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Abstract

The propagation properties of surface acoustic waves (SAWs) in laminated structures have
important applications for research in areas such as SAW devices, civil engineering and
geological exploration. For more complex layered structures, which generally need to
be solved by numerical analysis, this paper combines the Rayleigh-Ritz method and the
transfer matrix method to analyse the propagation characteristics of low-order SAWs in a
two-dimensional finite elastic structure. Since the finite element method (FEM) is one of
the most commonly used numerical calculation tools in the design and analysis of device
structures, with its advantages of simplicity and ease of operation, this paper uses the Carrera
Unified Formulation (CUF) framework combined with viscous-spring artificial boundaries to
analyse the propagation properties of low-order SAWs in finite three-dimensional layered
structures. The compact stiffness matrix form constructed using the CUF can effectively
reduce the computational cost of finite elements while ensuring computational reliability.
This paper presents a more systematic study of several fundamental wave problems in layered
structures, to provide valuable theoretical references for the application and design of SAWs
devices. Both methods can be used to characterise the propagation of SAW in finite elastic
plates covered with periodic electrodes, with the Rayleigh-Ritz method being more applicable
to models with relatively simple structures, and finite element calculations can be performed
using CUF for models with more complex cover shapes. The main contents and results of
this paper are as follows:

(1) The propagation characteristics of SAWs in an isotropic elastic plate are investigated
by the Rayleigh-Ritz method and by using a combination of the Legendre polynomial
and a trigonometric form as a displacement function. The boundary conditions of the
structure are taken into account in the trial function and the corresponding charac-
teristic equations are obtained by substituting Lagrangian functions. The effects of
boundary conditions and plate thickness on the dispersion characteristics, modes, and
corresponding stress distributions of the low-order SAWs in the structure are investi-
gated by numerical calculations. The study shows that the propagation characteristics
of the low-order SAWs in the plate are related to the plate thickness; in the present
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model, the boundary condition on the bottom surface of the plate has little effect on
the wave velocity of the low-order SAWs in the structure, but has a certain degree of
influence on the modes and the corresponding stress distributions.

(2) The effects of cover layer material, layer thickness, and each boundary condition on
the dispersion characteristics of low-order SAWs in a finite elastic structure with a
cover layer are discussed, taking into account the boundary conditions at the inter-
section. The results show that the cladding material has a significant effect on the
wave velocities of the low-order SAWs in the structure; the cladding thickness within a
certain range affects the wave velocities of the low-order SAWs in the structure; the
stress boundary conditions at the intersection have a significant effect on the modes
and the corresponding stress distributions of the low-order SAWs.

(3) Combining the Rayleigh-Ritz method and the transfer matrix, the effects of the cover
material, layer thickness, and each boundary condition on the dispersion characteristics
of low-order SAWs in a finite elastic structure with a cover layer that does not com-
pletely cover the substrate layer are discussed. The results show that the free boundary
conditions on both sides of the cover layer perpendicular to the wave propagation
direction need to be considered in the calculation of this model, otherwise, numerical
results consistent with the case where the cover layer is of equal width with the sub-
strate layer are obtained; compared with the above-calculated model, the number of
low-order SAW velocities in this calculated model varies in the same range of cover
layer thicknesses.

(4) The effect of the number of electrodes and materials on the dispersion characteristics
of low-order SAWs in a finite elastic plate covered with periodic electrodes with a
fixed bottom edge of the substrate is discussed. The results show that the number
of electrodes has almost no effect on the wave velocities of the low-order SAWs
in the adopted model with the same structure, dimensions, and materials, but that
different combinations of cover materials have a significant effect on the dispersion
characteristics of the low-order SAWs in the structure.

(5) A compact stiffness matrix was constructed from the one-dimensional beam model of
CUF and a viscous-spring artificial boundary was established at the model boundary to
analyse the propagation characteristics of low-order SAWs in a finite three-dimensional
layered structure. The results show that the size of the cover layer has a certain influence
on the wave velocities of the low-order SAWs in the structure; in this computational
model, the thickness of the cover layer has a relatively large influence on the wave
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velocities of the low-order SAWs in the structure, while the length of the cover layer
has an extremely small influence on the wave velocities of the low-order SAWs in the
structure.

Keywords-laminated structure, low-order SAWs, Rayleigh-Ritz method, the transfer
matrix, CUF, viscous-spring artificial boundary
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Chapter 1

Introduction

1.1 Foreword

SAW was discovered by Lord Rayleigh (John William Strutt) during his research into seismic
waves and did not receive much attention until R. M. White and F. W. Voltmer discovered
that metal interdigital transducer (IDT) could excite surface waves in piezoelectric materials,
and a variety of SAW devices began to emerge. Because the velocity of SAW is generally
five magnitudes slower than that of electromagnetic waves, and has the advantages of stable
propagation and easy to sample and process, SAW devices have a wide range of applications
in industry, communications and other fields.

SAWs are generally referred to as elastic waves that are generated near the surface of an
elastic solid and propagate along the surface or interface, and in this paper we are focusing
on Rayleigh waves. As a type of SAW, Rayleigh waves are influenced by longitudinal and
vertical shear components in their travel, and their particles exhibit an elliptical trajectory,
and their energy decays exponentially with increasing distance to the elastic object surface,
generally concentrated in a wavelength range near the elastic solid surface.

Unlike Love and Lamb waves, Rayleigh waves are not bulk waves, but because of their
longitudinal and vertical motion properties, when a medium is attached to the surface of an
elastic structure, the medium has an effect on the mode and velocity of the Rayleigh waves
in the structure, and this is the mechanism by which the SAW sensor works.

For decades, a large number of studies have been carried out on SAWs in semi-infinite
space. For relatively simple models, the propagation characteristics of SAWs under the
corresponding models can be analysed by analytical methods, based on the wave equation
and taking into account the relevant boundary conditions. However, for more complex
boundary conditions, it is often impossible to obtain an analytical solution, and although
the FEM method is an effective tool for analysing such problems, it requires a high level of
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computer CPU and memory when the structure is complex. In this paper, it is argued that by
simplifying the model and extracting the unitary structure and setting reasonable boundary
conditions, the Rayleigh-Ritz method is used to study the unitary structure.

In this paper, the propagation characteristics of low-order SAWs in a structure under
the influence of an overlying thin layer are considered, taking an isotropic structure as the
object of study. The paper adopted the Rayleigh-Ritz method by setting a reasonable form of
displacement function and considering the boundary conditions corresponding to each part
of the structure, and then obtaining the transfer matrix according to the boundary conditions
among the parts of the structure, through which the sections of the structure are combined
into a whole for consideration, so as to analyse the influence of the material and thickness of
the attached layer on the wave velocity and mode of the SAWs in the structure. In addition,
the influence of the various boundary conditions in the structure on the calculation results
is analysed systematically. In addition to analysing the SAWs propagation characteristics
in a two-dimensional structure with a covering layer by the Rayleigh-Ritz method, a three-
dimensional model of the structure covered with a thin metal layer is constructed using
the one-dimensional beam model of the CUF, and a viscous-spring artificial boundary is
established to enable the structure to analyse the SAWs propagation. The effect of the thin
layer on the propagation characteristics of the SAWs in the structure is analysed by finite
element calculations in a three-dimensional geometry model.

1.2 Background

In recently years, with the rapid development of numerical computation techniques, FEM
plays an increasingly important role in the analysis of mechanical phenomena in complex
structures, for example, in the design and performance analysis of SAWs devices, where FEM
is one of the most popular tools on the market today [2–19]. However, during finite element
calculations, the three-dimensional computational model often requires a large amount of
computer RAM and CPU. In order to reduce computational costs, the structure is often
simplified to a two-dimensional model when designing devices and conducting studies on the
wave propagation characteristics in the device, and the analysis is generally performed only
through the structure of intercepted units [9, 20–27]. For relatively simple structural models,
the propagation properties of SAWs in structures can generally be studied by analytical,
semi-analytical, and numerical analysis methods. Enzevaee and Shodja considered the effects
of the surface and the intersection between layers, and used the Wentzel-Kramers- Brillouin
singular uptake theory to analyze the dispersion relations of shear wave in structures covered
with ultrathin functional gradient piezoelectric layers on a transversely isotropic semi-infinite
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space [28]; Wu and Dzenis analyzed the dispersion relations of antiplanar SAWs propagating
in an elastic half-space coated with anisotropic layers by means of the Stroh formula [29];
Ezzin et al. analysed the propagation characteristics of Rayleigh waves in a structure covered
with a piezoelectric layer on a piezomagnetic material based on the Stroh formula, taking
into account the continuity of each physical quantity at the layer-layer interface [30]; Salah
et al. investigated the propagation characteristics of Rayleigh waves in a structure covered
with a layer of a functional gradient piezoelectric material on a semi-infinite homogeneous
medium by means of the stiffness matrix method and the ordinary differential equation [31].

In geographical studies, one of the main tools for geological exploration is through the
analysis of the propagation properties of SAWs (generally referred to as: elastic waves) in
multi-layered structures [32–40]. In contrast to SAW devices, ground is often modelled in
semi-infinite space and is also mainly studied using analytical, semi-analytical and numerical
analysis methods. Leong and Aung proposed a new forward modelling method, the weighted
average forward modelling method, to obtain Rayleigh waves in multilayered soils [36];
Adler used the matrix method to analyse SAWs in multilayered structures [41, 42]; Haskell
used a matrix form proposed by Thomson to obtain the phase velocity dispersion equation in
multilayered media [43]; Smeulders proposed an exact stiffness formulation to analyse tran-
sient and steady-state wave propagation properties in multilayered dry, saturated/unsaturated
isotropic poroelastic media [44]; Chai et al. used the thin-layer method to analyse saturated
SAWs propagation properties in a multi-layered porous semi-infinite space [45]; Kuznetsov
used the Weiskopf model to analyse the dispersion properties of Rayleigh-Lamb waves in
a structure with a sand layer over an isotropic substrate [46]; Philippacopoulos proposed
to calculate Rayleigh waves in partially saturated layered semi-infinite space based on Biot
theory [47]; The problem of SAWs propagation in multilayered elastic structures is analysed
mainly by linking the layers to each other through boundary conditions at each intersection
so that they form a whole [48].

