.int/web/sentinel/missions/sentinel-2/

49

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/

A Deep Learning Driven Pipeline for Autonomous Navigation in Row-based Crops

Path Planning

With this block, a full path is obtained, which is the actual succession of points
that the robot should follow. This trajectory should connect the waypoints in the
order given by the previous module, avoiding any collision with the crops, and
ensuring, if possible, centrality with respect to the field rows. Any algorithm that
supports an occupancy grid and point-to-point planning can be used in this context,
such as the popular A* [86], RRT* [131] and D* [234, 123]. A custom global planner
named Adaptive Row Crops Path Generator (ARC-PG) [32] allows for a reduced
number of iterations and a higher path centrality, in the specific case of row-crop
planning. Examples of full-coverage paths obtained with ARC-PG, together with
an explanation of its basic working principles, are presented at the end of Chapter 5.

Local Navigation Control

This module should ensure path following and obstacle avoidance by in-field con-
trol of the robot. The most basic approach is simply to adopt an arbitrary controller
in the GNSS reference frame, such as, for example, the Dynamic Window Approach
(DWA) [67] or the Pure Pursuit [46], using Real-Time Kinematic (RTK), GNSS
signals and inertial data provided by an IMU for localization. Since the original
path is obtained in this reference system, thanks to the georeferenced input image
X, this is the most straightforward approach to tackle navigation. Any suitable
additional hardware and software modules can be integrated, to adopt common
navigational features such as obstacle avoidance, with the usage, for example, of
ranging sensors, or path smoothness. However, meteorological conditions and espe-
cially lush vegetation and thick canopies, can significantly affect GNSS reliability,
degrading its precision and consequently the overall navigation performance [114,
164]. For this reason, vision-based strategies can be exploited, in order to rely on
semantic information of the environment to navigate between rows, and depth infor-
mation to refine the underline control smoothness, disentangling from the necessity
of a precise localization. This alternative approach, makes use of RTK corrections,
GNSS signals, and inertial data to take care of inter-row segments that connect
one row to the other, since outside the row space a good sky view is available. On
the other hand, the intra-row segments can be navigated by exploiting visual in-
formation, adopting a camera and DL-based algorithms to overcome GNSS signals
unreliability. Future work may investigate alternative methodologies for inter-row
segments, as well, in order to completely avoid the need for an expensive RTK
sensor. Two different DL approaches have been proposed to use visual data for
intra-row navigation.

Segmentation-based control This approach [4, 33] takes an RGB frame Xrgb ∈
RHrgb×Wrgb×Crgb from the robot front RGB-D camera and produces a binary map,

50

3.1 – The pipeline

Figure 3.2: An example of synthetic RGB image obtained in a simulated row-based
field and the corresponding segmentation mask.

Xseg ∈ RHrgb×Wrgb with Hrgb, Wrgb and Crgb as height, width and channels, re-
spectively. The output positive class segments the crops and the foliage in the
camera view. Ideally, it should be equally split into the sides of the frame for a per-
fectly centered path due to the environment symmetry. Among all recent real-time
semantic segmentation models available in the literature, we carefully select an ar-
chitecture that guarantees high accuracy levels by also containing hardware costs,
optimization simplicity, and computational load. Indeed, the segmentation-based
control does not considerably benefit from fine-grained predictions and elaborated
encoder-decoder networks [100] or two-pathway backbones [272]. Therefore, a very
lightweight backbone, MobileNetV3 [97], is adopted followed by a reduced version
of the Atrous Spatial Pyramid Pooling module [38] to capture richer contextual
information with minimal computational impact. The training is performed with
synthetic images obtained in a simulated row-based field and tested on real-world
samples. An example of a training image, together with the corresponding seg-
mentation mask, is shown in Fig. 3.2. To ease the dataset construction process,
segmentation is performed on RGB data only.

The extracted semantic information Xseg is used in conjunction with the cam-
era depth map (D channel) to control the movements of the platform, with the
objective of equalizing the segmented pixels on the sides of the frame. The depth
information is adopted to reduce the line of sight of the actual scene and remove
some background noise. A sum of S segmentation maps, obtained in subsequent
temporal instants, is used in order to obtain a more stable control. The control is
based on the identification of the largest cluster of zeros in the segmentation map,
which represents free space. This cluster contains the obstacle-free space informa-
tion that can be exploited to safely drive the mobile platform; as a consequence
the linear (v) and angular (ω) velocities are computed using the center of the se-
lected cluster, which ideally corresponds to the center line of the row. The desired
velocities are obtained by means of the following equations:

51

A Deep Learning Driven Pipeline for Autonomous Navigation in Row-based Crops

Figure 3.3: In the DRL navigation control algorithm [167], the reward at each time
step t is computed as a function of the distances from the end of the row (EoR)
dt and dt−1, and the angle ϕt between the robot orientation and the shortest path
to EoR. This information is available while training the agent although it does not
constitute its input. All the training process is performed in a simulated vineyard
environment.

v = vmax

⎡⎣1−
(︄

2d
Wrgb

)︄2
⎤⎦ (3.1)

ω = ωgaind (3.2)

where vmax = 1.0 and ωgain = 0.01 are two constants that depend on the specific
robotic platform, and d is defined as:

d = xc −
Wrgb

2 (3.3)

with xc center coordinate of the selected cluster. Eventually, the control velocity
commands sent to the actuators are smoothed using an exponential moving average
(EMA), in order to prevent the mobile platform from sharp motion.

DRL control An alternative DL-based approach for navigation control relies on
training an end-to-end sensorimotor agent [167], which directly maps a noisy depth
image Xdepth ∈ RHdepth×Wdepth×1 and position-agnostic robot state information to
velocity commands (linear velocity v and angular velocity ω), with the objective
of guiding the robot to the end of a row. Instead of having complex processing
operations on the input depth image, this approach directly concatenates visual
latent representations, extracted from Xdepth with a simple 4-layer convolutional
backbone, to the state of the robot at time t (yaw ψt and previous commands vt−1

52

3.1 – The pipeline

and ωt−1). This feature tensor is then processed with a 3-layer MLP that pre-
dicts the new commands vt and ωt. The input features are selected considering
the odometric and perception data available during the real vineyard navigation
task, only. Therefore, this approach enables localization-independent navigation,
with an affordable perception system such as a simple depth camera and an IMU,
avoiding any possibly unreliable GNNS signal. The resulting simple and efficient
model is trained with the Deep Reinforcement Learning (DRL) paradigm, following
the Soft actor-critic (SAC) algorithm [82]. This learning methodology relies on a
trial-and-error approach through simulation, giving the agent feedback with the
aim of maximizing a function called the reward. The training process is therefore
performed with a model of the robotic platform in a simulated vineyard environ-
ment.

For the specific application, the reward should take into consideration two main
contributions: robot orientation and distance from the goal. In particular, we first
define a reward contribution rh to keep the robot oriented towards the end of the
row:

rh =
⎛⎝1− 2

⌜⃓⃓⎷⃓⃓⃓⃓⃓ϕπ
⃓⃓⃓⃓
⃓
⎞⎠ (3.4)

where ϕ is the heading angle of the robot, namely the angle between its linear
velocity and the end of the row. Then we adopt a distance-based reward to strongly
encourage the agent to reach the end of the row:

rd = dt−1 − dt (3.5)

where dt−1 and dt are Euclidean distances between the robot and the end of the
row (EoR) at successive time steps, as shown in Fig. 3.3. Robot pose information
is uniquely used for reward computing while training, and is not included as agent
input, as already stated before. We finally include a sparse reward contribution
for end-of-episode states, assigning rs = 1000 for the successful completion of the
task, rc = −500 if a collision occurs, and rψ = −500 if the robot overcomes a ±85◦

yaw limit and starts to go in the opposite direction. Stopping the episode when
the robot exits the vineyard row or reverses its motion direction is fundamental
to keep collecting meaningful sample transitions for the task. The final reward is
computed as follows:

r = α · rh + β · rd +

⎧⎪⎪⎨⎪⎪⎩
rs if success
rc if collision
rψ if reverse

(3.6)

where α = 0.6 and β = 35 are numerical coefficients to combine the different
contributions.

53

A Deep Learning Driven Pipeline for Autonomous Navigation in Row-based Crops

(a) Test vineyard row (b) Test pear orchard row

Figure 3.4: Real-world testing environments used in the experimentation.

3.2 Real-world experimentation
The full pipeline is tested in two real environment scenarios with multiple ex-

periments in different seasonal periods: a vineyard and a pear orchard, depicted in
Fig. 3.4. We apply the full pipeline to plan the path and then measure the naviga-
tion performance in-field, using the segmentation-based control. All the tests are
performed with the same hardware and software setup to obtain consistent data.
The vineyard is located in Grugliasco and managed by the Department of Agri-
cultural, Forestry and Food Sciences of Università degli studi di Torino (UNITO).
Instead, the pear orchard is located in Montegrosso d’Asti and managed by Mura
Mura farm. The first scenario has an inter-row space of about 2.80m and a height
of about 2.0m, while the second is organized in rows with an inter-row space of
4.50m and a height of about 3.0m.

Robotic hardware and sensors setup

As mobile platform, we select the Jackal Unmanned Ground Vehicle (UGV) by
Clearpath Robotics2, which can be briefly described as a small and weatherproof
rover (IP62 code) with a 4x4 high-torque drivetrain. It is highly customizable
and ROS-compatible allowing fast deployment and algorithm testing. All the al-
gorithms run on the onboard Mini-ITX PC with a CPU Intel Core i3-4330TE
@2.4GHz and 4GB DDR3 RAM. For what concern the localization sensors, the
RTK-enabled GNSS receiver is the Piksi Multi by Swift Navigation mounted on
an evaluation board, which provides easy input/output communication with the

2https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

54

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

3.2 – Real-world experimentation

Test N. rows MAE [m] RMSE [m]
Test n. 1 4 0.296 0.332
Test n. 2 6 0.218 0.240
Test n. 3 6 0.204 0.246

Table 3.1: Comparison of different error metrics in three different tests performed
in the vineyard. The second column describes the number of visited rows in the
corresponding test.

Test N. rows MAE [m] RMSE [m]
Test n. 1 4 0.523 0.627
Test n. 2 4 0.457 0.551
Test n. 3 2 0.659 0.755

Table 3.2: Comparison of different error metrics in three different tests performed
in the pear orchard. The second column describes the number of visited rows in
the corresponding test.

receiver (acquisition rate of 10 Hz), while the inertial measurements are provided
by the MPU-9250 IMU (acquisition rate of 100 Hz). In addition, to get a front
view of the environment, we select the Intel Realsense D455 RGBD camera, that
provides frames at 30 fps, mounted on the front part of Jackal top plate. Finally,
the odometry is provided by the onboard quadrature encoders that are able to run
at 78000 pulses/m. As mentioned before, the Local Navigation Control module
fuses the IMU and GNSS receiver data in order to obtain a global position esti-
mate of the mobile platform time by time. However, GNSS positioning is highly
inaccurate without implementing any corrections technique. As a consequence, we
provide RTK corrections to Piksi Multi receiver, coming from the SPIN3 GNSS3 of
Piemonte, Lombardia, and Valle d’Aosta, through an internet connection. Then,
the GNSS receiver directly uses such corrections to obtain more reliable and accu-
rate global position estimates, with an error range of [0.05,0.10]m, in a clear view
of the sky and a good antenna position.

In-field results

Tab. 3.1 and 3.2 show navigational errors, in terms of mean absolute error (MAE)
and root mean squared error (RMSE), computed comparing the RTK-GNSS po-
sitions provided by the Piksi Multi receiver and the target path provided by the

3https://www.spingnss.it/spiderweb/frmIndex.aspx

55

https://www.spingnss.it/spiderweb/frmIndex.aspx

A Deep Learning Driven Pipeline for Autonomous Navigation in Row-based Crops

(a) Test n. 3 in the vineyard scenario (b) Test n. 2 in the orchard scenario

Figure 3.5: A visual representation of the obtained results. Both images contain
the path followed by the UGV (red line), the target global path provided by the
Path Planning module (cyan x), the start/end row waypoints (blue dots) and the
crop (green dots).

Path Planning module the navigation system. All of this is possible due to the high
accuracy GNSS estimated positions, thanks to a clear view of the sky and a good
position of the high-end antenna on the UGV. All the collected data are represented
in latitude and longitude GNSS coordinates. However, for analysis purposes, they
have been transformed in meters with respect to the top left corner pixel of the
georeferenced occupancy grid map. Results demonstrate that a methodology that
exploits visual data with semantic segmentation, along with a standard navigation
approach based on GNSS signals, is able to provide complete and reliable naviga-
tion throughout the whole row-based crop. Results obtained in the pear orchard
are slightly worse than the vineyard ones; however, this effect may be due to the
greater inter-row space of the pear orchard. Eventually, the mean time of a single
test is about 25 minutes, while the maximum velocity of the UGV is 0.5 m/s. All
considered, the overall achieved performances, in terms of MAE and RMSE, are
adequate to the used low-cost sensors setup and demonstrate the effectiveness of
the proposed approach. Fig. 3.5 shows the trajectory followed by the UGV in two
real-world tests.

56

Chapter 4

RAMS: Multi-Image
Super-Resolution of
Remotely Sensed Images
using Residual Attention
Deep Neural Networks

Super-Resolution (SR), also referred to as super-sampling or image restoration,
serves the purpose of reconstructing high-resolution (HR) images from either single
or multiple low-resolution (LR) images. Due to constraints such as sensor limita-
tions and exceedingly high acquisition costs, it is often challenging to obtain HR
images. In this regard, SR algorithms provide a viable opportunity to enhance
and reconstruct HR images from LR images recorded by the sensors. Over more
than three decades, progress has steadily been observed in the development of
Super-Resolution, as both multi-frame and single-frame SR now have substantial
applications that can use image generation purposefully.

SR is very significant to Remote Sensing because it provides the opportunity
to enhance LR images despite the inherent problems often faced in remote-sensing
scenarios. The hardware and material costs for smaller missions around data accu-
mulation are very high. Additionally, onboard instruments on satellites continue to
generate ever-increasing data as spatial and spectral resolutions also increase, and
this has progressively become challenging for compression algorithms [247], as they
try to meet the bandwidth restrictions [23, 246]. Remote sensing is fundamental in
obtaining images covering most of the globe, permitting many vital projects such
as disaster monitoring, military surveillance, urban maps, and vegetation growth
monitoring. It is thus imperative that enhancements and progress be made in

57

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

post-processing techniques to overcome obstacles of increasing spatial resolution.
There are two main methods used in Super-Resolution: Single-Image SR (SISR)

and Multi-Image SR (MISR). SISR employs a single image to reconstruct an HR
version of it. Contrastingly, MISR involves multiple LR images of the same scene
acquired from the same or different sensors to construct an HR image. The sig-
nificant advantage MISR holds over SISR is in how it can draw out otherwise
unavailable information from the different image observations of the same scene.

Learning-based SISR methods build upon the relation between LR-HR images,
and there have been many recent advancements in this approach, mostly due to
deep convolutional neural networks (CNNs) [57, 120, 55]. The leading force for
this was Dong et al. [56], who achieved superior results by proposing a Super-
Resolution CNN (SRCNN), and Tai et al. that pioneered deep recursive residual
network (DRRN) [237]. Shi et al. [224] introduced an efficient sub-pixel convolution
layer that learns an array of upscaling filters to efficiently extract the main network
features from the LR image, and only project them to the HR space in the last block
of the model. This methodology became the de facto standard for SR, supplanting
other feature upscaling methods such as bilinear or bicubic interpolation or trans-
pose convolutions. Later, Ledig et al. [136] proposed SRGAN, a Generative Adver-
sarial Network (GAN) for photo-realistic SR with perceptual losses [113]. In recent
past years, enhancements in deep networks have been proposed and showed promis-
ing results for SISR, for example, in [139], an Enhanced Deep Super-Resolution
(EDSR) network was developed to improve the performance by removing unnec-
essary modules and expanding the model size with the stable training process in
conventional residual networks. Yu et. al [273] demonstrated better results in terms
of accurate SR by generating models with a wide range of features before ReLU ac-
tivation and training with normalized weights. Zhang et. al [283] proposed residual
channel attention networks (RCAN) that exploit very deep network structure based
on residual in residual (RIR) which bypasses excessive low-frequency information
through multiple skip connections.

On the other hand, Multi-Image SR (MISR) involves the extraction of informa-
tion from many LR observations of the same scene to reconstruct HR images [275].
Iterative Back Projection (IBP), introduced by Irani and Peleg [105], used a back-
projection of the difference between the actual LR images obtained and the simu-
lated LR images to the SR image. The forward imaging process is inverted and it-
eratively attempted in updates. An enhanced Fast and Robust SR (FRSR) [66] em-
ployed estimation of maximum likelihood analysis and simplified regulation. More
recently, many DL-based approaches have been exploited to address the MISR
problems in the context of enhancing video sequences [116, 28, 112]. Kawulok et
al [119] demonstrated the potential benefits of information fusion offered by mul-
tiple satellite images reconstruction and learning-based SISR approaches. In their
work, EvoNet framework [118] based on several deep CNNs was adopted to exploit
SISR in the preprocessing phase of the input data for MISR. Recently, a challenge

58

4.1 – Methodology

was set by the European Space Agency (ESA) to super-resolve multi-temporal
PROBA-V satellite imagery. In this context, a new CNN-based architecture Deep-
SUM was proposed by Molini et. al [177], in which an end-to-end learning ap-
proach was established by exploiting both spatial and temporal correlations. Most
recently, Deudon et. al presented HighRes-net [51], proposing an end-to-end mech-
anism that learns the sub-tasks involved in MISR, which are co-registration, fusion,
upsampling, and registration-at-the-loss.

In this contribution, we propose a DL MISR solution for remote-sensing appli-
cations that exploits both spatial and temporal correlations to combine multiple
low-resolution acquisitions smartly. Indeed, our model provides a real end-to-end
efficient solution to recover high-resolution images, overcoming limitations of pre-
vious similar methodologies, and providing enhanced reconstruction results. In
particular, the main contributions of this work lie in:

1. the use of 3D convolutions to efficiently extract, directly from the stack of
multiple low-resolution images, high-level representations, simultaneously ex-
ploiting spatial and temporal correlations;

2. the introduction of a novel feature attention mechanism for 3D convolutions
that lets the network focus on the most promising high-frequency informa-
tion largely overcoming main locality limitations of convolutional operations.
Moreover, the concurrent use of multiple nested residuals, inside the network,
lets low-frequency components flow directly to the output of the model;

3. the conceptualization and development of an efficient, highly replicable, deep
learning neural network for MISR that makes use of 2D and 3D convolutions
exclusively in the low-resolution space. It has been extensively evaluated on a
major multi-frame open-source remote-sensing dataset proving state-of-the-art
results by a considerable margin.

The complete code with a pre-trained version of our model is available online 1.

4.1 Methodology
MISR aims at recovering an HR image IHR from a set of T LR images ILR

[1,T]
of the same scene acquired in a certain temporal window. In contrast to SISR,
MISR can simultaneously benefit from spatial and temporal correlations, being
able to achieve far better reconstruction results theoretically. Either way, SR is an
inherently ill-posed problem since a multiplicity of solutions exist for any given set
of low-resolution images. So, it is an underdetermined inverse problem, of which

1https://github.com/EscVM/RAMS

59

https://github.com/EscVM/RAMS

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

the solution is not unique. Our proposed methodology, based on a deep learning
model, aims at generating a super-resolved image ISR applying a function HRAMS
to the set of ILR

[1,T] images:

ISR = φRAMS(ILR
[1,T]) (4.1)

In other words, we propose a fully convolutional Residual Attention Multi-Image
Super-Resolution (RAMS) network that can efficiently extract high-level features
concurrently from T LR images and fuse them exploiting a built-in visual attention
mechanism. Attention directs the focus of the model only on the most promis-
ing extracted features, reducing the importance of less relevant ones and mostly
transcending limitations of the local region of convolutional operations. Moreover,
extensive use of nested residual connections lets all the redundant low-frequency in-
formation, present in the set ILR

[1,T] of LR images, flow through the network, leaving
the model focusing its computation only on high-frequency components. Indeed,
high-frequency features are more informative for HR reconstruction, while LR im-
ages contain abundant low-frequency information that can directly be forwarded
to the final output [283]. Finally, as the majority of the model for SISR [139, 273,
57, 48], all computations in our network are efficiently performed in the LR feature
space requiring only an upsample operation at the final stage of the model.

4.1.1 Network architecture
An overview of the RAMS network, with its main three blocks and two branches,

is shown in Fig. 4.1. The set of low-resolution images ILR
[1,T] that can be represented

as a 4D tensor x with shape H×W×T×C where H, W and C are the height, width,
and channels of the single LR images, respectively. The upper global residual path
proposes a simple SR solution, making an aware fusion of the T input images. On
the other hand, the central branch exploits 3D convolutions residual-based blocks
in order to extract spatial and temporal correlations from the same set of T LR
images and provides a refinement to the residual simple SR image.

More in detail, in the first part of the main path of the model, we use a simple 3D
convolutional layer, with each filter of size fh×fw×ft, to extract F shallow features
from the input. Then, we apply a cascade ofN residual feature attention blocks that
increasingly extract higher-level features, exploiting local and non-local, temporal,
and spatial correlations. Moreover, we make use of a long skip connection for the
shallow features and several short skip connections inside each feature attention
block to let flow all redundant low-frequency signals and let the network focus on
more valuable high-frequency components. The three dimensions H, W and T are
always preserved through reflecting padding. The first part of the main branch
can be modeled as a single function φ1 that maps each tensor x to a new higher
dimensional one x1 with shape H ×W × T × F :

60

4.1 – Methodology

Figure 4.1: Overview of the Residual Attention Multi-Image Super-Resolution Net-
work (RAMS), assuming to work with single-channel LR images (C = 1) to simplify
the discussion. A tensor of T single-channel LR images constitutes the input of the
proposed model. The main branch extracts features, with 3D convolutions, in a
hierarchical fashion, while a feature attention mechanism allows the network to se-
lect and focus on the most promising inner representations. Concurrently, a global
residual path exploits a similar attention operation in order to make an aware fu-
sion of the T distinct LR images. All computations are efficiently performed in the
LR feature space and only at the last stage of the model an upsampling operation
is performed in both branches.

x1 = φ1(x) (4.2)

In the second part of the main branch, we further process the output tensor
with ⌊T/(ft − 1)⌋ − 1 temporal reduction blocks. In each block, we intersperse a
residual feature attention block with a 3D convolutional layer without padding on
the temporal T dimension (TR-Conv). So, H, W and F remain invariant and only
the temporal dimension is reduced. The output of this second block is a new tensor
x2 with shape H ×W × ft × F , where the temporal dimension T is reduced to ft:

x2 = φ2(x1) (4.3)

Finally, the output tensor is processed by a further TR-Conv layer that reduces

61

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

the temporal dimension to 1 and an upscale function HUP|3D that generates a tensor
xUP|3D of shape sH × sW × C where s is the scaling factor.

The overall output of the main branch is summed to the trivial solution provided
by the global residual. This global path simply weights the T LR images of the
input tensor with a residual temporal attention block with filters of size fh × fw.
Then it produces an output tensor xUP|2D of shape sH × sW ×C that is added to
the output of the main branch. So, the final SR prediction of the network ŷ = ISR

is the sum of the two contribution:

ŷ = φRAMS(x) = (xUP|3D + xUP|2D) (4.4)

The upscaling procedure is identical for both branches; after several trials with
different methodologies, such as transposed convolutions [51], bi-linear resizing and
nearest-neighbor upsampling [184], we adopted a sub-pixel convolution layer as
explained in detail in [224]. So, for either branch, the last 2D or 3D convolution
generates s2 ·C features in order to produce the final tensors of shape sH×sW ×C
for the residual sum.

4.1.2 Residual attention blocks
Residual attention blocks are at the core of the RAMS model; their specific

architecture allows it to focus on relevant high-frequency components and let re-
dundant, low-frequency information flow through the residual connections of the
network. Inter-dependencies among features, in the case of feature attention blocks,
or temporal steps, in the case of temporal attention blocks, are taken into account
computing for each of them, relevant statistics that take into account local and
non-local, temporal and spatial correlations. Indeed, either 3D or 2D convolution
filters operate with local receptive fields losing the possibility to exploit contextual
information outside of their limited region of view.

Residual feature attention

In this block, used in the main branch, the features are weighted up in order
to trace the most promising high-frequency components, and a residual connection
lets low-frequency information flow through the network.

Given a generic feature tensor x∗, the output of a residual feature attention
block is equal to:

φRFA(x∗) = x∗ + φFA(x†) · x† (4.5)

where φFA is the feature attention block and x† is the output of two stacked 3D
convolutional layers, with fh × fw × ft as kernel dimension and F filters. The first
convolutional layer has ReLU activation, while the second is linear.

62

4.1 – Methodology

G
lobal Pooling

3D
 C

onv

3D
 C

onv

Sigm
oid

HxWxTxF 1x1x1xF 1x1x1x _Fr 1x1x1xF HxWxTxF

Figure 4.2: Reference architecture of a feature attention block. A series of con-
volutional operations and non-linear activations are applied to the input tensor
with shape H ×W × T × F in order to generate different attention statistics for
each feature F that concurrently take advantage of local and non-local correlations.
Consequently, each feature is properly re-scaled, enabling the network to focus on
the most promising components and letting residual connections heed all redundant
low-frequency signals.

The feature attention block φFA extracts a feature descriptor zF ∈ RF by using
a Global Average Pooling (GAP) layer, averaging the spatial and temporal axes
(H, F and T). The output tensor zF is further processed by a stack of two 3D con-
volutional layers with a ReLU and sigmoid activation function, respectively. The
stack of two convolutional layers with the filter of size 1 × 1 × 1 allows to create
a non-linear mapping function that is able to deeply capture feature-wise depen-
dencies from the aggregated information extracted by the global pooling operation.
The first 3D convolutional layer reduces the feature size by a factor of r, and then
the second layer restores the original dimension and constrains its values from zero
to one with a sigmoid function in a non-mutually exclusive relationship. These
convolutional layers are equivalent to FC layers on the one-dimensional vector zF .
Finally, the original tensor x† is weighted up by the processed attention statistics
as shown in Eq. 4.5. Overall, the feature attention block implements a 3D general-
ization of the Squeeze-and-Excitation (SE) module [99]. Fig. 4.2 shows a graphical
representation of the residual feature attention block.

Residual temporal attention

The primary purpose of the global residual path is to generate a starting trivial
solution for the upsampling problem. More accurate is this starting prediction, and
more simplified is the role of the main branch of the network, leading to a lower
reconstruction error. The input of the model x has T different LR images that have
to be merged. Intuitively, for each input sample ILR

[1,T], there are some LR images
more similar to each other. So, giving them more relevance when merging the T

63

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

Residual	Temporal	Attention	Block

Temporal	Attention

++

2D
	Conv
ReLU
2D
	Conv

G
lobal	pooling
2D
	Conv
ReLU
2D
	Conv

Sigm
oid

Reshape

Figure 4.3: Reference architecture of a residual temporal attention block. If the
number of channels C /= 1 the input tensor x is reshaped in H × W × (T · C).
Consequently, all temporal channels are weighted with some statistics computed
by the layers of the temporal attention block.

LR images would most probably lead to higher quality predictions. In this context,
the aim of the residual temporal attention block is to make an aware weighting of
the different input temporal images, letting the network make an upsample solution
with primarily the most correlated temporal steps.

That is accomplished with a similar mechanism to the one employed in the
residual feature attention blocks and can be summarized as follows:

φRTA(x) = x + φTA(x‡) · x‡ (4.6)

where HTA is the temporal attention function and x‡ is the product of a stack
of two 2D convolutional operations with fh × fw as kernel dimensions and T · C
features. Then, in the same way as the feature attention blocks, the temporal
block takes the temporal-wise global spatial information into a feature descriptor
by using a GAP layer. Finally, those statistical descriptors are processed by a
stack of 2D convolutional layers with ReLU and sigmoid as activation functions,
respectively, scaling the T · C channels of the input tensor, as shown in Eq. 4.6.
As for feature attention blocks, the first convolutional layer reduces the number
of the last dimension by a factor of r, giving the network the possibility to fully
capture temporal-wise dependencies. This block can be therefore seen as a plain
SE module [99] applied to the input tensor image x.

4.1.3 Temporal reduction blocks
The aim of the last block of the main branch is to slowly reduce the temporal

dimension to one. Indeed, the tensor x1 (see Eq. 4.2) has T temporal dimensions
that need to be merged. To this end, we further process the incoming tensors with
⌊T/(ft − 1)⌋ − 1 temporal reduction blocks. Each one is composed of a residual
feature attention block and a 3D convolutional layer without any reflecting padding

64

4.1 – Methodology

in the temporal dimension, denoted as TR-Conv. So, each TR-Conv layer reduces
the temporal dimension of ft−1. The attention blocks allow the network to learn the
best space to decouple image features, selecting more promising features to maintain
when reducing the temporal dimension. The output of the last temporal reduction
block is the x2 tensor with shape H×W ×ft×F (see Eq. 4.3). The last TR-Conv,
before the upsampling function φUP|3D , reduces to one the number of temporal steps
and generates s2 · C features for the sub-pixel convolutional layer [224].

4.1.4 Training process
Learning the end-to-end mapping function φRAMS requires the estimation of the

model parameters. That is achieved by minimizing a loss L between a reconstructed
super-resolved image ISR and the corresponding ground truth high-resolution image
IHR.

Several loss functions have been proposed and investigated for the SISR problem,
such as L1 [128, 139, 129, 273], L2 [177, 55, 238, 121] and perceptual and adversarial
losses [136, 113]. However, in typical MISR remote-sensing problems, LR images
are taken within a certain time window and they could have an undefined spatial
misalignment from one to another. So, we must take into account that the super-
resolved output of the model ISR will be inherently not registered with the target
image IHR. Moreover, since we can have very different conditions among the images
part of the same scene, it is important to make the loss function independent from
possible intensity biases between the super-resolved ISR and the target IHR. Indeed,
if we get a super-resolved image ISR = IHR + ϵ, with ϵ constant and low enough
to avoid numerical saturation, we can consider its reconstruction perfect since it
represents the scene with the same level of detail of the ground truth.

With these premises, inspired by the metric proposed in [165], we defined ISR
crop

as the super-resolved output cropped of d pixels on each border and we consider
each possible patch IHR

u,v , u, v ∈ [0,2d] of size (sH−2d)× (sW −2d) extracted from
the ground truth IHR. We compute the mean biases between the cropped ISR

crop and
the patches IHR

u,v as follows:

bu,v =
∑︁sH−2d
i=1

∑︁sW−2d
j=1

[︂
IHR
u,v − ISR

u,v

]︂
(i, j)

(sH − 2d)(sW − 2d) (4.7)

The loss is then defined as the minimum mean absolute error (L1 loss) between
ISR

crop and each possible alignment patch IHR
u,v . We use the MAE instead of the

most used MSE since we experimentally find that provides better results for image
restoration problems, as proved by previous works [285, 139, 283].

L = min
u,v∈[0,2d]

∥IHR
u,v − (ISR

u,v + bu,v)∥1

(sH − 2d)(sW − 2d) (4.8)

65

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

where ∥ · ∥1 represents the L1 norm of a matrix, i.e. the sum of its absolute values.

4.2 Experiments
In this section, we test the proposed methodology in an experimental context,

training it on a dataset of real-world satellite images and evaluating its performance
in comparison with other approaches, including a state-of-the-art SISR algorithm,
to demonstrate the superiority of Multi-Image models. We first present the dataset
and the preprocessing stages, we define all the parameters used during the ex-
perimentation, and then we propose quantitative and qualitative results. We also
perform an ablation study to demonstrate the contribution of the global residual
branch that implements a temporal attention mechanism.

4.2.1 The Proba-V Dataset
To train our model, we exploit the dataset released by the Advanced Concept

Team of the European Space Agency (ESA) [165]. This dataset has been specifically
conceived for MISR problems, and it is composed of several images taken by the
Proba-V satellite in the two different spectral bands RED and NIR (near-infrared).
Proba-V satellite was launched by ESA in 2013 and is specifically designed for land
covering and vegetation growth monitoring across almost the entire globe. The
satellite provides images in two resolutions with different revisit frequencies. HR
images have a 100m per pixel spatial resolution and are released roughly every
five days, while LR images have a 300m per pixel resolution and are available
almost daily. The characteristics of the Proba-V imagery make it particularly
suitable for MISR algorithms since it provides both resolutions natively, allowing
for the application of the SR process without the need for artificially degrading and
downsampling the HR images.

The dataset has been released for the Proba-V Super Resolution challenge 2

and is composed of two main parts: the train part provides both LR and HR
images, while the test part LR images, only. In order to verify the effectiveness of
our approach, we consider the train part and not the test part, since it has been
conceived for the challenge evaluation only and does not include the ground truths.
Thus, we subdivide the train part into training and validation sets. To ease the
comparison with previous methods, we use the same validation images used in [177].
In total, we have 415 scenes for training and 176 for validation for the RED band
and 396 for training and 170 for validation for NIR.

Each scene is composed of several LR images (from 9 to 35, depending on the
scene) with a dimension of 128x128 pixels and a single HR ground truth with a

2https://kelvins.esa.int/proba-v-super-resolution/

66

https://kelvins.esa.int/proba-v-super-resolution/

4.2 – Experiments

dimension of 384x384 pixels. The images are encoded as 16-bit png files, even if the
actual signal bit-depth is 14 bits. Additionally, each image features a binary mask
that distinguishes reliable pixels from unreliable ones (e.g., due to cloud coverage).
This information is vital since the images are not taken in the same weather and
temporal conditions, but a maximum period of 30 days can be covered in a single
scene. For this reason, non-trivial changes in the landscape can occur between
different LR images and their HR counterpart and are essential to understand which
pixels carry meaningful information and which do not. Trying to infer the value of
pixels that are concealed by clouds would mean being able to predict the weather in
an unknown time by merely looking at the condition in other unspecified moments.
For this reason, it is essential to train the network so that unreliable pixels do
not influence the SR process. To assess the quality of, each image, we define c as
the clearance of the image, i.e. the fraction of reliable pixels in the corresponding
binary mask.

4.2.2 Data pre-processing
Before training the model, we pre-process the dataset with the following steps,

which are common to other reference works present in the literature [177, 51, 58]:

• register each LR image using as reference the one with maximum clearance c

• select the clearest T images from each scene that are above a certain clearance
threshold cmin

• pre-augment the training dataset with np temporal permutations of the LR
input images

• normalize the images by subtracting the dataset mean intensity value and
dividing by the standard deviation

Since each LR image is taken at a different time and with some intrinsic spatial
misalignment with respect to the others, it is important to spatially resample each
pixel value in order to have a coherent reference frame. For each scene of the
dataset, we consider a reference image the one with the maximum clearance c.
During the registration process, we consider translation as a transformation model,
which computes the necessary shifts to register each image for both axes. Masks
are taken into consideration during this process in order to avoid bad registration
caused by unreliable pixels. The registration is performed in the Fourier domain
using normalized cross-correlation as in [189]. After computing the shifts, both
LR images and the corresponding masks are shifted accordingly. We use a reflect
padding to add pixels to LR images and a constant zero padding for masks. In this
way, these extra pixels will be considered unreliable.