In this paper, the propagation properties of SAWs in finite layered structures in two
and three dimensions are analysed by the Rayleigh-Ritz method with a transfer matrix and
the CUF with a viscous-spring artificial boundary, respectively [49–64]. Stoklasová et al.
showed that the Rayleigh-Ritz method can be applied to calculate the velocity of SAWs
propagating in the general direction of an arbitrarily symmetric anisotropic medium, and that
a reasonable setting of the displacement function can transform the problem of solving the
velocity of SAWs can be transformed into a simple linear characteristic equation [65]. In
FEM calculations, mechanical phenomena in a wide range of 3D geometries can be calculated
analytically by constructing stiffness matrices from the CUF, a hierarchical formulation that
provides a framework and a fine-grained structural theory through a variable kinematic
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description [66–77].Petrolo et al. studied the wave propagation properties in a higher-order
1D model structure that model was obtained based on the beam model construction of the
CUF, and the control equations were obtained based on the principle of virtual work and
the FEM to analyse the wave propagation properties in laminated beam and layered annular
cylindrical structures [78].

In the FEM analysis, a finite structure can be converted into a semi-infinite/infinite space
by setting reasonable boundary conditions. Among them, the Perfect Matching Layer (PML)
absorption boundary and the viscous-spring artificial boundary are both more widely used,
especially in the studies of wave propagation [79–90]. The PML is a virtual anisotropic
medium introduced near the boundary set up so that waves entering the region are gradually
consumed and cannot be reflected back into the computational space [81, 91]; the viscous-
spring artificial boundary is a system of springs and dampers set up at the unit nodes of the
boundary, also with the aim of consuming waves released from the computational body by
springs and damping to avoid their reflection back into the computational body [87, 92].

In this paper, the propagation characteristics of elastic waves in finite isotropic structures
(an elastic thick plate, a finite structure covered with a thin layer, a finite laminated structure
with the width of the cover layer smaller than the bottom plate, a finite structure with T-shaped
cover layer) are investigated.

1.3 Current status and applications of domestic and inter-
national research

Since Rayleigh’s discovery of SAWs propagating on elastic solid surfaces, the propagation
properties of SAWs in semi-infinite space with various boundary conditions and different
media materials have been studied since then [93–101]; Sharma analysed the propagation
properties of Rayleigh waves in a viscoelastic medium [96]; Pillarisetti et al. first analyzed
the effect of Mindlin boundary conditions on Rayleigh wave propagation in a semi-infinite
elastic space by analytical methods, and then used COMSOL to numerically simulate the
change of waves in the structure after adding Mindlin boundaries to different regions of the
free surface, with a view to controlling low-frequency surface waves by establishing relevant
boundary conditions [102]; Tian et al. used the Stroh method, combined with boundary
conditions, to transform the fluctuation problem in a piezoelectric semiconductor elastic
plate into a linear eigenvalue problem, and numerically analysed the effects of boundary
conditions, plate thickness, etc. on the elastic waves in the plate [103].
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The propagation properties of SAWs in multilayer structures have been of continuous
interest in studies on SAWs in fields, such as: SAW devices and geophysical exploration,
mainly for semi-infinite layered models [33, 38, 41, 43, 45, 101, 104, 105]. Based on
the properties of the SAWs inherent in it, it has a wide range of applications in SAW
devices, such as filters, resonators, and sensors [12, 15, 18, 106]. The main study on SAW
devices is the propagation characteristics of SAWs in a unitary structure with a piezoelectric
material as a substrate and various conductive materials as electrodes [107–111]. The
study of SAWs propagation properties in multilayer structures has also been carried out
by experimental, analytical, semi-analytical and numerical methods. The analytical and
semi-analytical methods are mostly used for simpler structures [43, 47, 104, 110, 112], while
the experimental and numerical methods are more general for relatively complex structures.
For device design, the covering layer, i.e. the electrode layer, is generally discontinuous,
and this structure is more complex than the semi-infinite layered spatial structure, making
it difficult to obtain a direct analytical solution, thus many scholars studied the unitary or
complete SAW device structure by means of FEM [4, 15], coupling-of-modes (COM) [105],
etc. Wang and Tang simulated the three-dimensional propagation of Rayleigh waves in a
medium with directional cracks by the staggered-grid finite difference method [113]; Tiwary
et al. analyzed and designed a SAW device by finite element software and simplified the
model to two dimensions for calculation [11]; Endoh et al. developed a simplified two-
dimensional SAW device model and used the FEM and frequency domain analysis to analyze
the SAWs propagation and excitation in a metal fence structure of finite thickness [3]; Goto
et al. used a combination of finite element and COM methods to design the structure of
TC-SAW devices [114]; Buchner et al. considered the structure of a SAW device as an
infinite structure along the wave propagation direction and used the FEM to analyse the
propagation and excitation of SAW devices through periodic boundary conditions to calculate
parameters such as eigenfrequencies and wave velocities in one of the periodic structures
[115]. To the best of the authors’ knowledge, there has been no systematic study of the
propagation properties of low-order SAWs in finite periodic elastic structures covered with a
metal layer by the Rayleigh-Ritz method.

As an energy method, the Rayleigh-Ritz method can not only analyse the vibration of
individual structures, it can also be applied to the vibration analysis of multi-unit assemblies,
multilayers and other structures [116–124]. The eigenfrequencies of multi-layered/multi-
body structures are analysed by the Rayleigh-Ritz method, which generally uses two ways
to obtain the characteristic equations of the whole structure, firstly by setting up/getting
a displacement function that satisfies the boundary conditions/continuity conditions at the
intersection interfaces: Jin et al. set up a displacement function for a sandwich-type beam
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based on Reddy’s higher-order shear deformation theory, and by means of a displacement
continuity on the contact surfaces between the layers, and the displacement function of the
middle layer was constructed on the basis of the displacements of the top and bottom layers,
and then the corresponding energy integral was obtained by using the relationship between
the spring boundary and the structure, and the characteristic equations of the whole structure
could be obtained after finishing according to the Rayleigh-Ritz method [125]; Zhao et al.
used the Ritz method to calculate the propagation characteristics of bulk waves in a structure
with a thin piezoelectric layer overlying the middle region of a rectangular silicon layer, where
the displacement of the upper and lower contact surfaces was also considered continuously
[126]; Zhao et al. proposed a quantitative spectral prediction method and used it to study the
coupled vibration behavior of piezoelectric multilayers at ultra-high frequencies by setting up
a reasonable displacement function model [127]; D’Ottavio et al. proposed the Sublaminate
Generalized Unified Formulation (SGUF) to construct the generalized displacements of
the layers in a composite plate containing piezoelectric layers, and then analyzed the free
vibration of the structure by the Ritz method [128]; Li and Fu introduced the Heaviside
step function in the displacement function, and considered the displacement continuous and
simply-supported in the establishment of the displacement function boundary conditions, by
which the buckling control equations of the piezoelectric layered cylindrical shell structure
were obtained [129]. Another is to obtain the transfer matrix by organising the boundary
conditions and using the transfer matrix to relate the various parts to obtain the characteristic
equations of the whole structure, such as: Woodcock proposed an advanced general modelling
method for multilayer composites with arbitrary boundary conditions based on the Rayleigh-
Ritz method, combining the first shear deformation theory of a single layer and the multilayer
method, by which the shear stress at the intersection between layers and the The transfer
matrix was obtained through the shear stress and displacement continuity between the plies,
which can be applied to analyse the eigenfrequencies of multilayer composites with arbitrary
boundary conditions [130]; Zhou et al. analysed the eigenfrequencies of a toroidal plate
structure fixed by a rigid medium through the Ritz method, and obtained the conversion
relationship between the unknown coefficients through the displacement continuity between
the two parts to obtain the transfer matrix, which was used to integrate the two independent
parts into The transfer matrix was used to integrate the two independent parts into a whole,
thus obtaining the characteristic equations of the whole structure [131].

The transfer matrix has a wide range of applications in problems such as vibrations
of continuous systems, where it is mainly used to establish the sequential relationships
between the various parts of the system by means of boundary conditions in the structure,
thus organising them to obtain a transfer matrix [3, 132, 133]. Initially, the transfer matrix
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method was mainly used to analyse vibrations in one-dimensional linear elastic structures
[134], but with the development of computer technology, the Myklestad method evolved
into the traditional transfer matrix method and was further developed for the analysis of
structures composed of multiple mechanical elements [135]; Rui et al. proposed a linear
transfer matrix for multi-body systems based on the traditional transfer matrix method to
analyse the mechanical properties of complex linear multi-mechanical component systems
[136]; Subrahmanyam and Garg analysed the stresses in beams under various possible
boundary conditions (shear deformation, rotational inertia, spring support, discontinuities
in mass and stiffness distribution, etc.) by means of transfer matrices [137]; Zhan et al.
investigated the reflection, transmission and absorption properties of single, double and
multilayer graphene by means of transfer matrices, optical properties such as transmission
and absorption by means of transfer matrices [138]; Lee and Lee used the transfer matrix
method in the calculation of the bending vibration properties of Bernoulli-Euler beams with
different taper ratios [139]; Attar used the transfer matrix method in the study of the vibration
problems of stepped beams with an arbitrary number of transverse cracks and general form
boundary conditions by means of the analytical method to obtain the crack The general form
of the characteristic equation of the beam is obtained by means of the transfer matrix as a
function of information on frequency, crack characteristics (size and location), boundary
conditions, etc. [140]; Chen et al. analyzed wave propagation in magneto-electro-elastic
multilayers using the global transfer matrix [141]; Gao et al. investigated the propagation
characteristics of SAWs in a ZnO/Si-Bi layer structure using the transfer matrix method [142];
Xu and Datta related the layers by means of a transfer matrix to obtain the characteristic
equations of the overall structure to analyze the SAWs dispersion properties in a three-layer
plate [143]; Vinh et al. proposed a transfer matrix that can be used to calculate the orthogonal
layers in a simpler form than the conventional transfer matrix, and this matrix will be useful
to calculate the wave propagation in an elastic half-space covered by an arbitrary number of
different homogeneous orthogonal layers [144]; Liu and Fan used the transfer matrix method
to analyse the propagation of Rayleigh waves in a layered semi-infinite space [38]. The
transmission matrix method is generally able to reduce the physical degrees of freedom of the
system, which is advantageous for reducing the computational cost. The method constructs
the matrix of the whole system by matrix multiplication, which may lead to an increase in
the accumulation of computational errors as the number of divisions in the system increases
[135].