For each scene, we must select some LR images in order to match the temporal
dimension T of the network. We set a threshold cmin = 0.85 on the clearance

67

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

for an image to be accepted to avoid using awful images that can worsen the SR
performance. The acceptable images are then sorted in order of clearance, and the
best T are selected. In the case of a scene with less than T images, we sample
randomly from the set of acceptable images until T are reached. If a scene is only
composed of clearances under cmin, it is entirely removed from the dataset. This
selection process is performed after the registration so that heavily bad registered
images are also removed, even if they had an initial clearance above the threshold.
Since each scene of the dataset contains at least 9 LR images, we set T = 9 to fully
exploit all the available information for most of the scenes. The selection process
results in the deletion of 3 NIR scenes, thus ending up with 415/393 training scenes
for RED/NIR and 176/170 validation scenes for RED/NIR.

One of the characteristics of the Proba-V dataset is that the LR images of a
particular scene have no clear temporal order. Therefore, there is no reason to
prefer a specific order in the T input images to another. The training dataset
is, therefore, pre-augmented by performing np random temporal permutations of
the selected T input images to help generalization. In this way, we can train the
algorithm to identify the best temporal image independently of the position inside
the input tensor. We set this permutation parameter to np = 7, reaching a total
of 2905 training scenes for RED and 2751 for NIR. The validation split is not pre-
augmented in this way, and therefore we keep the original temporal order, ending
up with 176 and 170 scenes for RED and NIR, respectively.

Finally, each image is normalized by subtracting the mean pixel intensity value
computed on the entire dataset and dividing by the standard deviation. After
the forward pass in the network, all the tensors are then denormalized, and the
subsequent evaluations are performed on the 16 bits unsigned integer arrays.

4.2.3 Experimental settings
The scaling factor of the Proba-V dataset is s = 3. Since we have different scenes

for RED and NIR data, we treat the problem for the two bands separately. For
this reason, we have C = 1, since we consider images with a single channel. We set
F = 32 and fh = fw = ft = 3 as the number of filters and kernel size respectively
for each convolutional layer. Therefore, the number of temporal reduction blocks
is ⌊T/(ft − 1)⌋ − 1 = 3, since each block reduces the temporal dimension of 2. In
all the residual attention blocks, we set r = 8 as the reduction factor. After testing
different values with a grid search, we set N = 12 as the number of residual feature
attention blocks in the main branch of the network. We find that decreasing this
number causes a loss of performance while increasing it gives a little improvement
in the results at the cost of a high increase in the number of parameters. N = 12
is, therefore, the best compromise between network size and prediction results. In
total, our model has slightly less than 1M parameters.

In most of the SR applications present in the literature, LR images are obtained

68

4.2 – Experiments

from the artificial degradation of the target HR images. In contrast, the real-
world nature of the dataset, in which LR images are obtained independently from
HR images, causes an unavoidable misalignment between the super-resolved output
and the ground truth. To take into account this problem, the authors of the dataset
consider a maximum shift of ±3 pixels on each axis between ISR and target IHR,
computed on the basis of the geolocation accuracy of the Proba-V satellite [165].
When computing the loss function presented in Section 4.1.4, we can therefore set
d = 3 as the cropping parameter. Besides, since the Proba-V dataset also provides
binary masks that mark with one reliable pixel and with 0 unreliable (e.g., concealed
by clouds) ones, we adapt the loss function to use this information to refine the
training process. During the loss computation, we want pixels marked as unreliable
in the target binary mask MHR not to influence the loss computation. Practically,
we can simply mask the cropped super-resolved image ISR

crop and the HR patch IHR
u,v

with the corresponding cropped mask MHR
u,v and average all the quantities over the

number of clear pixels. The bias computation is therefore adapted from Eq. 4.7 as:

bu,v =
∑︁
i,j

[︂
IHR
u,v ·MHR

u,v − ISR
u,v ·MHR

u,v

]︂
(i, j)

∥MHR
u,v∥1

(4.9)

In the same way, the loss is adapted from Eq. 4.8 as:

L = min
u,v∈[0,6]

∥IHR
u,v ·MHR

u,v − (ISR
u,v ·MHR

u,v + bu,v)∥1

∥MHR
u,v∥1

(4.10)

To train the model, we extract from each LR training and validation scene 16
patches with a size of 32× 32 pixels and the corresponding HR and mask patches
with a size of 96 × 96. We further check every single patch and remove those
that have a target mask MHR with less than 0.85 clearance c. The total number of
training samples obtained is 41678 for RED and 40173 for NIR. The total number of
validation samples obtained is 2621 for RED and 2478 for NIR. During the training
process, we further perform online data augmentation with random rotations of
90◦, 180◦ and 270◦ and random horizontal flips.

We set the batch size to 32. We optimize the loss function with Adam algo-
rithm [122] with default parameters β1 = 0.9, β2 = 0.999 and ϵ = 1× 10−7. We set
an initial learning rate ηi = 5× 10−4 and we reduce it with a linear decay down to
ηf = 5×10−7. We train two different networks for RED and NIR spectral bands on
a workstation with an Nvidia RTX 2080Ti GPU with 11GB of memory and 64GB
of DDR4 SDRAM. We use the TensorFlow 2 [1] framework with CUDA 10. In
total, we train the models for 100 training epochs for about 16 hours.

69

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

4.2.4 Quantitative results
To evaluate the obtained results, we need to use a slightly modified version

of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM) [259] criteria to take into consideration all the aspects we considered in the
previous section to obtain a proper loss function. Martens et al. [165] propose a
corrected version of the PSNR, called cPSNS, that is obtained from a corrected
mean squared error (cMSE). The computation of the cMSE is performed in the
same way as we did for the loss in Eq. 4.10: it is the minimum MSE between
ISR

crop + bu,v and the HR patches IHR
u,v :

cMSE = min
u,v∈[0,6]

MSE
clear u,v (4.11)

where MSE
clear u,v represents the mean squared error computed only on pixels marked

as clear in the binary mask MHR
u,v . Again, we can simply multiply the matrices by

the mask to make unreliable pixels irrelevant:

MSE
clear u,v =

∥IHR
u,v ·MHR

u,v − (ISR
u,v ·MHR

u,v + bu,v)∥2
2

∥MHR
u,v∥1

(4.12)

where ∥ · ∥2 represents the Euclidean (L2) norm of a matrix, i.e. the square root of
the sum of its squared values. We can then compute the cPSNR as:

cPSNR = 10 log10
(216 − 1)2

cMSE = max
u,v∈[0,6]

10 log10
(216 − 1)2

MSE
clear u,v

(4.13)

where 216 − 1 is the maximum pixel intensity for an image encoded on 16 bits.
In the same way, we can define a corrected version of the SSIM metric: cSSIM is

the maximum SSIM between ISR
crop + bu,v and the HR patches IHR

u,v , again multiplied
for the mask MHR

u,v .

cSSIM = max
u,v∈[0,6]

SSIM
(︂
IHR
u,v ·MHR

u,v , I
SR
crop ·MHR

u,v + bu,v
)︂

(4.14)

Temporal self-ensemble (RAMS+)

As in Section 4.2.2, during the training process images are augmented with ran-
dom permutation in the temporal axis. For this reason, it is possible to maximize
the performance of the model, by adopting a self-ensemble mechanism during in-
ference, similarly to what was done in previous SR works [139, 240, 283]. For each
input scene, we consider a certain number P of random permutations on the tem-
poral axis and we denote as

{︂
ILR

[1,T], 0 , · · · , ILR
[1,T], P

}︂
the resulting set of inputs. The

output of the inference process is therefore the average of the predictions on the

70

4.2 – Experiments

Figure 4.4: Results with a temporal self-ensemble of size P . The highlighted curves
represent an exponential moving average of the results to clearly show the trend.
The values for P = 1 are equivalent to RAMS.

whole set. We call this methodology RAMS+P , where P is the number of random
permutations performed:

ISR = 1
P

P∑︂
i=1

φRAMS
(︂
ILR

[1,T], i

)︂
(4.15)

Fig. 4.4 shows cPSNR results on the testing dataset for a different number of
permutated predictions. The trend clearly shows how increasing P results in better
performance on both the spectral bands, with an effect that tends to saturate for
P ≥ 25. For the following evaluation, we select P = 20 to present the results
for RAMS+. It is worth noting that, even if this method allows to increase the
performance of the network sharply, inference time grows linearly with P , with
RAMS+20 taking roughly 20 times as long as RAMS. Another aspect to highlight is
that the permutations are performed randomly, so different results can be achieved
even with the same value of P .

71

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

Band NIR RED
Metric cPSNR cSSIM cPSNR cSSIM

Bicubic 45.12 0.9767 47.63 0.9846
IBP[105] 45.96 0.9796 48.21 0.9865
BTV[66] 45.93 0.9794 48.12 0.9861
RCAN[283] 45.66 0.9798 48.22 0.9870
VSR-DUF[112] 47.20 0.9850 49.59 0.9902
HighRes-net[51] 47.55 0.9855 49.75 0.9904
3DWDSR [58] 47.71 0.9864 49.83 0.9909
DeepSUM[177] 47.84 0.9858 50.00 0.9908
DeepSUM++[178] 47.93 0.9862 50.08 0.9912
RAMS (ours) 48.23 0.9875 50.17 0.9913
RAMS+20 (ours) 48.51 0.9880 50.44 0.9917

Table 4.1: Average cPSNR (dB) and cSSIM over the validation dataset for different
methods.

Comparison with state-of-the-art methods

Tab. 4.1 shows the comparison of cPSNR and cSSIM metrics with several meth-
ods on the validation set. We consider as the baseline the bicubic interpolation of
the best image of the scene selected considering the clearance, i.e., the number of
clear pixels as marked by the binary masks.
IBP [105] and BTV [66] methods are tested with the same methodology presented
in Molini et al. [177]. They achieve slightly better results than the baseline with
both metrics.
RCAN [283] is one of the SISR state-of-the-art networks. We trained from scratch
two models, one for each spectral band, setting G = 5 and B = 5, as the number
of residual groups and residual channel attention blocks respectively, for a total
of about 2M parameters. We train the two models from scratch on the Proba-V
dataset, selecting the best image per scene as input. RCAN shows better perfor-
mance with respect to classical methods but is far beyond the other MISR networks,
showing how the additional information coming from both spatial and temporal
correlations is vital to boost the SR process.

VSR-DUF [112] has been developed to upsample video signals using a temporal
window of several frames. We train two models from scratch, one for each spectral
band, using 9 LR images as input as in our methodology. The authors consider three
different architectures depending on the number of convolutional layers and find
better results, increasing the depth of the model. We select the baseline 16 layers
deep architecture, which already has more than double parameters with respect to
RAMS, with the same number of input images.

72

4.2 – Experiments

HighRes-net [51] algorithm got second place in the Proba-V challenge and fea-
tured a single network for both spectral bands that recursively reduce the temporal
dimension to fuse the input LR images. We train the model on our training dataset
with default architecture. For a fair comparison, since the authors constrained the
model to have an input temporal dimension multiple of 2, we set it to 16, as it is
closest to our temporal size of 9.

3DWDSR [58] is an adaptation of the SISR WDSR network [273] to MISR. It
implements 3D convolutional layers maintaining the block structure of the original
network and a global residual branch with bicubic up-sampling. We train two sep-
arate models for NIR and RED bands for 200 epochs using the default parameters
and our training dataset.

DeepSUM [177] is the algorithm winner of the original Proba-V challenge, and
the authors have further developed it with DeepSUM++ [178]. We train our RAMS
on the same training dataset as these two works.

Results clearly show how the proposed methodology can obtain the best results
with the two metrics on both the spectral bands and thus represents the current
state-of-the-art for Multi-Image Super-Resolution for remote sensing applications.
Using temporal self-ensemble, RAMS+ is able to achieve even higher performance.
We show the value for RAMS+, setting P = 20 as the size of the ensemble, which is
the value at which we experimentally find that the resulting gain starts to saturate.
However, further increasing the ensemble size can result in even better performance,
though at the cost of a significant inference speed drop.

It is worth mentioning that our methodology reaches a result of 0.93368 on
the test set of the Proba-V challenge as provided by the official site and places
at the top of the leaderboard available after the end of the official challenge3 as of
January 2021. This score is computed as the mean ratio between the cPSNR values
of the challenge baseline on each testing scene, and the corresponding submitted
cPSNR for both spectral bands. This result has been obtained by retraining the
two networks with both training and validation datasets together.

Fig. 4.5 shows a direct comparison between the cPSNR results of RAMS and the
bicubic interpolation baseline and RCAN (one of the SISR state-of-the-art models).
Each cross represents a scene of the validation dataset of the corresponding spectral
band. The graphs on the left show how our method strongly beats the bicubic
upsampling on almost all the scenes, 98% for RED and 91% for NIR. That is
coherent with a generally worse behavior of all the methods on the NIR images,
probably due to an intrinsically worse information quality of the NIR dataset. The
graphs on the right show, on the other hand, the enormous potential of MISR with
respect to SISR methods. It can be observed how again RAMS outperforms RCAN
in almost all the scenes, with results only slightly worse than bicubic interpolation,

3https://kelvins.esa.int/proba-v-super-resolution/leaderboard/
post-mortem-leaderboard

73

https://kelvins.esa.int/proba-v-super-resolution/leaderboard/post-mortem-leaderboard
https://kelvins.esa.int/proba-v-super-resolution/leaderboard/post-mortem-leaderboard

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

Figure 4.5: cPSNR comparison between RAMS and bicubic interpolation and
RAMS and RCAN(SISR) on the validation set. Each data point represents a scene
of the dataset: when a cross is above the line, the corresponding scene is recon-
structed better by RAMS.

without RTA with RTA
cPSNR cSSIM cPSNR cSSIM

NIR 47.96 0.9869 48.23 0.9875
RED 47.98* 0.9863* 50.17 0.9913

Table 4.2: RAMS results with and without RTA (residual temporal attention)
branch. Values for RED without RTA are computed with the last valuable param-
eters before training diverges.

92% for RED, and 91% for NIR. That is reasonable since RCAN results are in some
way in the middle between bicubic and RAMS.

Importance of the residual temporal attention branch

As a final analysis, we perform an ablation study to demonstrate the importance
of the global residual branch that implements a temporal attention mechanism.
We train two alternative networks, one for each spectral band, that have the same
architecture of RAMS, except that we delete the residual temporal attention branch.
These reduced networks are trained from scratch independently from the complete
ones.

Tab. 4.2 shows a significant drop in the results obtained without the global
residual branch and demonstrates the importance of selecting the best temporal
views to ease the SR process of the main branch. We find this difference particularly
relevant for the RED band, since the training repeatedly failed without the RTA
branch, with a diverging behavior after some epochs. The result reported in the
table is computed with the last valuable parameters before the divergence starts.

74

4.2 – Experiments

LR
(cPSNR / cSSIM)

Bicubic
(48.30 / 0.9857)

RCAN[283]
(49.18 / 0.9887)

VSR-DUF[112]
(50.29 / 0.9909)

DeepSUM[177]
(50.73 / 0.9917)

RAMS
(51.53 / 0.9930)

RAMS+20
(51.64 / 0.9932)

HR
(cPSNR / cSSIM)

Figure 4.6: Qualitative comparison between different methods on RED imgset0302.

4.2.5 Qualitative results
A visual comparison between some of the methods taken in the exam is shown

in Fig. 4.6 and 4.7 for a RED and NIR image respectively. We provide a zoomed
patch of the best LR input image of the scene, its bicubic interpolation, and the
inference output of RCAN, VSR-DUF, DeepSUM, RAMS and RAMS+20, together
with the target HR ground truth. cPSNR and cSSIM scores for the image under
analysis are also provided. From this comparison, MISR methods clearly show a
better performance with respect to bicubic and SISR (RCAN). However, it is not
trivial to understand which method is better among MISR algorithms with a visual
inspection of the results, only. As found by Ledig et al. [136], the task of achieving
pleasant-looking results is a different optimization problem from maximizing the
fidelity of the reconstructed information. Therefore, results with high content-
related metrics such as PSNR and SSIM frequently appear less photo-realistic to
the human eye. However, in the context of remote sensing, the fidelity of the content
of the pixels is vital to ensure that the super-resolved images are meaningful, thus
the quality of results should be inferred by using content-related metrics, rather
than by visual inspection.

75

RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks

LR
(cPSNR / cSSIM)

Bicubic
(44.09 / 0.9758)

RCAN[283]
(44.81 / 0.9830)

VSR-DUF[112]
(45.94 / 0.9857)

DeepSUM[177]
(47.73 / 0.9887)

RAMS
(48.19 / 0.9899)

RAMS+20
(48.92 / 0.9909)

HR
(cPSNR / cSSIM)

Figure 4.7: Qualitative comparison between different methods on NIR imgset0596.

76

Chapter 5

Waypoint Generation in
Row-based Crops with Deep
Learning and Contrastive
Clustering

The autonomous navigation problem for robotics agents is a crucial task to be
solved to enable the full potential of robotic systems for precision agriculture. In
recent years, some approaches to solve this problem have been proposed in the
literature. In particular, for the specific case of row-based crops, many works
proposed local planners combining deep learning with computer vision [5, 6] or
other sensor processing methods [202, 16, 18]. However, local planners provide
a solution for intra-row navigation only, and therefore a global path generator is
always needed. In a complex scenario such as a row-based environment, where
traversing each row is the practical navigation goal, the problem of developing an
efficient global path planner has been quite neglected by the research community.
Existing solutions usually tackle the problem by clustering visual data obtained
from satellites or UAVs. For example, in [288] authors use a classical clustering
method to identify vineyard rows from a 3D model of the terrain reconstructed
from UAV data and then compute the path accordingly. However, as pointed out
in [251], the extraction of relevant information about row geometry from images
can be a complex task, in addition to being extremely computationally expensive.
This limitation also holds considering other approaches besides clustering. For
instance, in [45] authors adopted 3D point cloud aerial photogrammetry to detect
the structure of vineyards.

To this end, we propose the DeepWay method to efficiently combine DL and
clustering for the generation of start and end row waypoints given an occupancy

77

Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering

Starting

Ending

Intra-row

Inter-row

Figure 5.1: Every row-based crop can be seen as a set of lines or curves that identify
two regions comprising the starting and ending points of each row. It is possible to
plan a full-coverage path in the row-based environment simply by alternating intra-
row segments, that connect the starting region to the ending region, and inter-row
segments, that connect two starting or two ending points of consecutive rows.

grid of the vineyard. As input, it requires just an occupancy grid of the considered
parcel and provides, as output, the waypoints to be used to plan a global path
to cover each row of the considered crop. Furthermore, we enhance the original
DeepWay method in order to simultaneously predict the position of the navigation
waypoints for each row and cluster them in a single forward step. Hence, we train
our model with an additional contrastive loss. The deep neural network is trained
on a carefully devised synthetic dataset of both straight and curved occupancy grids
and tested on manually-labeled real satellite images. Our extensive experimentation
demonstrates that the proposed solution successfully predicts precise waypoints also
in real-world crop maps. We also consider complex conditions such as both curved
and straight rows. All of our training and testing code and data are open source
and publicly available 1.

5.1 Methodology
Due to its intrinsic nature, every row-based crop is characterized by a set of

lines or curves that identify two regions comprising the starting and ending points

1There are two repositories related to this work:
• https://github.com/fsalv/DeepWay for the original DeepWay implementation
• https://github.com/fsalv/ClusterWay for the enhanced version

78

https://github.com/fsalv/DeepWay
https://github.com/fsalv/ClusterWay

5.1 – Methodology

Clustering Head

Estimation Head

Backbone

Residual
Reduction
Module

Transpose
Conv2D ConcatConv2D MishInput Sigmoid Tanh

Residual
Reduction
Module

Figure 5.2: Architecture of the backbone and the two regression heads. The num-
ber of residual reduction modules in the main block R determines the backbone
compression factor K = 2R+1.

of each row, respectively. In this scenario, a robotic path should cover the whole
field, and it can be divided into intra-row segments, that connect the starting re-
gion to the ending region, and inter-row segments, that connect two starting or two
ending points. As shown in Fig. 5.1, given an optimal estimation of these starting
and ending waypoints, it is possible to plan a full-coverage path in the row-based
environment simply by alternating intra-row and inter-row segments. Therefore,
the planning process heavily relies on two main steps: waypoint estimation, which
identifies candidates for the points of interest, and waypoint clustering, which as-
signs each estimated point to one of the two regions.

We frame the waypoint generation process as a regression problem, in which we
estimate the coordinates of the points with a deep neural network, starting from
a top-view map of the environment. The map consists of a 1-bit single-channel
occupancy grid that identifies with 1 the plant rows and with 0 the free terrain.
Therefore, this kind of estimation process can be easily applied to geo-referenced
segmented masks of the target fields obtained from satellites or UAV imagery. The
waypoints and the planned path can then be converted from the image reference
system to a Global Navigation Satellite System (GNSS) reference frame to be used
in real-world navigation. To tackle waypoint clustering, we first propose a method
based on DBSCAN [63] with the successive merging of subclusters in order to reach
the final starting and ending groups. In addition, we propose a supervised approach
based on a contrastive loss to perform point assignment. Therefore, the proposed
model simultaneously performs both estimation and clustering with a single forward
pass, without the need for complex post-processing operations based on heuristic
geometrical-based rules.

79

Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering

Reduction BlockResidual Block

Channel
AttentionConv2D Mish Spatial

Attention

Figure 5.3: Residual reduction module architecture. The channel and spatial at-
tentions are implemented as in [262].

5.1.1 Backbone design
We implement the model as a convolutional neural network characterized by a

feature extraction backbone, followed by two specialized heads. A head is respon-
sible for the estimation task, while the other deals with clustering.

The basic block of the network is the residual module, characterized by a stack
of a 2D convolution and spatial and channel attention [262]. Each residual block
is followed by a reduction module characterized by convolutions with stride 2 that
progressively halve the spatial dimensions. The backbone is a stack of R residual
reduction modules, made by combining a residual module and a reduction module.
The final part of the network is made by an additional downsampling block, followed
by a transposed convolution upsampling stage, all arranged in a residual fashion.
This combination of compression and expansion has been proven very effective
for different computer vision tasks such as segmentation [205] and representation
learning [243]. Overall, the model performs a dimensionality compression of a factor
of 2R+1, where R is the number of residual reduction modules in the main block.
As main activation function, we use Mish [176] in all the network blocks. We select
this activation after experimentally observed a better convergence. The complete
backbone structure is detailed in Fig. 5.2 and Fig. 5.3.

5.1.2 Waypoint estimation
The waypoint estimation is framed as a regression problem, similarly to object

detection approaches in computer vision [197]. In particular, given an input occu-
pancy grid map X with dimensions H ×W , we subdivide it into a grid of K ×K
cells. Each cell is responsible for predicting the confidence c that a waypoint falls
in that region, as well as its relative horizontal and vertical displacements with
respect to the cell center ∆ = (∆x,∆y). The displacements are defined in the
range [−1,+1] and represent a shift relative to half of the cell dimension, with

80

5.1 – Methodology

-1

+1

-1

+1

Figure 5.4: The input occupancy grid is subdivided into a grid of K × K cells.
For each cell, the waypoint estimation head outputs the confidence c of a waypoint
presence, as well as the relative horizontal and vertical displacements with respect
to the cell center ∆ = (∆x,∆y).

−1 identifying the left/top borders and +1 the right/bottom ones. An example of
prediction with its corresponding displacements is shown in Fig. 5.4. Given a pre-
diction p̂out = (x̂out, ŷout) in the output reference frame, the waypoint coordinates
in the input reference frame p̂in can be reconstructed with the following equation:

p̂in = p̂out K + K

2 + ∆K

2 (5.1)

The waypoint estimation head maps the high-level features extracted with the
backbone to the output space with a 1x1 convolution. The backbone compression
factor 2R+1 corresponds to the grid dimension K. Therefore, the output tensor of
the estimation branch has a dimension of H/K ×W/K × 3. We apply a sigmoid
activation to the probability output and a tanh activation to the displacement out-
puts, in order to map each tensor to the corresponding output range. We optimize
the network for the waypoint estimation task with a weighted mean squared error
loss. For each output cell ui,j , the estimation loss is therefore computed as:

l est
i,j = ✶

wp
i,j λ∥ui,j − ûi,j∥2 + (1− ✶wp

i,j)(1− λ)∥ui,j − ûi,j∥2 (5.2)

where ✶wp
i,j ∈ {0,1} is an indicator Boolean function evaluating 1 if a waypoint is

present in that cell, and λ is the relative constant that weights differently positive
and negative cells.

At inference time, we get the list of predicted waypoints by considering all the
cells with confidence c over a certain threshold tc. As in standard object detection
methodologies, we also apply a suppression algorithm to decrease the number of
redundant predictions that typically occur when multiple adjacent cells detect the
same waypoint. The algorithm identifies all the groups of predictions with Eu-
clidean distance within a certain threshold tsup in the input reference frame. For

81

Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering

Figure 5.5: Classical solution for waypoints refinement and clustering process.
Firstly, the row angle is estimated. Then, the predicted waypoints are clustered
with the DBSCAN algorithm [63], that identifies two main groups (0 in blue and
1 in orange) and two unclustered waypoints (2 and 3 in black). The groups’ start-
ing points are in red, the ending points in green. Then, we iteratively merge the
groups into the two principal clusters A and B, and we obtain the final order of
the predicted waypoints.

each group, the point with highest confidence c is selected, while the remaining
predictions are discarded.

5.1.3 Waypoint clustering
Once the waypoints are detected, they should be assigned to starting or ending

regions. This task can be seen as a simple binary classification, in which the labels
represent the two clusters. However, in this scenario, the actual assigned label is
not relevant, as the only fundamental aspect is whether points of the same group
are assigned the same label. The aim is to discriminate the points of the two regions
without caring about which of them is classified as starting or ending. Indeed, an
optimal path can be successfully planned regardless of the choice of the starting
cluster. This invariance cannot be guaranteed by supervised classification.

Classical clustering

We first design a postprocessing and waypoint clustering methodology based
on heuristic geometrical-based rules, that is particularly effective in handling the
straight row condition. For this solution, we only use the waypoint estimation head

82

5.1 – Methodology

of the proposed model. We cluster the predicted points using the density-based
clustering algorithm DBSCAN [63] (see Section 2.1.2). This approach allows to
automatically cluster together points that are close to each other and can give a
first subdivision of the waypoints into main groups. Depending on the geometry
of the field, several clusters can be found in this way, and some points can remain
unclustered, in particular for rows drastically shorter with respect to the others.
To get the order of the waypoints inside each group, we project each of them along
the perpendicular to the rows, and we sort them in this new reference system. This
approach works well with straight rows that have a constant orientation along the
whole field.

The row angle is estimated with the progressive probabilistic Hough transform
technique [168]. This algorithm is a classic computer vision feature extraction
method, able to detect lines in an image and return an estimate of starting and
ending points. Even though this algorithm may seem enough to solve the whole
problem of finding the target waypoints in the mask without the need for a neural
network, this approach is too dependent on a number of hyper-parameters that
cannot be well-defined a-priori and generally is not able to cope with holes and
irregularities which are inevitably present in real-world field occupancy grids. We
experimentally find that the application of this method leads to a high number of
false-positive and false-negative detections of lines on all the considered datasets.
However, we still use it to estimate the row angle by averaging the orientations of
each couple of detected points. In the case of a complete failure of this approach,
which can happen with the most complex masks, we estimate the angle using a
probabilistic iterative process that minimizes the number of intersections with the
rows starting from points close to the image center.

After ordering the points inside each cluster, we adopt a refinement approach to
insert possible missing waypoints or delete duplicated ones, by counting the number
of rising and falling edges in the mask along the line connecting two consecutive
points. Then, to get the final order, the different groups must be merged into
the two main clusters representing the beginning and the ending points of each
row. We adopt a strategy to iteratively assign clusters to the groups considering
their size and the values of their projections along the perpendicular to the rows.
We assume that a good assignment is one that spans the same interval along the
projection axis on both groups with different clusters. After the assignments, we
refine the borders between the merged clusters, in order to compensate for possible
mispredicted points. Once we get the final groups, we get the final order by con-
sidering a pattern A-B-B-A. Every intra-row connection is performed by checking
possible intersections with the rows and correcting the order consequently. If there
is a missing point in one of the two groups even after the waypoints refinement
process, we remain within the same group, avoiding any possible intersection with
the rows. In this way, we put the focus on building feasible paths in the field.

83

Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering

Algorithm 1: Classical waypoint clustering pipeline
input : Occupancy grid X of size H ×W
output: Waypoint clusters A,B
wp ← DeepWay(X);
α← angle_estimation(X);
clusters ← DBSCAN(wp);
foreach cluster c do

proj ← project(wp|c, α);
order ← sort(proj);
wp|c ← refine(wp|c, order, X);

end
A,B ← [];
while wp is not empty do

A,B ← assign(wp, α, A, B);
end

All these assumptions work well for straight crops only, since they consider a con-
stant orientation of the rows. Fig. 5.5 shows all the operations performed during
the waypoints refinement and clustering process. The full pipeline of the proposed
approach is presented in Alg. 1.

Contrastive clustering

As already stated, the classical solution makes strong assumptions on the geom-
etry of the crops and can only work for straight rows. To extend the approach to
more generic curved crops, we model the clustering problem as a supervised rep-
resentation learning process implemented in the neural network by the waypoint
clustering head. Given the two sets of points A = {p | p ∈ first cluster} and
B = {p | p ∈ second cluster}, we want to find a non-linear mapping f(·) such that

d
(︂
f(pi), f(pj)

)︂
≪ d

(︂
f(pi), f(pk)

)︂
for pi,pj ∈ A , pk ∈ B (5.3)

and vice versa, where d is a distance measure. In the latent space mapped by f(·),
points of different clusters are well-separated according to distance d. This means
that a simple clustering method such as K-means [157] (see Section 2.1.1) can
successfully discriminate the two groups in the latent space, as shown in Fig. 5.6.
Inspired by the contrastive framework used for unsupervised learning in [39], we
select as distance metric d the inverse of the cosine similarity:

sim(u,v) = u⊤v

∥u∥2 ∥v∥2
(5.4)

84

5.1 – Methodology

Figure 5.6: In the latent space mapped by f(·), points of the same cluster appear
closer together with respect to points of the other cluster. The mapping function
f(·) is implemented with the backbone and the clustering head together. In this
example, the latent space has a dimensionality D = 2.

For each image, we consider the N ground-truth waypoints as independent sam-
ples. Given a point pi, we consider as positive examples all the other N/2−1 points
in the same cluster, and as negative examples the N/2 points of the other cluster.
Therefore, we define the clustering loss contribution for the sample i as:

l clus
i = − 1

N − 1

N∑︂
j=1
j /=i

[︄
✶pi,pj∈A

∨ pi,pj∈B
log

(︃
sig
(︂
sim

(︂
f(pi), f(pj)

)︂)︂)︃
+

+
(︃

1−✶pi,pj∈A
∨ pi,pj∈B

)︃
log

(︃
1− sig

(︂
sim

(︂
f(pi), f(pj)

)︂)︂)︃]︄ (5.5)

where ✶pi,pj∈A
∨ pi,pj∈B

∈ {0,1} is an indicator function evaluating 1 if pi and pj are

in the same cluster and 0 otherwise, while ‘sig’ represents the sigmoid function.
Basically, this loss computes the binary cross-entropy of the cosine similarity in the
latent space mapped by f(·) for the pair (pi,pj). f(·) is optimized to push the
cosine similarity towards the maximum +1 if the points are in the same cluster and
towards the minimum -1 otherwise. The final loss is computed over all the pairs
(i, j) as well as (j, i) for each input image. This loss can be seen as a variation
of the one used in [264, 248, 39], but instead of N groups with 2 elements each,
optimized with categorical cross-entropy and softmax, we have 2 groups with N/2
elements each, optimized with binary cross-entropy and sigmoid.

The mapping f(·) is modeled by the clustering head in the output space ref-
erence system. This means that, after selecting the predicted waypoints over the
probability threshold tc with the first channel of the estimation head, we simply se-
lect the mapped latent space features from the corresponding head tensor using the

85

Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering

output coordinates for each point. The head is composed of two convolutional lay-
ers with Mish activation [176] and one final 1x1 convolution with linear activation.
The output tensor of the clustering branch has a dimension of H/K ×W/K ×D,
where D is the latent space dimensionality.

At inference time, for each waypoint detected in the estimation phase, we select
the corresponding feature from the clustering head output. We can predict the clus-
tering assignment by fitting a K-means predictor with two centroids on the selected
features. Since we use cosine similarity in the loss computation, we are optimizing
the clustering in the normalized latent space. For this reason, the features should
be divided by their Euclidean norm before clustering. This normalization decreases
by one the latent space dimensionality, and therefore the minimum number of di-
mensions D for the clustering head is 2.

5.2 Experimental Setting
In this section, we present all the details of our experimentation. We describe the

datasets used for network training and testing as well as the main hyperparameters
adopted during the training phase.

5.2.1 Dataset description
Considering the lack of open datasets of row crops bird-eye maps and the time

required to manually annotate a large set of real images, we define a method to
build realistic synthetic occupancy grids to train the model. The proposed method
is able to generate both straight and curved crop maps. The generation process
can be summarized as follows:

1. sample a uniformly random number of rows n ∈ [10,50] and angle α ∈
[−π/2, π/2];

2. generate row centers with a random inter-row distance, along the line perpen-
dicular to α and passing through the image center;

3. generate random field borders and find starting and ending points for each row
with orientation α;

4. to create curved maps, add a random displacement to the row centers, and
compute a quadratic Bézier curve with the starting, ending and center points
as control points; this ensures that the curves are continuous and smooth;

5. generate the occupancy grid by drawing filled circles with random radius r ∈
[1,2] pixels to model irregularities in the row width

86

5.2 – Experimental Setting

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Examples of straight (top) and curved (bottom) occupancy grids: syn-
thetic (a, d) and real-world from Google Maps satellite database without (b, e) and
with (c, f) manual annotation. Red and blue points are the ground-truth waypoints
divided into the two clusters.

6. create random holes in the rows to emulate segmentation errors or missing
plants;

7. compute the N = 2n ground-truth waypoints as the mean points of the lines
connecting the ending points of the rows with the adjacent ones.

To further increase variability, we randomly add displacement noise every time
we sample a point coordinate during the generation process. We select H = W =
800 pixels as input dimensions for all the generated images. To investigate the effect
of including synthetic curved images in the training set, we randomly generate two
independent datasets, one with straight rows only, and the other with both straight
and curved rows. Overall, each dataset contains 3000 images for training, 300 for
validation, and 1000 for testing. In addition to the synthetic data, we manually
annotate real row-based images of vineyards and orchards from Google Maps (100
straight and 50 curved). These satellite images are fundamental to test the ability
of the network to generalize to real-world scenarios and to prove the effectiveness

87

Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering

Test Train AP2 AP3 AP4 AP6 AP8

Straight Synth Straight 0.6404 ± 0.0171 0.9284 ± 0.0088 0.9856 ± 0.0021 0.9991 ± 0.0001 0.9993 ± 0.0001
Curved 0.5751 ± 0.0241 0.8921 ± 0.0107 0.9743 ± 0.0022 0.9979 ± 0.0001 0.9984 ± 0.0001

Straight Real Straight 0.5191 ± 0.0288 0.8155 ± 0.0109 0.9116 ± 0.0032 0.9482 ± 0.0017 0.9507 ± 0.0024
Curved 0.4597 ± 0.0166 0.7634 ± 0.0076 0.8788 ± 0.0089 0.9391 ± 0.0052 0.9433 ± 0.0049

Curved Synth Straight 0.5143 ± 0.0193 0.8224 ± 0.0236 0.9232 ± 0.0166 0.9726 ± 0.0078 0.9768 ± 0.0065
Curved 0.5664 ± 0.0226 0.876 ± 0.0066 0.9632 ± 0.0009 0.9937 ± 0.0006 0.9949 ± 0.0006

Curved Real Straight 0.4685 ± 0.0906 0.7110 ± 0.0625 0.8125 ± 0.0625 0.8802 ± 0.0374 0.8891 ± 0.0355
Curved 0.5327 ± 0.0269 0.8010 ± 0.0095 0.8881 ± 0.0094 0.9333 ± 0.0026 0.9374 ± 0.0033

Table 5.1: Performance of waypoint estimation on both straight and curved test
datasets. We first test the model on our synthetic datasets (Straight Synth, Curved
Synth) and then validate the results on manually annotated occupancy grids ob-
tained from real satellite images (Straight Real, Curved Real). For each test set,
we compare the results of the model trained on straight rows with those obtained
training on curved rows. We report the mean and standard deviation for the Av-
erage Precision APr, where r is the maximum accepted distance in pixels between
predicted and ground-truth waypoints.

of the synthetic generation process. Figure 5.7 shows examples of both synthetic
and real-world manually-annotated images.

5.2.2 Model training
To select the best hyperparameters, we perform a random search over a set

of reasonable values. For all the convolutional layers, we set a kernel size of 5
and channel dimension C = 16. For the main block of the backbone, we set the
number of residual reduction modules R = 2. Therefore, the backbone compression
factor and output cell dimension is K = 2(R+1) = 8. We set the clustering space
dimensionality to D = 3. Thus, the output tensors have both a dimension of
100× 100× 3. The resulting network is a lightweight model with less than 73,000
parameters. We select Adam [122] as optimizer with a constant learning rate of
η = 3 × 10−4 and batch size of 16. Experimentally, we find more effective to first
train the estimation head and the backbone together with the loss of Eq. 5.2. We
set the loss weight to λ = 0.7 to compensate for the high imbalance in the number of
positive and negative cells and stabilize the training. We then freeze the backbone
weights and train the clustering head only with the loss of Eq. 5.5. To highlight the
challenge posed by curved scenarios, we independently train the model on both the
straight and curved training sets. We train each model for a total of 200 epochs
on an Nvidia 2080 Ti GPU using the TensorFlow 2 framework [1]. To obtain
significant statistics, we run each training session three times, so that the results
can be presented in terms of mean and standard deviation.

88

5.3 – Results

5.3 Results
In this section, we report and comment the main results regarding both waypoint

detection and clustering. Visual examples are included as well, to give a qualitative
idea of the performance of our model. We extensively test our approach on both
straight and curved rows, including a final evaluation on real satellite data.

5.3.1 Waypoint estimation
As regards waypoint estimation, we use Average Precision (APr) as the principal

metric, considering different values of the range threshold r, such that a waypoint
is considered correctly detected if its Euclidean position error in pixels is smaller
than r. In this way, we can highlight the precision of the model at different levels of
proximity. The AP is commonly used for evaluating object detection tasks [64, 142]
and is computed as the area-under-the-curve of the precision-recall plot obtained
varying the confidence threshold tc. The waypoint estimation results are reported
in Table 5.1, where each value is detailed with its mean and standard deviation.
All the tests are performed setting a waypoint suppression threshold equal to the
minimum inter-row distance of the synthetic datasets, tsup = 8 pixels.

The first important result is the model trained on curved crops being able to
reach an AP8 of about 94% on all four test scenarios. This achievement confirms
the effectiveness of our model far beyond the synthetic training scenario, as real
satellite data does not seem to create substantial performance drops (5.7% at worst).
Looking at lower values of r, the synthetic-to-real gap rises to 11.5%, showing
how the model is able to estimate synthetic waypoints with higher precision. The
model trained on straight crops achieves excellent performance on its corresponding
test set and even on real satellite data, but generalizes poorly on curved rows:
the precision drop reaches 11% on AP8 and even 22% considering AP3. On the
contrary, the model trained on curved crops scales very well on straight scenarios.
This outcome confirms the importance of training on curved crops to obtain robust
models able to cope with challenging situations.

5.3.2 Waypoint clustering
As regards waypoint clustering, we adopt two separate metrics. The first is

an adjusted binary accuracy, assigning a score of 0 to the worst outcome (all the
points in the same cluster, meaning 50% of the points correctly clustered) and
1 to perfect clustering. However, the number of waypoints in a crop is variable
and accuracy alone does not give an insight into the distribution of errors among
different samples. For example, crops with a small number of waypoints tend
to be easier to cluster than dense ones. Considering the fact that full-coverage
path planning is possible only if every waypoint is correctly clustered, we add a

89

Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering

Test Method Train Adjusted Accuracy Clustering Error

Straight Synth

K-means Straight 1.0000 ± 0 0 ± 0
Curved 0.9913 ± 0.0076 0.6667 ± 0.5774

Classical Straight 1.0000 ± 0 0 ± 0
Curved 0.9724 ± 0.0240 2.0000 ± 1.7321

Contrastive Straight 0.9994 ± 0.0003 0.0187 ± 0.0114
Curved 0.9985 ± 0.0006 0.0527 ± 0.0219

Straight Real

K-means Straight 0.4243 ± 0.1037 26.3333 ± 7.0238
Curved 0.4635 ± 0.0873 26.0000 ± 5.1962

Classical Straight 0.9532 ± 0.0429 2.3333 ± 2.0817
Curved 0.9585 ± 0.0026 2.0000 ± 0

Contrastive Straight 0.9707 ± 0.0135 1.0400 ± 0.5197
Curved 0.9716 ± 0.0123 0.7700 ± 0.3012

Curved Synth

K-means Straight 0.9714 ± 0.0336 1.0000 ± 1.0000
Curved 0.9885 ± 0.0199 0.3333 ± 0.5774

Classical Straight 0.9563 ± 0.0757 1.3333 ± 2.3094
Curved 0.8898 ± 0.0337 3.0000 ± 1.0000

Contrastive Straight 0.9823 ± 0.0138 0.3414 ± 0.3278
Curved 0.9992 ± 0.0006 0.0127 ± 0.0038

Curved Real

K-means Straight 0.2443 ± 0.0984 73.3333 ± 29.2632
Curved 0.2721 ± 0.1493 70.0000 ± 19.5192

Classical Straight 0.7247 ± 0.2734 27.0000 ± 25.5343
Curved 0.5181 ± 0.1061 45.3333 ± 6.6583

Contrastive Straight 0.8571 ± 0.0924 3.4667 ± 2.4437
Curved 0.9344 ± 0.0116 1.1933 ± 0.1858

Table 5.2: Performance of waypoint clustering on both straight and curved datasets,
comparing our two approaches, the classical one based on the DBSCAN pipeline and
the contrastive one, with K-means. We first test models on our synthetic datasets
(Straight Synth, Curved Synth) and then validate the results on real occupancy
grids obtained from satellite images (Straight Real, Curved Real). For each test,
we compare the results of models trained on straight rows with those obtained
training on curved rows. We report the mean adjusted accuracy and clustering
error with their standard deviations.

clustering error metric computing the average number of wrongly labeled points
per image. The results are detailed in Table 5.2. We compare our approaches, the
classical clustering based on DBSCAN and the contrastive clustering, with the K-
means algorithm directly applied in the image reference system. All the clustering
tests are performed setting the confidence threshold to tc = 0.4 and the waypoint
suppression threshold to tsup = 8 pixels. As for the previous results, each value is
reported with its mean and standard deviation.

90

5.3 – Results

Figure 5.8: Examples of clustering on real-world straight (top) and curved (bottom)
samples: K-means struggles in both conditions; the classical clustering based on
the DBSCAN pipeline correctly deals with the straight field, but fails with the
curved one; the contrastive clustering method correctly assigns the points in both
conditions.

Straight test set The proposed methodologies achieve remarkable results, out-
performing the baseline solutions in all the testing scenarios. In particular, for
the straight test set, the classical clustering is able to generalize to straight satel-
lite crops, since the methodology is specifically designed to cope with real-world
straight rows. Also, contrastive clustering, with both training strategies (based on
straight and curved crops), approaches perfect clustering on the synthetic straight
dataset and generalizes well to real crops. On the contrary, K-means, which per-
fectly works for the well-separated synthetic samples, loses more than half of its
adjusted accuracy and presents a very high clustering error when switching to real
test rows, mainly due to the irregular shapes typical of real-world vineyards.

Curved test set As regards curved test sets, K-means clustering is totally unable
to generalize to the real dataset. At the same time, also the classical DBSCAN
pipeline results drop significantly when switching to real samples, due to its heavy
dependence on angle estimation. The contrastive clustering, trained on straight

91

Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering

rows, obtains 0.98 adjusted accuracy and 0.34 clustering error on synthetic data,
outperforming both baselines. However, it struggles to generalize to real crops,
reaching an adjusted accuracy of 0.86. On the other hand, the model trained
on curved data outperforms the baseline and the classical clustering in synthetic
and real data, where it achieves an adjusted accuracy of 0.93. This result can be
considered extremely positive, taking into account the strong challenges present in
satellite data. In particular, a clustering error of 1.19 is remarkably smaller than
those obtained by K-means and DBSCAN. In conclusion, these results confirm
how the proposed methodology, combined with a well-devised generation process
of curved synthetic samples, allows waypoint generation and clustering even in
challenging scenarios.

5.3.3 Qualitative results
To give further insight into the performance of the proposed methodology, we

present some qualitative examples of real-world curved samples. Fig. 5.8 shows
a comparison between the three clustering methodologies. While both proposed
approaches can deal with the straight scenario, only the contrastive clustering cor-
rectly assigns the points in the curved one. Finally, Fig. 5.9 shows some examples of
full-coverage path planning. The trajectory can be obtained by connecting the way-
points with any path planning algorithm, such as the popular A* [86], RRT* [131]
and D* [234, 123]. The proposed examples are all obtained with the Adaptive Row
Crops Path Generator (ARC-PG) planner [32], which is specifically proposed to
solve the row crop planning problem. The procedure exploits the gradient descent
principle in case the partial path to be computed should lay inside the row crop,
while it uses the vanilla A* algorithm to switch between different rows. By modi-
fying the costmap for the search algorithm, ARC-PG is able to produce a centered
and smooth path with on average less processing time compared with the other
planning algorithms. With geo-referenced maps, the planned path can be then
converted from the image reference system to a GNSS reference frame to be used
in real-world navigation. All the examples are produced with the model trained
on the curved dataset and setting the confidence threshold to tc = 0.4 and the
waypoint suppression threshold to tsup = 8 pixels.

92

5.3 – Results

Figure 5.9: Examples of full-coverage path planning in straight and curved real-
world vineyards taken from Google Maps satellite database.

93

94

Part III

Perception

95

Chapter 6

A Real-Time Apple
Detection System at the
Edge

Monitoring agricultural farms and orchards mainly rely on skilled farmers and
workers who are responsible for assessing several growth stages before performing
farming-related actions in order to maximize the quality and yield. The manual
work of these farmers consumes time and increases production costs, and workers
with less knowledge and experience make unnecessary mistakes. With the ad-
vancements in precision agriculture and information technology, crop imaging has
become an important source of information that can be used to assess the vegeta-
tion status of the crops, fruit growth, yield, and quality. Two important features
that enable the farmers to estimate crop load and yield mapping in tree fruit crops
are fruit counting and size estimation. Several studies have proposed fruit detec-
tion in orchards using machine vision systems for automatic growth assessment,
robotic harvesting, and yield estimation [44, 110]. It has been the primary problem
to develop algorithms that enable the apple harvesting robot to directly, quickly,
and accurately recognize fruits in real-time [8]. In the natural environment, for
the visual systems, apple fruit detection is typically more difficult because of the
influence of lights and shadows, branches, and leaf coverings. Apples visual appear-
ance in the natural environment may be categorized as occluded and non-occluded.
Occlusion of fruits due to leaves, branches, and other fruits and variable lighting
conditions are some of the main reasons that make it more challenging to achieve
good accuracy and robustness in fruit detection [44].

With the upsurge of machine learning, deep learning algorithms have been ex-
tensively used in agriculture-related applications [115]. YOLO [197, 198, 199] is
a CNN-based method that deals with object detection as a regression problem.
However, it is not suitable for real-time applications such as harvesting robots due

97

A Real-Time Apple Detection System at the Edge

Figure 6.1: The analyzed embedded platforms. Top left: Raspberry Pi 3 B+ with
Intel Movidius NCS2. Top right: Nvidia Jetson AGX Xavier. Bottom left: Nvidia
Jetson Nano. Bottom right: Raspberry Pi 3 B+ with Intel Movidius NCS.

to its complex architecture that requires more processing power. Optimization of
the parameters of the model reduces the computational complexities and thus is
needed for deployment on edge platforms.

In this work, we apply transfer learning [152] to re-train and fine-tune a custom
version of the YOLOv3-tiny model, specifically optimized for the accurate detection
of small objects. After training, the resulting network has been benchmarked on all
the images of the apple class from the OIDv4 [127] dataset, producing a reproducible
metric that can be easily compared with future works. Finally, we deploy the
model on embedded platforms such as Raspberry Pi 3 B+ in combination with
Intel Movidius Neural Computing Stick (NCS), Nvidia Jetson Nano, and Jetson
AGX Xavier, assessing their performance in terms of speed and power consumption.
Fig. 6.1 shows the analyzed platforms, comparing their physical scale.

6.1 Methodology
YOLO is a network specifically designed for fast and accurate real-time object

detection. It has comparable performance in terms of accuracy with other popular
object detection algorithms like Faster R-CNN [200], SSD [146] and RetinaNet [141],
but it is much faster and compact, thus being an optimal choice for real-time
embedded applications. It is a single fully convolutional neural network that takes
as input a raw image and gives as output bounding boxes and related classes of
recognized objects inside the presented scene. Different versions of the model have
been released [197, 198, 199] that gradually increased the accuracy of the general
framework without giving away too much of its inference speed. At the same
time, all different versions have been released with a lighter counterpart defined

98

6.1 – Methodology

YO
LO tx ty tw th to p1 p2 ... pc

Figure 6.2: In a YOLO layer, a 1x1 convolution predicts, for each spatial location,
B arrays with (5 +C) elements, that are used to compute the bounding box center
coordinates (tx, ty), width tw, height th and confidence to, plus C classes probabili-
ties (p1, . . . , pC).

as tiny that has a simplified and optimized structure without losing too much
accuracy. The intrinsic characteristics of the tiny version make it suitable for Edge
AI applications. This work takes the YOLOv3-tiny architecture as a starting point
for designing an embedded apple detector system.

6.1.1 Network architecture
YOLOv3-tiny is a fully convolutional network that can accept inputs of different

sizes during and after training. It can be divided into two main blocks: the first
is the feature extractor or backbone, referred to as darknet-19. Its principal and
fundamental role is to extract features in a hierarchical fashion, starting from raw
pixels coming from the input layer. The extracted representations are later used
as starting point by the other modules of the network. Darknet-19 is a light and
efficient feature extractor, but can be easily swapped with any other backbone, such
as, for example, ResNets [87]. It features a standard architecture greatly inspired
by VGG [229], making use of only 3x3 filters throughout the entire structure, max-
pooling layers to reduce the spatial dimensionality and obtain local invariance.
Finally, darknet-19 exploits Batch Norm layers [104] to regularize the network,
reducing the internal covariance shift. All backbone convolutional layers use Leaky
ReLU [155, 269] as activation function.

On the other hand, the second block of the YOLOv3-tiny architecture analyzes
the extracted representations, and it predicts the bounding box position and class
of the different objects present in the input raw image. That is achieved with 1x1
convolutions arranged as a Pyramid Network [140] structure. Thus, the output of
the network is a feature map tensor that has the same spatial dimensions as the
previous layer.

The network predicts center coordinates (tx, ty), width tw and height th, in order
to obtain the bound box dimensions. Moreover, each bounding box is linked to
a confidence score to. This score reflects how confident the network is that the

99

A Real-Time Apple Detection System at the Edge

box contains an object and has the right dimensions. Moreover, the model also
outputs C conditional class probabilities with independent sigmoid activations. The
classical softmax activation has been replaced because it assumes mutual exclusion
between different classes. That is not true with larger datasets like Open Image
Dataset (OID) [127] or ImageNet [50], where a multi-label classification approach
is adopted.

We denote the last layer as a YOLO layer, whose 1x1 convolution produces for
each spatial location an array of B · (5 + C) elements, where C is the number
of classes and B is the number of concurrently predicted bounding boxes, that
for YOLOv3-tiny is set to 3. Therefore the overall output tensor dimension is
N ×N × (3 · (5 + C)), where N is the output grid spatial dimension. A graphical
representation of a YOLO layer is depicted in Fig. 6.2.

It is essential to point out that, YOLO, starting from its second version, does
not predict coordinates directly, but it refines hand-picked priors known as anchors.
This approach simplifies the problem and makes it easier for the network to learn.
Moreover, an ablation study made by the author [198] demonstrated how predicting
offsets increases the recall of the network and stabilizes gradients during training.
So, for each output spatial location, there are B bounding boxes with dimensions
decided a priori. The network, during the learning phase, learns how to adjust these
bounding boxes when an object is detected. Anchors dimension is critical and, in
order not to manually guess their prior dimension, authors suggest using K-means
clustering over the data set ground truth bounding boxes in order to predict the
width and height of the box as offsets from cluster centroids. That allows generating
prior bounding boxes that initialize the model with better representations and make
the task easier to learn.

As shown in Fig. 6.3, the center of a predicted object falls in a certain cell of the
output grid. That cell is responsible for detecting the presence of the object. During
training, we force the network to use the anchor box that has the prior dimension
with the higher intersection-over-union (IoU) with the ground truth bounding box.
So, the network will generate tx, ty, tw and th in order to refine one of the three
anchors present in that cell to perform the detection of the object. The actual
bounding box center coordinates (bx, by) and dimensions (bw, bh) can be computed
with the following transformations:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

(6.1)

where (cx, cy) are the top-left coordinates of the cell responsible for the predic-
tion, (pw, ph) the anchor prior dimensions and σ(·) the sigmoid function. More-
over, a non-maximum suppression (NMS) algorithm is used to remove redundant

100

6.1 – Methodology

	pw

bw

ph

bh
σ(ty)

σ(tx)

cx

cy

Figure 6.3: YOLOv3-tiny predicts the dimension of the bounding boxes as offsets to
predefined hand-picked prior boxes known as anchors, preventing unstable gradients
during training and making easier for the network to learn the task.

detections that have very high IoU and produce the final output bounding box
predictions.

6.1.2 A custom YOLOv3-tiny for small objects detection
The two first versions of YOLO greatly struggle to detect small objects in the

input image. That is mainly because that YOLO imposes a strong spatial constraint
on bounding box predictions since each grid cell can only predict three bounding
boxes. Moreover, the input dimension reduction performed in the backbone induces
the loss of low-level features, which are instrumental for detecting small objects. For
this reason, the authors proposed with the third version of the tiny network [199]
a pyramid structure producing detection at two different scales. The backbone,
with the pooling layers and convolutional strides, spatially downsamples the input
image until the first YOLO layer, where a prediction is made with a 1

32 spatial
dimensionality reduction with respect to the input. Then, layers are upsampled by
a factor of 2 and concatenated with representation maps of a previous backbone
layer reaching a 1

16 reduction factor.
We take this concept even further, building a YOLOv3-tiny architecture with

predictions across three different scales. So we add another upsampling by a factor
of 2, reaching a 1

8 reduction factor. Since we adopt an input dimensionality of
(608× 608), our output dimensionality is (19× 19), (38× 38), and (76× 76).

Fig. 6.4 presents the overall architecture of the proposed network. The pyramid
structure is clearly represented: extracted features from the backbone are sampled

101

A Real-Time Apple Detection System at the Edge

In
pu

t

Ba
ck

bo
ne

 b
lo

ck

Ba
ck

bo
ne

 b
lo

ck

C
on

v

U
pS

am
pl

e

C

C
on

v

Ba
tc

hN
or

m

Le
ak

yR
eL

U

M
ax

Po
ol

C
on

v

C
on

v

C
on

v

N	x	N	x	[3	*	(4	+	1	+	C)]

X (i)

C
on

v

YO
LO

N	x	N	x	[3	*	(4	+	1	+	C)]

C
on

v

U
pS

am
pl

e

C
on

v

YO
LO

C

C
on

v

C
on

v

YO
LO

N	x	N	x	[3	*	(4	+	1	+	C)]

Figure 6.4: Overview of the modified version of the model YOLOv3-tiny. The
original architecture features only the two first branches and makes detection at
two different scales, instead of three. The detection layers exploit feature maps
of three different sizes, having reduction factors of 1

32 , 1
16 , 1

8 . Each YOLO layer
predicts for each cell B = 3 bounding boxes using 3 different anchors. The blue
vertical planes mean that the specific layer output is fed to both the subsequent
graph branches.

at two different points and are lately concatenated with upsampled higher-level
features. In this way, high-level features are enriched with low-level information
that helps the network learn fine-grained features that are fundamental for detecting
small objects. At each scale, YOLO layers predict 3 bounding boxes per cell using
3 different anchors. So, the total number of anchors used is 9, and the total number
of possible bounding boxes predicted by the modified network is equal to 3 · 19 ·
19 + 3 · 38 · 38 + 3 · 76 · 76 = 22743. Confidence scores and NMS drastically reduce
this number, removing low confidence and redundant detections.

Fig. 6.5 shows a graphical representation of the grids used for the predictions at
the three different scales. Each grid represents the tensor used for the prediction.
It is noticeable how a finer grid can greatly improve the prediction capabilities
of small objects. Indeed, for our specific case, this simple modification largely
improves the accuracy of the model with a small overhead in terms of speed and
power consumption.

102

6.2 – Experiments

19	x	19 38	x	38 76	x	76

Figure 6.5: Our custom version of YOLOv3-tiny predicts at three different scales.
The YOLO layers make detections with grids of three different sizes, having a
reduction factor with respect to the input image of 1

32 , 1
16 , 1

8 , respectively. Having
an input size of (608×608), detections are made with dimensions (19×19), (38×38),
and (76× 76).

6.2 Experiments
In this section, firstly we present the dataset and some technical details of the

training process, then we discuss experimental evaluations for both the model and
its deployment on the selected embedded platforms. Finally, quantitative and qual-
itative results are reported with a comparison between the different devices.

6.2.1 Dataset description
An orchard is considered in order to acquire a custom data set for the train-

ing process. Two popular types of apple (Braeburn and Fuji) are considered in
this study, which are the most common types found in the northern part of Italy.
The image acquisition campaign is conducted in randomly selected healthy ap-
ple trees in orchards, using a reflex digital camera with 18 megapixels at different
times. Image acquisition is performed for separate/non-overlapped fruits, overlap-
ping fruits/occluded fruits under variable lighting conditions such as fully exposed
to sun from the front, full sun influencing from the back of the fruits, and fruits
covered by the shades of leaves/branches or other apples. It must be underlined
that, even though for the specific application a quite low image resolution is needed
(608× 608 pixels), a reflex camera is adopted in order to guarantee the best image
quality for other possible future uses of the same dataset.

We create a set of 618 sample images. Subsequently, inspired by active learning
techniques [150], in order to speed up label generation, we use an extensive and
accurate version of YOLOv3 known as YOLOv3-spp, pretrained on the COCO
dataset [142], to create a draft of the ground truth labels. In order to increase the

103

A Real-Time Apple Detection System at the Edge

recall of the model, we set the network with a low value of confidence. Then, we
perform a manual inspection of the generated ground truth, using LabelMe [211],
refining and adjusting the bounding boxes. Finally, we apply a straightforward
pipeline to preprocess our training dataset: each image is first resized from 5202×
3465 pixels to the input size 608 × 608, then it is normalized by subtracting its
mean.

6.2.2 Experimental setting
Using transfer learning, we start from a pretrained backbone of the original

model. In particular, we adopt the darknet-19 model trained on the COCO dataset.
That greatly speeds up the training process, drastically reducing the number of
samples required to achieve a high level of accuracy.

It is worth noticing the dimension of the prediction tensors at the 3 different
scales; having only one class (C = 1) and three anchors per location (B = 3),
each output cell produces vectors with B · (5 +C) = 18 elements. This low output
dimensionality further decreases the inference time required by the network.

We train the network for 100 epochs using AdamW optimizer [153] and setting
β1 = 0.89 and β2 = 0.99 and ϵ = 10−9. AdamW is a slight modification to the
original Adam updating rule:

∆p = −η
⎛⎝ m̂t√︂

Êt + ϵ
+ γ p

⎞⎠ (6.2)

where ∆p is the parameters update, Êt and m̂t the corrected running averages
of squared and plain gradients, respectively, ϵ an arbitrary little value to avoid
zero-division error and η the learning rate, like in the original Adam formulation
(Eq. 2.30). AdamW adds a little portion of the parameters γ p, regularizing large
weights inside the network and giving advantage to rare features, where γ is a
regularization parameter. In all our experimental evaluations, it has given better
results than classical L2 regularization. We set γ = 10−4. All the training processes
have been carried out on a workstation with an Nvidia RTX 2080Ti and 64GB of
DDR4 SDRAM. Each training takes an average of one hour using the TensorFlow
framework [1] and CUDA 10.

6.2.3 Quantitative results: detection performance
To understand the model performance, mean average precision (mAP) is com-

puted on the test dataset. Mean average precision is a popular object detection scor-
ing method that assesses the network performance in detecting the target objects
for different values of target intersection-over-union IoUtarget. This methodology
has been presented for the PASCAL Visual Object Classification (VOC) challenge

104

6.2 – Experiments

IoUtarget
Proposed architecture Original

Yolov3-Tiny Gain
Recall

(c = 0.25)
Precision
(c = 0.25) mAP mAP

0.50 0.83 0.69 83.64% 77.02 % 6.62 %
0.75 0.55 0.46 47.97% 42.50 % 5.47 %

Table 6.1: Detection performance of the network on the test dataset from
OIDv4 [127] for 0.5 and 0.75 IoU thresholds. The same computation is made with
the original YOLOv3-tiny architecture retrained on the same training dataset. The
results show how the proposed architecture can boost recognition in agricultural
contexts by allowing small fruit detection.

2012 [64]. Each predicted bounding box is compared with the ground truth and
marked as correct (true positive TP) if the apple is present and IoUpred > IoUtarget.
If IoUpred is lower than the target or the apple is not present, the prediction is
marked as incorrect (false positive FP). Finally, all the apples not detected are
marked as missing predictions (false negative FN). Since the predicted bounding
boxes are given as output only if they have a level of confidence above a certain
threshold c, it is possible to compute the precision (p) and the recall (r) of the
network over the test dataset as a function of c:

p(c) = TP(c)
TP(c) + FP(c) r(c) = TP(c)

TP(c) + FN(c) (6.3)

Computing p(c) and r(c) for all the possible confidence thresholds 0 ≤ c ≤
1, it is possible to get the precision/recall curve. The graph is then usually
smoothed in order to get a monotonically decreasing precision curve by setting
p(r) = maxr′≥r p(r′). The average precision of the network is computed as the
area-under-the-curve of the precision/recall and is always a number between 0 and
1:

AP =
∫︂ 1

0
p(r)dr (6.4)

An average precision equal to 1 means that the detector is able to reach a perfect
precision (100%) for all the values of recall. Thus it is possible to find a value of
c such that we are able to detect all the objects with correct bounding boxes. On
the other hand, an average precision of 0 means that we cannot detect any object
correctly whatever value of c we choose, thus both p(c) and r(c) are always equal
to 0.

For a multi-class object detection algorithm, the mean average precision is the
mean of the AP over all the classes. In our specific context, we have a single class

105

A Real-Time Apple Detection System at the Edge

Device Mode Val[V] Imean[A] P [W] fps
Jetson AGX Xavier IDLE 30W 19 0.35 6.65 -

RUNNING 30W 19 1 19 30
RUNNING 15W 19 0.88 16.72 25
RUNNING 10W 19 0.66 12.54 13

Jetson Nano IDLE 10W 5 0.32 1.6 -
RUNNING 10W 5 2.04 10.20 8
RUNNING 5W 5 1.42 7.1 6

Raspberry Pi 3B+ IDLE 5 0.61 3.075 -
RP3 + Movidius NCS 1 RUNNING 5 1.2 6 4
RP3 + Movidius NCS 2 RUNNING 5 1.12 5.6 5

Table 6.2: Comparison between different devices power consumption and perfor-
mances achieved with our customized version of YOLOv3-tiny. Jetson series boards
can be run at different power modes reducing current absorption at the expense
of lowering computational capabilities. The Mode column shows the theoretical
maximum absorbed power in the different working modalities, which is different
from the actual power consumption during the execution of the algorithm. The
best performance, in terms of fps, is in bold.

(C = 1), thus AP = mAP. The mean average precision gives a piece of information
on the quality of the network detection independent from the chosen confidence
c, which can be chosen depending on which metric, precision or recall, is more
relevant for the specific application. mAP can be computed at different values of
IoUtarget. Usual values are 0.5 and 0.75 in order to evaluate the model performance
with different requirements on object localization accuracy.

Tab. 6.1 presents the recall and precision for our default confidence threshold
c = 0.25 and the mAP for the two selected values of IoUtarget. The evaluation is
performed with both the modified and the original YOLOv3-tiny architecture, both
fine-tuned on the training dataset. Results show how the change in the architecture
can boost the mAP on the test dataset by up to 6.6%, thanks to the improved
detection of small objects.

6.2.4 Quantitative results: embedded implementation
After training, we deploy the model on the different hardware platforms:

• Raspberry Pi 3 B+ in combination with Intel Movidius Neural Computing
Stick (NCS)

• Raspberry Pi 3 B+ in combination with Intel Movidius Neural Computing
Stick 2 (NCS 2)

106

6.2 – Experiments

Device Price fps price/fps

Movidius NCS† 70 $ 4 17.5
Movidius NCS 2† 74 $ 5 14.8
Jetson Nano 99 $ 8 12.4
Jetson AGX Xavier 699 $ 30 23.3

Table 6.3: Price/performance analysis of the different embedded platforms. The
best price/fps ratio is in bold. Prices are at the time of writing.
†: this device requires an additional embedded computer

• Nvidia Jetson Nano

• Nvidia Jetson AGX Xavier

For details on the HW specifications of the selected devices, refer to Tab. 2.1.
The selected platforms are depicted in Fig. 6.1. We test the performance in terms
of absorbed power and frame rate.

Firstly we measure the power consumption of the different boards (Jetson AGX
Xavier, Jetson Nano, Raspberry Pi 3B+) in idle condition, and then we run the
algorithm for nearly 5 minutes to be sure to be at steady state. We measure directly
the current absorbed from the power source, thus obtaining the power consumption
of the entire system. Since the Jetson boards allow the user to select different
working conditions, we test all of them. The results are presented in Tab. 6.2.

The Nvidia Jetson AGX Xavier is the most performing platform, being able to
reach 30 fps in the 30W operational mode. Also, in the other modalities, it is able to
reach frame rates suitable for strong real-time applications. With the Jetson Nano,
the frame rate drops to 8 fps in 10W mode, which can still be an acceptable value
for soft real-time contexts. With the Raspberry Pi and the Intel NCS accelerators,
the performance is further lowered: the more advanced NCS2 is able to outperform
the basic NCS both in terms of frame rate and power consumption. However,
despite being more flexible, these USB accelerators cannot go beyond 5 fps in the
best case.

An interesting comparison between the different platforms is the price/fps ratio,
shown in Tab. 6.3. The Jetson Nano appears to be the best choice if we are looking
for a tradeoff between performance and cost. On the other hand, the AGX Xavier
has the higher ratio, since it is a board with the highest quality, but certainly not
suitable for low-cost solutions. The Intel NCS accelerators come in second and
third place for price/fps ratio, but it must be underlined that, since they are USB
accelerators only, an additional embedded computer must be purchased, increasing
the final cost.

107

A Real-Time Apple Detection System at the Edge

YOLOv3-tiny retrained Our architecture

(a) p = 0 r = 0 mAP = 9.9% (b) p = 0.87 r = 0.53 mAP = 59.33%

(c) p = 1 r = 0.08 mAP = 32.73% (d) p = 0.75 r = 0.42 mAP = 60.86%

Figure 6.6: Comparison between the original YOLOv3-tiny and our modified ver-
sion that performs predictions at three different scales. Fig. (b). and (d). produced
by our custom version demonstrate a considerable improvement over the predictions
of the original model. The additional detection at a scale with stride 8 largely im-
proves the recall of the model and make it much more robust to scale variations.
All the predictions are done with default confidence threshold c = 0.25. Precision
and recall are computed for IOUtarget = 0.5.

6.2.5 Qualitative results
A qualitative comparison with the original architecture is presented in Fig. 6.6.

We process two images excluded from the training dataset with default confidence
threshold c = 0.25, and we compute precision and recall with IoUtarget = 0.5. It
is interesting to notice that precision and recall for image (a) are both 0 since
no bounding box has sufficient intersection-over-union to be considered as a TP.
Image (c) has a precision equal to 1, but very poor recall, since the network is
able to detect only 8% of the apples. The proposed modified architecture, on the
other hand, is able to strongly increase the recall by detecting very small fruits,
boosting the quality of the predictions. In this scenario, the mAP gain is a lot
higher with respect to the test dataset taken from OIDv4. This is due to the

108

6.2 – Experiments

Figure 6.7: Qualitative results of some additional test images acquired from the
same study site of the training dataset. It is possible to notice how our custom
version of YOLOv3-tiny is robust to different factors of variation in how apples
appear. Simultaneously handling variations in illumination, viewpoint, scale, oc-
clusion, and background clutter is a challenging task that our system has to tackle
in real-time with limited computational capabilities.