The FEM has been used quite extensively in the study of wave propagation related
problems [80, 145]. In order to analyse wave propagation problems in infinite/semi-infinite
space, it is necessary to simplify the model by setting reasonable boundaries to avoid the
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false reflections on the boundary of the finite element model [4, 85]. Liu and Jerry proposed
to introduce progressive damping (an exponentially increasing function) into a part of the
cell in front of the finite boundary of the finite element model to reduce wave reflections,
a scheme validated by Abaqus/Standard software calculations [146]; Huang et al. set up
PMLs at the ends and bottom of the finite element model to ’absorb’ waves at the boundary,
and analysed the dispersion properties of surface waves at discontinuities between periodic
gratings using traveling wave excitation and hierarchical cascading techniques [147]; Harari
and Hughes showed that the Galerkin/least squares method with DtN boundary conditions
was designed to show superiority in SAW problems, providing accurate solutions at relatively
low grid resolution and allowing numerical damping of unresolved waves [148]; Wang and
Zhang used a high-precision staggered-grid finite-difference numerical method to simulate
Rayleigh wave propagation in an elastic medium with discrete subsurface fractures, and
used PML to implement absorption boundary conditions in the simulation interval [149]; Hu
et al. applied the Nearly Perfect Matching Layer (NPML) as the absorption boundary for
SAW models in three dimensions, and the NPML formulation deviates from the standard
PML by inaccurate changes in variables, but this change does not actually affect the wave
propagation in the desired region, which reduces the computational cost compared to using
the PML [150]; Song and Li used the viscous-spring artificial boundary to numerically
simulate the explosion process of a concentrated charge in a mass of soil and found that the
equivalent viscous-spring boundary can effectively reduce the boundary effects and has a
high performance in soil [86]; Liu et al. applied artificial viscous-spring boundary conditions
to the analysis of wave propagation in a three-dimensional land structure, where the boundary
can act directly on the nodes of the finite elements and "absorb" the waves on the boundary
by setting a reasonable viscous-spring coefficient to reduce the interference caused by false
reflections at the boundary [89].

Through recent developments, it is easy to observe that new frameworks can be con-
structed using CUF, enabling finite element calculations of metals and multilayer composites
under mechanical, thermal, electrical and magnetic loads in one-, two- and three-dimensional
models [151, 68, 70, 71, 149, 152–155]. Carrera et al. used a one-dimensional high-order
beam model combined with the Lagrangian multiplier method to perform a global/local
analysis of variable kinematic models for unilateral simply-supported square beam structures,
cylindrical thin-walled structures and bridge-type structures [74]; Li et al. introduced a
Node-Dependent Kinematics (NDK) shell finite element formulation for steady-state ther-
modynamic analysis of laminar structures based on the CUF framework to study multilayer
shell structures under coupled thermodynamic FE models [156]. Carrera et al. successfully
analysed the non-linear strain-displacement relationship of the structure using CUF by imple-
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menting higher order one-dimensional finite units distributed along the thickness direction of
a two-dimensional thin-walled beam structure [69]; Zappino et al. used equivalent single-
layer (ESL) and multilayer (Layer-Wise, LW) models and analysed the kinematic model
of multilayer plates by means of a two-dimensional model in the CUF framework, and the
continuity of transverse stresses between the interfaces of the layers was satisfied when an
LW model with a sufficient number of expansion terms was used [155]; Wu et al. used CUF
to implement a refined and layered model to study interlayer stresses in composite flexible
structures [157]; Carrera et al. constructed a non-linear model through the CUF framework
to study the variation of natural frequencies and associated modalities of composite beam
structures under large displacements/rotations [158]; Petrolo et al. analysed the wave propa-
gation properties of laminated beams and layered toroidal cylindrical structures based on the
1D beam model of the CUF by using an implicit algorithm based on the Newmark method
and a dissipative explicit algorithm based on the Tchamwa-Wielgosz method to obtain direct
time integrals of the equations of motion [78]; Entezari et al. applied refined finite units
based on the Lord-Shulman generalized theory of thermoelasticity in a three-dimensional
model in the CUF framework to analyse the problem of thermoelastic wave propagation in
discs made of functionally graded materials [159]. The viscous-spring artificial boundary is
well integrated with the FEM, and since it acts directly on the nodes of the finite element and
corresponds to the nodes of the CUF element, it can be introduced into the CUF to study the
propagation of low-order SAWs in finite structures.

1.4 Purpose and content of the study

1.4.1 Purpose of the study

In this paper, we study the propagation of low-order SAWs in finite isotropic elastic structures
based on the extended Rayleigh-Ritz method and the CUF framework with a viscous-spring
artificial boundary. The effects of boundary conditions, layer thickness and cover material on
the dispersion characteristics of low-order SAWs in structures with less than the substrate are
also discussed.

1.4.2 The content of the study

Chapters 2 to 5 of this paper mainly adopt the Rayleigh-Ritz method, and in Chapter 6 the
FEM in the CUF framework is used to investigate the propagation characteristics of low-order
SAWs in the finite elastic structures, as shown in Fig 1.1, and the main contents of the each
chapter are:
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Chapter 1 Introduction, provides a brief overview of the relevant theories used in this paper and
their applications, introduces the background to the research, and presents the purpose
and content of the research.

Chapter 2 The propagation characteristics of low-order Rayleigh waves in finite elastic plates, this
chapter uses a combination of Legendre polynomials and trigonometric functions as
displacement functions, and the boundary conditions of the structure are considered in
the trial functions. The effects of boundary conditions, plate thickness on the dispersion
characteristics, displacement modes and stress distribution of low-order SAWs in the
structure are analysed numerically by the Rayleigh-Ritz method.

Chapter 3 The propagation characteristics of low-order SAWs in finite structures covered with
thin layers on an isotropic substrate are considered, considering that the structure
consists of two parts, a transfer matrix is obtained based on the boundary conditions at
the intersection to analyse the effect of each boundary condition, the thickness of the
cover and the material on the dispersion characteristics, the displacement modes and
the corresponding stress distribution of the low-order Rayleigh waves in the structure.

Chapter 4 The propagation characteristics of SAWs in a periodic isotropic structure with a finite
layer, considering that the width of the cover layer is smaller than that of the substrate
layer, the structure is divided into four parts, several sets of boundary conditions
are considered and the corresponding transfer matrices are obtained to construct the
characteristic equations of the whole structure..

Chapter 5 The propagation of low-order SAWs in a finite elastic plate covered with periodic
electrodes. On the basis of the previous two chapters, the influence of the number of
electrodes and material combinations on the dispersion characteristics of low-order
sound surface waves in the structure is numerically analysed using a computational
model with the bottom edge of the substrate fixed and considering the stress boundary
conditions on the free surface of the cover layer and the stress continuum at the
interface between the upper and lower layers.

Chapter 6 Analysis of the propagation properties of sound surface waves in finite structures
by CUF, using a one-dimensional beam model in the CUF framework, a compact
stiffness matrix form is constructed and a viscoelastic artificial boundary is placed
on the boundary to allow the analysis of the propagation properties of SAWs in the
finite structures. The wave velocities and corresponding displacement modes of low-
order SAWs in a three-dimensional finite laminar structure are obtained at a low
computational cost.
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Chapter 7 Summary of the full text and outlook for future work.
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Fig. 1.1 The research framework



Chapter 2

Propagation properties of SAWs in the
finite elastic plate

Rayleigh waves are a type of SAWs formed by coupling waves of compression (P-waves)
and shear (S-waves), which propagate mainly at the surface and interface of a medium
and whose energy decays rapidly with increasing depth. Since Rayleigh’s discovery of
Rayleigh waves during his studies of seismic waves, research on the geographical aspects
of Rayleigh waves has gradually begun to emerge. Rayleigh waves are often generated at
low frequencies in earthquakes, and although their speed is less than that of a P-wave or
an S-wave, their amplitude is often greater than either, so they can cause more damage to
the surface. Similarly, scholars can use its propagation stability to analyse land structure,
explore for oil and other research activities. In an isotropic homogeneous medium, the wave
velocity of Rayleigh waves is basically determined by the material, but with the development
of material preparation technology, the research results on the characteristics of Rayleigh
wave propagation in different media are becoming more and more abundant; as Rayleigh
waves have the characteristics of stability and easy access in signal transmission, they also
have a wide range of applications in communication, industrial testing and other fields.

For the propagation characteristics of Rayleigh waves, in a semi-infinite isotropic medium
space, the analysis can be based on the classical Rayleigh wave equation; and to study the
propagation characteristics of Rayleigh waves in a plate, the Rayleigh-Lamb frequency
equation is generally used for analysis. When the thickness of the plate is small, the analysis
is usually obtained as a Lamb wave; when the plate thickness is large, i.e. when the influence
of the two free surfaces on each other is small or tends to zero, then it can be considered that
a Rayleigh wave appears in the plate. In a single homogeneous elastic half-space, Rayleigh
waves generally do not disperse, whereas Lamb waves have dispersion properties, i.e. the
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velocity of the Lamb wave changes with frequency when the thickness of the plate is a certain
amount.

In general, when Rayleigh and Lamb waves occur in a plate, the stress on the free surface
of the plate should be zero; the energy of Rayleigh waves is mainly concentrated near the
surface, and the maximum amplitude usually occurs near the surface, while Lamb waves do
not, so the Rayleigh and Lamb waves can be distinguished according to the displacement
mode.

This chapter investigates the propagation properties of SAWs in an isotropic plate by
means of the Rayleigh-Ritz method, focusing on the dispersion curves, displacement modes
and corresponding stress distributions of the waves in the structure in a Cartesian coordinate
system. In the paper, a displacement function in the form of a combination of Legendre
polynomials and trigonometric functions are used, in which the boundary functions are also
considered (in this chapter, the cases when the bottom edge of the plate is a free boundary
and a fixed boundary are considered respectively), and the Rayleigh-Ritz method is used to
convert the wave propagation problem into a characteristic equation, and then the eigenvalues
and eigenvectors are used to obtain the phase velocity, generalised displacement and stress
distribution of the wave, respectively. The effects of boundary conditions and plate thickness
on the propagation characteristics of SAWs in structures are investigated numerically.

The dispersion curves showed that, in this case, if the upper and lower plate surfaces are
all free boundaries and the plate thickness is greater than three wavelengths, it is generally
assumed that Rayleigh waves are present in the structure; however, if the plate thickness is
small, e.g. only one wavelength, the low-order SAWs present in the structure are usually
assumed to be Lamb waves.

2.1 Problem description

Consider an elastic plate of thickness, h, with a width, a, along the direction of wave
propagation, as shown in Fig. 2.1.

The constitutive relation of the elastic solid can be expressed as:

σi j = ci jklγkl (2.1)

Since the two-dimensional model is constructed in this chapter, i, j,k, l = 1,3, and ci jkl are
elastic constants, where the subscripts of the fourth-order elastic constants can be converted
to second-order, as shown in Tab. 2.1.
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Fig. 2.1 The model of the elastic plate in 2D

Table 2.1 The relationships among the subscripts

i,k
j, l

1 2 3

1 1 6 5
2 6 2 4
3 5 4 3

The strain can be expressed as:

γi j =
1
2
(
ui, j +u j,i

)
(2.2)

The differential equation of motion for any point in an elastic material, without regard to
physical force, is:

σi j, j = ρ üi (2.3)

Therefore, the following variational equation can be obtained:∫
V

δui
(
σi j, j −ρ üi

)
dV = 0 (2.4)

To study the propagation characteristics of waves in a thick plate, we need to consider
the following two boundary conditions on the upper and lower surfaces of the plate. The first
is the stress boundary condition. Assuming that the upper and lower surfaces of the plate are
free edges, so the stress on the upper and lower surfaces is zero, i.e:

σ3 j (x3 = 0) = 0,σ3 j (x3 = h) = 0, j = 1,2 (2.5)
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When the bottom of the thick plate (x3 = h) is a fixed boundary, the displacement of the
lower surface should be:

ui (x3 = h) = 0 (2.6)

For different boundary conditions, the boundary functions take the following form:

(1) Free boundary condition

f (x3) = 1 (2.7)

(2) Fixed boundary condition

f (x3) = 1− x3

h
(2.8)

2.2 Characteristic equation

To allow the finite elastic plate to satisfy periodic boundary conditions, the displacement
function used in this section takes the form of:

ui = f (x3)Ue jωt

= f (x3)

[
N

∑
n=0

AinPn

(
2x3

h
−1

)
sin

(
kx1

a

)
+

N

∑
n=0

BinPn

(
2x3

h
−1

)
cos

(
kx1

a

)]
e jωt

(2.9)
Here f (x3) is the boundary function, Pn(x) is the Legendre polynomial, and j =

√
−1, in this

case, N = 15.
Substituting the displacement function into Eq. 2.4 yields:

∫
V

(
c11
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∂u1
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+ c15
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∂x1

∂u1
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+ c51
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+ c55
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∂u1
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)
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∂u3
∂x3

∂u3
∂x1

+ c33
∂u3
∂x3

∂u3
∂x3

)
+
(

c15
∂u1
∂x1

∂u3
∂x1

+ c13
∂u1
∂x1

∂u3
∂x3

+ c55
∂u1
∂x3

∂u3
∂x1

+ c53
∂u1
∂x3

∂u3
∂x3

)
+
(

c51
∂u3
∂x1

∂u1
∂x1

+ c55
∂u3
∂x1

∂u1
∂x3

+ c31
∂u3
∂x3

∂u1
∂x1

+ c35
∂u3
∂x3

∂u1
∂x3

)
−ρω2 (u2

1 +u2
3
)

dV = 0

(2.10)
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Table 2.2 Boundary functions for different boundary conditions

Poisson’s ratio Young’s modulus(GPa) Density(kg/m3)

0.17 72.66 2203

Here ω is the angular frequency, ρ is the density of the medium material, and the characteristic
equation can be obtained:[

[Ku1u1] [Ku1u3]

[Ku3u1] [Ku3u3]

]{
{A}
{B}

}
−ω

2

[
[Mu1u1] [0]
[0] [Mu3u3]

]{
{A}
{B}

}
=

{
{0}
{0}

}
(2.11)

where
[
Kuiu j

]
and

[
Muiu j

]
(i, j = 1,3) denote the stiffness matrix and the mass matrix respec-

tively, the specific forms of which are given in the appendix of this chapter; {A} and {B}
are column vectors consisting of unknown coefficients Ain and Bin, according to vR = ω

k ,
vR is the speed of the SAW, ω is the angular velocity and k is the wave number. When
the material is each isoelastic: c11 = c22 = c33 = Eν/ [(1+ν)(1−ν)] + 2E/ [2(1+ν)];
c44 = c55 = c66 = E/ [2(1+ν)]; c12 = c13 = c23 = Eν/ [(1+ν)(1−ν)], where E denotes
Young’s modulus and ν denotes Poisson’s ratio.

2.3 Numerical results and discussions

In this section we used fussed glass as the dielectric material to develop the calculations. The
material parameters for fussed glass were given in Tab. 2.2. The normalized wave velocity
vR/vT was used in the calculations in this section, where vT =

√
µ

ρ
, the normalized structure

thickness is h
λ

and the normalized structure width is a
λ

, where λ is the wavelength (when
not otherwise described in the text, the wavelength corresponding to the first order Rayleigh
wave mode in fused glass/fused silica is generally used).

2.3.1 Propagation characteristics of SAWs at free boundary conditions

When using the Rayleigh wave formula to solve for Rayleigh waves in two-dimensional
space, considered that the space is a semi-infinite space, and because the energy of Rayleigh
waves is concentrated near the free surface, its energy decays rapidly as the distance to
the free surface increases, so in solving for the SAWs in a finite thick plate need to set a
reasonable plate thickness to get the ideal Rayleigh waves. According to Fig. 2.2, there are
stable Rayleigh waves in the structure when the thickness of the plate reaches more than
three wavelengths, which is consistent with the conclusion that the energy of the Rayleigh
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waves is mainly focused in the range of about one wavelength near the free surface for the
analytical solution.

Thus, when a plate thickness is six wavelengths, the displacement modes of the SAWs
are shown in Fig. 2.3 and the corresponding stress distribution is shown in Fig. 2.4, provided
that the upper and lower surfaces of the finite plate are free. When the plate thickness is small,
e.g. one tenth of a wavelength, the displacement modes corresponding to the lower order
wave velocities in the plate are shown in Fig. 2.5 and the corresponding stress distributions
are shown in Fig. 2.6. On the free surface of an elastic solid, the SAW generally exhibits
both symmetrical and anti-symmetrical modes, so in a thick plate structure where both the
upper and lower surfaces are free, a single SAW velocity may correspond to multiple order
modes. The solid line in the figure shows the distribution of displacement/shear stress (σx3x1)
for u3 and the dashed line shows the distribution of displacement/normative stress (σx3x3) for
u1, where the normalised amplitude is: ui/max(ui), where i = 1,3.

According to Figs. 2.3 and 2.4 it can be observed that the results are almost identical
to those of Fig. 2.2. When the thickness of the plate is greater than a certain value (three
wavelengths), a stable Rayleigh wave is generated in the finite plate, and as shown in Fig. 2.4,
the corresponding stress distribution in the plate at this time conforms to the stress boundary
conditions corresponding to the free boundary conditions.

A comparison of Figs. 2.3, 2.5 and 2.7 showed that the maximum amplitude of the
Rayleigh waves was mainly near the two surfaces of the plate, while the amplitude of the
Lamb waves did not change significantly in attenuation, but according to Figs. 2.4, 2.6 and
2.8, the method used in this chapter satisfied the free boundary conditions of the model,
regardless of the thickness of the plate.

2.3.2 SAWs propagation characteristics in a plate with a fixed bound-
ary condition on the bottom surface

When a fixed boundary is used for the bottom surface of the thick plate (x3 = h), the number
of modes of the SAWs obtained in the structure changes as the free surface is reduced, but
there is no effect on the magnitude of the SAW velocity in the structure. By comparing the
results with those obtained with the free boundary condition, as in Fig. 2.9, it can be found
that the wave velocity of Rayleigh waves appears in the structure when the bottom surface is
fixed and the thickness of the plate is at λ .

When a plate thickness of six wavelengths is used, the displacement mode corresponding
to the first order Rayleigh wave velocity is shown in Fig. 2.10 and the stress distribution is
shown in Fig. 2.11 for a fixed bottom surface; when a plate thickness of one wavelength
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Fig. 2.2 The relationship between the thickness of the plate and the normalized wave velocity
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Fig. 2.3 First four Rayleigh wave modes for a plate thickness of 6λ with free boundary
conditions: (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode
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Fig. 2.4 First four stress distributions of Rayleigh waves for a plate thickness of 6λ with free
boundary conditions: the stress distribution of (a) the 1st mode; (b) the 2nd mode; (c) the 3rd
mode; (d) the 4th mode
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Fig. 2.5 First four Rayleigh wave modes for a plate thickness of λ with free boundary
conditions: (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode
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Fig. 2.6 First four stress distributions of Rayleigh waves for a plate thickness of λ with free
boundary conditions: the stress distribution of (a) the 1st mode; (b) the 2nd mode; (c) the 3rd
mode; (d) the 4th mode
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Fig. 2.7 First four Rayleigh wave modes for a plate thickness of 0.1λ with free boundary
conditions: (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode
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Fig. 2.8 First four stress distributions of Rayleigh waves for a plate thickness of 0.1λ with
free boundary conditions: the stress distribution of (a) the 1st mode; (b) the 2nd mode; (c)
the 3rd mode; (d) the 4th mode
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Fig. 2.9 The relationship between the thickness of the plate and the normalized wave velocity
under different boundary conditions

is used, the displacement mode corresponding to the first order Rayleigh wave velocity is
shown in Fig. 2.12 and the stress distribution is shown in Fig. 2.13; when a plate thickness
of one tenth of a wavelength is used, the displacement mode corresponding to the first order
Rayleigh wave velocity is shown in Fig. 2.14 and the stress distribution is shown in Fig. 2.15.
The displacement mode corresponding to the first order Rayleigh wave velocity is shown in
Fig. 2.14 and the stress distribution is shown in Fig. 2.15.
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Fig. 2.10 First two Rayleigh wave modes for a plate thickness of 6λ with fixed boundary
conditions on the bottom surface: (a) the 1st mode; (b) the 2nd mode
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Fig. 2.11 First two stress distributions of Rayleigh waves for a plate thickness of 6λ with fixed
boundary conditions on the bottom surface: the stress distribution of (a) the 1st displacement
mode; (b) the 2nd displacement mode
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Fig. 2.12 First two Rayleigh wave modes for a plate thickness of λ with fixed boundary
conditions on the bottom surface: (a) the 1st mode; (b) the 2nd mode
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Fig. 2.13 First two stress distributions of Rayleigh waves for a plate thickness of λ with fixed
boundary conditions on the bottom surface: the stress distribution of (a) the 1st displacement
mode; (b) the 2nd displacement mode
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Fig. 2.14 First two Rayleigh wave modes for a plate thickness of 0.1λ with fixed boundary
conditions on the bottom surface: (a) the 1st mode; (b) the 2nd mode
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Fig. 2.15 First two stress distributions of Rayleigh waves for a plate thickness of 0.1λ

with fixed boundary conditions on the bottom surface: the stress distribution of (a) the 1st
displacement mode; (b) the 2nd displacement mode