109

A Real-Time Apple Detection System at the Edge

fact that the images of the apple class in the OIDv4 dataset present, on average,
bigger apples with respect to the training dataset taken on a real orchard, so the
difference between the two architectures is less visible. On the other hand, on the
test images taken from the same dataset used for training, the ability to detect
little apples becomes fundamental for reaching a high recall value. However, in the
results section, we present our results for OIDv4 in order to make the experiments
repeatable and allow future direct comparisons with our work.

Finally, Fig. 6.7 presents some other test images acquired from the same study
site of the training dataset, to give a qualitative idea of the model detection per-
formance. It is possible to see how our network is able to recognize a great number
of apples in several image conditions such as different illumination and contrast.
The network is able to detect fruits on different scales, and, in particular, it can
recognize very small apples, even in bad lighting conditions.

110

Chapter 7

Robust Ultra-wideband
Range Error Mitigation with
Deep Learning at the Edge

Precise localization is at the core of several engineering systems, and due to its
intrinsic scientific relevance, it has been extensively researched in recent years [252,
276]. As Global Navigation Satellite System (GNSS) is the benchmark solution
for outdoor positioning, Ultra-wideband (UWB) real-time locating systems have
recently become the state-of-the-art technology for localization in indoor environ-
ments [241], offering decimeter-level accuracy and increasingly smaller and cheaper
transceivers [158]. With a bandwidth larger than 500 MHz and extremely short
transmit pulses, UWB offers high temporal and spatial resolution and considerable
multipath effect error mitigation when compared to other radio-frequency technolo-
gies [219].

Nevertheless, in a real-world scenario, the complexity of the environment often
leads to partial or total obstruction of the signal between the transmitter and the
receiver, thus causing a substantial degradation of the positioning performances.
UWB is still primarily affected by this effect, defined as a non-line-of-sight (NLoS)
condition, in which the range estimates based on time-of-arrival (ToA) is typically
positively biased [217, 187], as shown in Fig. 7.1. That is particularly true for indoor
localization, where ranging errors introduced by multipath and NLoS conditions can
quickly achieve large deviations from the actual position [40]. Robust and effective
mitigation is therefore necessary to prevent large localization errors.

Several approaches have been proposed to address the NLoS problem. In the
presence of a large number of anchor nodes available, NLoS identification is the
preferable choice so far. Indeed, once an NLoS anchor is identified, it can be easily
eliminated from the pool of nodes used for the trilateration algorithm [226]. The
majority of the proposed methodologies found in the literature make use of channel

111

Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge

0 20 40 60 80 100 120 140 160
Time [ns]

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Am
pl

itu
de

LoS
NLoS

Figure 7.1: Examples of a LoS and a NLoS (with an aluminum obstacle) channel
impulse response (CIR) with normalized amplitude in an indoor environment. In
the NLoS case, the signal travels along many routes until it reaches the receiver.
That makes the ToA estimation ambiguous.

and waveform statistics [162, 220, 19], likelihood ratio tests or binary hypothesis
tests [226, 179] and ML techniques. In the latter case either hand-designed tech-
niques, such as support vector machine (SVM) [271], Gaussian processes (GP) [268],
or representation learning models have been investigated [111, 233].

Despite the simplicity of applying NLoS identification [81], in almost all prac-
tical situations, there is no sufficient number of anchors available to exclude some
of them. So, the majority of research community efforts focus on range mitigation
and direct localization mitigation. Regarding the latter, even if there are studies
that show excellent position estimation in multipath environments [182, 98, 194],
the collected training data are incredibly site-specific. Therefore, conducting the
data collection on one site does not allow exploiting the resulting model in another
location. On the other hand, range mitigation is far less site-specific and does not
require a large amount of data to achieve satisfactory results [217]. Range error mit-
igation is mostly performed with similar techniques as NLoS identification [268, 279,
161, 265] and also with more extreme tasks such as error mitigation for through-
the-wall (TTW) conditions [227]. Moreover, Bregar & Mohorčič [27] attempted to
perform range error estimation directly from the channel impulse response (CIR)
using a DL model. Nevertheless, being a preliminary study, no relevance has been
given to studying the network, optimizing it, and making it able to generalize to
different environments.

This work focuses specifically on investigating a novel efficient DL model that
performs an effective range error mitigation, using only the raw CIR signal as input

112

7.1 – The DeepUWB dataset

at the edge. Indeed, range error mitigation should be performed directly on the plat-
form where the UWB tag is attached. So, energy consumption and computational
power play a decisive role in the significant applicability of our methodology. We
adopt the latest advancements in DL architectural techniques and graph optimiza-
tion to improve nearly 45% and 34% the NLoS and LoS conditions, respectively,
in an unknown indoor environment up to barely 0.4 mJ of energy absorbed by the
network during inference. Moreover, our proposed methodology does not require
additional NLoS identification models. Still, it is able to extract valuable features
to estimate the correct range error directly from the CIR in both LoS and NLoS
conditions. The main contributions of this work can be summarized as:

1. design and train a highly efficient deep ANN for UWB range mitigation in
NLoS and LoS conditions using only raw CIR data points as input;

2. apply weight quantization and graph optimization techniques for power and
latency reduction in range error mitigation;

3. evaluate and compare several devices and hardware accelerators, measuring
power and computational request for different optimized networks;

4. collect and analyze a novel open-source dataset with different NLoS scenar-
ios and settings, highlighting the generalization limitations of a hierarchical
learning model.

7.1 The DeepUWB dataset
The measurements are taken in five different environments to cover a wide variety

of LoS and NLoS scenarios: an outdoor space, in which the only source of error is the
presence of obstacles, and three office-like rooms, to include the effect of multipath
components. In particular, the biggest room is approximately 10m x 5m large, the
medium one is 5m x 5m, and the smallest is 5m x 3.5m. Moreover, to analyze
the TTW effect, some measurements are acquired across different rooms. Taking
range measurements in different conditions allows performing training, validation,
and testing on entirely different datasets, avoiding overfitting and encouraging a
representation learning model to learn domain-independent features.

The Decawave EVB1000 boards mounting the DWM1000 UWB transceiver are
configured to guarantee precise ranging and high update frequency according to the
constructor manual, and antenna delays are tuned to compensate for measurement
bias. The measurements are taken using a Leica AT403 laser tracker as ground
truth. First, we measure the anchor position to create a precise reference system;
then, the laser follows the reflector placed on the moving tag estimating its position
ten times per second. Meanwhile, tag and anchor perform two-way ranging at
approximately the same frequency. The tag follows a path in an environment filled

113

Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge

SR MR BR OD TTW Tot
Size 5m x 3.5m 5m x 5m 10m x 5m - - -
Total samples 17601 13210 18422 4971 954 55158
NLoS samples 15739 12151 16797 4826 954 50467
LoS samples 1862 1059 1625 145 0 4691

Table 7.1: Number of data points collected in the small room (SR), medium
room (MR), big room (BR), outdoor (OD), and trough-the-wall (TTW) during
the dataset construction.

with obstacles to generate NLoS measurements. When no obstacles are present,
the samples are explicitly labeled as LoS. After a satisfying number of data points
are obtained, the configuration is changed by modifying the anchor position or the
type and position of the obstacles. The total samples-per-environment distribution
is presented in Tab. 7.1.

Each data point consists of the CIR vector and the corresponding error between
the board range estimation and the ground truth, matched by comparing times-
tamps. For each CIR vector, only 152 samples after the first detected peak are
retained, as suggested in [27]. Moreover, five additional samples before the peak
are included to compensate for eventual errors in the detection, for a total of 157
temporal samples. Finally, the environment and obstacles used for the measure-
ments are reported to study their effect on the proposed method. The collected
dataset is open source and publicly available1 for future work comparison.

7.1.1 Dataset analysis
To visualize the distribution of the acquired instances in the data space, we

exploit Principal Component Analysis (PCA) to project the 157 dimensions of each
CIR signal into a three-dimensional space, saving most of the original variance. As
shown in Fig. 7.2, the first analysis highlights the correlations between data points
in the different analyzed environments. A prevalence of samples from the big room
can be found in the lower central part of the plot, while the medium and small room
samples are more present on the left and upper sides of the distribution, respectively.
Nevertheless, it is clear how rooms cover a similar data space, which implies a
potential transferability of statistics learned in different indoor environments. On
the other hand, the outdoor set is completely separated and concentrated on the
right side of the plot.

The same procedure is followed for materials, considering four object classes for
clearness: aluminum plate, plastic bin, wooden door, and glass. In this case, a

1https://doi.org/10.5281/zenodo.6611037

114

https://doi.org/10.5281/zenodo.6611037

7.1 – The DeepUWB dataset

Big Room Medium Room Small Room Outdoor Through-The-Wall

Aluminum Wood Plastic Glass

Figure 7.2: Principal Component Analysis (PCA), projecting the original 157 CIR
dimensions into a three-dimensional space. It is clear how rooms cover a similar data
space, completely separated by the outdoor scenario. Moreover, the same applies
to materials, where more dense molecular structures affect the signal differently.

Training on Big Room Training on Medium Room Training on Small Room Training on Outdoor0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
AE

 [c
m

]

Big Room Medium Room Small Room Outdoor Through-The-Wall

Figure 7.3: Analysis of generalization capabilities in different environments of a
baseline representation learning model trained directly on the CIR waveform. Each
bar represents the average MAE on the ranging estimation of 20 independent MLP
models. Results show that rooms with different sizes and configurations lead to
very similar results. Moreover, outdoor and TTW scenarios should be considered
as separate settings and cannot be corrected without including appropriate samples
in the training set.

remarkable separation is noticeable, as the metal samples occupy all the left part
of the graph and light objects like plastic, wood, and glass take the right area.
Moreover, the spatial distribution of wood occupies specific zones showing different
features from plastic and glass. The presented qualitative analysis allows a first
visual proof of the meaningfulness of data and draws some conclusions on how a

115

Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge

representation learning model could perform. For example, a generic model trained
on measures taken with only plastic instances would more easily mitigate the error
caused by wood and less accurate estimations for metal samples.

Finally, a Multi-layer Perceptron (MLP) is trained and tested on different splits
of the dataset to assess the generalization capabilities of a baseline representation
learning model. The model tries to compensate for the ranging measurement error
directly from the CIR waveform, and its performance is measured as the mean
absolute error (MAE) with respect to the ground truth. After the validity of the
method is first verified on the whole dataset, a series of tests are conducted to
study the effect of different environments and obstacles on the model performance.
The network is trained on a specific set of data from the same room or with the
same material and tested on other possible conditions. In this way, it is possible to
state whether the approach holds an absolute generality concerning such factors.
For what concerns environmental influence, resumed in Fig. 7.3, metrics show that
rooms with different sizes and configurations lead to minimal changes in results
(less than 2 cm) compared to those caused by outdoor measurements or more
extreme conditions as TTW. Indeed, samples taken in open space show the worst
generalization, because they are taken in a completely different scenario. The model
struggles to adapt to a situation in which multipath components are completely
absent, but an improvement is achieved in almost all cases.

For what concerns obstacles, we find a more marked distinction. As already
emerged from PCA analysis, heavy materials have a very different impact on UWB
signals with respect to wood, plastic, and glass. However, there is almost always
an improvement in the raw MAE. That means that models can learn a way to
compensate for part of the error independently from the obstacles. A dataset
containing a sufficient number of examples for a wide variety of materials can lead
to excellent results in many different scenarios.

7.2 Methodology
In this section, we propose a Deep Neural Network (DNN) to solve the range error

mitigation problem. Moreover, we present some optimization and quantization
techniques used to increase the computational efficiency of the network and deploy
it on low-power devices. Since UWB are low-power localization devices directly
connected to the mobile robot board, any error compensation technique should
be applied locally on the platform to ensure real-time execution with a latency
compatible with the control frequency of the robot. The method should also be
as efficient as possible to ensure a low impact on the system overall energy and
computational demand. In designing our solution, we mainly focus on optimizing
the model to reduce memory occupancy and computational efforts during inference.

116

7.2 – Methodology

7 3 modules

Residual Reduction Module

3

1

Input Conv1D ReLU Global Average
Pooling Dense DropoutSigmoid Flatten

SE Block

Reduction BlockResidual Block

Figure 7.4: Overview of the REMNet architecture. The input of the model is the
K × 1 tensor representing the CIR of the measurement. The dimensionality is
reduced by N subsequent RMMs, with a feature attention mechanism performed
with an SE block. Finally, an FC layer composes the high-level extracted features
and outputs the range error estimation.

7.2.1 Network design
We consider the following model for a generic UWB range measurement:

d̂ = d+ ∆d (7.1)

where the actual distance d is intrinsically affected by an error ∆d giving the final
measurement outcome d̂. The error depends on several factors, among which the
most important is the environment and the obstacles, giving, in general, worse
performance in NLoS conditions.

We formulate the mitigation problem as a regression of the compensation factor
∆d that should be subtracted from the measured range to obtain the actual distance
between the two sensors. Therefore, we design a DNN model that predicts an
estimate ŷ for the true latent error y = ∆d as a non-linear function of the input
CIR vector X ∈ RK×1, where K is the number of temporal samples. We call the
proposed architecture Range Error Mitigation Network (REMNet). It is important
to underline that we do not distinguish between LoS and NLoS measurements, but
we let the network learn how to compensate for both conditions autonomously.
Therefore, a classification of the measurements is not necessary, but the model
implicitly performs it during the mitigation process. Such an approach allows
obtaining an algorithm that is always beneficial and can be applied continuously
onboard without the need for an additional classification step.

117

Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge

Due to the one-dimensional nature of the data, we select 1D convolutional lay-
ers as building blocks of the network. We first extract F low-level features with a
1D convolution from the input X, obtaining a feature tensor with shape K × F .
The network architecture is then made of a stack of N Residual Reduction Mod-
ules (RRMs) that learn deep features while reducing the temporal dimensionality
K. We develop this module adopting well-known strategies used in DL literature
such as residual connections [87] and attention mechanism [99, 262]. All these
methodologies have been proven to be effective in guaranteeing trainable and well-
converging networks and are therefore suitable to be applied to the range error
mitigation problem.

The core of the RRM is composed of a residual unit followed by a reduction
block. Given a generic feature tensor x1 ∈ RK×F , an RRM performs the following
operation:

RRM(x1) = Red(Res(x1)) = Red(x2) (7.2)

where Res and Red represent the residual and reduction blocks, respectively. In par-
ticular, the residual unit has a 1D convolution followed by a Squeeze-and-Excitation
(SE) block [99] on the residual branch:

x2 = Res(x1) = SE(Conv1D(x1)) + x1 (7.3)

The SE block applies a feature attention mechanism by self-gating each extracted
feature with a scaling factor obtained as a non-linear function of themselves. It
first squeezes the feature tensor with a GAP layer that aggregates the tensor along
the temporal dimension K, obtaining a single statistic for each of the F features.
The excitation step is then performed with a stack of one bottleneck FC layer that
reduces the feature dimension F of a factor r, with ReLU activation, and another FC
layer that restores the dimensionality to F with sigmoid activation. This activation
outputs F independent scaling factors between 0 and 1 that are then multiplied
with the input x, allowing the network to focus on the most prominent features.
Overall, the SE output is computed as:

SE(x1) = FC2

(︃
FC1

(︃ 1
K

K∑︂
i=1

x
(i)
1

)︃)︃
· x1 (7.4)

where x
(i)
1 represent the i-th temporal feature of the tensor x1 and FC1 and FC2

represent the two FC blocks, that have W1 ∈ RF×F/r and W2 ∈ RF/r×F weight
matrices respectively.

The residual unit is then followed by a reduction block, which halves the tempo-
ral dimension K with a convolution with stride s = 2. The reduction block again
has a residual connection characterized by a 1D convolution with a kernel size of 1
and stride s = 2 to match the temporal dimension, with the main branch.

118

7.2 – Methodology

7 3

3

1

Reduction Block

 modules

Input Conv1D ReLU Flatten Dropout

Residual Reduction Module

Dense

Residual Block

Figure 7.5: Overview of the modified REMNet architecture to ensure compatibility
with the Arduino Nano 33 BLE Sense micro-controller. We remove the SE block
to ensure compatibility with the target embedded board.

Red(x2) = Conv1D1(x2) + Conv1D2(x2) (7.5)
where both Conv1D1 and Conv1D2 output F channels.

After N RRMs, we end up with a tensor with shape K/2N×F . We flatten it into
a single vector, and we apply a Dropout layer to regularize the network and help
generalization. Finally, an FC regression head with linear activation computes an
estimate ŷ of the compensation value y = ∆d. An overview of the overall network
architecture is presented in Fig. 7.4. It is worth noting that all the Conv1D layers
in the model have ReLU non-linearity as activation function and are zero-padded so
that the temporal dimension is reduced by the non-unitary strides of the reduction
block, only.

7.2.2 Network optimization and quantization techniques
As already mentioned, a UWB range error mitigation technique should respect

constraints on memory, power, and latency requirements to be applicable in real-
time and onboard. For this reason, we investigate different graph optimization
and quantization methods to both decrease model size and computational cost.
An overview of optimization methods present in the literature is presented in Sec-
tion 2.4. We produce five different versions of REMNet, depending on the adopted
techniques:

1. the plain float32 network with no modifications;

119

Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge

2. graph optimization (G.O.) without quantization;

3. weight quantization to 16 bits, while activations are still represented as 32 bits
floats;

4. 8-bit full integer quantization of both weights and activations;

5. 8-bit full integer quantization with modified architecture.

The full integer quantization strategy is the most radical to increase network
efficiency by changing the representation of both weights and activations to 8-bit
integers, greatly reducing memory and computational demands due to the high ef-
ficiency of integer computations. For details on this technique, refer to Section2.4.
Moreover, we modify the network architecture to ensure compatibility with the
ultra-low-power Arduino Nano 33 BLE Sense microcontroller, obtaining a second
full-integer network (point 5). In particular, we simply remove all feature-attention
SE blocks that boost the accuracy performance but compromise compatibility, ob-
taining the architecture shown in Fig. 7.5.

7.3 Experiments
In this section, we perform an experimental evaluation of the proposed archi-

tecture for efficient range error mitigation. Moreover, we test the accuracy and
performance of different optimized versions of the network on disparate heteroge-
neous devices collecting energy and computational requirements.

7.3.1 Experimental setting
In the following experiments, we employ the presented dataset of Section 7.1

keeping aside the medium size room as the testing set. Indeed, instead of per-
forming a stratified sampling of the available data, in the light of the evidence of
Section 7.1.1, we decide to perform all tests with indoor instances. That is more
similar to an actual infield application and better highlights the generalization ca-
pabilities of the proposed methodology. All experiments are performed with 36023
and 13210 training and testing data points, respectively, keeping aside TTW and
outdoor measurements. Moreover, due to the LoS very different nature, we report
results on both the overall testing set and on the test LoS samples only, in order
to evaluate the network capability to recognize this condition and act accordingly.

A final test consists in using the best-developed model for a 3D positioning task
to assess the range mitigation effect on localization accuracy. The medium room is
chosen as the testing environment, as its samples have not been used to train the
network. Four UWB anchors are placed in the room, and a fixed tag is put in the
center. First, the laser tracker precisely measures the position of all the nodes to

120

7.3 – Experiments

4 8 16 32 64 128 152
CIR Sample Length

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

sid
ua

l E
rro

r
Metric

MAE all
MAE LoS

Figure 7.6: Network performance with different CIR sizes K, starting from the
dimension suggested by [27]. For each test, we report overall and LoS MAE on the
medium size room test set, normalized with respect to the worst results at K = 4:
0.0946 (all) and 0.0542 (LoS). Progressively training with a reduced number of input
features degrades the performance of the network. An input with 8 dimensions
appears to be the minimum required to obtain an acceptable range error estimation.

provide ground truth, then the acquisition of the data begins. Two situations are
taken into consideration, a fully LoS scenario and a critical NLoS one. Once the
samples have been collected, they are prepared for the processing phase, in which
range measurements are used to estimate the 3D position of the tag employing a
simple Gauss-Newton non-linear optimization algorithm.

All network hyperparameters are selected with an initial random search, followed
by a grid search exploration of the most promising ones, to fine-tune them and find
a compromise between accuracy and efficiency. Indeed, working at the architecture
level is crucial to satisfy the constraints given by the studied application. We set
the number of filters F = 16, and the number of reduction modules N = 3 with
r = 4. We always use a kernel size of 3 for all the Conv1D layers, unless where
otherwise shown in Fig. 7.4. We set the dropout rate in the regression head at 0.4.
The resulting network has an efficient and highly optimized architecture with 6349
trainable parameters. On the other hand, the modified architecture to target the
Arduino Nano 33 BLE Sense microcontroller has 5905 parameters, since it lacks
the SE blocks.

Finally, to select the optimal number of input features, as shown in Fig. 7.6, we
progressively reduce the number of input temporal dimensions K, while training
and testing the network. All points are the average result of ten consecutive inde-
pendent trials. The experimentation shows that K = 8 is the minimum number of

121

Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge

1.0 0.5 0.0 0.5 1.0 1.5
0.00

0.01

0.02

0.03

0.04

Observed Error | = 0.1244, = 0.1603
Predicted Error | = 0.1033, = 0.1303
Residual Error | = 0.0211, = 0.0998

[m]

Figure 7.7: REMNet test samples error distribution in meters. It is possible to no-
tice how the residual range error distribution (blue histogram) is almost Gaussian.
That greatly improves the optimality and simplicity of the subsequent iterative lo-
calization algorithm [216]. The histograms are normalized and with 300 bins each.

temporal dimensions required for the network to obtain an acceptable range error
estimation. Moreover, we empirically find that an input CIR of 152 elements, as
suggested by [27], is redundant and could even slightly reduce the model perfor-
mance. On the other hand, fewer dimensions of 128 tend to almost linearly degrade
the network performance. For this reason, we refer to K = 128 CIR as the standard
REMNet model.

The Adam optimization algorithm [122] is used for all the training processes,
with default parameters. The optimal learning rate η = 3× 10−4 is experimentally
selected using the methodology described in [230]. We train for a total of 30 epochs
with a batch size of 32 and using MAE as both loss function and metric. We
employ the TensorFlow 2 framework [1] to train the network on a workstation with
32GB of RAM and an Nvidia 2080 Super GPU. The overall training process can
be performed in less than 10 minutes.

7.3.2 Quantitative results
The medium room data samples have an error distribution with mean µobs =

0.1204 m and standard deviation σobs = 0.1602 m. Fig. 7.7 shows the error distribu-
tion, along with the one estimated by the standard REMNet architecture and the
residual. It is possible to notice how the network is able to almost completely com-
pensate for the offset of the original range error and reduce the standard deviation

122

7.3 – Experiments

All LoS
MAE R2 µres σres MAE R2 µres σres

Observed 0.1391 -0.6021 0.1244 0.1603 0.0841 -0.3537 0.0553 0.0929
Mean prediction 0.1096 0.0 0.0 0.1603 0.07297 0.0 0.0 0.0929
SVM 0.0778 0.4326 0.024 0.1183 0.0592 0.3231 0.0085 0.0756
MLP 0.0766 0.4635 0.0172 0.1161 0.0592 0.3468 0.0076 0.0747
CNN-1D [27] 0.0918 0.1750 0.0429 0.1391 0.0659 0.1581 0.0111 0.0846
REMNet1 (float32) 0.0678 0.5946 0.0211 0.0998 0.0550 0.4183 0.0172 0.0688
REMNet2 (float32 G.O.) 0.0678 0.5946 0.0211 0.0998 0.0550 0.4183 0.0172 0.0688
REMNet3 (float16) 0.0678 0.5946 0.0211 0.2066 0.0560 0.3770 -0.0105 0.1302
REMNet4 (int8) 0.0709 0.5320 0.0148 0.1086 0.0567 0.3925 0.0062 0.0722
REMNet5 (int8 modified) 0.0706 0.5338 0.0116 0.1088 0.0572 0.3876 0.0061 0.0725

Table 7.2: Performance of the five variants of REMNet, and other baseline methods.
It is possible to notice how the different transformations barely affect the range error
estimation capability of the network. All errors are in meters.

of 37.7%.
Tab. 7.2 shows the performance of REMNet in its five different variations, to-

gether with three simple models (SVM, MLP, and CNN-1D) included as a reference.
Moreover, as baselines, we report the result of zero prediction, which coincides with
the observed error distribution, and the test average prediction, which we refer to
as the worst possible regressor. As metrics, we report the MAE loss of the predic-
tions, the coefficient of determination R2 (that is 0 for a result as good as the mean
prediction), and mean and standard deviation of the residual error distribution in
meters. We report the evaluation on all the test samples and on the LoS samples
only. For support vector machine (SVM) and MLP, we adopt 128 CIR input di-
mensionality for a fair comparison. We use radial basis function (RBF) as SVM
kernel, and a 3-layer architecture with 64 hidden neurons, ReLU activation and
Batch Norm for the MLP. Instead, for the CNN-1D proposed by [27], we feed the
network with 152 bins as suggested in the paper. The training hyperparameters are
the same used for REMNet. It is noticeable how REMNet has better performances
than other methodologies even with a highly efficient architecture.

Moreover, the network can easily detect LoS input signals and apply a small
correction factor that takes into account the multipath effect. That is proved by
the MAE which has a percentage improvement of 34.6%. On the other hand, MAE
for the overall test samples is improved by 51.3%, reducing the average error to
0.0678 m.

Graph optimization techniques and different weight quantization levels are both
examined, starting from the reference network. Even if there is a slight degradation
of the overall metrics, these changes are mostly negligible. Moreover, it is possible
to notice that the full-integer quantization (REMNet4) decreases the NLoS MAE
only of the 4.6%. That opens the possibility to achieve effective range mitigation

123

Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge

All LoS
SR MR BR SR MR BR

Training samples 31632 36023 30811 31632 36023 30811
Test samples 17601 13210 18422 1862 1059 1625

µobs 0.0881 0.1244 0.1058 0.0186 0.0553 0.0318
µres 0.0089 0.0211 0.0167 0.0099 0.0172 0.0024
σobs 0.1508 0.1603 0.1851 0.0643 0.0929 0.0574
σres 0.1137 0.0998 0.1497 0.0555 0.0688 0.0534

MAEobs 0.1069 0.1391 0.1253 0.0841 0.0841 0.0528
MAEres 0.0634 0.0678 0.0734 0.0418 0.0550 0.0415

R2 0.4282 0.5946 0.3374 0.2319 0.3770 0.1335

Table 7.3: REMNet cross-validation results with the three different rooms, small
room (SR), medium room (MR) and big room (BR). Each column presents NLoS
and LoS results for the room excluded by the training procedure and used as a test.
All errors are in meters.

with integer operations only and almost negligible impact on the overall application.
Indeed, extreme weight quantization implies a smaller model size with less memory
usage, an important latency reduction, and the possibility of using highly efficient
neural accelerators.

Finally, for a matter of completeness, Tab. 7.3 presents results obtained with
cross-validation on the three different room sizes. We independently train the
standard REMNet on two rooms and test on the third and report the NLoS and
LoS performance. In accordance with the conclusions of Section 7.1.1, REMNet
achieves comparable range error mitigation in the three different configurations.

Power and latency results

In this section, we test the different optimized networks on several devices and
hardware accelerators, annotating power, and computational request. We consider
the Nvidia Jetson Nano, the Coral Dev Board, and the Arduino Nano 33 BLE Sense,
as deploy platforms, testing both CPUs and ML accelerators, when available. For
details on the HW specifications of the selected devices, refer to Tab. 2.1. Moreover,
we report results on an Nvidia RTX 2080 GPU as a reference. We adopt two
standard libraries for network deployment, TFLite2 and TensorRT3 to produce the
optimized models. Both are directly integrated into the TensorFlow framework
and are specifically conceived to target different hardware platforms. In particular,

2https://tensorflow.org/lite
3https://developer.nvidia.com/tensorrt

124

https://tensorflow.org/lite
https://developer.nvidia.com/tensorrt

7.3 – Experiments

Device G.O. W.P. Latency [ms] Vcc [V] Irun [A] Prun [W] Einf [mJ] Size [kB]
RTX 2080 N FP32 19.7 ± 0.23 - - 32 617.6 250.0

Y FP32 0.69 ± 0.13 - - 20 138.0 613.0
Y FP16 0.54 ± 0.09 - - 18 97.2 615.0

Coral Dev Board (CPU) N FP32 16.9 ± 0.03 5.0 0.60 3.0 50.7 250.0
Y FP32 12.2 ± 0.03 5.0 0.60 3.0 36.6 40.7
Y FP16 11.2 ± 0.03 5.0 0.60 3.0 33.6 33.9
Y INT8 6.23 ± 0.02 5.0 0.60 3.0 18.7 32.7

Jetson Nano (CPU) Y INT8 4.71 ± 0.01 5.0 0.70 3.5 16.5 32.7
Jetson Nano (GPU) Y FP32 5.36 ± 0.05 5.0 0.86 4.30 23.0 615.0

Y FP16 5.18 ± 0.04 5.0 0.85 4.25 22.0 613.0
Coral Dev Board (Edge TPU) Y INT8 0.51 ± 0.01 5.0 0.73 1.8 0.9 70.54
Arduino Nano 33 BLE Sense Y INT8 47.17 ± 0.01 3.3 0.016 0.053 2.5 23.02

Table 7.4: Comparison between different devices energy consumption and inference
performances. Graph optimization (G.O.) and weight precision (W.P.) reduction
further increase the efficiency of REMNet, helping to deal with energy, speed, size,
and cost constraints.

we target Cortex-A53 (Coral Board), A57 (Jetson Nano) CPUs, Edge TPU and
Arduino with TFLite, and the Nvidia RTX 2080 and 128-core Maxwell (Jetson
Nano) GPUs with TensorRT.

Experimentation results are summarized in Tab. 7.4, where latency, run-time
voltage, current and power are shown, together with the energy required for a sin-
gle inference and the size of the model in kB. It is possible to notice that, due to the
high efficiency of the proposed architecture, all configurations satisfy a sufficient
inference speed compliant for an effective range error mitigation solution. Never-
theless, the different optimization techniques applied have a high impact on the
energy consumed by the network. Indeed, considering experimentation performed
with the Cortex-A53 (Coral Board CPU), optimization can reduce the energy con-
sumption by a factor of more than three, starting with an initial value of 50.7 mJ
down to 18.7 mJ, with a reduction of 63%. Moreover, the model size is greatly
reduced from 250 kB to 32.7 kB. That implies a smaller storage size and less RAM
at run-time, freeing up memory for the main application where UWB localization is
needed. Moreover, as further highlighted by Fig. 7.8 and the results of the previous
subsection, the Edge TPU neural accelerator with a full-integer model appears the
preferable solution for deployment. With only 0.51 ms of latency, 1.8 W power,
and 0.9 mJ energy consumption, it barely impacts the performance of the overall
application, allowing to exploit duty cycling and energy-saving techniques. Finally,
if there are strong constraints in terms of size and low-power requirements, the
Arduino-based solution appears to be very interesting, since it is based on a 3.3
V microcontroller and only needs 53 mW at run-time. The only drawback is that,
since it does not have a specific ML accelerator, it is the slowest device analyzed,
with its 47 ms required per inference. Overall, the already efficient design of our
architecture, in conjunction with 8-bit weight precision, graph optimization tech-
niques, and embedded deployment, makes DL a feasible solution for an effective

125

Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge

0 1 2 3 4 5 6
Power [W]

0

10

20

30

40

La
te

nc
y

[m
s]

Coral Board (CPU)

Coral Board (CPU) [TFLite FP32]

Coral Board (CPU) [TFLite FP16]

Coral Board (CPU) [TFLite INT8]
Jetson Nano (CPU) [TFLite INT8]

Jetson Nano (GPU) [TensorRT FP32]

Jetson Nano (GPU) [TensorRT FP16]

Coral Board (Edge TPU) [TFLite INT8]

Arduino Nano 33 BLE Sense [Mod TFLite INT8]

Figure 7.8: Power and latency are two important constraints for effective range
error mitigation. Indeed, error correction is performed progressively over all the
received anchor signals on board the platform connected with the tag. Without a
highly optimized and efficient correction model, range error mitigation would not
be applicable.

range error mitigation for UWB at the edge.

Trilateration results

As described in Section 7.3.1, the effect of the proposed method is lastly ver-
ified by using the full-integer model REMNet4 deployed on the Coral Dev Board
Edge TPU for a 3D positioning task, in which the results obtained from raw range
estimates are compared to those achieved with our mitigation model in the loop.
We perform an experiment in pure LoS and one with strong NLoS conditions. The
results are summarized in Tab. 7.5, while Fig. 7.9 gives a graphical representation
of the NLoS results.

Regarding the LoS case, the positioning system already achieves good precision
by itself with a very low range MAE and, consequently, a low position MAE. In
this case, the effect of mitigation is irrelevant, causing a slight increment of ranging
error but a slight decrease in positioning error. So, as expected, the model learns
to apply very slight corrections to LoS samples, avoiding worsening already good
measurements. Instead, the NLoS scenario shows a significant improvement, as the
range MAE is more than halved, reaching a value that is comparable to the LoS
case and confirming previous results.

Consequently, the error in the position estimation is strongly reduced, going
from 57.7 cm to 18.2 cm. Although the final accuracy is still significantly higher
than the one found in the LoS case, a reduction of 68% is considered a significant

126

7.3 – Experiments

LoS NLoS
Range MAE Position MAE Range MAE Position MAE

Raw UWB 0.0388 0.0703 0.1129 0.5772
REMNet4 (int8) 0.0465 0.0679 0.0571 0.1817

Table 7.5: Results obtained from the positioning test in the test medium room. For
each test, the MAE is reported for both the range estimates and the final position
result, in order to highlight the effect of the former on the latter. All errors are in
meters.

Figure 7.9: Comparison between 3D position estimation of a fixed tag in strong
NLoS conditions. In light blue are the results obtained from raw range measure-
ments, and in orange the ones achieved with our full-integer model.

result. Indeed, our approach allows to achieve suitable precision for many kinds of
indoor robotic applications showing good generalization to unknown environments.

127

128

Chapter 8

Action Transformer: A
Self-Attention Model for
Short-Time Pose-Based
Human Action Recognition

Human Action Recognition (HAR) is a problem in computer vision and pattern
recognition that aims to detect and classify human actions. The ability to rec-
ognize people inside a scene and predict their behavior is fundamental for several
applications, such as robotics [203], surveillance and security [258], autonomous
vehicles [22], and automatic video captioning [254]. Most previous works dealing
with HAR adopted datasets characterized by samples with a long temporal dura-
tion [103, 249, 154]. Indeed, traditional datasets used by previous works, such as
3D NTU RGB+D [222, 144], or Kinetics-Skeleton [31, 270], include long temporal
sequences which must be entirely scanned to make the correct classification. Thus,
HAR has been mainly treated as a post-processing operation, classifying complex
and long-lasting human actions by exploiting past and future information. Con-
versely, in this work, we focus on short-time HAR, which aims at continuously
classifying actions within short past time steps (up to a second). This approach
is fundamental to target real-time applications: in robotics, for example, the HAR
problem should be solved promptly to react to sudden behavioral changes, only
relying on near past information.