2.4 Summary

In this chapter, the characteristic equations for an elastic plate of finite size obtained by
the Rayleigh-Ritz method for different boundary conditions are derived, and the SAWs in
an isotropic elastic thick plate are obtained using a reasonable form of the displacement
function. The influence of the plate thickness and each boundary condition on the SAWs in
the structure is discussed numerically. The numerical results show that:

(1) When the bottom edge of a thick plate is fixed, the thickness of the plate where the
low-order Rayleigh waves occur is slightly thinner than if both sides of the plate were
free. Again, however, the number of displacement modes in the lower order Rayleigh
waves is reduced due to the reduction in the number of free surfaces.

(2) The trial function form used in this chapter allows the stress distribution correspond-
ing to the low-order SAWs velocities in the structure to be made to conform to the
corresponding boundary conditions for different plate thickness conditions.
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Appendix

Stiffness matrix:[
Kuiu j

]
m1n1

= ci1k1E1,1

Ui pUk
−
p
F0,0

1 + ci1k2E1,0

Ui pUk
−
p
F0,1

1 + ci1k3E1,0

Ui pUk
−
p
F0,0

1

+ci2k1E0,1

Ui pUk
−
p
F1,0

1 + ci2k2E0,0

Ui pUk
−
p
F1,1

1 + ci2k3E0,0

Ui pUk
−
p
F1,0

1

+ci3k1E0,1

Ui pUk
−
p
F0,0

1 + ci3k2E0,0

Ui pUk
−
p
F0,1

1 + ci3k3E0,0

Ui pUk
−
p
F0,0

1[
Kuiu j

]
m2n1

= ci1k1E1,1

Ui pUk
−
p
F0,0

2 + ci1k2E1,0

Ui pUk
−
p
F0,1

2 + ci1k3E1,0

Ui pUk
−
p
F0,0

2

+ci2k1E0,1

Ui pUk
−
p
F1,0

2 + ci2k2E0,0

Ui pUk
−
p
F1,1

2 + ci2k3E0,0

Ui pUk
−
p
F1,0

2

+ci3k1E0,1

Ui pUk
−
p
F0,0

2 + ci3k2E0,0

Ui pUk
−
p
F0,1

2 + ci3k3E0,0

Ui pUk
−
p
F0,0

2[
Kuiu j

]
m1n2

= ci1k1E1,1

Ui pUk
−
p
F0,0

3 + ci1k2E1,0

Ui pUk
−
p
F0,1

3 + ci1k3E1,0

Ui pUk
−
p
F0,0

3

+ci2k1E0,1

Ui pUk
−
p
F1,0

3 + ci2k2E0,0

Ui pUk
−
p
F1,1

3 + ci2k3E0,0

Ui pUk
−
p
F1,0

3

+ci3k1E0,1

Ui pUk
−
p
F0,0

3 + ci3k2E0,0

Ui pUk
−
p
F0,1

3 + ci3k3E0,0

Ui pUk
−
p
F0,0

3[
Kuiu j

]
m2n2

= ci1k1E1,1

Ui pUk
−
p
F0,0

4 + ci1k2E1,0

Ui pUk
−
p
F0,1

4 + ci1k3E1,0

Ui pUk
−
p
F0,0

4

+ci2k1E0,1

Ui pUk
−
p
F1,0

4 + ci2k2E0,0

Ui pUk
−
p
F1,1

4 + ci2k3E0,0

Ui pUk
−
p
F1,0

4

+ci3k1E0,1

Ui pUk
−
p
F0,0

4 + ci3k2E0,0

Ui pUk
−
p
F0,1

4 + ci3k3E0,0

Ui pUk
−
p
F0,0

4

(2.12)

Mass matrix is: [
Muiu j

]
m1n1

= ρE0,0

Ui pUk
−
p
F0,0

1[
Muiu j

]
m2n1

= ρE0,0

Ui pUk
−
p
F0,0

2[
Muiu j

]
m1n2

= ρE0,0

Ui pUk
−
p
F0,0

3[
Muiu j

]
m2n2

= ρE0,0

Ui pUk
−
p
F0,0

4

(2.13)



30 Propagation properties of SAWs in the finite elastic plate

where,

Eα,β
Ui pUk p̄ =

∫ h

0

dαPp

(
2x3
h −1

)
dxα

3

dβ Pp̄

(
2x3
h −1

)
dxβ

3

dx3 (2.14)

Fα,β
1 =

∫ a

0

dαsin(kx1)

dxα
1

dβ sin(kx1)

dxβ

1

dx1

Fα,β
2 =

∫ a

0

dαcos(kx1)

dxα
1

dβ cos(kx1)

dxβ

1

dx1

Fα,β
3 =

∫ a

0

dαcos(kx1)

dxα
1

dβ sin(kx1)

dxβ

1

dx1

Fα,β
4 =

∫ a

0

dαcos(kx1)

dxα
1

dβ cos(kx1)

dxβ

1

dx1

(2.15)

where α and β are the orders of the partial divisions; p and p̄ are the orders of the
polynomials; i,k = 1,2,3. The elements in the stiffness matrix, K, and the mass ma-
trix, M, can be expressed as follows:

[
Kuiu j

]
m1n1

,
[
Kuiu j

]
m2n1

,
[
Kuiu j

]
m1n2

,
[
Kuiu j

]
m2n2

and[
Muiu j

]
m1n1

,
[
Muiu j

]
m1n2

,
[
Muiu j

]
m2n1

,
[
Muiu j

]
m2n2

of the form and m1 = 2p + 1,n1 = 2p̄ +

1,m2 = 2(p+1),n2 = 2(p̄+1).



Chapter 3

Propagation properties of low-order
SAWs in a finite structure covered by a
thin layer

The motion of Rayleigh waves is elliptical under the influence of P and S waves. Therefore,
when other materials are attached to the medium to form a layered structure, the vibration
modes and wave velocities of the Rayleigh waves in the original medium are affected defi-
nitely. In general, Rayleigh waves in a layered half-space structure have dispersive properties.
This property is also used in geographical research to detect and analyse subsurface structures
and to conduct shallow surface exploration studies.

In the field of geological exploration, scholars have been studying the propagation
characteristics of Rayleigh waves in a simplified semi-infinite stratified space model based
on actual geological conditions, and have been developing techniques to extract SAWs of
various orders more accurately, to improve the accuracy and safety of geological exploration,
by combining actual exploration data. The matrix method has been used to analyse the
propagation properties of SAWs in semi-infinite stratified space, the fluctuation equation
combined with boundary conditions to analyse the propagation properties of SAWs in
structures, and the Boundary Element Method (BEM).

Since the discovery by R. M. White and F. W. Voltmer in the 1970s that metal IDTs
could excite SAWs in piezoelectric materials, SAW devices have been developing rapidly. At
that time, when computer technology was not yet developed, experimental, analytical and
semi-analytical methods were the main methods to study the propagation characteristics of
SAWs.

Since there are typically hundreds of pairs of IDTs in an SAW device, the size of the
device in the direction of wave propagation is very large in relation to a single unit and can
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often be approximated to be infinitely long. Therefore, in a large number of studies of SAW
devices, it is common to take a unit from the structure, set reasonable boundary conditions
(periodic or absorption boundaries) and use it instead of the whole structure as the object
of study in order to reduce computational costs. With the development of technology and
the innovation of computer technology, the FEM has been widely used in the study of SAW
propagation due to its flexibility and versatility. However, the FEM generally requires high
computer performance and has the disadvantages of long computation time and inability to
guarantee the continuity of physical quantities (e.g. stress and strain) over the whole area.

There have been numerous studies on the propagation of SAWs in multilayer structures,
but the effects of boundary conditions, the covering material and thickness on wave velocities,
modes and stress distributions have not been systematically investigated. In this chapter,
the propagation characteristics of SAWs in periodic structures covered with thin plates on
an isotropic substrate are investigated. Using the Rayleigh-Ritz method, the SAW problem
is transformed into a linear eigenvalue problem, and then the transfer matrix is obtained
by combining the boundary conditions (the number of unknown coefficients is reasonably
reduced by selecting the boundary conditions that must be considered in order to reduce
the matrix operations), and the SAW velocities and displacement modes are then expressed
in terms of eigenvalues and eigenvectors. In this chapter, fused silica is used as the base
material and Au and Al2O3 as the covering material. The effect of the boundary conditions
and the thickness of the covering layer on the propagation characteristics of Rayleigh waves
in the structure is studied numerically.

3.1 Problem description

Consider an isotropic substrate plate of thickness h covered by an isotropic metal layer of
thickness h̄ where the direction of SAW propagation is x1 and the thickness direction of the
plate is x3, as shown in Fig. 3.1.