Works in the HAR field can be mainly subdivided into two broad categories:
video-based and depth-based methodologies [231]. In both, the input consists of
a sequence of points representing body joints, extracted from the corresponding
RGB frame [137], in the case of video-based methods, or a point cloud, in the case
of depth-based ones. In the latter, body joints are provided as 3D coordinates

129

AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Figure 8.1: Overview of the Action Transformer architecture. Pose estimations are
linearly projected to the dimension of the model, and together with the class token,
they form the input tokens of the transformer encoder. As for Vision Transformer
models [59, 242, 47], a learnable positional embedding is added to each input token.
Then, only the output class token is passed through an MLP head to obtain the
final class prediction.

(skeletal data), such as those captured by Kinect sensors [222, 144], that can be
possibly projected onto the 2D space [31, 270]. On the opposite, in this work,
we focus on a video-based analysis, where body joints are already provided as 2D
coordinates (pose data) by pose detection algorithms such as OpenPose [30] and
PoseNet [190]. This characteristic makes 2D HAR methodologies applicable in a
great range of applications using a simple RGB camera. Conversely, skeletal data
require particular sensors to be acquired, such as Kinect or other stereo-cameras.
That raises substantial limitations, such as availability, cost, limited working range
(up to 5-6 meters in the case of Kinect [130]), and performance degradation in
outdoor environments.

Angelini et al. first collected the MPOSE dataset for video-based short-time

130

8.1 – The MPOSE2021 dataset

HAR [13], obtaining 2D poses by processing several popular HAR video datasets
with OpenPose. Moreover, the authors proposed ActionXPose, a methodology
that increases model robustness to occlusions. The sequences were classified using
MLSTM-FCN [117], which exploits a combination of 1D convolutions, LSTM [94],
and Squeeze-and-excitation attention [99]. The same authors successively applied
their approach to anomaly detection [15, 14] and expanded MPOSE with the novel
ISLD and ISLD-Additional-Sequences datasets. Conversely, Yan et al. [270] first
applied OpenPose to extract 2D poses from the Kinetics-400 RGB dataset [31] and
used graph convolutions to capture spatial and temporal information.

Recently, many models for HAR have proposed the integration of self-attention
mechanisms with convolutional and recurrent blocks to improve the accuracy of
models. For example, Cho et al. [41] first applied self-attention [250] to the skeletal-
based HAR problem. More recently, Plizzari et al. [192], inspired by Bello et al. [21],
employed self-attention to overcome the locality of the convolutions, again adopting
a two-stream ensemble method, where self-attention is applied on both temporal
and spatial information. However, solutions that rely exclusively on self-attention
blocks have not been investigated for this task yet.

In this work, we propose a new model for HAR called the Action Transformer
(AcT), schematized in Fig. 8.1, inspired by the simple and prior-free architecture
of the Vision Transformer (ViT) [59]. Optimized versions of the Transformer have
been developed in the literature for real-time and embedded applications [24], prov-
ing that this architecture is suitable for Edge AI purposes. With AcT, we apply
a pure Transformer encoder architecture for HAR, obtaining an accurate and low-
latency model for real-time applications. We study the model at different scales
to investigate the impact of the number of parameters and attention heads. We
propose the new single-person, short-time action recognition dataset MPOSE2021
as a benchmark and exploit 2D human pose representations provided by two ex-
isting detectors: OpenPose [30] and PoseNet [190]. We compare AcT with other
state-of-the-art baselines to highlight the advantages of the proposed approach. To
highlight the effectiveness of self-attention, we conduct a model introspection pro-
viding visual insights of the results and study how a reduction of input temporal
sequence length affects accuracy. We also conduct extensive experimentation on
model latency on low-power devices to verify the suitability of AcT for real-time
applications.

8.1 The MPOSE2021 dataset
We introduce MPOSE2021, a dataset for real-time short-time HAR, suitable

for both pose-based and RGB-based methodologies. It includes 15429 sequences
from 100 actors and different scenarios, with limited frames per scene (between
20 and 30). In contrast to other publicly available datasets, the peculiarity of

131

AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

20 22 24 26 28 30
length

101
102
103

sa
m
pl
es KTH

20 22 24 26 28 30
length

102

103

sa
m
pl
es IXMAS

20 22 24 26 28 30
length

101
102
103

sa
m
pl
es i3DPost

20 22 24 26 28 30
length

100

101

102

sa
m
pl
es Weizmann

20 22 24 26 28 30
length

101

103

sa
m
pl
es ISLD

20 22 24 26 28 30
length

103

104

sa
m
pl
es ISLD-AS

20 22 24 26 28 30
length

101

102

sa
m
pl
es UTKinect

20 22 24 26 28 30
length

102

sa
m
pl
es UTD-MHAD

Figure 8.2: MPOSE2021 sequence length distribution for the different precursor
datasets. It is possible to notice how most of them present a mode of 30 frames per
scene.

having a constrained number of time steps stimulates the development of real-
time methodologies that perform HAR with low latency and high throughput. As
in [13, 14, 15], video data have been previously collected from popular HAR datasets
(defined as precursors), i.e. Weizmann [77], i3DPost [71], IXMAS [260], KTH [221],
UTKinetic-Action3D (RGB only) [266], UTD-MHAD (RGB only) [34], ISLD, and
ISLD-Additional-Sequences [13].

Due to the heterogeneity of actions across different datasets, labels are remapped
to a list of 20 common classes. Actions that cannot be remapped accordingly are
discarded. Therefore, precursor videos are divided into non-overlapping samples
(clips) of 30 frames each whenever possible and retaining tail samples with more
than 20 frames. A visual representation of the number of frames per sample for
each sub-dataset of MPOSE2021 is shown in Fig. 8.2. The peculiarity of a re-
duced number of time steps contrasts with other publicly available datasets and

132

8.1 – The MPOSE2021 dataset

be
nd bo

x
ch

ec
k-

wa
tc

h
cr

os
s-

ar
m

s
ge

t-u
p

ha
nd

s-
cla

p
jo

g
ju

m
p

ki
ck

pi
ck

-u
p

pj
um

p
po

in
t

ru
n

sc
ra

tc
h-

he
ad

sit
-d

ow
n

st
an

di
ng tu
rn

wa
lk

wa
ve

1
wa

ve
2

0

500

1000

1500

2000

sa
m

pl
es

MPOSE2021 (20 actions, 100 actors, 15429 samples)
KTH
IXMAS
i3DPost
Weizmann
ISLD
ISLD-AS
UTKinect
UTD-MHAD

Figure 8.3: The number of samples of MPOSE2021 divided by action. The colors
show the distribution of precursor datasets among classes, highlighting the unbal-
anced nature of the data. The final dataset contains 15429 samples where each
sample represents one of 100 actors performing one of 20 actions.

stimulates the development of methodologies that require low latency to perform
a prediction. That would largely benefit many real-world applications requiring
real-time perception of the actions performed by humans nearby.

Subsequently, clips not containing a single action are discarded. Moreover, am-
biguous clips are relabelled whenever possible or discarded otherwise. This process
leads to 15429 samples, where each sample represents a single actor performing a
single action. The total number of distinct actors in MPOSE2021 is 100, and the
number of samples for each action is reported in Fig. 8.3, which also shows the
distribution of precursor datasets.

OpenPose [30] and PoseNet [190] are used to extract landmarks from MPOSE2021
video samples. Due to the significant sample heterogeneity and the high number of
actors, three different training/testing splits are defined for MPOSE2021, namely
Split1, Split2, and Split3, by randomly selecting 21 actors for testing and using the
rest of them for training. In this process, we ensure that all the splits cover all
the labels. Roughly, 23% of samples are in the test set and 77% in the training
set, for all the three splits. This division makes the proposed dataset a challenging

133

AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

benchmark to effectively assess and compare the accuracy and robustness of differ-
ent methodologies. Moreover, the suggested evaluation procedure requires training
a target model on each split using 10 stratified validation folds got from the train-
ing set and averaging the obtained results on the test set. That makes possible to
produce statistics and reduces the possibility of overfitting the split testing set with
an accurate choice of hyperparameters.

With MPOSE2021, we aim to provide an end-to-end and easy-to-use benchmark
to robustly compare state-of-the-art methodologies for the short-time human action
recognition task. We thus release a code repository1 to access the different levels
of the dataset (video, RGB frames, 2D poses). Moreover, we open source a prac-
tical Python package to access, visualize and preprocess the poses with standard
functions. The Python package can be easily installed with the command pip
install mpose.

8.2 Methodology
Given a video input sequence with T frames Xrgb, we extract the human poses

using a multi-person 2D pose estimation network that extracts tensors of shape
N × T × P , where N is the number of human subjects present in the frame and P
is the number of keypoints predicted by the network:

X2Dpose = φ2Dpose(Xrgb) (8.1)
where φ2Dpose represents the pose estimation model. AcT receives as input a 1D
sequence of token embeddings, so each of the N pose tensors X2Dpose, with shape
T×P , is separately processed by the AcT network. On the other hand, at inference
time, all detected poses in the video frame can be batch-processed by the AcT
model, simultaneously producing a prediction for all N subjects.

The T poses are mapped to a higher dimension Dmodel using a linear projection
map W proj ∈ RP×Dmodel , obtaining the sequence Xproj ∈ RT×Dmodel .

Similarly to the ViT model [59] (see Section 2.3.2), an additional trainable em-
bedding x0

cls ∈ R1×Dmodel is added to the input sequence. This class token [CLS]
forces self-attention to aggregate information into a compact high-dimensional rep-
resentation that separates the different action classes. Moreover, positional infor-
mation is provided to the sequence with a learnable positional embedding matrix
Xpos ∈ R(T+1)×Dmodel added to all tokens.

The linearly projected tokens and [CLS] are fed to a standard Transformer en-
coder [250] φenc(·) of L layers with a post-norm Layer Norm [17]:

XL = φenc(X0) = φenc([x0
cls; Xproj] + Xpos) (8.2)

1https://github.com/PIC4SeRCentre/MPOSE2021

134

https://github.com/PIC4SeRCentre/MPOSE2021

8.2 – Methodology

Input Tokens

Multi-Head Self-Attention

Add & Norm

Feed Forward

Add & Norm

Dropout

Dropout

MatMul

Linear Linear Linear

MatMul

Scale

Softmax

Linear

Split Split Split

Concat

x

x

Figure 8.4: Transformer encoder layer architecture (left) and schematic overview of
a multi-head self-attention block (right). Input tokens go through L encoder layers
and H self-attention heads. For details see Section 2.3.2.

where X l ∈ R(T+1)×Dmodel is the overall representation produced by the model at
its l layer, with l = 0 meaning the input and l = L the output. The encoder
network φenc(·) follows the classic Transformer model presented in Section 2.3.2
and depicted in Fig. 8.4.

Finally, only the output [CLS] token xL
cls is fed into a linear classification head

MLP, with a single hidden layer with dimensionality Dmlp, that performs the final
class prediction:

ẑ = MLP(xL
cls) (8.3)

where ẑ ∈ RC is the output logit vector of the model, and C is the number of
classes. At training time, the supervision signal comes only from the [CLS] token,
while all remaining T tokens are the only input of the model. It is important to
notice how the nature of the network makes possible to accept a reduced number of
frames as input even if trained with a fixed T . That gives an additional degree of
freedom at inference time, making AcT more adaptive than other existing models.

The resulting network, shown in Fig. 8.1, is a lightweight solution capable of
predicting actions for multiple people in a video stream with high accuracy. The

135

AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Model H Dmodel Dmlp L Parameters
AcT-µ 1 64 256 4 227k
AcT-S 2 128 256 5 1,040k
AcT-M 3 192 256 6 2,740k
AcT-L 4 256 512 6 4,902k

Table 8.1: Action Transformer parameters for the four model versions. We fix
Dmodel/H = 64, linearly increasing H, Dmlp, and L in order to obtain different sizes
of the AcT network.

advantage of building on 2D pose estimations enables effective real-time perfor-
mance with low latency and energy consumption.

In order to reduce the number of hyperparameters and linearly scale the dimen-
sion of AcT, we fix Dmodel/H = 64, varying H (number of self-attention heads),
Dmlp (dimensionality of the MLP head), and L (number of encoder blocks) to
obtain different versions of the network. A simple grid search using train and
validation sets is performed to determine lower and upper bounds for the four pa-
rameters. In Tab. 8.1, we summarize the four AcT versions with their respective
number of parameters. The four models (micro, small, medium, and large) differ
in their increasing number of heads and layers, substantially impacting the number
of trainable parameters.

8.3 Experiments
This section describes the main experiments conducted to study the advan-

tages of using a fully self-attentional model for 2D pose-based HAR. First, the
four variants of AcT are compared to existing state-of-the-art methodologies and
baselines on the MPOSE2021 dataset. Only for a specific comparison with ST-
TR [192] and MS-G3D [148], we use additional ensemble versions of our model
named AcT-µ (xE), E being the number of ensembled instances. Then, we further
analyze the behavior of the network in order to get a visual insight of the attention
mechanism and study the performance under a reduction of temporal information.
Finally, we study model latency for all the designed architectures with two different
CPU types, proving that AcT can easily be used for real-time applications.

8.3.1 Experimental settings
In the following experiments, we employ both the OpenPose and PoseNet ver-

sions of the MPOSE2021 dataset. Either set of data has T = 30 temporal frames
and P = 52 or 68 pose features, respectively. In particular, for OpenPose we follow
the same preprocessing of [13] obtaining 13 keypoints with four parameters each

136

8.3 – Experiments

Training
Training epochs 350
Batch size 512
Optimizer AdamW
Warmup epochs 40%
Step epochs 80%

Regularization
Weight decay 1e-4
Label smoothing 0.1
Dropout rate 0.3
Random flip 50%
Random noise σ 0.03

Table 8.2: Hyperparameters used in AcT experiments.

(position x, y and velocities vx, vy), while PoseNet data samples contain 17 key-
points with the same information. To find the most promising hyperparameters,
we perform a grid search analysis on the Split1 dataset using the AcT-S model. We
subdivide the 12562 training samples in 9421 samples for the grid search training
and 3141 samples for validating the results and select the hyperparameters. We do
not use any of the testing samples during this process.

Tab. 8.2 all the hyperparameters related to the training procedure. The AdamW
optimization algorithm [153] is employed for all training with the same scheduling
proposed in [250], but with a step drop of the learning rate η to 1× 10−4 at a fixed
percentage (80%) of the total number of epochs. We employ the TensorFlow 2 [1]
framework to train the proposed network on a PC with 32-GB RAM, an Intel i7-
9700K CPU, and an Nvidia 2080 Super GP-GPU. Following the previously defined
benchmark strategy, the total training procedure for the four versions takes approx-
imately 32 hours over the three different splits. We exploit publicly available code
for what concerns other SOTA models and use the same hyperparameters and opti-
mizer settings described by the authors in almost all the cases. The only exception
is made for learning rate, epochs number, and batch size to adapt the methodolo-
gies to our dataset and obtain better learning curves. All results, training, and
testing code for the AcT model are open source and publicly available2.

8.3.2 Action recognition on MPOSE2021
We extensively experiment on MPOSE2021 considering some baselines, common

HAR architectures, and our proposed AcT models. As presented in Section 8.1,
we adopt a stratified cross-validation and report the testing metrics (mean and
standard deviation) for 10 models trained using different validation splits to obtain
statistically relevant results. The validation splits are constant for all the model
variants and correspond to 10% of the train set, maintaining the same class dis-
tribution. The benchmark is executed for both OpenPose and PoseNet data and

2https://github.com/PIC4SeRCentre/AcT

137

https://github.com/PIC4SeRCentre/AcT

AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

repeated for all the three train/test splits provided by MPOSE2021. The baselines
chosen for the benchmark are an MLP, a fully convolutional model (Conv1D), and
REMNet, which is a more sophisticated 1D convolutional network with attention
and residual blocks for time series feature extraction, see Section 7.2. In particular,
the MLP is designed as a stack of three FC layers with 512 neurons each, followed
by a Dropout layer and a final FC layer with as many output nodes as classes.
Instead, the Conv1D model is built by concatenating five 1D convolutional layers
with 512 filters alternated with Batch Norm stages and followed by a GAP operator,
a Dropout layer, and an FC output stage as in the MLP. Finally, the configuration
used for REMNet consists of two Residual Reduction Modules (RRM) with a filter
number of 512, followed by Dropout and the same FC output layer as in the other
baselines.

Regarding SOTA comparisons, four popular models used for multivariate time
series classification, and in particular HAR, are reproduced and tested. Among
those, MLSTM-FCN [117] combines convolutions, spatial attention, and an LSTM
block, and its improved version ActionXPose [13] uses additional preprocessing,
leading the model to exploit more correlations in data and, hence, be more ro-
bust against noisy or missing pose detections. On the other hand, MS-G3D [148]
uses spatial-temporal graph convolutions to make the model aware of spatial rela-
tions between skeleton keypoints, while ST-TR [192] joins graph convolutions with
Transformer-based self-attention independently applied to space and time. As the
last two solutions also propose a model ensemble, these results are further compared
to AcT ensembles AcT-µ (x E), made of 2, 5, and 10 single-shot models. We also
report the achieved balanced accuracy for each model and use it as the primary
evaluation metric to account for the uneven distribution of classes.

The results of the experimentation for OpenPose are reported in Tab. 8.3 and,
in synthesis, in Fig. 8.5. The fully convolutional baseline strongly outperforms the
MLP, while REMNet proves that introducing attention and residual blocks further
increases accuracy. As regards MLSTM-FCN and ActionXPose, it is evident that
explicitly modeling both spatial and temporal correlations, made possible by the
two separate branches, slightly improves the understanding of actions with respect
to models like REMNet. MS-G3D, in its joint-only (J) version, brings further
accuracy improvement by exploiting graph convolutions and giving the network
information on the spatial relationship between keypoints. On the other hand,
T-TR (ST-TR model using only the temporal branch), shows performance com-
parable to all other single-shot models, despite, as MS-G3D, taking advantage of
graph information.

The proposed AcT model demonstrates the potential of pure Transformer-based
architectures, as all four versions outperform other methodologies while also show-
ing smaller standard deviations. Moreover, even the smallest AcT-µ (227k param-
eters) is able to extract general and robust features from temporal correlations
in sequences. Increasing the number of parameters, a constant improvement in

138

8.3 – Experiments

MPOSE2021 OpenPose Split 1 Split 2 Split 3
Model Parameters Accuracy [%] Balanced [%] Accuracy [%] Balanced [%] Accuracy [%] Balanced [%]
MLP 1,334k 82.66 ± 0.33 74.56 ± 0.56 84.41 ± 0.60 74.58 ± 1.00 83.48 ± 0.58 76.60 ± 0.77

Conv1D 4,037k 88.18 ± 0.64 81.97 ± 1.40 88.93 ± 0.43 80.49 ± 0.95 88.67 ± 0.38 83.93 ± 0.58
REMNet 4,211k 89.18 ± 0.51 84.20 ± 0.84 88.77 ± 0.35 80.29 ± 0.88 89.80 ± 0.59 86.18 ± 0.40

ActionXPose [13] 509k 87.60 ± 0.98 82.13 ± 1.50 88.42 ± 0.70 81.28 ± 1.40 89.96 ± 1.00 86.65 ± 1.60
MLSTM-FCN [117] 368k 88.62 ± 0.74 83.55 ± 0.88 90.19 ± 0.68 83.84 ± 1.20 89.80 ± 0.94 87.33 ± 0.67

T-TR [192] 3,036k 87.72 ± 0.87 81.99 ± 1.64 88.14 ± 0.53 80.23 ± 1.19 88.69 ± 0.95 85.03 ± 1.60
MS-G3D (J) [148] 2,868k 89.90 ± 0.50 85.29 ± 0.98 90.16 ± 0.64 83.08 ± 1.10 90.39 ± 0.44 87.48 ± 1.20

AcT-µ 227k 90.86 ± 0.36 86.86 ± 0.50 91.00 ± 0.24 85.01 ± 0.51 89.98 ± 0.47 87.63 ± 0.54
AcT-S 1,040k 91.21 ± 0.48 87.48 ± 0.76 91.23 ± 0.19 85.66 ± 0.58 90.90 ± 0.87 88.61 ± 0.73
AcT-M 2,740k 91.38 ± 0.32 87.70 ± 0.47 91.08 ± 0.48 85.18 ± 0.80 91.01 ± 0.57 88.63 ± 0.51
AcT-L 4,902k 91.11 ± 0.32 87.27 ± 0.46 91.46 ± 0.42 85.92 ± 0.63 91.05 ± 0.80 89.00 ± 0.74

ST-TR [192] 6,072k 89.20 ± 0.71 83.95 ± 1.11 89.29 ± 0.81 81.53 ± 1.39 90.49 ± 0.53 87.06 ± 0.70
MS-G3D (J+B) [148] 5,735k 91.13 ± 0.33 87.25 ± 0.50 91.28 ± 0.29 85.10 ± 0.50 91.42 ± 0.54 89.66 ± 0.55

AcT-µ (x2) 454k 91.76 ± 0.29 88.27 ± 0.37 91.34 ± 0.40 86.88 ± 0.48 91.70 ± 0.57 88.87 ± 0.37
AcT-µ (x5) 1,135k 92.43 ± 0.24 89.33 ± 0.31 91.55 ± 0.37 87.80 ± 0.39 92.63 ± 0.55 89.77 ± 0.35

AcT-µ (x10) 2,271k 92.54 ± 0.21 89.79 ± 0.34 92.03 ± 0.33 88.02 ± 0.31 93.10 ± 0.53 90.22 ± 0.31

Table 8.3: Benchmark of different models for short-time HAR on MPOSE2021
splits using OpenPose 2D skeletal representations.

Figure 8.5: Visual representation of the benchmark of different models for short-
time HAR on MPOSE2021 splits using OpenPose 2D skeletal representations.
For brevity and clearness, the average balanced accuracy on the three splits of
MPOSE2021 is reported. The lines connect models that use the same methodol-
ogy.

139

AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

MPOSE2021 PoseNet Split 1 Split 2 Split 3
Model Parameters Accuracy [%] Balanced [%] Accuracy [%] Balanced [%] Accuracy [%] Balanced [%]

Conv1D 4,062k 85.83 ± 0.71 79.96 ± 1.10 87.47 ± 0.35 78.51 ± 0.78 87.46 ± 0.67 81.31 ± 0.58
REMNet 4,269k 84.75 ± 0.65 77.23 ± 0.94 86.17 ± 0.68 75.79 ± 1.30 86.31 ± 0.60 79.20 ± 0.79

ActionXPose [13] 509k 75.98 ± 0.72 64.47 ± 1.10 79.94 ± 1.10 67.05 ± 1.40 77.34 ± 1.40 66.86 ± 1.40
MLSTM-FCN [117] 368k 76.17 ± 0.84 64.75 ± 1.10 79.04 ± 0.72 65.62 ± 1.40 77.84 ± 1.30 67.05 ± 1.20

AcT-µ 228k 86.66 ± 1.10 81.56 ± 1.60 87.21 ± 0.99 79.21 ± 1.60 87.75 ± 0.53 82.99 ± 0.87
AcT-S 1,042k 87.63 ± 0.52 82.54 ± 0.87 88.48 ± 0.57 81.53 ± 0.68 88.49 ± 0.65 83.63 ± 0.99
AcT-M 2,743k 87.23 ± 0.48 82.10 ± 0.66 88.50 ± 0.51 81.79 ± 0.44 88.70 ± 0.57 83.92 ± 0.96

Table 8.4: Benchmark of different models for short-time HAR on MPOSE2021
splits using PoseNet 2D skeletal representations.

balanced accuracy can be observed for Split3, while Split1 and Split2 present oscil-
lations. The difference between splits reflects how much information is conveyed by
training sets and how much the model can learn from that. So, it is evident that
AcT scales best on Split3 because it presents complex correlations that a bigger
model learns more easily. On the contrary, it seems AcT-µ is able to extract almost
all the information relevant for generalization from Split2, as the accuracy only
slightly increases going towards more complex models.

ST-TR exploits an ensemble of two networks modeling spatial and temporal
sequence correlations, respectively. Moreover, MS-G3D leverages further informa-
tion such as skeleton graph connections and the position of bones in one of the
ensembled networks. Ensembles are very effective in reducing model variance and
enhancing performance by exploiting independent representations learned by each
network, so it is unfair to compare them with single architectures. For this rea-
son, we create three ensemble versions of AcT-µ to have an even confront, with
2, 5, and 10 instances, respectively. To compute ensemble predictions, we aver-
age the output logits of the network instances before passing through a softmax
function. The results reported at the bottom of Tab. 8.3 show that AcT-µ (x2)
outperforms MS-G3D (J+B) in all the benchmarks except for balanced accuracy in
Split3, despite having less than one-tenth of its parameters. Finally, the ensembles
AcT-µ (x5) and AcT-µ (x10), made of 5 and 10 instances respectively, achieve even
higher accuracy on all the splits with only around 1 to 2 million parameters. That
proves how the balancing effect of the ensemble enhances model predictions even
without feeding the network additional information.

As PoseNet data is mainly dedicated to real-time and Edge AI applications,
only the models designed for this purpose have been considered in the benchmark,
excluding MS-G3D, ST-TR, and AcT-L. In general, the results give similar in-
sights. The tested models are the same as the previous case, with all the necessary
modifications given by the different input formats. In the MLP case, however, per-
formance seriously degrades as networks strongly tend to overfit input data after a
small number of epochs, so the results are not included in Tab. 8.4. That is caused
by the fact that PoseNet is a lighter methodology developed for Edge AI, and hence

140

8.3 – Experiments

Figure 8.6: Self-attention weights of MPOSE2021 test samples. (l, t, p) represents
the AcT-M l-th layer, the true label and the prediction respectively. The three
rightmost columns show three attention maps of a failed prediction and the other
columns are from correct classifications. It is clear from all examples how the
model focuses on certain particular frames of the series in order to extract a global
representation of the scene.

noisy and even missing keypoint detections are more frequent. That results in less
informative data and emphasizes the difference between sequences belonging to
different sub-datasets, confusing the model and inducing it to learn very specific
but unusable features. The MLP is too simple and particularly prone to this kind
of problem. Naturally, all the models are affected by the same problem, and the
balanced accuracy on PoseNet is generally lower. The same considerations made
for OpenPose apply in this case, where AcT outperforms all the other architectures
and demonstrates its ability to give an accurate and robust representation of tem-
poral correlations. Also, it is interesting to notice that Conv1D performs better
than REMNet, proving to be less prone to overfitting and that standard deviations
are more significant than in the OpenPose case.

8.3.3 Model introspection
In order to have an insight into the frames of the sequence the AcT model

attends to, we extract the self-attention weights, i.e. the values after applying the
softmax in Eq. 2.40, at different stages of the network. In Fig. 8.6, MPOSE2021
test samples are propagated through the AcT-M model, and attention weights
of the three distinct heads are presented. It can be seen that the model pays
attention to specific frames of the sequence when a specific gesture defines the
action. On the other hand, attention is much more spread across the different
frames for more distributed actions such as walking and running. Moreover, it is

141

AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Figure 8.7: Self-attention weights of the [CLS] token with selected sequence tokens
in the last encoder layer. The score is computed as the normalized sum of the
different heads. Scores give a direct insight into the frames exploited by AcT to
produce the classification output. The example clearly shows how bending positions
are more meaningful for the network to predict the jumping in place action. In the
image, the attention score is used as the skeleton alpha (transparency) channel.

clear how the three heads mostly focus on diverse frames of the sequence. Finally,
the rightmost columns show three attention maps of failed predictions. In these
last cases, attention weights are less coherent, and the model cannot extract a valid
global representation of the scene.

On the other hand, Fig. 8.7 shows the last-layer self-attention scores of the
[CLS] token with a set of sequence tokens. The RGB and skeleton representations
of the considered sequence tokens are also shown. The scores are computed as
the normalized sum of the three attention heads and give a direct insight into the
frames exploited by AcT to produce the classification output. It can be seen that
bent poses are much more informative for the model to predict the jumping in place
action.

Moreover, we analyze the behavior of the network under a progressive reduction
of temporal information. That can be easily done without retraining due to the
intrinsic nature of AcT. In Fig. 8.8, we present how the test set balanced accuracy
is affected by frame dropping. The two curves show a reduction starting from the
beginning and the end of the temporal sequence, respectively. It is interesting to
notice how the performance of AcT degrades with an almost linear trend. That

142

8.3 – Experiments

Figure 8.8: AcT-M balanced accuracy with an incremental reduction of temporal
information. Due to the intrinsic nature of the network, it is possible to reduce the
number of temporal steps without retraining or any kind of explicit adaptation.

0 5 10 15 20 25

Frames

0

5

10

15

20

25

Fr
am

es

0.2

0.0

0.2

0.4

0.6

Co
sin

e
sim

ila
rit

y

Figure 8.9: Cosine similarities of the learned T positional embeddings Xpos of
AcT-M model.

highlights the robustness of the proposed methodology and demonstrates the pos-
sibility of adapting the model to applications with different temporal constraints.

Finally, we also study the positional embeddings Xpos of the AcT-M model by
analyzing their cosine similarity, as shown in Fig. 8.9. Very nearby position em-
beddings demonstrate a high level of similarity, and distant ones are orthogonal or
in the opposite direction. This pattern is constant for all T frames of the sequence,

143

AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Figure 8.10: Study of the latency of different tested models on a high-performance
Intel CPU and on a mobile phone equipped with an ARM-based CPU.

highlighting how actions are not particularly localized and that relative positions
are essential for all the frames.

8.3.4 Real-time performance
We test the performance of all the considered models for real-time applications.

To do so, we use the TFLite Benchmark3 tool, which allows running TensorFlow
Lite models on different computing systems and collecting statistical results on
latency and memory usage. In our case, two CPUs are employed to measure model
speed both on a PC and a mobile phone: an Intel i7-9700K for the former and the
ARM-based HiSilicon Kirin 970 for the latter. In both experiments, the benchmark
executes 10 warm-up runs followed by 100 consecutive forward passes, using 8
threads.

The results of both tests are reported in Fig. 8.10, where only the MLP has
been ignored because, despite being the fastest-running model, its accuracy results
are much lower than its competitors. The graph shows the great computational
efficiency of Transformer-based architectures, whereas convolutional and recurrent
networks result in heavier CPU usage. Indeed, in the Intel i7 case, REMNet achieves
almost the same speed as AcT-S, but its accuracy is 2% lower. Moreover, AcT-µ is
able to outperform REMNet, running at over four times its speed. MLSTM-FCN
and ActionXPose, being smaller models, achieve lower latencies than the baselines:

3https://www.tensorflow.org/lite/performance/measurement

144

https://www.tensorflow.org/lite/performance/measurement

8.3 – Experiments

the former stays between AcT-µ and AcT-S, while the latter performs similarly
to AcT-S. Those results are remarkable but still outperformed by AcT-µ both on
accuracy and speed.

The difference with the baselines is even more evident on the ARM-based chip,
as convolutional architectures seem to perform poorly on this kind of hardware.
Indeed, REMNet and Conv1D run as fast as AcT-M with significantly lower ac-
curacies, and AcT-µ is ten times quicker. Nothing changes for what concerns
MLSTM-FCN and ActionXPose, less accurate and three times slower than AcT-µ.

145

146

Chapter 9

Generative Adversarial
Super-Resolution at the
Edge with Knowledge
Distillation

In the last decade, DL techniques have pervaded robotic systems and appli-
cations drastically boosting automation in perception [195, 287], navigation and
control [207, 267] tasks. The development of ML-driven algorithms is paving the
way for advanced levels of autonomy for mobile robots, widely increasing the relia-
bility of both UAV and UGV. In this context, the successful transmission of images
acquired by the robot to the ground station often assumes a significant relevance
to the task at hand, allowing the human operators to get real-time information,
monitor the state of the mission, take critical planning decisions, and analyze the
scenario. Moreover, unknown outdoor environments may present unexpected ex-
treme characteristics which still hinder the release of unmanned mobile robots in the
complete absence of human supervision. Indeed, complete or partial remote tele-
operation remains the most reliable control strategy in uncertain scenarios, since
irregular terrain and lighting conditions, as well as the loss of localization signal,
can lead navigation algorithms to failure. As a direct consequence of navigation er-
rors, the robotic platform can get stuck in critical states where human intervention
is required or preferred.

However, visual data transmission for robot teleoperation, monitoring, or on-
line data processing requires a stable continuous stream of images, which may be
drastically affected by poor bandwidth conditions due to the long distance of the
robot or by constitutive factors of the specific environment. Besides this, UAVs
and high-speed platforms require the pilot to receive the image stream at a high

147

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

framerate to follow the motion of the vehicle in non-line-of-sight situations. A
straightforward but effective solution to mitigate poor bandwidth conditions and
meet high-frequency transmission requirements is the reduction of the resolution of
the transmitted image. On the other hand, heavy image compression with massive
loss of detail can compromise image usability.

To this end, we propose EdgeSRGAN, a novel DL model for Single-Image Super-
Resolution (SISR) at the edge to handle the problem of efficient image transmis-
sion. Single-Image Super-Resolution, also referred to as super-sampling or image
restoration, aims at reconstructing a high-resolution (HR) image starting from a
single low-resolution (LR) input image, trying to preserve details and the informa-
tion conceived by the image. Therefore SISR, together with image denoising, is
an ill-posed underdetermined inverse problem, since a multiplicity of possible solu-
tions exist given an input low-resolution image. Recently, learning-based methods
have rapidly reached state-of-the-art performance and are universally recognized
as the most popular approach for SR. Such approaches rely on learning common
patterns from multiple LR-HR pairs in a supervised fashion. SRCNN [55] was the
first example of a CNN applied to SISR in literature, and it has been followed by
multiple methods applying standard DL methodologies, such as residual learning
[120, 139], dense connections [284], residual feature distillation [143], attention [283,
48, 183], self-attention, and transformers [29, 35, 138]. All these works focus on
content-based SR, in which the objective is to reconstruct an image with high pixel
fidelity, and the training is based on a content loss, such as mean square error or
mean absolute error.