By setting the boundary at x1 = 0 and x1 = a (generally a is taken to be one wavelength) as
a periodic boundary and setting h= 6λ , the calculation of a semi-infinite space is transformed
into an analysis of a finite computational model.
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Fig. 3.1 A finite solid covered by a thin plate

To satisfy the periodic boundary conditions for the structure, it is useful to set the
displacement function of the covering layer in the form as:

ūi = f̄ (x3)Ūe jωt

= f̄ (x3)

[
N

∑
n=0

ĀinPn

(
2x3

h̄
+1

)
sin

(
kx1

a

)
+

N

∑
n=0

B̄inPn

(
2x3

h̄
+1

)
cos

(
kx1

a

)]
e jωt

(3.1)
The displacement function of the substrate in the form as:

ui = f (x3)Ue jωt

= f (x3)

[
N

∑
n=0

AinPn

(
2x3

h
−1

)
sin

(
kx1

a

)
+

N

∑
n=0

BinPn

(
2x3

h
−1

)
cos

(
kx1

a

)]
e jωt

(3.2)
where i = 1,3, f (x) and f̄ (x) are boundary functions which, if not otherwise stated in
this paper, are both used to describe the boundary conditions on x3 = h and x3 = −h̄ in
the structure, see Tab. 3.1 for the specific functional form, and Pn(x) remains a Legendre
polynomial.

The following boundary conditions generally need to be considered for calculating the
model:

(1) Continuous displacement at the interface

ui (x3 = 0) = ūi (x3 = 0) (3.3)
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Table 3.1 Boundary functions for different boundary conditions

Boundary condition f (x3) f̄ (x3)

Fixed boundary condition 1− x3
h /

Free boundary condition 1 1

(2) Continuous stress at the interface

σ3i (x3 = 0) = σ̄3i (x3 = 0) (3.4)

(3) Free boundary condition
σ̄3i

(
x3 =−h̄

)
= 0 (3.5)

(4) Fixed boundary condition at the bottom of the substrate

ui (x3 = h) = 0 (3.6a)

Free boundary condition at the bottom of the substrate

σ3i (x3 = h) = 0 (3.6b)

3.2 Equation derivation

According to the Rayleigh-Ritz method, the kinetic energy of the substrate is:

TS =
1
2

ρ

∫ h

0

∫ a

0
u̇2dx1dx3 (3.7)

where ρ refers to the density of the substrate material.
The strain energy of the substrate is:

VS =
1
2

ci jkl

∫ h

0

∫ a

0
ui,ku j,ldx1dx3 (3.8)

where ci jkl represents the elastic constant of the substrate material.
Similarly the kinetic and strain energies of the cover can be obtained:

TC =
1
2

ρ̄

∫ 0

h̄

∫ a

0
˙̄u2dx1dx3 (3.9)
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VC =
1
2

c̄i jkl

∫ 0

h̄

∫ a

0
ūi,kū j,ldx1dx3 (3.10)

where ρ̄ and c̄i jkl represent the material density and elastic constants of the covering layer
respectively.

Combining the above equations yields the kinetic and potential energies of the entire
structure, i.e.:

T = TS +TC (3.11)

V =VS +VC (3.12)

From the Lagrangian equation:
Λ = T −V (3.13)

and the principle of minimum energy, obtain:

∂Λ

∂Ai,n
= 0,

∂Λ

∂Bi,n
= 0,

∂Λ

∂ Āi,n
= 0,

∂Λ

∂ B̄i,n
= 0 (3.14)

Then the characteristic equation can be obtained as:(
K−ω

2M
)

α = 0 (3.15)

where α is the column vector consisting of the unknown coefficients Ain,Bin,Āin and B̄in,
while K and M represent the stiffness and mass matrices respectively, shown as:

[K] =

[[
KS] [0]
[0]

[
KC]

]
,[M] =

[[
MS] [0]
[0]

[
MC]

]
,{α}=

{{
αS}{
αC}

}
(3.16)

where the superscripts S and C represent the substrate and the overlay respectively, and the
elements in the matrix are referred to in the Appendix section of Chapter 2 for their exact
form.

3.3 Numerical results and discussions

In this section we studied the propagation characteristics of Rayleigh waves in a periodic
structure covered by a thin layer. We mainly analysed the effect of each boundary condition
on the propagation characteristics of low-order Rayleigh waves in the structure; the effect
of the covering layer material on the dispersion curve of low-order Rayleigh waves in the
structure; and the effect of the covering layer thickness on the dispersion curve of low-order
Rayleigh waves in the structure. In the model, x1 is the direction of wave propagation and x3
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Table 3.2 The material properties used in this section [1]

Material ν E(GPa) ρ(kg/m3)

Fused quartz 0.17 72.66 2203
Au condition 0.416 78.75 19300

Al2O3 0.267 413.00 3978

is the direction of substrate thickness, and fused silica is used as the material for the substrate
in the model in this chapter. The relevant physical parameters of the materials involved in
the calculation cases are given in Tab. 3.2. In this section, the normalised wave velocity is
vR/vT , where vR is the SAW velocity in the structure and vT is the shear wave velocity of the
substrate material.

3.3.1 Influence of boundary conditions on the propagation character-
istics of low-order Rayleigh waves in the structure

In this subsection, Au is used as the covering material, h̄ = 0.1λ , h = 6λ , and λ denotes
the wavelength if not otherwise stated in this section. The wave velocities of the SAWs
obtained for different boundary conditions are given in Tab. 3.3; Figs. 3.2 to 3.5 show
the first six orders of Rayleigh wave modes for different boundary conditions, where the
normalised amplitude used here is: u/max(u), where u = (ui, ūi)

T , i = 1,3. Figs 3.2 and 3.4
show the displacement on the contact surface considered only for continuous. Figs. 3.3 and
3.5 show the displacement modes obtained when the displacement and stress continuity on
the contact surface are considered, and the amplitude near the intersection is larger due to
the influence of the covering layer on the substrate after the stress boundary condition is
considered, so the lower left corner of the displacement diagram The displacement mode
when the normalised amplitude is: ui/max(ui) is also shown; Figs. 3.6 to 3.9 show the
stress distribution corresponding to the first six orders of the displacement mode of Rayleigh
waves under different boundary conditions, where the normalised stress is: σ/max(σ ), where
σ = (σxix j ,σ̄xix j)

T .
From Tab. 3.3, the stress boundary conditions involved in the structure have very little

effect on the low-order SAW velocities in this model, and because of the relatively large
thickness of the substrate used in this case the substrate thickness is six wavelengths. In
addition to the continuity of the upper and lower layer displacements, further consideration
of the continuity of the stresses at the interface between the upper and lower layers in the
transfer matrix does not affect the calculation of the low-order SAW velocities.
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Table 3.3 The first six normalized SAW velocities under different boundary conditions

Boundary condition
vR/vT

1 2 3 4 5 6

Substrate bottom surface is free,
0.4887 0.4887 0.7109 0.7109 0.9058 0.9058

displacement is continuous
Substrate bottom surface is free,

0.4887 0.4887 0.7109 0.7109 0.9058 0.9058
displacement and stress are continuous

Substrate bottom surface is fixed,
0.4887 0.4887 0.7109 0.7109 0.9058 0.9058

displacement is continuous
Substrate bottom surface is fixed,

0.4887 0.4887 0.7109 0.7109 0.9058 0.9058
displacement and stress are continuous

However, from Figs. 3.2 to 3.3, it is easy to see that the stress continuity conditions
on the interface have an influence on the modes of the lower order SAWs. When only
the displacement continuum at the upper and lower interfaces is considered in the transfer
matrix, the maximum amplitude in the substrate is essentially near the upper and lower
interfaces, and the fixed boundary conditions at the base of the substrate have relatively little
effect on the displacement modes at x3 = 0. However, when the stress continuity condition
at the upper/lower layer interface is also considered in the transfer matrix, the maximum
amplitude may no longer occur near the upper/lower layer interface but may be shifted up to
the upper/lower part of the cover layer.

In contrast to Figs. 3.2 and 3.3, Figs. 3.4 and 3.5 show the first six orders of modal
diagrams for a fixed bottom edge of the base, with only displacement continuity at the upper
and lower intersections and with displacement and stress continuity at the upper and lower
intersections, respectively. The first four orders of the modal diagrams in Figs. 3.2 and 3.4
are not distinguishable, while the fifth and sixth orders of the modal diagrams in Fig. 3.4
are mainly constrained by the fixed boundary at the bottom edge of the footing, where the
displacement at the bottom edge is zero. In contrast to Fig. 3.3, the first six orders of the
mode in Fig. 3.5 are constrained by a fixed boundary condition at the bottom edge of the
base, and the displacement at the bottom edge is zero.

As can be seen from Figs. 3.6 to 3.9, the stress continuity boundary at the interface
between the upper and lower layers is considered in the transfer matrix to have a significant
effect on the stress distribution in the structure. The discontinuity may occur at the inter-
section. However, when only the displacements at the intersection between the upper and
lower layers are considered in the transfer matrix, the stress distribution and the maximum
values of the modes corresponding to the first six orders of SAW in the structure are basically
concentrated near the free surface, and the displacements and stresses at the intersection
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basically satisfy the continuity condition, and the boundary condition of zero stress on the
free surface is satisfied.

Therefore, it is considered that in the analysis of the propagation properties of low-order
SAWs in this model, it is generally only necessary to consider the displacement continuity
condition at the intersection in the transfer matrix.

3.3.2 Effect of the material of the covering layer on the propagation
velocity of low-order Rayleigh waves in the structure

Tiersten [109] indicated that dispersion phenomena can be divided into two types based on
the shear wave velocity ratio of the covering material to the substrate material:

(1) Loading dispersion

v̄T

vT
<

1√
2

(3.17)

(2) Stiffening dispersion

v̄T

vT
>
√

2 (3.18)

where v̄T is the shear wave velocity of the thin layer and vT is the shear wave velocity of
the substrate. When the shear wave velocity of the thin layer is less than the shear wave
velocity of the substrate, the phase velocity of the Rayleigh mode decreases with frequency
and the thin layer is known as a " loading " substrate. On the other hand, when the shear
wave velocity of the thin layer is greater than the shear wave velocity of the substrate, the
phase velocity increases, causing the substrate to stiffen, i.e. the first SAW velocity present
in the structure is greater than the first SAW velocity of the substrate material. The substrate
material adopted in this paper is fused silica with vT = 3754m/s and the covering material
is either Au or Al2O3 with v̄T = 1200m/s for Au and v̄T = 6401m/s for Al2O3. Therefore,
the loading dispersion curve appears when Au is used as the covering material, while the
stiffening dispersion appears when Al2O3 is used as the covering material. The results shown
in Fig. 3.10 were obtained by considering the boundary conditions where the bottom surface
is free and the displacement is continuous at the interface.