In parallel, other works proposed Generative Adversarial Networks (GAN) [76]
for SISR to aim at reconstructing visually pleasing images. In this case, the focus
is not on pixel values, but on perceptual indexes that try to reflect how humans
perceive image quality. This is usually implemented using perceptual losses together
with adversarial training and is referred to as visual-based SR. SRGAN [136] first
proposed adversarial training and was later followed by other works [139, 68, 255].
Having in mind robotic image transmission as a target application, in this work
we particularly focus on visual-based SR, with the aim of reconstructing visually
pleasing images to be used by human operators for real-time teleoperation and
monitoring.

Our intuition relies on the fact that a lightweight neural network allows to send
low resolution images at a high transmission rate also with scarce bandwidth, and
then reconstruct the high resolution image on the mobile device of the pilot. We
propose an Edge-AI computationally efficient SR neural network to provide fast
inference on CPUs and Edge TPU devices. To this aim, we adopt several opti-
mization steps to boost the performance of our model while minimizing the quality
drop. We refine the architecture of the original SRGAN [136] in order to speed
up inference and perform model quantization. Nonetheless, we experiment with a
teacher-student knowledge distillation technique for SISR to further enhance the

148

9.1 – Methodology

100 101 102

Framerate [fps]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

LP
IP

S

bicubic
RT ORT

SRGANESRGAN

AGD

Real-ESRGAN
SwinIR

EdgeSRGAN

EdgeSRGAN-tiny

EdgeSRGAN-tiny

EdgeSRGANi8

EdgeSRGANi8-tiny

CPU
EdgeTPU

Figure 9.1: LPIPS [281] results (lower is better) on Set5 [25] vs framerate (80× 60
input) of different visual-oriented SISR methods for ×4 upsampling. Real-time
(RT) and over-real-time (ORT) framerates are marked as references. Our models,
marked with ⋆, reach real-time performance with a competitive perceptual simi-
larity index on CPU. Edge TPU models can further increase inference speed far
beyond real-time, still outperforming the bicubic baseline.

reconstructed image of our tiny model. We take inspiration from the work of [89]
and obtain an improvement on all the considered metrics.

We perform experiments to validate the proposed methodology under multiple
perspectives: numerical and qualitative analysis of the predicted images and infer-
ence efficiency on both CPU and Edge TPU devices. As an example, as shown in
Fig. 9.1, EdgeSRGAN achieves real-time performance with a competitive percep-
tual similarity index LPIPS [281] when compared with other visual-oriented SISR
methods. Moreover, a test of the performance of the system from a robotic perspec-
tive is performed. In particular, we focus on image transmission for teleoperation
in case of bandwidth degradation, also performing tests with the popular robotic
middleware ROS2. All the code related to this work is open source and publicly
available 1.

9.1 Methodology
We choose to use an adversarial approach to obtain an optimal balance between

pixel-wise fidelity and perceptual quality. For this reason, we take inspiration from

1https://github.com/PIC4SeR/EdgeSRGAN

149

https://github.com/PIC4SeR/EdgeSRGAN

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

three of the most popular GAN-based solutions for SISR: SRGAN [136], ESRGAN
[257], and AGD [68]. The aim of the proposed method is to obtain a real-time
SISR model (EdgeSRGAN) with minimal performance drop compared to state-of-
the-art (SOTA) solutions. For this reason, we mix successful literature practices
with computationally-efficient elements to obtain a lightweight architecture. Then,
we design the network training procedure to leverage a combination of pixel-wise
loss, perceptual loss, and adversarial loss. To further optimize the inference time,
we apply knowledge distillation to transfer the performance of EdgeSRGAN to
an even smaller model (EdgeSRGAN-tiny). Furthermore, we study the effect of
quantization on network latency and accuracy. Finally, we propose an additional
inference-time network interpolation feature to allow for real-time balancing be-
tween pixel-wise precision and photo-realistic textures.

9.1.1 Network architecture
As in [257], we modify the original design of SRGAN in both the architecture

and the training procedure. However, in our case, the modifications seek efficiency
as well as performance. To obtain a lighter architecture we reduce the depth of the
model by using only N = 8 Residual Blocks instead of the original 16. In particular,
we use simple residuals instead of the Residual-in-Residual Dense Blocks proposed
by [257] as they are less computationally demanding. For the same reason, we
change PReLU activation functions into basic ReLU. We also remove Batch Norm
to allow the model for better convergence without generating artifacts [257]. Fi-
nally, we use Transpose Convolution for the upsampling head instead of Sub-pixel
Convolution [223]. Despite its popularity and effectiveness, Sub-pixel Convolution
is computationally demanding due to the Pixel Shuffling operation, which rear-
ranges feature channels spatially. We choose instead to trade some performance
for efficiency and apply Transpose Convolutions taking precautions to avoid prob-
lems such as checkerboard artifacts [185]. The complete EdgeSRGAN architecture
is shown in Fig. 9.2. The adopted discriminator model is the same used in [136,
257], as it serves only training purposes and is not needed at inference time. Its
architecture is shown in Fig. 9.3.

9.1.2 Training methodology
The training procedure is divided into two sections, as it is common practice in

generative adversarial SISR. The first part consists of classic supervised training
using content loss. In this way, we help the generator to avoid local minima and
generate visually pleasing results in the subsequent adversarial training. We use
the mean absolute error (MAE) loss for the optimization as it has been proven to
bring better convergence than mean squared error (MSE) [285, 139, 283, 257]:

150

9.1 – Methodology

Transpose
Conv2D TanhConv2D ReLUInput

Figure 9.2: EdgeSRGAN Generator Architecture. We adopt N Residual Blocks
without Batch Norm as basic blocks of the network. All the convolutional layers
has kernel dimension K, single stride and zero padding to preserve the spatial
dimensionality. Upsampling is performed with two ×2 transpose convolutions.

Lcont = ∥yHR − ySR∥1 (9.1)

where yHR is the ground-truth high resolution (HR) image and ySR is the super-
resolved (SR) image. We use the Peak Signal To Noise Ratio (PSNR) metric to
validate the model in the first phase.

In the second phase, the resulting model is fine-tuned in an adversarial fashion,
optimizing a loss that takes into account an adversarial loss and a perceptual loss.
As presented in [136], the generator loss can be formulated as

Lgen = Lperc + ξ Ladv + ηLcont. (9.2)

Lperc is the perceptual loss proposed by [136] and defined as the MSE between
the features representations φ(·) of yHR and ySR. The features are extracted using
VGG19 [228] pre-trained on ImageNet:

Lperc = ∥φ(yHR)− φ(ySR)∥2 (9.3)

On the other hand, Ladv is the generator adversarial loss, defined as:

Ladv = − log(D(ySR)) (9.4)

where D is the discriminator. Using this loss, the generator tries to fool the dis-
criminator by generating images that are indistinguishable from the real HR ones.
ξ and η are used to balance the weight of different loss components.

The weights of the discriminatorD are optimized using a symmetrical adversarial
loss, which tends to correctly discriminate HR and SR images:

151

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

Leaky ReLU FlattenConv2D Batch NormInput Dense Sigmoid

Figure 9.3: EdgeSRGAN Discriminator Architecture. Spatial dimensionality is
reduced with the double-stride convolutional blocks. At the same time, the feature
size is doubled in each single-stride convolutional block.

Ldiscr = log(D(ySR))− log(D(yHR)) (9.5)

We optimize both models at the same time, without alternating weight updates
like done in most seminal works on GANs.

9.1.3 Knowledge distillation
As mentioned in Section 2.4, knowledge distillation (KD) has gained increasing

interest in DL for its ability to efficiently transfer knowledge from bigger models to
simpler ones. In particular, KD has been applied in some SISR works to compress
the texture reconstruction capability of cumbersome models and obtain efficient
real-time networks [89, 282]. However, to the best of our knowledge, KD has never
been applied to GAN SISR models. For this reason, we adapt an existing technique
developed for SISR called Feature Affinity-based Knowledge Distillation (FAKD)
[89], to the GAN training approach. The FAKD methodology transfers second-
order statistical information to the student by aligning feature affinity matrices
at different layers of the networks. This constraint helps to tackle the fact that
regression problems generate unbounded solution spaces. Indeed, most of the KD
methods so far have only tackled classification tasks.

Given a layer l of the network, a generic feature map extracted from that layer
(after the activation function) has shape C ×W × H, where C is the number of
channels, W and H are the width and the height of the tensor. We first flatten the
tensor along the last two components obtaining the three-dimensional feature map
F l with shape C × (W · H), which now holds all the spatial information along a
single axis. We define the affinity matrix Al as the product:

Al = F l
˜ T

F l
˜ (9.6)

where F l
˜ is the normalized feature map obtained as:

152

9.1 – Methodology

F l
˜ = F l

∥F l∥2
(9.7)

Differently from [89] the norm is calculated for the whole tensor and not only
along the channel axis. Moreover, we find better convergence using the Euclidean
norm instead of its square. In this way, the affinity matrix Al has shape (W ·H)×
(W ·H) and the total distillation loss is computed as:

Ldist = λ∥yteach
SR − ystud

SR ∥1 + 1
L

L∑︂
l=1
∥Ateach

l −Astud
l ∥1 (9.8)

where L is the number of distilled layers. Differently from [89], we sum the loss
along all the tensor dimensions and average the result obtained for different layers.
These modifications experimentally lead to better training convergence. We also
add another loss component, weighted by λ, which optimizes the student model to
generate outputs close to teacher ones. In our experimentation, the distillation loss
is simply added to the overall generator loss weighted by the parameter γ.

9.1.4 Model quantization
To make EdgeSRGAN achieve even lower inference latency, we optimize the

model to reduce the computational effort at the cost of a loss in performance. In
particular, we apply full-integer quantization (see Section 2.4) using the TFLite li-
brary2. This strategy drastically reduces memory and computational demands due
to the high efficiency of integer computations on microcontrollers. For our experi-
mentation, we deploy the quantized model on a Coral USB Accelerator, targeting
its Edge TPU coprocessor (see Tab. 2.1 for details on the hardware device).

9.1.5 Model interpolation
Following the procedure proposed in [257], we adopt a flexible and effective

strategy to obtain a tunable trade-off between a content-oriented model and a
GAN-trained one. This feature can be very useful for real-time applications, as it
allows the SISR network to promptly adapt to the needs of the user. Indeed, some
real scenarios may need better perceptual quality, for example when the remote
control of a robot has to be performed by a human pilot. On the other hand,
when images are used to directly feed perception, autonomous navigation, and
mapping algorithms, higher pixel fidelity might be beneficial. To achieve this goal,
we linearly interpolate the generator parameters layer-by-layer, according to the
following formula:

2https://tensorflow.org/lite

153

https://tensorflow.org/lite

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

θgen = α θcontent
gen + (1− α)θGAN

gen (9.9)
where θcontent

gen , and θGAN
gen are the parameters of the content-based model and the

GAN fine-tuned model, respectively, and α ∈ [0,1] is the interpolation weight. We
avoid the alternative technique consisting of directly interpolating network outputs:
applying this method in real-time would require running two models at the same
time. Moreover, Wang et al. [257] report that this approach does not guarantee an
optimal trade-off between noise and blur.

9.2 Experiments
9.2.1 Experimental setting

In this section, we define the implementation details of our method as well as the
procedure we followed to train and validate the model. As previously done by most
SISR works, we train the network on the high-quality DIV2K dataset [7] with a
scaling factor of 4. The dataset contains 1000 images with 2K resolution (each image
has 2040 pixels for either the horizontal or the vertical dimension), subdivided in
800 training samples, 100 validation samples and 100 testing samples. The dataset
provides HR images at native resolution (for training and validation sets only), as
well as the corresponding downgraded images with different scaling factors (x2, x3,
x4, x8). Since the testing samples do not have the target HR samples, we adopt
the validation set for testing. We train our model with input patches of size 24x24
pixels (96x96 in the HR space), selected randomly from the training set images. We
apply data augmentation by randomly flipping or rotating the images by multiples
of 90◦. We adopt a batch size of 16.

For the standard EdgeSRGAN implementation, we choose N = 8 Residual
Blocks, F = 64 filters in the convolutional layer, and discriminator head channels
C = 1024, obtaining a generator with around 660k parameters and a discriminator
of over 23M (due to the fully-connected head). All the convolutional layer has ker-
nel size K = 3 and the discriminator Leaky ReLU parameter is set to 0.2. We first
train EdgeSRGAN with the content loss for 5 × 105 steps with Adam optimizer
and a constant learning rate of 1 × 10−4. Then, the model is fine-tuned in the
adversarial setting described in Section 9.1 for 1 × 105 steps. Adam optimizer is
used for both the generator and the discriminator with a learning rate of 1× 10−5

which is further divided by 10 after 5 × 104 steps. For the loss function, we set
ξ = 1× 10−3 and η = 0.

To obtain an even smaller model for our distillation experiments, we build
EdgeSRGAN-tiny by setting N = 4, F = 32, and D = 256. We further shrink
the size of the discriminator by removing all the single-stride blocks (see Fig. 9.3).
In this configuration, we also remove the Batch Norm layer from the first double-
stride block to be coherent with the larger version. The obtained generator has

154

9.2 – Experiments

Framerate (80× 60) [fps] Framerate (160× 120) [fps]
Method Scale Params CPU EdgeTPU CPU EdgeTPU
SwinIR [138]

×4

11.9M 0.25 ± 0.01 - 0.06 ± 0.01 -
ESRGAN [257] 16.7M 0.40 ± 0.01 - 0.10 ± 0.01 -
Real-ESRGAN [255] 16.7M 0.44 ± 0.01 - 0.11 ± 0.01 -
SRGAN [136] 1.5M 2.70 ± 0.08 - 0.95 ± 0.02 -
AGD [68] 0.42M 3.17 ± 0.12 - 0.88 ± 0.01 -
EdgeSRGAN 0.66M 10.26 ± 0.11 140.23 ± 1.50 2.66 ± 0.02 10.63 ± 0.03
EdgeSRGAN-tiny 0.10M 37.99 ± 1.42 203.16 ± 3.03 11.76 ± 0.20 20.57 ± 0.05

SwinIR [138]
×8

12.0M 0.23 ± 0.01 - 0.06 ± 0.01 -
EdgeSRGAN 0.71M 7.70 ± 0.31 14.26 ± 0.06 1.81 ± 0.04 -
EdgeSRGAN-tiny 0.11M 24.53 ± 1.28 41.55 ± 0.38 5.81 ± 0.29 -

Table 9.1: Framerate comparison of different methods for ×4 and ×8 upsampling,
with two different input resolutions (80×60 and 160×120). The results are provided
as mean and standard deviation of 10 independent experiments of 100 predictions
each. Current content-oriented SISR state-of-art method SwinIR [138] is reported
as a reference. Real-time and over-real-time framerates are in blue and red colors,
respectively. The proposed solution is the only one compatible with EdgeTPU
devices and allows reaching real-time performance in both conditions.

around 96K parameters and the discriminator around 2.75M. The pre-training pro-
cedure is the same as described for EdgeSRGAN, while the adversarial training is
performed with the additional distillation loss (γ = 1 × 10−2, λ = 1 × 10−1) of
Eq. 9.8. EdgeSRGAN is used as the teacher model, distilling its layers 2, 5, and 8
into EdgeSRGAN-tiny layers 1, 2, and 4. The model is trained with a learning rate
of 1× 10−4 which is further divided by 10 after 5× 104 steps. For the loss function,
we set ξ = 1× 10−3 and η = 0.

Finally, we create a third version of our model to upscale images with a factor
of 8, using the corresponding x8 DIV2K samples, with input patches of 12x12
pixels. To do so, we change the first transpose convolution layer of EdgeSRGAN
and EdgeSRGAN-tiny to have a stride of 4 instead of 2 and leave the rest of the
architecture unchanged. The resulting generators have 710K and 108K parameters,
respectively. The discriminator remains unchanged as per the x4 upscaling case.
The training procedure for these models is analogous to the ones used for the
x4 models, with the main difference of adding a pixel-based component to the
adversarial loss by posing η = 1× 102.

The optimal training hyperparameters are found by running a random search
and choosing the best-performing models on DIV2K validation. We use PSNR
to validate the models during content-based loss optimization and LPIPS [281]
(with AlexNet backbone [125]) during GAN training. To perform all the training
experiments we employ the TensorFlow 2 framework [1] and a workstation with 64
GB of RAM and an Nvidia 3090 RTX GPU.

155

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

9.2.2 Real-time performance
Since the main focus of the proposed methodology is to train an optimized SISR

model to be efficiently run at the edge in real-time, we first report an inference speed
comparison between the proposed method and other literature methodologies. All
the results are shown in Tab. 9.1 as mean and standard deviation of 10 independent
experiments of 100 predictions each. We compare the proposed methodology with
other GAN-based methods [136, 257, 255, 68] and with the current state-of-the-art
in content-oriented SISR SwinIR [138]. Since the original implementations of the
GAN-based solutions consider ×4 upsampling only, for the ×8 comparison we just
report SwinIR. We select two different input resolutions for the experimentation,
(80×60) and (160×120), in order to target (320×240) and (640×480) resolutions
for×4 upsampling and (640×480) and (1280×960) for×8 upsampling, respectively.
This choice is justified by the fact that (640×480) is a standard resolution provided
as a native video stream for most commercial cameras. We also report the number
of parameters for all the models.

For all the considered methods we measure the CPU timings with the model
format of the original implementation (PyTorch or TensorFlow) on a MacBook
Pro with an Intel i5-8257U CPU. The concept of real-time performance strongly
depends on the downstream task. For robotic monitoring and teleoperation, we
consider 10 fps as the minimum real-time framerate, considering as over-real-time
everything above 30 fps, which is the standard framerate for most commercial
cameras. The proposed methodology clearly outperforms all the other methods
in terms of inference speed and achieves real-time performance on CPU in almost
all the testing conditions. It is worth noting that AGD is specifically designed to
reduce latency for GAN-based SR and has fewer parameters than EdgeSRGAN,
but still fails at achieving real-time without a GPU.

In addition, we report the framerate of the EdgeSRGAN int8-quantized models
on an EdgeTPU Coral USB Accelerator. The proposed solution is the only one
compatible with such devices and allows reaching over-real-time performance for
(80×60) input resolution. It must be underlined how the×8 models with (160×120)
input resolution cannot target the EdgeTPU device due to memory limitations.

156

9.2 – Experiments

Se
t5

[2
5]

Se
t1

4
[2

80
]

B
SD

10
0

[1
66

]
M

an
ga

10
9

[1
69

]
U

rb
an

10
0

[1
02

]
M

et
ho

d
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

B
ic

ub
ic

28
.6

32
0.

81
4

0.
34

0
26

.2
12

0.
70

9
0.

44
1

26
.0

43
0.

67
2

0.
52

9
25

.0
71

0.
79

0
0.

31
8

23
.2

36
0.

66
1

0.
47

3
Sw

in
IR

[1
38

]
32

.7
19

0.
90

2
0.

16
8

28
.9

39
0.

79
1

0.
26

8
27

.8
34

0.
74

6
0.

35
8

31
.6

78
0.

92
3

0.
09

4
27

.0
72

0.
81

6
0.

19
3

SR
G

A
N

[1
36

]
32

.0
13

0.
89

3
0.

19
1

28
.5

34
0.

78
1

0.
29

4
27

.5
34

0.
73

5
0.

39
6

30
.2

92
0.

90
6

0.
11

1
25

.9
59

0.
78

2
0.

24
4

E
SR

G
A

N
[2

57
]†

32
.7

30
0.

90
1

0.
18

1
28

.9
97

0.
79

2
0.

27
5

27
.8

38
0.

74
5

0.
37

1
31

.6
44

0.
92

0
0.

09
7

27
.0

28
0.

81
5

0.
20

1
A

G
D

[6
8]

31
.7

08
0.

88
9

0.
17

8
28

.3
11

0.
77

5
0.

29
1

27
.3

74
0.

72
9

0.
38

5
29

.4
13

0.
89

7
0.

11
8

25
.5

06
0.

76
7

0.
25

0
E

dg
eS

R
G

A
N

31
.7

29
0.

88
9

0.
19

1
28

.3
03

0.
77

4
0.

30
1

27
.3

59
0.

72
8

0.
40

5
29

.6
11

0.
89

7
0.

12
0

25
.4

69
0.

76
4

0.
26

6
E

dg
eS

R
G

A
N

-t
in

y
30

.8
75

0.
87

3
0.

20
4

27
.7

96
0.

76
1

0.
32

0
26

.9
99

0.
71

7
0.

41
8

28
.2

33
0.

87
1

0.
16

3
24

.6
95

0.
73

3
0.

32
5

Ta
bl

e9
.2

:Q
ua

nt
ita

tiv
ec

om
pa

ris
on

of
di

ffe
re

nt
m

et
ho

ds
fo

rc
on

te
nt

-o
rie

nt
ed
×

4
up

sa
m

pl
in

g.
C

ur
re

nt
SI

SR
st

at
e-

of
-a

rt
m

et
ho

d
Sw

in
IR

[1
38

]a
nd

bi
cu

bi
c

ba
se

lin
e

ar
e

re
po

rt
ed

as
re

fe
re

nc
e.

↑:
hi

gh
er

is
be

tt
er

,↓
:

lo
we

r
is

be
tt

er
,†

:
tr

ai
ne

d
on

D
IV

2K
[7

]+
Fl

ick
r2

K
[2

39
]+

O
ST

[2
56

]

Se
t5

[2
5]

Se
t1

4
[2

80
]

B
SD

10
0

[1
66

]
M

an
ga

10
9

[1
69

]
U

rb
an

10
0

[1
02

]
M

od
el

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
B

ic
ub

ic
28

.6
32

0.
81

4
0.

34
0

26
.2

12
0.

70
9

0.
44

1
26

.0
43

0.
67

2
0.

52
9

25
.0

71
0.

79
0

0.
31

8
23

.2
36

0.
66

1
0.

47
3

Sw
in

IR
[1

38
]

32
.7

19
0.

90
2

0.
16

8
28

.9
39

0.
79

1
0.

26
8

27
.8

34
0.

74
6

0.
35

8
31

.6
78

0.
92

3
0.

09
4

27
.0

72
0.

81
6

0.
19

3
SR

G
A

N
[1

36
]

29
.1

82
0.

84
2

0.
09

4
26

.1
71

0.
70

1
0.

17
2

25
.4

47
0.

64
8

0.
20

6
27

.3
46

0.
86

0
0.

07
6

24
.3

93
0.

72
8

0.
15

8
E

SR
G

A
N

[2
57

]†
30

.4
59

0.
85

2
0.

08
3

26
.2

83
0.

69
8

0.
13

9
25

.2
88

0.
64

9
0.

16
8

28
.4

78
0.

86
0

0.
06

5
24

.3
50

0.
73

3
0.

12
5

R
ea

l-E
SR

G
A

N
[2

55
]†

26
.6

17
0.

80
7

0.
16

9
25

.4
21

0.
69

6
0.

23
4

25
.0

89
0.

65
3

0.
28

2
25

.9
85

0.
83

6
0.

14
9

22
.6

71
0.

68
6

0.
21

4
A

G
D

[6
8]

30
.4

32
0.

86
1

0.
09

7
27

.2
76

0.
73

9
0.

16
0

26
.2

19
0.

68
8

0.
21

4
28

.1
63

0.
87

0
0.

07
6

24
.7

32
0.

74
3

0.
17

0
E

dg
eS

R
G

A
N

29
.4

87
0.

83
7

0.
09

5
26

.8
14

0.
71

5
0.

17
6

25
.5

43
0.

64
4

0.
21

0
27

.6
79

0.
85

5
0.

08
1

24
.2

68
0.

71
6

0.
17

0
E

dg
eS

R
G

A
N

-t
in

y
28

.0
74

0.
80

3
0.

14
6

26
.0

01
0.

70
2

0.
24

2
25

.5
26

0.
65

8
0.

29
2

25
.6

55
0.

80
4

0.
14

0
23

.3
32

0.
67

2
0.

26
9

E
dg

eS
R

G
A

N
-t

in
y ⚗

29
.5

13
0.

84
1

0.
13

2
26

.9
50

0.
72

7
0.

22
0

26
.1

74
0.

67
3

0.
28

2
27

.1
06

0.
84

5
0.

13
0

24
.1

17
0.

70
4

0.
24

9

Ta
bl

e
9.

3:
Q

ua
nt

ita
tiv

e
co

m
pa

ris
on

of
di

ffe
re

nt
m

et
ho

ds
fo

r
vi

su
al

-o
rie

nt
ed
×

4
up

sa
m

pl
in

g.
C

ur
re

nt
SI

SR
SO

TA
m

et
ho

d
Sw

in
IR

[1
38

]a
nd

bi
cu

bi
c

ba
se

lin
e

ar
e

re
po

rt
ed

as
re

fe
re

nc
es

.
↑:

hi
gh

er
is

be
tt

er
,↓

:
lo

we
r

is
be

tt
er

,†
:

tr
ai

ne
d

on
D

IV
2K

[7
]+

Fl
ick

r2
K

[2
39

]+
O

ST
[2

56
]

157

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

Se
t5

[2
5]

Se
t1

4
[2

80
]

B
SD

10
0

[1
66

]
M

an
ga

10
9

[1
69

]
U

rb
an

10
0

[1
02

]
M

od
el

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
B

ic
ub

ic
24

.5
26

0.
65

9
0.

53
3

23
.2

79
0.

56
8

0.
62

8
23

.7
27

0.
54

6
0.

71
3

21
.5

50
0.

64
6

0.
53

5
20

.8
04

0.
51

5
0.

68
6

Sw
in

IR
[1

38
]

27
.3

63
0.

78
7

0.
28

4
25

.2
65

0.
65

2
0.

42
8

24
.9

84
0.

60
6

0.
53

7
25

.2
46

0.
80

0
0.

22
9

23
.0

23
0.

64
6

0.
37

5
E

dg
eS

R
G

A
N

co
nt

en
t

26
.4

62
0.

75
5

0.
32

1
24

.5
07

0.
62

6
0.

46
0

24
.5

90
0.

58
7

0.
56

7
23

.8
40

0.
75

3
0.

29
4

22
.0

01
0.

59
2

0.
46

3
E

dg
eS

R
G

A
N

-t
in

y
26

.0
25

0.
73

2
0.

35
9

24
.2

86
0.

61
5

0.
48

8
24

.3
83

0.
57

7
0.

59
1

23
.1

54
0.

72
3

0.
35

3
21

.6
80

0.
57

0
0.

52
0

E
dg

eS
R

G
A

N
vi

su
al

25
.3

07
0.

68
0

0.
22

8
23

.5
85

0.
55

8
0.

34
8

23
.5

47
0.

51
4

0.
38

6
22

.7
19

0.
68

0
0.

25
7

21
.1

02
0.

52
2

0.
37

4
E

dg
eS

R
G

A
N

-t
in

y
25

.5
23

0.
69

3
0.

28
0

23
.9

76
0.

58
9

0.
39

9
24

.1
63

0.
55

7
0.

47
5

22
.8

74
0.

69
5

0.
31

7
21

.4
77

0.
54

6
0.

45
9

Ta
bl

e
9.

4:
Q

ua
nt

ita
tiv

e
pe

rfo
rm

an
ce

of
th

e
pr

op
os

ed
m

et
ho

d
fo

r×
8

up
sa

m
pl

in
g.

C
ur

re
nt

SI
SR

SO
TA

m
et

ho
d

Sw
in

IR
[1

38
]a

nd
bi

cu
bi

c
ar

e
re

po
rt

ed
as

re
fe

re
nc

es
.

↑:
hi

gh
er

is
be

tt
er

, ↓
:

lo
we

r
is

be
tt

er

Se
t5

[2
5]

Se
t1

4
[2

80
]

B
SD

10
0

[1
66

]
M

an
ga

10
9

[1
69

]
U

rb
an

10
0

[1
02

]
M

od
el

Sc
al

e
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

P
SN

R
↑

SS
IM

↑
LP

IP
S

↓
P

SN
R

↑
SS

IM
↑

LP
IP

S
↓

E
dg

eS
R

G
A

N
i8

×
4

27
.1

86
0.

72
1

0.
20

9
24

.7
14

0.
47

5
0.

34
2

23
.6

75
0.

48
4

0.
43

8
25

.6
01

0.
71

2
0.

22
1

22
.8

02
0.

58
0

0.
34

1
E

dg
eS

R
G

A
N

i8
-t

in
y ⚗

27
.3

30
0.

71
0

0.
25

7
24

.8
07

0.
56

2
0.

39
0

23
.8

37
0.

48
5

0.
48

1
25

.2
99

0.
69

6
0.

28
6

22
.5

80
0.

53
8

0.
45

4
E

dg
eS

R
G

A
N

i8
×

8
24

.4
33

0.
60

2
0.

31
2

22
.8

46
0.

47
7

0.
44

0
22

.6
09

0.
42

2
0.

49
2

22
.2

27
0.

60
3

0.
34

2
20

.5
25

0.
43

3
0.

49
9

E
dg

eS
R

G
A

N
i8

-t
in

y
24

.9
56

0.
64

2
0.

33
3

23
.4

87
0.

53
2

0.
46

1
23

.5
91

0.
49

4
0.

54
4

22
.4

45
0.

63
2

0.
38

6
21

.1
25

0.
48

9
0.

54
8

Ta
bl

e
9.

5:
Q

ua
nt

ita
tiv

e
pe

rfo
rm

an
ce

of
th

e
fu

ll-
in

te
ge

r
qu

an
tiz

ed
m

od
el

s
fo

r
×

4
an

d
×

8
vi

su
al

-b
as

ed
SR

.
↑:

hi
gh

er
is

be
tt

er
,↓

:
lo

we
r

is
be

tt
er

158

9.2 – Experiments

9.2.3 Super-Resolution results
To present quantitative results on image Super-Resolution we refer to content-

oriented SR for models trained with content-based loss only and to visual-oriented
SR for models trained with adversarial and perceptual losses. Content-based loss
(mean absolute error or mean squared error) aims at maximizing Peak Signal To
Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [259], while
adversarial and perceptual losses aim at maximizing visual quality. We test EdgeS-
RGAN models on five benchmark datasets (Set5 [25], Set14 [280], BSD100 [166],
Manga109 [169], and Urban100 [102]) measuring PSNR, SSIM, and LPIPS. We
follow the standard procedure for SISR adopted in [138], where the metrics are
computed on the luminance channel Y of the YCbCr converted images. Also, S
pixels are cropped from each border of the image, where S is the model scale factor.

Tab. 9.2 and Tab. 9.3 show the comparison with other methods for content-
oriented and visual-oriented ×4 SR, respectively. We report results of other GAN-
based methodologies [136, 257, 255, 68] as well as the current content-oriented
SOTA SwinIR [138] and bicubic baseline, as reference. Differently from what is
usually found in the literature, we refer to the OpenCV bicubic resize implementa-
tion instead of the MATLAB one. For visual-oriented SR, we also report the results
of the distilled tiny model EdgeSRGAN-tiny⚗. The proposed method reaches com-
petitive results in all the metrics, even with some degradation for tiny models due
to the considerable parameter reduction. The distillation method clearly helps
EdgeSRGAN-tiny training by transferring knowledge from the standard model and
decreasing the degradation due to the reduced number of parameters. Note that
ESRGAN and RealESRGAN are trained on Flickr2K [239] and OST [256] datasets
in addition to DIV2K. Tab. 9.4 reports results of the ×8 models, together with
SwinIR and bicubic. Also in this case, the proposed models reach competitive re-
sults, and KD helps in reducing performance degradation in the tiny model. As a
final qualitative evaluation, Fig. 9.4 compares the super-resolved images obtained
by EdgeSRGAN with the considered state-of-the-art solutions. Our model shows
comparable results, highlighting more texture and details than networks trained
with pixel loss while remaining true to the ground truth image.

Network interpolation

We report the results of network interpolation on the benchmark datasets in
Fig. 9.5. We consider α values between 0 and 1 with a step of 0.1, with 0 meaning
a full visual-oriented model and 1 a full content-oriented model. All results refer
to the standard EdgeSRGAN model for ×4 upsampling. This procedure effectively
shows how it is possible to choose the desired trade-off between content-oriented
and visual-oriented SR simply by changing the interpolation weight α. An increase
in the weight value causes an improvement of the content-related metrics PSNR
and SSIM, and a worsening of the perceptual index LPIPS. This behavior holds for

159

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

all the considered test datasets, validating the proposed approach. This procedure
can be easily carried out in a real-time application and only requires computing
the interpolated weights once, thus it does not affect in any way the inference
speed. For an additional visual evaluation, Fig. 9.6 reports the outputs obtained
for increasing values of α on a Set5 dataset sample.

Network optimization

To target Edge TPU devices and reach over-real-time inference results, we follow
the quantization scheme of Eq. 2.42 for both weights and activations to obtain a
full-integer model. Since quantized models must have a fixed input shape, we
generate a full-integer network for each input shape of the testing samples. We
use the 100 images from the DIV2K validation set as a representative dataset
to calibrate the quantization algorithm. We refer to the int8-quantized standard
model as EdgeSRGANi8. As for the tiny model, we optimize the distilled network
EdgeSRGANi8-tiny⚗. Results for the visual-oriented optimized models are shown
in Tab. 9.5. Due to the reduced activation and weight space of the full-integer
models, we experience a great increase in inference speed up to over-real-time, at
the cost of degradation in SR performance. All the proposed quantized models still
outperform bicubic baseline on the perceptual index LPIPS and therefore represent
a good option for applications in which really fast inference is needed. A comparison
of the LPIPS performance vs framerate of different models for visual-oriented ×4
upsampling is shown in Fig. 9.1.

9.2.4 Application to image transmission in mobile robotics
Our real-time SISR methodology can provide competitive advantages in a wide

variety of practical engineering applications. In this section, we target a specific use
case of mobile robotics, proposing our EdgeSRGAN model as an efficient DL-based
solution for real-time image transmission. Indeed, robot remote control in unknown
terrains needs a reliable transmission of visual data at a satisfying framerate, pre-
serving robustness even in bandwidth-degraded conditions. This requirement is
particularly relevant for high-speed platforms and UAVs. Dangerous or delicate
tasks such as tunnel exploration, inspection, or open space missions all require an
available visual stream for human supervision, regardless of the autonomy level of
the platform. In the last years, the robotics community has focused on the de-
velopment of globally shared solutions for robot software and architectures, also
handling data communications between multiple platforms and devices.

ROS2 [156] is the standard operative system for robotic platforms. It is a mid-
dleware based on a Data Distribution System (DDS) protocol where application
nodes communicate with each other through a topic with a publisher/subscriber
mechanism. However, despite the most recent attempts to improve the reliabil-
ity and efficiency of message and data packet communications between different

160

9.2 – Experiments

Urban100 (×4): img_003

LR HR SRGAN [136] ESRGAN [257]

RealESRGAN [36] AGD [68] SwinIR [138] EdgeSRGAN (ours)

Manga109 (×4): ParaisoRoad

LR HR SRGAN [136] ESRGAN [257]

RealESRGAN [36] AGD [68] SwinIR [138] EdgeSRGAN (ours)

BSD100 (×4): 108070

LR HR SRGAN [136] ESRGAN [257]

RealESRGAN [36] AGD [68] SwinIR [138] EdgeSRGAN (ours)

Set5 (×4): butterfly

LR HR SRGAN [136] ESRGAN [257]

RealESRGAN [36] AGD [68] SwinIR [138] EdgeSRGAN (ours)

Set14 (×4): baboon

LR HR SRGAN [136] ESRGAN [257]

RealESRGAN [36] AGD [68] SwinIR [138] EdgeSRGAN (ours)

Figure 9.4: Visual comparison of bicubic image SR (×4) methods on random sam-
ples from the considered datasets. EdgeSRGAN achieves results that are compa-
rable to state-of-the-art solutions with ∼ 10% of the weights.

161

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

0.0
visual

0.2 0.4 0.6 0.8 1.0
contentα

24

25

26

27

28

29

30

31

32
PSNR↑

0.0
visual

0.2 0.4 0.6 0.8 1.0
contentα

0.65

0.70

0.75

0.80

0.85

0.90

SSIM↑

0.0
visual

0.2 0.4 0.6 0.8 1.0
contentα

0.10

0.15

0.20

0.25

0.30

0.35

0.40

LPIPS↓

Figure 9.5: EdgeSRGAN network interpolation results on the benchmark datasets
for ×4 upsampling. Changing the network interpolation weight α, it is possible to
select the desired trade-off between content-oriented and visual-oriented SR.
↑: higher is better, ↓: lower is better

Set5 (×4): baby

α = 0 α = 0.2 α = 0.4

α = 0.6 α = 0.8 α = 1

Figure 9.6: Visual comparison of interpolated EdgeSRGAN for different values of α.
Values closer to α = 1 generate outputs focused on content fidelity, while small values go
towards visually pleasing results.

nodes and platforms, heavier data transmission such as image streaming is not yet
optimized and reliable.

The typical practical setting used for robot teleoperation and exploration in un-
known environments is composed of a ground station and a rover connected to the
same wireless network. As shown in Fig. 9.7, we adopted this ground station con-
figuration to test the transmission of images through a ROS2 topic, as should be
done in any robotic application to stream what the robot sees or to receive visual
data and feed perception and control algorithms for autonomous navigation and
mapping. For the experiment, we use both an Intel RealSense D435i camera and a
Logitech C920 webcam mounted on a Clearpath Jackal robot, together with a Mi-
crohard BulletPlus router for image transmission. The available image resolutions

162

9.2 – Experiments

Figure 9.7: Efficient image transmission system with EdgeSRGAN for mobile
robotic applications in outdoor environments.

with RealSense cameras, which are the standard RGB-D sensors for visual percep-
tion in robotics, are (320 × 240) and (640 × 480), whereas the framerate typically
varies between 15 and 30 fps.

Despite the absence of strong bandwidth limitations, transmission delays, or
partial loss of packets, the maximum resolution and framerate allowed by ROS2
communication are extremely low: we find that at 30 fps the maximum trans-
missible resolution for RGB is (120 × 120) with a bandwidth of 20 Mb/s, while
reducing the framerate to 5 fps the limit is (320 × 240). This strict trade-off be-
tween framerate and resolution hinders the high-speed motion of a robotic platform
in a mission, increasing the risk of collision due to reduced scene supervision. Even
selecting best effort in the Quality of Service (QoS) settings, which manage the
reception of packages through topics, the detected performances are always scarce.

The adoption of our real-time SR system ensures the timely arrival of both
RGB and depth images via ROS2. Thanks to the fast-inference performance of
EdgeSRGAN, we can stream low resolution images (80×60) at a high framerate (30
fps) and receive a high resolution output: (320× 240) with a x4 image upsampling
and (640 × 480) with a x8 upsampling, showing a clear improvement on standard
performance. Our system allows the ground station to access the streaming data
through a simple ROS topic. Hence, it provides multiple competitive advantages
in robotic teleoperation and autonomous navigation: high resolution images can be
directly exploited by the human operator for remote control. Moreover, they can
be used to feed computationally hungry algorithms like sensorimotor agents, visual-
odometry, or visual-SLAM which we may prefer to run on the ground station to save
the constrained power resources of the robot and significantly boost the autonomy
level of the mission.

We also test video transmission performance in a more general framework to
reproduce all the potential bandwidth conditions. We use the well-known video

163

Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation

10 210 1100101

Bandwidth [Mbps]

0

5

10

15

20

25

30

Fr
am

er
at

e
[fp

s]

MJPEG

10 210 1100101

Bandwidth [Mbps]

0

5

10

15

20

25

30

Fr
am

er
at

e
[fp

s]

H264

Figure 9.8: Framerate results vs bandwidth for video transmission at different input
resolutions with MJPEG and H264 compression. Bandwidth is in log scale.

streaming library GStreamer3 to transmit video samples changing the available
bandwidth. We progressively reduce the bandwidth from 10 Mbps to 10 kbps using
the Wondershaper library4 and measure the framerate at the receiver side. We
use 10 seconds of the standard video sample smtpe natively provided by GStreamer
videotestsrc video source at 30 fps, and we encode it for transmission using MJPEG
and H264 video compression standards. The encoding is performed offline in order
to be sure that all the available resources are reserved for transmission only. In-
deed, most cameras provide hardware-encoded video sources, without the need for
software compression. To be consistent with the other experiments, we keep using
(640 × 480) and (320 × 240) as high resolutions and (160 × 120) and (80 × 60) as
low resolutions. Each experiment is performed 10 times to check the consistency

3https://gstreamer.freedesktop.org/
4https://github.com/magnific0/wondershaper

164

https://gstreamer.freedesktop.org/
https://github.com/magnific0/wondershaper

9.2 – Experiments

in results. Fig. 9.8 presents the average framerate achieved with different band-
widths. Streaming the video source directly without any middleware such as ROS2
ensures a higher transmission performance. However, as expected, streaming high
resolution images is not possible in the case of low bandwidth, and the framerate
quickly drops to very low values, resulting unsuitable for real-time applications. On
the other hand, lower resolutions can be streamed with minimal frame drop even
with lower available bandwidths. H264 compression shows the same behavior as
MJPEG, but shifted to lower bandwidths. Indeed, H264 is more sophisticated and
efficient, as it uses temporal frame correlation in addition to spatial compression. In
a practical application with a certain bandwidth constraint, a proper combination
of a low resolution video source and an SR model can be selected to meet the de-
sired framerate requirements on the available platform (CPU or Edge TPU). This
kind of mechanism can also be dynamically and automatically activated and deac-
tivated depending on the current connectivity, in order to avoid framerate drops
and ensure a smooth image transmission.

165

166

Chapter 10

Conclusions

In recent years, Artificial Intelligence has been the focus of technology research
interest for both academias and industries. The latest developments of data-driven
algorithms, in particular in the field of Deep Learning, have reached milestones
in terms of accuracy and efficiency. Every month, tenth or even hundreds of new
methodologies are proposed in the literature, and more and more DL algorithms
are released and available for usage by people in a high number of products. For
example, the recent release of the ChatGPT chatbot has come to the broad public
interest and raised a lot of debate on both ethical and technological perspectives
of AI [53]. In parallel, with the development of novel paradigms such as Industry
and Agriculture 4.0, also robotics and automation are acquiring more and more key
roles in the solution of a lot of industrial and technological problems. In particular,
service robotics products can provide assistance to humans in order to ease a num-
ber of laborious and repetitive tasks. Fields such as smart agriculture and indoor
assistance can greatly benefit from the development of autonomous agents able to
sense the environment, collect data, identify interest points, navigate, and solve spe-
cific tasks. To achieve this goal, tight integration between AI and robotics must be
reached, with an interest in both algorithmic accuracy and efficiency. Research in
this field of application should always carefully consider the algorithm deployment,
and, in particular for onboard solutions, the right tradeoff between accuracy and
inference time should be reached. In this context, optimization techniques such as
graph pruning or quantization can drastically increase real-time performance with
limited loss in accuracy.

In this dissertation, several techniques have been presented that apply DL-based
methodologies to solve service robotics-related tasks. Part II focused on the devel-
opment of an algorithmic pipeline for robotic navigation in an agricultural context,
featuring DL methods in different steps, such as visual pre-processing, global path
planning, and local navigation. This approach represents a good example of how
data-driven methods can interact to tackle several tasks at different levels of the

167

Conclusions

pipeline stack. Moreover, it shows an application of both offline/cloud and on-
line/onboard execution of such algorithms, showing how the inference efficiency
relevance greatly depends on the final deployment context. On the other hand,
Part III focused more on various methodologies related to robotic perception. All
these methods fall in the field of processing sensing data coming from the different
sensors mounted onboard the robotic platform. The ability to interpret and extract
knowledge from visual and ranging signals is fundamental to increase the environ-
ment understanding and enable autonomous agents to take better decisions and
actions. In particular, in this dissertation, we analyze tasks ranging from object
detection (Chapter 6) and scene understanding (Chapter 8), that are more on the
high application level, to UWB signals processing (Chapter 7) and efficient visual
data stream for remote teleoperation (Chapter 9), that instead are more on the
low signal level. In all these contexts, great care has been devoted to real-time
efficiency and onboard execution.

10.1 Future works
The methodologies presented in this dissertation are only a first attempt to solve

some fundamental tasks in the DL for service robotics landscape and, as so, they
can be used as the basis for future works. The algorithmic pipeline for robotic
autonomous navigation presented in Part II can be further enriched by developing
a tight integration between a satellite-based and a UAV-based mapping method
to obtain a higher precision occupancy grid for the global path planning process.
Moreover, further real-world experiments can be performed in order to test the dif-
ferences between the Reinforcement Learning local navigation, and the visual-based
one. A specific RL-based methodology can also be used to specialize the agent for
autonomously performing the inter-row segments navigation, currently tackled with
classic GPS-based localization. This kind of optimization could allow to completely
avoid the usage of the GNSS system for local navigation, using it for redundancy
trajectory checking only. That could help to improve the navigation quality and
reduce the costs since satellite signals can be insufficiently reliable in agricultural
environments without adopting expensive RTK-enabled GNSS receivers. Part III
methodologies can be further developed by integrating them into more complex
applications. As an example, the fruit detection system presented in Chapter 6 can
be used as the basis for a counting system that can perform automatic yield esti-
mation if integrated on a robotic platform able to move in orchards autonomously,
using the navigation pipeline of Part II. Moreover, the Human Action Recogni-
tion methodology presented in Chapter 8 can be integrated into a human-aware
robotic navigation system that plans and acts according to the recognized people’s
behavior. Another important future work will be to study and apply more runtime
optimization methodologies to further reduce the inference footprint on the robotic
platform, while keeping algorithms accuracy high. An increase in efficiency can also

168

10.1 – Future works

be beneficial for parallelizing tasks and allowing more algorithms to run simultane-
ously on the same platform. A fundamental field to be investigated is the trade-off
between the algorithm accuracy, its weight expressed in number of parameters, and
its inference efficiency. Also, further investigations in methods such as Knowledge
Distillation and Domain Generalization can improve knowledge transfer between
different models and environments. All these aspects represent promising topics for
future research starting from the methodologies presented in this work. Therefore,
this dissertation constitutes a step toward the full integration between robotics and
AI and paves the way for future research in this direction.

169

10.1 – Future works

171

Acronyms

AcT Action Transformer.

Adam Adaptive moment estimation.

AI Artificial Intelligence.

ANN Artificial Neural Network.

AP Average Precision.

BN BatchNorm, Batch Normalization.

CIR Channel impulse response.

CNN Convolutional Neural Network.

CV Computer Vision.

DBSCAN Density-based spatial clustering of applications with noise.

DL Deep Learning.

DNN Deep Neural Network.

DRL Deep Reinforcement Learning.

DWA Dynamic Window Approach.

ELU Exponential Linear Unit.

EM Expectation-maximization.

EMA Exponential moving average.

EOR End of the row.

ESA European Space Agency.

172

Acronyms

FAKD Feature affinity-based knowledge distillation.

FC Fully Connected.

FN False negative.

FNN Feed-forward Neural Network.

FP False positive.

FPN Feature Pyramid Network.

fps Frames per second.

G.O. Graph optimization.

GAN Generative Adversarial Network.

GAP Global Average Pooling.

GD Gradient descent.

GELU Gaussian Error Linear Unit.

GMP Global Max Pooling.

GNSS Global Navigation Satellite System.

GP-GPU General purpose graphic processing unit.

HAR Human Action Recognition.

HR High resolution.

HW Hardware.

IMU Inertial measurement unit.

IoU Intersection over union.

ISO International Organization for Standardization.

KD Knowledge Distillation.

LoS Line of sight.

LR Low resolution.

LSTM Long short-term memory.

173

Acronyms

MAE Mean absolute error.

MC Dropout Monte Carlo Dropout.

MISR Multi-Image Super-Resolution.

ML Machine Learning.

MLP Multi-layer Perceptron.

MSA Multi-head self-attention.

MSE Mean squared error.

NAG Nesterov accelerated gradient.

NIR Near infrared.

NLoS Non-line-of-sight.

NLP Natural Language Processing.

NMS Non-maximum suppression.

NN Neural Network.

ORT Over real time.

PCA Principal Component Analysis.

PReLU Parametric Rectified Linear Unit.

PSNR Peak Signal to Noise Ratio.

Q.A. Quantization-aware.

QoS Quality-of-Service.

RAMS Residual Attention Multi-Image Super-Resolution model.

ReLU Rectified Linear Unit.

REMNet Range Error Mitigation network.

RGB Red-green-blue.

RGB-D Red-green-blue-depth.

RMSE Root mean squared error.

174

Acronyms

RMSprop Root Mean Squared propagation.

RNN Recurrent Neural Network.

RRM Residual Reduction Module.

RT Real time.

RTK Real Time Kinematic.

SA Self-attention.

SAC Soft actor-critic algorithm.

SE Squeeze-and-Excitation.

SGD Stochastic gradient descent.

SISR Single-Image Super-Resolution.

SLAM Simultaneous localization and mapping.

SOTA State-of-the-art.

SR Super-Resolution.

SSIM Structural Similarity Index Measure.

TN True negative.

ToA Time-of-arrival.

TP True positive.

TPU Tensor Processing Unit.

TTW Trough-the-wall.

UAV Unmanned Aerial Vehicles.

UGV Unmanned Ground Vehicles.

UWB Ultra-wideband.

ViT Vision Transformer.

VPU Vision Processing Unit.

175

Bibliography

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. “Tensorflow: A system for large-scale machine learning”. In: 12th
USENIX symposium on operating systems design and implementation (OSDI
16). 2016, pp. 265–283.

[2] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Vic-
toria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. “State-of-
the-art in artificial neural network applications: A survey”. In: Heliyon 4.11
(2018), e00938.

[3] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. “A learn-
ing algorithm for Boltzmann machines”. In: Cognitive science 9.1 (1985),
pp. 147–169.

[4] Diego Aghi, Simone Cerrato, Vittorio Mazzia, and Marcello Chiaberge. “Deep
semantic segmentation at the edge for autonomous navigation in vineyard
rows”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2021, pp. 3421–3428.

[5] Diego Aghi, Vittorio Mazzia, and Marcello Chiaberge. “Autonomous navi-
gation in vineyards with deep learning at the edge”. In: International Con-
ference on Robotics in Alpe-Adria Danube Region. Springer. 2020, pp. 479–
486.

[6] Diego Aghi, Vittorio Mazzia, and Marcello Chiaberge. “Local motion plan-
ner for autonomous navigation in vineyards with a RGB-D camera-based
algorithm and deep learning synergy”. In: Machines 8.2 (2020), p. 27.

[7] Eirikur Agustsson and Radu Timofte. “Ntire 2017 challenge on single image
super-resolution: Dataset and study”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops. 2017, pp. 126–135.

[8] Zhao De-An, Lv Jidong, Ji Wei, Zhang Ying, and Chen Yu. “Design and con-
trol of an apple harvesting robot”. In: Biosystems engineering 110.2 (2011),
pp. 112–122.

176

BIBLIOGRAPHY

[9] Simone Angarano, Mauro Martini, Francesco Salvetti, Vittorio Mazzia, and
Marcello Chiaberge. “Back-to-bones: Rediscovering the role of backbones in
domain generalization”. In: arXiv preprint arXiv:2209.01121 (2022).

[10] Simone Angarano, Vittorio Mazzia, Francesco Salvetti, Giovanni Fantin, and
Marcello Chiaberge. “Robust ultra-wideband range error mitigation with
deep learning at the edge”. In: Engineering Applications of Artificial Intelli-
gence 102 (2021), p. 104278.

[11] Simone Angarano, Francesco Salvetti, Mauro Martini, and Marcello Chi-
aberge. “Generative adversarial super-resolution at the edge with knowl-
edge distillation”. In: Engineering Applications of Artificial Intelligence 123
(2023), p. 106407.

[12] Simone Angarano, Francesco Salvetti, Vittorio Mazzia, Giovanni Fantin,
Dario Gandini, and Marcello Chiaberge. “Ultra-Low-Power Range Error Mit-
igation for Ultra-Wideband Precise Localization”. In: Science and Informa-
tion Conference. Springer. 2022, pp. 814–824.

[13] Federico Angelini, Zeyu Fu, Yang Long, Ling Shao, and Syed Mohsen Naqvi.
“2D Pose-Based Real-Time Human Action Recognition With Occlusion-
Handling”. In: IEEE Transactions on Multimedia 22.6 (2020), pp. 1433–
1446.

[14] Federico Angelini and Syed Mohsen Naqvi. “Joint RGB-Pose Based Hu-
man Action Recognition for Anomaly Detection Applications”. In: 2019 22th
International Conference on Information Fusion (FUSION). IEEE. 2019,
pp. 1–7.

[15] Federico Angelini, Jiawei Yan, and Syed Mohsen Naqvi. “Privacy-preserving
online human behaviour anomaly detection based on body movements and
objects positions”. In: ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 8444–
8448.

[16] Pietro Astolfi, Alessandro Gabrielli, Luca Bascetta, and Matteo Matteucci.
“Vineyard autonomous navigation in the echord++ grape experiment”. In:
IFAC-PapersOnLine 51.11 (2018), pp. 704–709.

[17] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normal-
ization”. In: NIPS 2016 Deep Learning Symposium. 2016.

[18] Oscar C Barawid Jr, Akira Mizushima, Kazunobu Ishii, and Noboru Noguchi.
“Development of an autonomous navigation system using a two-dimensional
laser scanner in an orchard application”. In: Biosystems Engineering 96.2
(2007), pp. 139–149.

177

BIBLIOGRAPHY

[19] Valentín Barral, Carlos J Escudero, and José A García-Naya. “NLOS clas-
sification based on RSS and ranging statistics obtained from low-cost UWB
devices”. In: 2019 27th European Signal Processing Conference (EUSIPCO).
IEEE. 2019, pp. 1–5.

[20] Daniel Belanche, Luis V Casalo, Carlos Flavian, and Jeroen Schepers. “Ser-
vice robot implementation: a theoretical framework and research agenda”.
In: The Service Industries Journal 40.3-4 (2020), pp. 203–225.

[21] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V
Le. “Attention augmented convolutional networks”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019, pp. 3286–
3295.

[22] Hédi Ben-Younes, Éloi Zablocki, Patrick Pérez, and Matthieu Cord. “Driv-
ing behavior explanation with multi-level fusion”. In: Pattern Recognition
(2021), p. 108421.

[23] Pawel Benecki, Michal Kawulok, Daniel Kostrzewa, and Lukasz Skonieczny.
“Evaluating super-resolution reconstruction of satellite images”. In: Acta As-
tronautica 153 (2018), pp. 15–25.

[24] Axel Berg, Mark O’Connor, and Miguel Tairum Cruz. “Keyword Trans-
former: A Self-Attention Model for Keyword Spotting”. In: Proc. Interspeech
2021. 2021, pp. 4249–4253.

[25] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Alberi
Morel. “Low-Complexity Single-Image Super-Resolution based on Nonnega-
tive Neighbor Embedding”. In: British Machine Vision Conference (BMVC).
2012.

[26] Anna Boschi, Francesco Salvetti, Vittorio Mazzia, and Marcello Chiaberge.
“A cost-effective person-following system for assistive unmanned vehicles
with deep learning at the edge”. In: Machines 8.3 (2020), p. 49.

[27] Klemen Bregar and Mihael Mohorčič. “Improving indoor localization using
convolutional neural networks on computationally restricted devices”. In:
IEEE Access 6 (2018), pp. 17429–17441.

[28] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes
Totz, Zehan Wang, and Wenzhe Shi. “Real-time video super-resolution with
spatio-temporal networks and motion compensation”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 4778–
4787.

[29] Jiezhang Cao, Yawei Li, Kai Zhang, and Luc Van Gool. “Video super-
resolution transformer”. In: arXiv preprint arXiv:2106.06847 (2021).

178

BIBLIOGRAPHY

[30] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
“OpenPose: realtime multi-person 2D pose estimation using Part Affinity
Fields”. In: IEEE transactions on pattern analysis and machine intelligence
43.1 (2019), pp. 172–186.

[31] Joao Carreira and Andrew Zisserman. “Quo Vadis, Action Recognition? A
New Model and the Kinetics Dataset”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). July 2017,
pp. 6299–6308.

[32] Simone Cerrato, Diego Aghi, Vittorio Mazzia, Francesco Salvetti, and Mar-
cello Chiaberge. “An Adaptive Row Crops Path Generator with Deep Learn-
ing Synergy”. In: 2021 6th Asia-Pacific Conference on Intelligent Robot Sys-
tems (ACIRS). IEEE. 2021, pp. 6–12.

[33] Simone Cerrato, Vittorio Mazzia, Francesco Salvetti, and Marcello Chi-
aberge. “A deep learning driven algorithmic pipeline for autonomous navi-
gation in row-based crops”. In: arXiv preprint arXiv:2112.03816 (2021).

[34] Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. “UTD-MHAD: A mul-
timodal dataset for human action recognition utilizing a depth camera and a
wearable inertial sensor”. In: 2015 IEEE International conference on image
processing (ICIP). IEEE. 2015, pp. 168–172.

[35] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua
Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. “Pre-trained image
processing transformer”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021, pp. 12299–12310.

[36] Honggang Chen, Xiaohai He, Linbo Qing, Yuanyuan Wu, Chao Ren, Ray
E Sheriff, and Ce Zhu. “Real-world single image super-resolution: A brief
review”. In: Information Fusion 79 (2022), pp. 124–145.

[37] Leiyu Chen, Shaobo Li, Qiang Bai, Jing Yang, Sanlong Jiang, and Yanming
Miao. “Review of image classification algorithms based on convolutional neu-
ral networks”. In: Remote Sensing 13.22 (2021), p. 4712.

[38] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. “Encoder-decoder with atrous separable convolution for se-
mantic image segmentation”. In: Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 801–818.

[39] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
“A simple framework for contrastive learning of visual representations”. In:
International conference on machine learning. PMLR. 2020, pp. 1597–1607.

179

BIBLIOGRAPHY

[40] Yu-Yao Chen, Shih-Ping Huang, Ting-Wei Wu, Wei-Ting Tsai, Chong-Yi
Liou, and Shau-Gang Mao. “UWB System for Indoor Positioning and Track-
ing with Arbitrary Target Orientation, Optimal Anchor Location, and Adap-
tive NLOS Mitigation”. In: IEEE Transactions on Vehicular Technology
(2020).

[41] Sangwoo Cho, Muhammad Maqbool, Fei Liu, and Hassan Foroosh. “Self-
attention network for skeleton-based human action recognition”. In: Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. 2020, pp. 635–644.

[42] François Chollet. “Xception: Deep learning with depthwise separable con-
volutions”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 1251–1258.

[43] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and
accurate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

[44] Oded Cohen, Raphael Linker, and Amos Naor. “Estimation of the number of
apples in color images recorded in orchards”. In: International conference on
computer and computing technologies in agriculture. Springer. 2010, pp. 630–
642.

[45] Lorenzo Comba, Alessandro Biglia, Davide Ricauda Aimonino, and Paolo
Gay. “Unsupervised detection of vineyards by 3D point-cloud UAV pho-
togrammetry for precision agriculture”. In: Computers and Electronics in
Agriculture 155 (2018), pp. 84–95.

[46] R Craig Coulter. Implementation of the pure pursuit path tracking algorithm.
Tech. rep. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[47] Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio
Biroli, and Levent Sagun. “Convit: Improving vision transformers with soft
convolutional inductive biases”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 2286–2296.

[48] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. “Second-
order attention network for single image super-resolution”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 11065–11074.

[49] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likeli-
hood from incomplete data via the EM algorithm”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 39.1 (1977), pp. 1–22.

[50] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Ima-
genet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

180

BIBLIOGRAPHY

[51] Michel Deudon, Alfredo Kalaitzis, Israel Goytom, Md Rifat Arefin, Zhichao
Lin, Kris Sankaran, Vincent Michalski, Samira E Kahou, Julien Cornebise,
and Yoshua Bengio. “HighRes-net: Recursive Fusion for Multi-Frame Super-
Resolution of Satellite Imagery”. In: arXiv preprint arXiv:2002.06460 (2020).

[52] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert:
Pre-training of deep bidirectional transformers for language understanding”.
In: arXiv preprint arXiv:1810.04805 (2018).

[53] Eva AM van Dis, Johan Bollen, Willem Zuidema, Robert van Rooij, and
Claudi L Bockting. “ChatGPT: five priorities for research”. In: Nature 614.7947
(2023), pp. 224–226.

[54] Kris Doelling, Jeongsik Shin, and Dan O Popa. “Service robotics for the
home: a state of the art review”. In: Proceedings of the 7th International
Conference on PErvasive Technologies Related to Assistive Environments.
2014, pp. 1–8.

[55] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. “Image super-
resolution using deep convolutional networks”. In: IEEE transactions on pat-
tern analysis and machine intelligence 38.2 (2015), pp. 295–307.

[56] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. “Learning a
deep convolutional network for image super-resolution”. In: European con-
ference on computer vision. Springer. 2014, pp. 184–199.

[57] Chao Dong, Chen Change Loy, and Xiaoou Tang. “Accelerating the super-
resolution convolutional neural network”. In: European conference on com-
puter vision. Springer. 2016, pp. 391–407.

[58] Francisco Dorr. “Satellite image multi-frame super resolution using 3D wide-
activation neural networks”. In: Remote Sensing 12.22 (2020), p. 3812.

[59] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale”. In:
International Conference on Learning Representations. 2021.

[60] Timothy Dozat. “Incorporating nesterov momentum into adam”. In: Inter-
national Conference on Learning Representations Workshop. 2016.

[61] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient meth-
ods for online learning and stochastic optimization.” In: Journal of machine
learning research 12.7 (2011).

[62] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic
for deep learning”. In: arXiv preprint arXiv:1603.07285 (2016).

181

BIBLIOGRAPHY

[63] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. “A density-
based algorithm for discovering clusters in large spatial databases with noise.”
In: kdd. Vol. 96. 34. 1996, pp. 226–231.

[64] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. “The pascal visual object classes (voc) challenge”.
In: International journal of computer vision 88.2 (2010), pp. 303–338.

[65] Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith Abuali-
gah, Jeffery O Agushaka, Christopher I Eke, and Andronicus A Akinyelu.
“A comprehensive survey of clustering algorithms: State-of-the-art machine
learning applications, taxonomy, challenges, and future research prospects”.
In: Engineering Applications of Artificial Intelligence 110 (2022), p. 104743.

[66] Sina Farsiu, M Dirk Robinson, Michael Elad, and Peyman Milanfar. “Fast
and robust multiframe super resolution”. In: IEEE transactions on image
processing 13.10 (2004), pp. 1327–1344.

[67] D. Fox, W. Burgard, and S. Thrun. “The dynamic window approach to
collision avoidance”. In: IEEE Robotics Automation Magazine 4.1 (1997),
pp. 23–33. doi: 10.1109/100.580977.

[68] Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and
Zhangyang Wang. “AutoGAN-Distiller: searching to compress generative ad-
versarial networks”. In: Proceedings of the 37th International Conference on
Machine Learning. 2020, pp. 3292–3303.

[69] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing neu-
ral network model for a mechanism of visual pattern recognition”. In: Com-
petition and cooperation in neural nets. Springer, 1982, pp. 267–285.

[70] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning”. In: international confer-
ence on machine learning. PMLR. 2016, pp. 1050–1059.

[71] Nikolaos Gkalelis, Hansung Kim, Adrian Hilton, Nikos Nikolaidis, and Ioan-
nis Pitas. “The i3dpost multi-view and 3d human action/interaction database”.
In: 2009 Conference for Visual Media Production. IEEE. 2009, pp. 159–168.

[72] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the fourteenth international conference
on artificial intelligence and statistics. JMLR Workshop and Conference Pro-
ceedings. 2011, pp. 315–323.

[73] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. “Compressing
deep convolutional networks using vector quantization”. In: arXiv preprint
arXiv:1412.6115 (2014).

182

https://doi.org/10.1109/100.580977

BIBLIOGRAPHY

[74] Juan Angel Gonzalez-Aguirre, Ricardo Osorio-Oliveros, Karen L Rodriguez-
Hernandez, Javier Lizarraga-Iturralde, Ruben Morales Menendez, Ricardo
A Ramirez-Mendoza, Mauricio Adolfo Ramirez-Moreno, and Jorge de Jesus
Lozoya-Santos. “Service robots: Trends and technology”. In: Applied Sciences
11.22 (2021), p. 10702.

[75] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[76] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative ad-
versarial nets”. In: Advances in neural information processing systems 27
(2014).

[77] Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen Basri.
“Actions as space-time shapes”. In: IEEE transactions on pattern analysis
and machine intelligence 29.12 (2007), pp. 2247–2253.

[78] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Ar-
mand Joulin, Hervé Jégou, and Matthijs Douze. “Levit: a vision transformer
in convnet’s clothing for faster inference”. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2021, pp. 12259–12269.

[79] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang,
Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al.
“Conformer: Convolution-augmented transformer for speech recognition”. In:
arXiv preprint arXiv:2005.08100 (2020).

[80] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
“Deep learning with limited numerical precision”. In: International Confer-
ence on Machine Learning. 2015, pp. 1737–1746.

[81] Karthikeyan Gururaj, Anojh Kumaran Rajendra, Yang Song, Choi Look
Law, and Guofa Cai. “Real-time identification of NLOS range measurements
for enhanced UWB localization”. In: 2017 International Conference on In-
door Positioning and Indoor Navigation (IPIN). IEEE. 2017, pp. 1–7.

[82] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor”. In: International conference on machine learning. PMLR.
2018, pp. 1861–1870.

[83] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. “EIE: efficient inference engine on com-
pressed deep neural network”. In: ACM SIGARCH Computer Architecture
News 44.3 (2016), pp. 243–254.

183

BIBLIOGRAPHY

[84] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding”. In: arXiv preprint arXiv:1510.00149 (2015).

[85] Shijie Hao, Yuan Zhou, and Yanrong Guo. “A brief survey on semantic seg-
mentation with deep learning”. In: Neurocomputing 406 (2020), pp. 302–321.

[86] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the
heuristic determination of minimum cost paths”. In: IEEE transactions on
Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[87] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778.

[88] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifica-
tion”. In: Proceedings of the IEEE international conference on computer vi-
sion. 2015, pp. 1026–1034.

[89] Zibin He, Tao Dai, Jian Lu, Yong Jiang, and Shu-Tao Xia. “Fakd: Feature-
affinity based knowledge distillation for efficient image super-resolution”. In:
2020 IEEE International Conference on Image Processing (ICIP). IEEE.
2020, pp. 518–522.

[90] Dan Hendrycks and Kevin Gimpel. “Gaussian error linear units (gelus)”. In:
arXiv preprint arXiv:1606.08415 (2016).

[91] Geoffrey Hinton. “rmsprop: Divide the gradient by a running average of its
recent magnitude”. 2012.

[92] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowl-
edge in a Neural Network”. In: NeurIPS Deep Learning and Representation
Learning Workshop. 2014.

[93] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. “Improving neural networks by preventing co-adaptation
of feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[94] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[95] Jane Holland, Liz Kingston, Conor McCarthy, Eddie Armstrong, Peter O’Dwyer,
Fionn Merz, and Mark McConnell. “Service robots in the healthcare sector”.
In: Robotics 10.1 (2021), p. 47.

[96] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural networks 2.5 (1989),
pp. 359–366.

184

BIBLIOGRAPHY

[97] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasude-
van, et al. “Searching for mobilenetv3”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2019, pp. 1314–1324.

[98] Chaur-Heh Hsieh, Jen-Yang Chen, and Bo-Hong Nien. “Deep learning-based
indoor localization using received signal strength and channel state informa-
tion”. In: IEEE access 7 (2019), pp. 33256–33267.

[99] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 7132–7141.

[100] Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin,
Kate Saenko, and Stan Sclaroff. “Real-time semantic segmentation with fast
attention”. In: IEEE Robotics and Automation Letters 6.1 (2020), pp. 263–
270.

[101] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
“Densely connected convolutional networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017, pp. 4700–4708.

[102] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. “Single image super-
resolution from transformed self-exemplars”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 5197–5206.

[103] Linjiang Huang, Yan Huang, Wanli Ouyang, and Liang Wang. “Part-aligned
pose-guided recurrent network for action recognition”. In: Pattern Recogni-
tion 92 (2019), pp. 165–176. issn: 0031-3203.

[104] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International con-
ference on machine learning. PMLR. 2015, pp. 448–456.

[105] Michal Irani and Shmuel Peleg. “Improving resolution by image registration”.
In: CVGIP: Graphical models and image processing 53.3 (1991), pp. 231–239.

[106] ISO Central Secretary. Information technology — Vocabulary. en. Standard
ISO/IEC 2382:2015. Geneva, CH: International Organization for Standard-
ization, May 2015. url: https://www.iso.org/standard/63598.html.

[107] ISO Central Secretary. Robotics — Vocabulary. en. Standard ISO 8373:2021.
Geneva, CH: International Organization for Standardization, Nov. 2021.
url: https://www.iso.org/standard/75539.html.

[108] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. “Quantization
and training of neural networks for efficient integer-arithmetic-only infer-
ence”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 2704–2713.

185

https://www.iso.org/standard/63598.html
https://www.iso.org/standard/75539.html

BIBLIOGRAPHY

[109] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. “Data clustering: a
review”. In: ACM computing surveys (CSUR) 31.3 (1999), pp. 264–323.

[110] Wei Ji, Dean Zhao, Fengyi Cheng, Bo Xu, Ying Zhang, and Jinjing Wang.
“Automatic recognition vision system guided for apple harvesting robot”. In:
Computers & Electrical Engineering 38.5 (2012), pp. 1186–1195.

[111] Changhui Jiang, Jichun Shen, Shuai Chen, Yuwei Chen, Di Liu, and Yuming
Bo. “UWB NLOS/LOS Classification Using Deep Learning Method”. In:
IEEE Communications Letters 24.10 (2020), pp. 2226–2230.