The dispersion curves obtained with Al2O3 as a covering material are significantly
different from those obtained with Au as a covering material for the same range of layer
thicknesses. The latter showed a clear decaying trend with increasing layer thickness, while
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Fig. 3.2 First six SAW modes with displacement continuity at the interface under free
boundary conditions on the bottom surface of the substrate: (a) the 1st mode; (b) the 2nd
mode; (c) the 3rd mode; (d) the 4th mode;(e) the 5th mode;(f) the 6th mode
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.3 First six SAW modes with displacement and stress continuity at the interface under
free boundary conditions on the bottom surface of the substrate: (a) the 1st mode; (b) the 2nd
mode; (c) the 3rd mode; (d) the 4th mode;(e) the 5th mode;(f) the 6th mode
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Fig. 3.4 First six SAW modes with displacement continuity at the interface under fixed
boundary conditions on the bottom surface of the substrate: (a) the 1st mode; (b) the 2nd
mode; (c) the 3rd mode; (d) the 4th mode;(e) the 5th mode;(f) the 6th mode
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.5 First six SAW modes with displacement and stress continuity at the interface under
fixed boundary conditions on the bottom surface of the substrate: (a) the 1st mode; (b) the
2nd mode; (c) the 3rd mode; (d) the 4th mode;(e) the 5th mode;(f) the 6th mode
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Fig. 3.6 First six stress distributions of Rayleigh waves with displacement continuity at the
interface under free boundary conditions on the bottom surface of the substrate: the stress
distribution of (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode;(e) the
5th mode;(f) the 6th mode
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.7 First six stress distributions of SAWs with displacement and stress continuity at the
interface under free boundary conditions on the bottom surface of the substrate: the stress
distribution of (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode;(e) the
5th mode;(f) the 6th mode
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Fig. 3.8 First six stress distributions of SAWs with displacement continuity at the interface
under fixed boundary conditions on the bottom surface of the substrate: the stress distribution
of (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode;(e) the 5th mode;(f)
the 6th mode
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.9 First six stress distributions of SAWs with displacement and stress continuity at the
interface under fixed boundary conditions on the bottom surface of the substrate: the stress
distribution of (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode; (e) the
5th mode; (f) the 6th mode
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Fig. 3.10 Dispersion curves of Rayleigh waves with different covering materials

the former showed an overall increasing trend, but with a gentler curve trend in the range of
h̄/λ ∈ [0.025,0.08], with a decreasing and then increasing change.

Taking Al2O3 as the thin layer material, the displacement modes in the structure as shown
in Figs. 3.11 and 3.12 and the corresponding stress distributions as shown in Figs. 3.13 and
3.14 for a thin layer thickness of one tenth of a wavelength. Compared to the displacement
mode and corresponding stress distribution when Au was the thin layer material, considering
only the displacement continuum condition on the contact surface, it is easy to see that the
former decays slightly slower with depth than the latter. The number of low-order SAWs in
the structure with Al2O3 as the covering material is less than the number of low-order SAWs
in the structure with Au as the covering material for the same covering layer thickness and
around the first SAW velocity of the substrate material.

3.3.3 Effect of covering thickness on the propagation of low-order Rayleigh
waves in the structure

In this subsection, Au was adopted as the covering layer material with a substrate thickness
of six wavelengths. Based on the conclusions of the previous section, Fig. 3.15 shows the
effect of the cover layer thickness on the low-order Rayleigh wave velocity in the structure
under different boundary conditions. According to the results in the figure, the effect of
the stress boundary conditions on the low-order Rayleigh wave velocity in the structure is
essentially ignorable in the present structure.
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Fig. 3.11 First four SAW modes with displacement continuity at the interface under free
boundary conditions on the bottom surface of the substrate: (a) the 1st mode; (b) the 2nd
mode; (c) the 3rd mode; (d) the 4th mode
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(a) (b)

(c) (d)

Fig. 3.12 First four SAW modes with displacement and stress continuity at the interface
under free boundary conditions on the bottom surface of the substrate: (a) the 1st mode; (b)
the 2nd mode; (c) the 3rd mode; (d) the 4th mode
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Fig. 3.13 First four stress distributions of SAWs with displacement continuity at the interface
under free boundary conditions on the bottom surface of the substrate: the stress distribution
of (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode
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(a) (b)

(c) (d)

Fig. 3.14 First four stress distributions of SAWs with displacement and stress continuity at
the interface under free boundary conditions on the bottom surface of the substrate: the stress
distribution of (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode
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Fig. 3.15 The relationship between the thickness of the Au layer and low velocities of the
SAWs under different boundary conditions

Fig. 3.16 highlights that as the thickness increases the lower order wave velocity decreased
and gradually tended to cover the Rayleigh wave velocity of the material and the number
of lower order Rayleigh wave modes increases. The results obtained by considering each
boundary were used at this point and the results were compared with those already available
in the thesis and it can be seen that the two are in good agreement.

3.4 Summary

In this chapter, the characteristic equations for the finite elastic structure covered with a
thin layer are derived by the Rayleigh-Ritz method and the transfer matrices are used to
investigate the effect of different boundary conditions, cover materials and cover thickness
on the dispersion characteristics of low-order SAWs in the structure.

(1) In the calculation model in the chapter, whether or not stress continuity boundary
conditions are considered at the layer-to-layer interface would not affect the wave
velocities of the low-order SAWs in the structure, but would have some effect on its
mode and corresponding stress distribution; whereas, when the substrate has a large
thickness (h > 3λ ), the use of free or fixed boundary conditions at the bottom edge
would generally have no effect on the wave velocities of the low-order SAWs in the
structure; when only displacement continuity conditions are considered at the interface
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Fig. 3.16 The relationship between the Au layer thickness and the SAW velocities

between the upper and lower layers, the material of the covering layer would have some
effect on the range of energy concentration of the low-order SAWs in the structure.

(2) When both the covering and the substrate are composed of isotropic materials, the ratio
of the shear wave velocity of the covering material to the shear wave velocity of the
substrate material allows an analysis of whether loaded or hardened dispersion occurs
in the structure. The influence of the two types of material produces a significant
difference in the low-order SAW velocities and the number of modes in the structure.
The low-order SAW velocities in the loading structure is generally less than or equal
to the SAW velocity in the substrate material and may take the form of multi-order
modes. The stiffened covering material exhibits the opposite result.

(3) Under the influence of the stiffening-type material Al2O3 applied in this chapter, this
wave velocity showed an overall tendency to increase with increasing thickness of the
covering layer, but during this time there was a more gentle period of decline in the
low-order SAW velocities. This characteristic is significantly different from the effect
of the loading-type material Au on the low-order SAW velocities in the structure used
in this chapter.
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3.5 Appendix

3.5.1 Stiffness and mass matrices in this chapter

The expression for the stiffness matrix in this chapter is:

[K] =


[
KS

11
] [

KS
13
]

[0] [0][
KS

31
] [

KS
33
]

[0] [0]
[0] [0]

[
KC

11
] [

KC
13
]

[0] [0]
[
KC

31
] [

KC
33
]
 (3.19)

where the expressions for the elements in the stiffness matrix are:

[
KS

]
m1n1

= ci1k1E1,1
Ui pUk p̄F0,0

1 + ci1k2E1,0
Ui pUk p̄F0,1

1 + ci1k3E1,0
Ui pUk p̄F0,0

1

+ ci2k1E0,1
Ui pUk p̄F1,0

1 + ci2k2E0,0
Ui pUk p̄F1,1

1 + ci2k3E0,0
Ui pUk p̄F1,0

1

+ ci3k1E0,1
Ui pUk p̄F0,0

1 + ci3k2E0,0
Ui pUk p̄F0,1

1 + ci3k3E0,0
Ui pUk p̄F0,0

1[
KS

]
m2n1

= ci1k1E1,1
Ui pUk p̄F0,0

2 + ci1k2E1,0
Ui pUk p̄F0,1

2 + ci1k3E1,0
Ui pUk p̄F0,0

2

+ ci2k1E0,1
Ui pUk p̄F1,0

2 + ci2k2E0,0
Ui pUk p̄F1,1

2 + ci2k3E0,0
Ui pUk p̄F1,0

2

+ ci3k1E0,1
Ui pUk p̄F0,0

2 + ci3k2E0,0
Ui pUk p̄F0,1

2 + ci3k3E0,0
Ui pUk p̄F0,0

2[
KS

]
m1n2

= ci1k1E1,1
Ui pUk p̄F0,0

3 + ci1k2E1,0
Ui pUk p̄F0,1

3 + ci1k3E1,0
Ui pUk p̄F0,0

3

+ ci2k1E0,1
Ui pUk p̄F1,0

3 + ci2k2E0,0
Ui pUk p̄F1,1

3 + ci2k3E0,0
Ui pUk p̄F1,0

3

+ ci3k1E0,1
Ui pUk p̄F0,0

3 + ci3k2E0,0
Ui pUk p̄F0,1

3 + ci3k3E0,0
Ui pUk p̄F0,0

3[
KS

]
m2n2

= ci1k1E1,1
Ui pUk p̄F0,0

4 + ci1k2E1,0
Ui pUk p̄F0,1

4 + ci1k3E1,0
Ui pUk p̄F0,0

4

+ ci2k1E0,1
Ui pUk p̄F1,0

4 + ci2k2E0,0
Ui pUk p̄F1,1

4 + ci2k3E0,0
Ui pUk p̄F1,0

4

+ ci3k1E0,1
Ui pUk p̄F0,0

4 + ci3k2E0,0
Ui pUk p̄F0,1

4 + ci3k3E0,0
Ui pUk p̄F0,0

4[
KC

]
m1n1

= c̄i1k1Ē1,1
Ui pUk p̄F0,0

1 + c̄i1k2Ē1,0
Ui pUk p̄F0,1

1 + c̄i1k3Ē1,0
Ui pUk p̄F0,0

1

+ c̄i2k1Ē0,1
Ui pUk p̄F1,0

1 + c̄i2k2Ē0,0
Ui pUk p̄F1,1

1 + c̄i2k3Ē0,0
Ui pUk p̄F1,0

1
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+ c̄i3k1Ē0,1
Ui pUk p̄F0,0