[112] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. “Deep
video super-resolution network using dynamic upsampling filters without
explicit motion compensation”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 3224–3232.

[113] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-
time style transfer and super-resolution”. In: European conference on com-
puter vision. Springer. 2016, pp. 694–711.

[114] Md Shaha Nur Kabir, Ming-Zhang Song, Nam-Seok Sung, Sun-Ok Chung,
Yong-Joo Kim, Noboru Noguchi, and Soon-Jung Hong. “Performance com-
parison of single and multi-GNSS receivers under agricultural fields in Ko-
rea”. In: Engineering in agriculture, environment and food 9.1 (2016), pp. 27–
35.

[115] Andreas Kamilaris and Francesc X Prenafeta-Boldú. “Deep learning in agri-
culture: A survey”. In: Computers and electronics in agriculture 147 (2018),
pp. 70–90.

[116] Armin Kappeler, Seunghwan Yoo, Qiqin Dai, and Aggelos K Katsagge-
los. “Video super-resolution with convolutional neural networks”. In: IEEE
Transactions on Computational Imaging 2.2 (2016), pp. 109–122.

[117] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Har-
ford. “Multivariate LSTM-FCNs for time series classification”. In: Neural
Networks 116 (2019), pp. 237–245. issn: 0893-6080.

[118] Michal Kawulok, Pawel Benecki, Daniel Kostrzewa, and Lukasz Skonieczny.
“Evolving imaging model for super-resolution reconstruction”. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion.
2018, pp. 284–285.

[119] Michal Kawulok, Pawel Benecki, Szymon Piechaczek, Krzysztof Hrynczenko,
Daniel Kostrzewa, and Jakub Nalepa. “Deep learning for multiple-image
super-resolution”. In: IEEE Geoscience and Remote Sensing Letters (2019).

186

BIBLIOGRAPHY

[120] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. “Accurate image super-
resolution using very deep convolutional networks”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 1646–
1654.

[121] SP Kim, Nirmal K Bose, and Hector M Valenzuela. “Recursive reconstruc-
tion of high resolution image from noisy undersampled multiframes”. In:
IEEE Transactions on Acoustics, Speech, and Signal Processing 38.6 (1990),
pp. 1013–1027.

[122] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[123] Sven Koenig and Maxim Likhachev. “Fast replanning for navigation in un-
known terrain”. In: IEEE Transactions on Robotics 21.3 (2005), pp. 354–
363.

[124] Ron Kohavi, David H Wolpert, et al. “Bias plus variance decomposition for
zero-one loss functions”. In: ICML. Vol. 96. 1996, pp. 275–83.

[125] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifi-
cation with deep convolutional neural networks”. In: Communications of the
ACM 60.6 (2017), pp. 84–90.

[126] Solomon Kullback and Richard A Leibler. “On information and sufficiency”.
In: The annals of mathematical statistics 22.1 (1951), pp. 79–86.

[127] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin,
Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander
Kolesnikov, et al. “The open images dataset v4”. In: International Journal
of Computer Vision 128.7 (2020), pp. 1956–1981.

[128] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang.
“Deep laplacian pyramid networks for fast and accurate super-resolution”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2017, pp. 624–632.

[129] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang.
“Fast and accurate image super-resolution with deep laplacian pyramid net-
works”. In: IEEE transactions on pattern analysis and machine intelligence
41.11 (2018), pp. 2599–2613.

[130] Benjamin Langmann, Klaus Hartmann, and Otmar Loffeld. “Depth Camera
Technology Comparison and Performance Evaluation.” In: ICPRAM (2).
2012, pp. 438–444.

[131] Steven M LaValle et al. “Rapidly-exploring random trees: A new tool for
path planning”. In: (1998).

[132] Yann LeCun et al. “Generalization and network design strategies”. In: Con-
nectionism in perspective 19.143-155 (1989), p. 18.

187

BIBLIOGRAPHY

[133] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
nature 521.7553 (2015), pp. 436–444.

[134] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. “Backpropagation applied
to handwritten zip code recognition”. In: Neural computation 1.4 (1989),
pp. 541–551.

[135] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition”. In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324.

[136] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cun-
ningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz,
Zehan Wang, et al. “Photo-realistic single image super-resolution using a
generative adversarial network”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 4681–4690.

[137] Jun Li, Xianglong Liu, Mingyuan Zhang, and Deqing Wang. “Spatio-temporal
deformable 3D ConvNets with attention for action recognition”. In: Pattern
Recognition 98 (2020), p. 107037. issn: 0031-3203.

[138] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and
Radu Timofte. “Swinir: Image restoration using swin transformer”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision.
2021, pp. 1833–1844.

[139] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee.
“Enhanced deep residual networks for single image super-resolution”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion workshops. 2017, pp. 136–144.

[140] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. “Feature pyramid networks for object detection”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2017, pp. 2117–2125.

[141] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
“Focal loss for dense object detection”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017, pp. 2980–2988.

[142] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco:
Common objects in context”. In: European conference on computer vision.
Springer. 2014, pp. 740–755.

[143] Jie Liu, Jie Tang, and Gangshan Wu. “Residual feature distillation network
for lightweight image super-resolution”. In: European Conference on Com-
puter Vision. Springer. 2020, pp. 41–55.

188

BIBLIOGRAPHY

[144] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and
Alex C Kot. “Ntu rgb+ d 120: A large-scale benchmark for 3d human activ-
ity understanding”. In: IEEE transactions on pattern analysis and machine
intelligence 42.10 (2019), pp. 2684–2701.

[145] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu,
Jianfeng Gao, and Jiawei Han. “On the variance of the adaptive learning
rate and beyond”. In: arXiv preprint arXiv:1908.03265 (2019).

[146] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. “Ssd: Single shot multibox de-
tector”. In: European conference on computer vision. Springer. 2016, pp. 21–
37.

[147] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen
Lin, and Baining Guo. “Swin transformer: Hierarchical vision transformer us-
ing shifted windows”. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. 2021, pp. 10012–10022.

[148] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang.
“Disentangling and unifying graph convolutions for skeleton-based action
recognition”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 143–152.

[149] Stuart Lloyd. “Least squares quantization in PCM”. In: IEEE transactions
on information theory 28.2 (1982), pp. 129–137.

[150] Iker Lluvia, Elena Lazkano, and Ander Ansuategi. “Active mapping and
robot exploration: A survey”. In: Sensors 21.7 (2021), p. 2445.

[151] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 3431–3440.

[152] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. “Deep
transfer learning with joint adaptation networks”. In: International confer-
ence on machine learning. PMLR. 2017, pp. 2208–2217.

[153] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regulariza-
tion”. In: International Conference on Learning Representations Workshop.
2019.

[154] Diogo Luvizon, David Picard, and Hedi Tabia. “Multi-task deep learning
for real-time 3D human pose estimation and action recognition”. In: IEEE
transactions on pattern analysis and machine intelligence (2020).

[155] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. “Rectifier nonlin-
earities improve neural network acoustic models”. In: Proc. icml. Vol. 30. 1.
Citeseer. 2013, p. 3.

189

BIBLIOGRAPHY

[156] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. “Robot Operating System 2: Design, architecture, and uses in the
wild”. In: Science Robotics 7.66 (2022), eabm6074.

[157] James MacQueen et al. “Some methods for classification and analysis of
multivariate observations”. In: Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability. Oakland, CA, USA. 1967, pp. 281–
297.

[158] Valerio Magnago, Pablo Corbalán, Gian Pietro Picco, Luigi Palopoli, and
Daniele Fontanelli. “Robot Localization via Odometry-assisted Ultra-wideband
Ranging with Stochastic Guarantees.” In: IROS. 2019, pp. 1607–1613.

[159] Mishaim Malik, Muhammad Kamran Malik, Khawar Mehmood, and Imran
Makhdoom. “Automatic speech recognition: a survey”. In: Multimedia Tools
and Applications 80.6 (2021), pp. 9411–9457.

[160] K Manikanda Kumaran and M Chinnadurai. “Cloud-based robotic system
for crowd control in smart cities using hybrid intelligent generic algorithm”.
In: Journal of Ambient Intelligence and Humanized Computing 11.12 (2020),
pp. 6293–6306.

[161] Chengzhi Mao, Kangbo Lin, Tiancheng Yu, and Yuan Shen. “A probabilistic
learning approach to UWB ranging error mitigation”. In: 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE. 2018, pp. 1–6.

[162] Stefano Marano, Wesley M Gifford, Henk Wymeersch, and Moe Z Win.
“NLOS identification and mitigation for localization based on UWB exper-
imental data”. In: IEEE Journal on selected areas in communications 28.7
(2010), pp. 1026–1035.

[163] Luca Marchionna, Giulio Pugliese, Mauro Martini, Simone Angarano, Francesco
Salvetti, and Marcello Chiaberge. “Deep Instance Segmentation and Visual
Servoing to Play Jenga with a Cost-Effective Robotic System”. In: arXiv
preprint arXiv:2211.07977 (2022).

[164] Sam Marden and Mark Whitty. “GPS-free localisation and navigation of
an unmanned ground vehicle for yield forecasting in a vineyard”. In: Recent
Advances in Agricultural Robotics, International workshop collocated with the
13th International Conference on Intelligent Autonomous Systems (IAS-13).
2014.

[165] Marcus Märtens, Dario Izzo, Andrej Krzic, and Daniël Cox. “Super-resolution
of PROBA-V images using convolutional neural networks”. In: Astrodynam-
ics 3.4 (2019), pp. 387–402.

190

BIBLIOGRAPHY

[166] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. “A database
of human segmented natural images and its application to evaluating seg-
mentation algorithms and measuring ecological statistics”. In: Proceedings
Eighth IEEE International Conference on Computer Vision. ICCV 2001.
Vol. 2. IEEE. 2001, pp. 416–423.

[167] Mauro Martini, Simone Cerrato, Francesco Salvetti, Simone Angarano, and
Marcello Chiaberge. “Position-Agnostic Autonomous Navigation in Vine-
yards with Deep Reinforcement Learning”. In: 2022 IEEE 18th International
Conference on Automation Science and Engineering (CASE). IEEE. 2022,
pp. 477–484.

[168] Jiri Matas, Charles Galambos, and Josef Kittler. “Robust detection of lines
using the progressive probabilistic hough transform”. In: Computer vision
and image understanding 78.1 (2000), pp. 119–137.

[169] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa,
Toshihiko Yamasaki, and Kiyoharu Aizawa. “Sketch-based manga retrieval
using manga109 dataset”. In: Multimedia Tools and Applications 76.20 (2017),
pp. 21811–21838.

[170] Vittorio Mazzia. “Machine Learning Algorithms and their Embedded Im-
plementation for Service Robotics Applications”. PhD thesis. Politecnico di
Torino, 2022.

[171] Vittorio Mazzia, Simone Angarano, Francesco Salvetti, Federico Angelini,
and Marcello Chiaberge. “Action Transformer: A self-attention model for
short-time pose-based human action recognition”. In: Pattern Recognition
124 (2022), p. 108487.

[172] Vittorio Mazzia, Aleem Khaliq, Francesco Salvetti, and Marcello Chiaberge.
“Real-time apple detection system using embedded systems with hardware
accelerators: An edge AI application”. In: IEEE Access 8 (2020), pp. 9102–
9114.

[173] Vittorio Mazzia, Francesco Salvetti, Diego Aghi, and Marcello Chiaberge.
“Deepway: a deep learning waypoint estimator for global path generation”.
In: Computers and Electronics in Agriculture 184 (2021), p. 106091.

[174] Vittorio Mazzia, Francesco Salvetti, and Marcello Chiaberge. “Efficient-capsnet:
Capsule network with self-attention routing”. In: Scientific reports 11.1 (2021),
pp. 1–13.

[175] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(1943), pp. 115–133.

191

BIBLIOGRAPHY

[176] Diganta Misra. “Mish: A self regularized non-monotonic neural activation
function”. In: BMVC - Proceedings of the British Machine Vision Confer-
ence. 2019.

[177] Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli.
“DeepSUM: Deep neural network for Super-resolution of Unregistered Multi-
temporal images”. In: IEEE Transactions on Geoscience and Remote Sensing
(2019).

[178] Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli.
“DeepSUM++: Non-local Deep Neural Network for Super-Resolution of Un-
registered Multitemporal Images”. In: arXiv preprint arXiv:2001.06342 (2020).

[179] Ali H Muqaibel, Mohamed A Landolsi, and Mohammed N Mahmood. “Prac-
tical evaluation of NLOS/LOS parametric classification in UWB channels”.
In: 2013 1st International Conference on Communications, Signal Process-
ing, and their Applications (ICCSPA). IEEE. 2013, pp. 1–6.

[180] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
boltzmann machines”. In: Icml. 2010.

[181] Yurii Nesterov. “A method for unconstrained convex minimization problem
with the rate of convergence O (1/kˆ 2)”. In: Doklady an ussr. Vol. 269.
1983, pp. 543–547.

[182] Arne Niitsoo, Thorsten Edelhäuβer, and Christopher Mutschler. “Convolu-
tional neural networks for position estimation in tdoa-based locating sys-
tems”. In: 2018 International Conference on Indoor Positioning and Indoor
Navigation (IPIN). IEEE. 2018, pp. 1–8.

[183] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen
Wang, Kaihao Zhang, Xiaochun Cao, and Haifeng Shen. “Single image super-
resolution via a holistic attention network”. In: European conference on com-
puter vision. Springer. 2020, pp. 191–207.

[184] Nanne van Noord and Eric Postma. “A learned representation of artist-
specific colourisation”. In: Proceedings of the IEEE International Conference
on Computer Vision Workshops. 2017, pp. 2907–2915.

[185] Augustus Odena, Vincent Dumoulin, and Chris Olah. “Deconvolution and
Checkerboard Artifacts”. In: Distill (2016).

[186] Luiz FP Oliveira, Antonio P Moreira, and Manuel F Silva. “Advances in
agriculture robotics: A state-of-the-art review and challenges ahead”. In:
Robotics 10.2 (2021), p. 52.

[187] Timothy Otim, Luis E Díez, Alfonso Bahillo, Peio Lopez-Iturri, and Fran-
cisco Falcone. “Effects of the body wearable sensor position on the UWB
localization accuracy”. In: Electronics 8.11 (2019), p. 1351.

192

BIBLIOGRAPHY

[188] Daniel W Otter, Julian R Medina, and Jugal K Kalita. “A survey of the us-
ages of deep learning for natural language processing”. In: IEEE transactions
on neural networks and learning systems 32.2 (2020), pp. 604–624.

[189] Dirk Padfield. “Masked object registration in the Fourier domain”. In: IEEE
Transactions on image processing 21.5 (2011), pp. 2706–2718.

[190] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan
Tompson, and Kevin Murphy. “Personlab: Person pose estimation and in-
stance segmentation with a bottom-up, part-based, geometric embedding
model”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 269–286.

[191] Deepak Patil, Munsaf Ansari, Dilisha Tendulkar, Ritesh Bhatlekar, Vijayku-
mar Naik Pawar, and Shailendra Aswale. “A survey on autonomous military
service robot”. In: 2020 International Conference on Emerging Trends in
Information Technology and Engineering (ic-ETITE). IEEE. 2020, pp. 1–7.

[192] Chiara Plizzari, Marco Cannici, and Matteo Matteucci. “Skeleton-based ac-
tion recognition via spatial and temporal transformer networks”. In: Com-
puter Vision and Image Understanding 208 (2021), p. 103219.

[193] Boris T Polyak. “Some methods of speeding up the convergence of iteration
methods”. In: Ussr computational mathematics and mathematical physics 4.5
(1964), pp. 1–17.

[194] Alwin Poulose and Dong Seog Han. “UWB Indoor Localization Using Deep
Learning LSTM Networks”. In: Applied Sciences 10.18 (2020), p. 6290.

[195] Raul de Queiroz Mendes, Eduardo Godinho Ribeiro, Nicolas dos Santos
Rosa, and Valdir Grassi Jr. “On deep learning techniques to boost monocular
depth estimation for autonomous navigation”. In: Robotics and Autonomous
Systems 136 (2021), p. 103701.

[196] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for Activa-
tion Functions”. In: 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Work-
shop Track Proceedings. OpenReview.net, 2018. url: https://openreview.
net/forum?id=Hkuq2EkPf.

[197] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only
look once: Unified, real-time object detection”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 779–788.

[198] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2017, pp. 7263–7271.

[199] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”.
In: arXiv preprint arXiv:1804.02767 (2018).

193

https://openreview.net/forum?id=Hkuq2EkPf
https://openreview.net/forum?id=Hkuq2EkPf

BIBLIOGRAPHY

[200] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster r-cnn:
Towards real-time object detection with region proposal networks”. In: Ad-
vances in neural information processing systems 28 (2015).

[201] Douglas A Reynolds. “Gaussian mixture models.” In: Encyclopedia of bio-
metrics 741.659-663 (2009).

[202] Giuseppe Riggio, Cesare Fantuzzi, and Cristian Secchi. “A low-cost naviga-
tion strategy for yield estimation in vineyards”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 2200–
2205.

[203] Itsaso Rodriguez-Moreno, Jose Maria Martinez-Otzeta, Izaro Goienetxea,
Igor Rodriguez-Rodriguez, and Basilio Sierra. “Shedding light on people ac-
tion recognition in social robotics by means of common spatial patterns”. In:
Sensors 20.8 (2020), p. 2436.

[204] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chas-
sang, Carlo Gatta, and Yoshua Bengio. “FitNets: Hints for Thin Deep Nets”.
In: 3rd International Conference on Learning Representations, ICLR 2015.
2015.

[205] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference
on Medical image computing and computer-assisted intervention. Springer.
2015, pp. 234–241.

[206] Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386.

[207] Priya Roy and Chandreyee Chowdhury. “A survey of machine learning tech-
niques for indoor localization and navigation systems”. In: Journal of Intel-
ligent & Robotic Systems 101.3 (2021), pp. 1–34.

[208] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
In: arXiv preprint arXiv:1609.04747 (2016).

[209] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[210] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learn-
ing representations by back-propagating errors”. In: Nature 323.6088 (1986),
pp. 533–536.

[211] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Free-
man. “LabelMe: a database and web-based tool for image annotation”. In:
International journal of computer vision 77.1 (2008), pp. 157–173.

194

BIBLIOGRAPHY

[212] Kamel S Saidi, Thomas Bock, and Christos Georgoulas. “Robotics in con-
struction”. In: Springer handbook of robotics. Springer, 2016, pp. 1493–1520.

[213] Francesco Salvetti, Simone Angarano, Mauro Martini, Simone Cerrato, and
Marcello Chiaberge. “Waypoint generation in row-based crops with deep
learning and contrastive clustering”. In: Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2022, Greno-
ble, France, September 19–23, 2022, Proceedings, Part VI. Springer. 2023,
pp. 203–218.

[214] Francesco Salvetti, Vittorio Mazzia, Aleem Khaliq, and Marcello Chiaberge.
“Multi-image super resolution of remotely sensed images using residual at-
tention deep neural networks”. In: Remote Sensing 12.14 (2020), p. 2207.

[215] Arthur L Samuel. “Some studies in machine learning using the game of check-
ers”. In: IBM Journal of research and development 3.3 (July 1959), pp. 210–
229.

[216] Simo Särkkä. Bayesian filtering and smoothing. Vol. 3. Cambridge University
Press, 2013.

[217] Vladimir Savic, Erik G Larsson, Javier Ferrer-Coll, and Peter Stenumgaard.
“Kernel methods for accurate UWB-based ranging with reduced complex-
ity”. In: IEEE Transactions on Wireless Communications 15.3 (2015), pp. 1783–
1793.

[218] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash
Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin. “A
review of clustering techniques and developments”. In: Neurocomputing 267
(2017), pp. 664–681.

[219] Lorenz Schmid, David Salido-Monzú, and Andreas Wieser. “Accuracy as-
sessment and learned error mitigation of UWB ToF ranging”. In: 2019 In-
ternational Conference on Indoor Positioning and Indoor Navigation (IPIN).
IEEE. 2019, pp. 1–8.

[220] Jens Schroeder, Stefan Galler, Kyandoghere Kyamakya, and Klaus Jobmann.
“NLOS detection algorithms for ultra-wideband localization”. In: 2007 4th
Workshop on Positioning, Navigation and Communication. IEEE. 2007, pp. 159–
166.

[221] Christian Schuldt, Ivan Laptev, and Barbara Caputo. “Recognizing human
actions: a local SVM approach”. In: Proceedings of the 17th International
Conference on Pattern Recognition, 2004. ICPR 2004. Vol. 3. IEEE. 2004,
pp. 32–36.

195

BIBLIOGRAPHY

[222] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. “Ntu rgb+ d:
A large scale dataset for 3d human activity analysis”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 1010–
1019.

[223] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. “Real-Time Single Image
and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neu-
ral Network”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2016.

[224] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. “Real-time single image
and video super-resolution using an efficient sub-pixel convolutional neural
network”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 1874–1883.

[225] Cesar Andres Sierra Pardo, Marcello Chiaberge, Francesco Salvetti, and Si-
mone Angarano. “Remote sensing-based vineyard image segmentation with
deep computer vision for precision agriculture”. MA thesis. Politecnico di
Torino, 2022.

[226] Bruno Silva and Gerhard P Hancke. “IR-UWB-based non-line-of-sight iden-
tification in harsh environments: Principles and challenges”. In: IEEE Trans-
actions on Industrial Informatics 12.3 (2016), pp. 1188–1195.

[227] Bruno J Silva and Gerhard Petrus Hancke. “Ranging Error Mitigation for
Through-the-Wall Non-Line-of-Sight Conditions”. In: IEEE Transactions on
Industrial Informatics (2020).

[228] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
2015.

[229] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[230] Leslie N Smith. “Cyclical learning rates for training neural networks”. In:
2017 IEEE Winter Conference on Applications of Computer Vision (WACV).
IEEE. 2017, pp. 464–472.

[231] Liangchen Song, Gang Yu, Junsong Yuan, and Zicheng Liu. “Human Pose
Estimation and Its Application to Action Recognition: A Survey”. In: Jour-
nal of Visual Communication and Image Representation (2021), p. 103055.

196

BIBLIOGRAPHY

[232] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014),
pp. 1929–1958.

[233] Maximilian Stahlke, Sebastian Kram, Christopher Mutschler, and Thomas
Mahr. “NLOS Detection using UWB Channel Impulse Responses and Convo-
lutional Neural Networks”. In: 2020 International Conference on Localization
and GNSS (ICL-GNSS). IEEE. 2020, pp. 1–6.

[234] Anthony Stentz. “Optimal and efficient path planning for partially known
environments”. In: Intelligent unmanned ground vehicles. Springer, 1997,
pp. 203–220.

[235] Enrico Sutera., Vittorio Mazzia., Francesco Salvetti., Giovanni Fantin., and
Marcello Chiaberge. “Indoor Point-to-Point Navigation with Deep Reinforce-
ment Learning and Ultra-Wideband”. In: Proceedings of the 13th Interna-
tional Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
INSTICC. SciTePress, 2021, pp. 38–47.

[236] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. “Going deeper with convolutions”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 1–9.

[237] Ying Tai, Jian Yang, and Xiaoming Liu. “Image super-resolution via deep
recursive residual network”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2017, pp. 3147–3155.

[238] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. “Memnet: A persis-
tent memory network for image restoration”. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 4539–4547.

[239] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and
Lei Zhang. “Ntire 2017 challenge on single image super-resolution: Methods
and results”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition workshops. 2017, pp. 114–125.

[240] Radu Timofte, Rasmus Rothe, and Luc Van Gool. “Seven ways to improve
example-based single image super resolution”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 1865–
1873.

[241] Praveen Tiwari and Praveen Kumar Malik. “Design of UWB Antenna for
the 5G Mobile Communication Applications: A Review”. In: 2020 Interna-
tional Conference on Computation, Automation and Knowledge Management
(ICCAKM). IEEE. 2020, pp. 24–30.

197

BIBLIOGRAPHY

[242] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. “Training data-efficient image transformers
& distillation through attention”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 10347–10357.

[243] Michael Tschannen, Olivier Bachem, and Mario Lucic. “Recent advances in
autoencoder-based representation learning”. In: arXiv preprint arXiv:1812.05069
(2018).

[244] Iis Tussyadiah. “A review of research into automation in tourism: Launch-
ing the Annals of Tourism Research Curated Collection on Artificial Intelli-
gence and Robotics in Tourism”. In: Annals of Tourism Research 81 (2020),
p. 102883.

[245] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Instance nor-
malization: The missing ingredient for fast stylization”. In: arXiv preprint
arXiv:1607.08022 (2016).

[246] Diego Valsesia and Petros T Boufounos. “Universal encoding of multispectral
images”. In: 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2016, pp. 4453–4457.

[247] Diego Valsesia and Enrico Magli. “A novel rate control algorithm for on-
board predictive coding of multispectral and hyperspectral images”. In: IEEE
Transactions on Geoscience and Remote Sensing 52.10 (2014), pp. 6341–
6355.

[248] Aaron Van den Oord, Yazhe Li, Oriol Vinyals, et al. “Representation learning
with contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748 2.3
(2018), p. 4.

[249] Gül Varol, Ivan Laptev, and Cordelia Schmid. “Long-Term Temporal Convo-
lutions for Action Recognition”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 40.6 (2018), pp. 1510–1517.

[250] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you
need”. In: Advances in neural information processing systems 30 (2017).

[251] Ivan Vidović and Rudolf Scitovski. “Center-based clustering for line detection
and application to crop rows detection”. In: Computers and electronics in
agriculture 109 (2014), pp. 212–220.

[252] Quoc Duy Vo and Pradipta De. “A survey of fingerprint-based outdoor
localization”. In: IEEE Communications Surveys & Tutorials 18.1 (2015),
pp. 491–506.

[253] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Efty-
chios Protopapadakis. “Deep learning for computer vision: A brief review”.
In: Computational intelligence and neuroscience 2018 (2018).

198

BIBLIOGRAPHY

[254] Boyang Wan, Wenhui Jiang, Yu-Ming Fang, Minwei Zhu, Qin Li, and Yang
Liu. “Revisiting image captioning via maximum discrepancy competition”.
In: Pattern Recognition 122 (2022), p. 108358.

[255] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. “Real-esrgan:
Training real-world blind super-resolution with pure synthetic data”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision.
2021, pp. 1905–1914.

[256] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. “Recovering real-
istic texture in image super-resolution by deep spatial feature transform”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2018, pp. 606–615.

[257] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu
Qiao, and Chen Change Loy. “Esrgan: Enhanced super-resolution genera-
tive adversarial networks”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018.

[258] Xuanming Wang and Gautam Srivastava. “The security of vulnerable senior
citizens through dynamically sensed signal acquisition”. In: Transactions on
Emerging Telecommunications Technologies (2021), e4037.

[259] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. “Image
quality assessment: from error visibility to structural similarity”. In: IEEE
transactions on image processing 13.4 (2004), pp. 600–612.

[260] Daniel Weinland, Remi Ronfard, and Edmond Boyer. “Free viewpoint action
recognition using motion history volumes”. In: Computer vision and image
understanding 104.2-3 (2006), pp. 249–257.

[261] Jinming Wen, Li He, and Fumin Zhu. “Swarm robotics control and commu-
nications: Imminent challenges for next generation smart logistics”. In: IEEE
Communications Magazine 56.7 (2018), pp. 102–107.

[262] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. “Cbam:
Convolutional block attention module”. In: Proceedings of the European con-
ference on computer vision (ECCV). 2018, pp. 3–19.

[263] Yuxin Wu and Kaiming He. “Group normalization”. In: Proceedings of the
European conference on computer vision (ECCV). 2018, pp. 3–19.

[264] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. “Unsupervised
feature learning via non-parametric instance discrimination”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 3733–3742.

[265] Henk Wymeersch, Stefano Maranò, Wesley M Gifford, and Moe Z Win. “A
machine learning approach to ranging error mitigation for UWB localiza-
tion”. In: IEEE transactions on communications 60.6 (2012), pp. 1719–1728.

199

BIBLIOGRAPHY

[266] Lu Xia, Chia-Chih Chen, and Jake K Aggarwal. “View invariant human
action recognition using histograms of 3d joints”. In: 2012 IEEE computer
society conference on computer vision and pattern recognition workshops.
IEEE. 2012, pp. 20–27.

[267] Xuesu Xiao, Bo Liu, Garrett Warnell, and Peter Stone. “Motion planning
and control for mobile robot navigation using machine learning: a survey”.
In: Autonomous Robots (2022), pp. 1–29.

[268] Zhuoling Xiao, Hongkai Wen, Andrew Markham, Niki Trigoni, Phil Blun-
som, and Jeff Frolik. “Non-line-of-sight identification and mitigation using
received signal strength”. In: IEEE Transactions on Wireless Communica-
tions 14.3 (2014), pp. 1689–1702.

[269] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. “Empirical evaluation of
rectified activations in convolutional network”. In: arXiv preprint arXiv:1505.00853
(2015).

[270] Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial temporal graph convo-
lutional networks for skeleton-based action recognition”. In: Proceedings of
the AAAI conference on artificial intelligence. Vol. 32. 2018, pp. 1113–1122.

[271] Ru Ying, Ting Jiang, and Zhihao Xing. “Classification of transmission envi-
ronment in UWB communication using a support vector machine”. In: 2012
IEEE Globecom Workshops. IEEE. 2012, pp. 1389–1393.

[272] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu, Chunhua Shen, and
Nong Sang. “Bisenet v2: Bilateral network with guided aggregation for real-
time semantic segmentation”. In: International Journal of Computer Vision
129.11 (2021), pp. 3051–3068.

[273] Jiahui Yu, Yuchen Fan, Jianchao Yang, Ning Xu, Zhaowen Wang, Xinchao
Wang, and Thomas Huang. “Wide activation for efficient and accurate image
super-resolution”. In: arXiv preprint arXiv:1808.08718 (2018).

[274] Yuhui Yuan, Xiaokang Chen, Xilin Chen, and Jingdong Wang. “Segmenta-
tion transformer: Object-contextual representations for semantic segmenta-
tion”. In: arXiv preprint arXiv:1909.11065 (2019).

[275] Linwei Yue, Huanfeng Shen, Jie Li, Qiangqiang Yuan, Hongyan Zhang, and
Liangpei Zhang. “Image super-resolution: The techniques, applications, and
future”. In: Signal Processing 128 (2016), pp. 389–408.

[276] Faheem Zafari, Athanasios Gkelias, and Kin K Leung. “A survey of indoor
localization systems and technologies”. In: IEEE Communications Surveys
& Tutorials 21.3 (2019), pp. 2568–2599.

200

BIBLIOGRAPHY

[277] Sergey Zagoruyko and Nikos Komodakis. “Paying More Attention to At-
tention: Improving the Performance of Convolutional Neural Networks via
Attention Transfer”. In: 5th International Conference on Learning Represen-
tations, ICLR 2017. 2017.

[278] Matthew D Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv
preprint arXiv:1212.5701 (2012).

[279] Zhuoqi Zeng, Rubing Bai, Lei Wang, and Steven Liu. “NLOS identification
and mitigation based on CIR with particle filter”. In: 2019 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE. 2019, pp. 1–
6.

[280] Roman Zeyde, Michael Elad, and Matan Protter. “On single image scale-
up using sparse-representations”. In: International conference on curves and
surfaces. Springer. 2010, pp. 711–730.

[281] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver
Wang. “The unreasonable effectiveness of deep features as a perceptual met-
ric”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 586–595.

[282] Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng, Chunjing Xu, and
Yunhe Wang. “Data-free knowledge distillation for image super-resolution”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2021, pp. 7852–7861.

[283] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun
Fu. “Image super-resolution using very deep residual channel attention net-
works”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 286–301.

[284] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. “Resid-
ual dense network for image super-resolution”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, pp. 2472–2481.

[285] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. “Loss functions for
image restoration with neural networks”. In: IEEE Transactions on compu-
tational imaging 3.1 (2016), pp. 47–57.

[286] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. “Object detec-
tion with deep learning: A review”. In: IEEE transactions on neural networks
and learning systems 30.11 (2019), pp. 3212–3232.

[287] Fengda Zhu, Yi Zhu, Vincent Lee, Xiaodan Liang, and Xiaojun Chang.
“Deep learning for embodied vision navigation: A survey”. In: arXiv preprint
(2021).

201

BIBLIOGRAPHY

[288] Jurgen Zoto, Maria Angela Musci, Aleem Khaliq, Marcello Chiaberge, and
Irene Aicardi. “Automatic path planning for unmanned ground vehicle us-
ing uav imagery”. In: International Conference on Robotics in Alpe-Adria
Danube Region. Springer. 2019, pp. 223–230.

202

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

	I Fundamentals
	Introduction
	Contributions
	How to read this work

	Basics of Machine Learning
	Clustering
	K-means
	DBSCAN

	Artificial Neural Networks
	Artificial Neuron
	Multi-layer Perceptron
	Activation functions
	Training an Artificial Neural Network
	Regularization techniques

	Other ANN architectures
	Convolutional Neural Networks
	Transformer-based networks

	Edge execution of ANN

	II Navigation
	A Deep Learning Driven Pipeline for Autonomous Navigation in Row-based Crops
	The pipeline
	Real-world experimentation

	RAMS: Multi-Image Super-Resolution using Residual Attention Deep Neural Networks
	Methodology
	Network architecture
	Residual attention blocks
	Temporal reduction blocks
	Training process

	Experiments
	The Proba-V Dataset
	Data pre-processing
	Experimental settings
	Quantitative results
	Qualitative results

	Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering
	Methodology
	Backbone design
	Waypoint estimation
	Waypoint clustering

	Experimental Setting
	Dataset description
	Model training

	Results
	Waypoint estimation
	Waypoint clustering
	Qualitative results

	III Perception
	A Real-Time Apple Detection System at the Edge
	Methodology
	Network architecture
	A custom YOLOv3-tiny for small objects detection

	Experiments
	Dataset description
	Experimental setting
	Quantitative results: detection performance
	Quantitative results: embedded implementation
	Qualitative results

	Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge
	The DeepUWB dataset
	Dataset analysis

	Methodology
	Network design
	Network optimization and quantization techniques

	Experiments
	Experimental setting
	Quantitative results

	AcT: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition
	The MPOSE2021 dataset
	Methodology
	Experiments
	Experimental settings
	Action recognition on MPOSE2021
	Model introspection
	Real-time performance

	Generative Adversarial Super-Resolution at the Edge with Knowledge Distillation
	Methodology
	Network architecture
	Training methodology
	Knowledge distillation
	Model quantization
	Model interpolation

	Experiments
	Experimental setting
	Real-time performance
	Super-Resolution results
	Application to image transmission in mobile robotics

	Conclusions
	Future works

	Bibliography