1 + c̄i3k2Ē0,0
Ui pUk p̄F0,1

1 + c̄i3k3Ē0,0
Ui pUk p̄F0,0

1[
KC

]
m2n1

= c̄i1k1Ē1,1
Ui pUk p̄F0,0

2 + c̄i1k2Ē1,0
Ui pUk p̄F0,1

2 + c̄i1k3Ē1,0
Ui pUk p̄F0,0

2

+ c̄i2k1Ē0,1
Ui pUk p̄F1,0

2 + c̄i2k2Ē0,0
Ui pUk p̄F1,1

2 + c̄i2k3Ē0,0
Ui pUk p̄F1,0

2

+ c̄i3k1Ē0,1
Ui pUk p̄F0,0

2 + c̄i3k2Ē0,0
Ui pUk p̄F0,1

2 + c̄i3k3Ē0,0
Ui pUk p̄F0,0

2[
KC

]
m1n2

= c̄i1k1Ē1,1
Ui pUk p̄F0,0

3 + c̄i1k2Ē1,0
Ui pUk p̄F0,1

3 + c̄i1k3Ē1,0
Ui pUk p̄F0,0

3

+ c̄i2k1Ē0,1
Ui pUk p̄F1,0

3 + c̄i2k2Ē0,0
Ui pUk p̄F1,1

3 + c̄i2k3Ē0,0
Ui pUk p̄F1,0

3

+ c̄i3k1Ē0,1
Ui pUk p̄F0,0

3 + c̄i3k2Ē0,0
Ui pUk p̄F0,1

3 + c̄i3k3Ē0,0
Ui pUk p̄F0,0

3[
KC

]
m2n2

= c̄i1k1Ē1,1
Ui pUk p̄F0,0

4 + c̄i1k2Ē1,0
Ui pUk p̄F0,1

4 + c̄i1k3Ē1,0
Ui pUk p̄F0,0

4

+ c̄i2k1Ē0,1
Ui pUk p̄F1,0

4 + c̄i2k2Ē0,0
Ui pUk p̄F1,1

4 + c̄i2k3Ē0,0
Ui pUk p̄F1,0

4

+ c̄i3k1Ē0,1
Ui pUk p̄F0,0

4 + c̄i3k2Ē0,0
Ui pUk p̄F0,1

4 + c̄i3k3Ē0,0
Ui pUk p̄F0,0

4

(3.20)

The mass matrix is:

[M] =


[
MS

11
]

[0] [0] [0]
[0]

[
MS

33
]

[0] [0]
[0] [0]

[
MC

11
]

[0]
[0] [0] [0]

[
MC

33
]
 (3.21)

The individual elements of the mass matrix were expressed as:[
MS

]
m1n1

= ρE0,0
Ui pUk p̄F0,0

1[
MS

]
m2n1

= ρE0,0
Ui pUk p̄F0,0

2[
MS

]
m1n2

= ρE0,0
Ui pUk p̄F0,0

3[
MS

]
m2n2

= ρE0,0
Ui pUk p̄F0,0

4[
MC

]
m1n1

= ρĒ0,0
Ui pUk p̄F0,0

1[
MC

]
m2n1

= ρE 0,0
Ui pUk p̄F0,0

2

(3.22)
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[
MC

]
m1n2

= ρĒ0,0
Ui pUk p̄F0,0

3[
MC

]
m2n2

= ρĒ0,0
Ui pUk p̄F0,0

4

where,

Eη ,ξ
Ui pUk p̄ =

∫ h
0

dη f (x3)Pp

(
2x3

h −1
)

dxη

3

dξ f (x3)Pp̄

(
2x3

h −1
)

dxξ

3

dx3,

Ēη ,ξ
Ūi pŪk p̄ =

∫ 0
−h̄

dη f̄ (x3)Pp

(
2x3

h̄ +1
)

dxη

3

dξ f̄ (x3)Pp̄

(
2x3

h̄ +1
)

dxξ

3

dx3

(3.23)

3.5.2 The derivation process for each element of the transfer matrix

Since the Legendre polynomials are characterized by Pn(1) = 1, Pn(−1) = (−1)(n−1) and
orthogonality, when considering only the continuity of the displacement function, substituting
Eqs. 3.1 and 3.2 into Eq. 3.3 leads to the following equations:

A11 −A12 +A13 + . . .+(−1)n−1 A1n = Ā11 + Ā12 + Ā13 + . . .+ Ā1n,

B11 −B12 +B13 + . . .+(−1)n−1 B1n = B̄11 + B̄12 + B̄13 + . . .+ B̄1n,

A31 −A32 +A33 + . . .+(−1)n−1 A3n = Ā31 + Ā32 + Ā33 + . . .+ Ā3n,

B31 −B32 +B33 + . . .+(−1)n−1 B3n = B̄31 + B̄32 + B̄33 + . . .+ B̄3n.

(3.24)

In this case only the first term remains on the left-hand side of the equation in Eq. 3.24,
and the other terms on the left-hand side are moved to the right-hand side of the equation to
give four unknown quantities:

A11 = Ā11 + Ā12 + Ā13 + . . .+ Ā1n +A12 −A13 + . . .+(−1)n A1n,

B11 = B̄11 + B̄12 + B̄13 + . . .+ B̄1n +B12 −B13 + . . .+(−1)n B1n,

A31 = Ā31 + Ā32 + Ā33 + . . .+ Ā3n +A32 −A33 + . . .+(−1)n A3n,

B31 = B̄31 + B̄32 + B̄33 + . . .+ B̄3n +B32 −B33 + . . .+(−1)n B3n.

(3.25)

Expanding Eq. 3.4, it can be written as:
c33

∂u3
∂ z + c31

∂u1
∂x = c̄33

∂ ū3
∂ z + c̄31

∂ ū1
∂x

c55

(
∂u3
∂x + ∂u1

∂ z

)
= c̄55

(
∂ ū3
∂x + ∂ ū1

∂ z

) (3.26)
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Substituting Eqs. 3.1 and 3.2 into Eq. 3.26 yields:

c33

kh
[2A32 −6A33 +12A34 − . . .+(−1)n n(n−1)A3n]

− c31 [B11 −B12 +B13 + . . .+(−1)n B1n]

=
c̄33

kh̄

[
2Ā32 +6Ā33 +12Ā34 + . . .+n(n−1) Ā3n

]
− c̄31 [B̄11 + B̄12 + B̄13 + . . .+ B̄1l]

c33

kh
[2B32 −6B33 +12B34 − . . .+(−1)n n(n−1)B3n]

+ c312 [A11 −A12 +A13 + . . .+(−1)n A1n]

=
c̄33

kh̄
[2B̄32 +6B̄33 +12B̄34 + . . .+n(n−1) B̄3n]

+ c̄312
[
Ā11 + Ā12 + Ā13 + . . .+ Ā1l

]

(3.27)

c55

{
2
[
A31 −A32 + . . .+(−1)n−1 A3n

]
+

1
kh

[2B12 −6B13 +12B14 + . . .+(−1)n n(n−1)B1n]

}
= c̄55

{
2
[
Ā31 + Ā32 + . . .+ Ā3n

]
+

1
kh

[2B̄12 +6B̄13 +12B̄14 + . . .+n(n−1) B̄1n]

}

c55

{
2
[
B31 −B32 + . . .+(−1)n−1 B3n

]
+

1
kh

[2A12 −6A13 +12A14 + . . .+(−1)n n(n−1)A1n]

}
= c̄55 {2 [B̄31 + B̄32 + . . .+ B̄3n]

+
1
kh

[
2Ā12 +6Ā13 +12Ā14 + . . .+n(n−1) Ā1n

]}
This leads to the solution of four new unknown coefficients:
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A12 = 3A13 −6A14 + . . .+(−1)n−1 n(n−1)
2

A1n

+
c̄55h
c55h̄

[
Ā12 +3Ā13 + . . .+

n(n−1)
2

Ā1n

]
+

(
c̄55hk
c55

−hk
)
(B̄31 + B̄32 + . . .+ B̄3n)

A32 = 3A33 −6A34 + . . .+(−1)n−1 n(n−1)
2

A3n

+
c̄33h
c33h̄

[
Ā32 +3Ā33 + . . .+

n(n−1)
2

Ā3n

]
+

(c̄31 − c31)hk
c33

(B̄11 + B̄12 + . . .+ B̄1n)

B12 = 3B13 −6B14 + . . .+(−1)n−1 n(n−1)
2

B1n

+
c̄55h
c55h̄

[
B̄12 +3B̄13 + . . .+

n(n−1)
2

B̄1n

]
+hk

(
c̄55

c55
−1

)(
Ā31 + Ā32 + . . .+ Ā3n

)

(3.28)

B32 = 3B33 −6B34 + . . .+(−1)n−1 n(n−1)
2

B3n

+
c̄33h
c33h̄

[
B̄32 +3B̄33 + . . .+

n(n−1)
2

B̄3n

]
+

(c̄31 − c31)hk
c33

[
Ā11 + Ā12 + . . .+ Ā1n

]
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Substituting Eq. 3.28 back into Eq. 3.25, obtain:

A11 = 2A13 −5A15 + . . .+(−1)n−1
[

n(n−1)
2

−1
]

A1n

+

{
Ā11 +

(
1+

c̄55h
c55h̄

)
Ā12 + . . .+

[
1+

n(n−1)
2

]
c̄55h
c55h̄

Ā1n

}
−hk

[(
1− c̄55

c55

)
B̄31 +

(
1− c̄55

c55

)
B̄32 + . . .+

(
1− c̄55

c55

)
B̄3n

]

A12 = 3A13 −6A15 + . . .+(−1)n−1 n(n−1)
2

A1n

+

[
c̄55h
c55h̄

Ā12 +55 Ā13 + . . .+
n(n−1)

2
c̄55h
c55h̄

Ā1n

]
−hk

[(
1− c̄55

c55

)
B̄31 +

(
1− c̄55

c55

)
B̄32 + . . .+

(
1− c̄55

c55

)
B̄3n

]

B11 = 2B13 −5B15 + . . .+(−1)n−1
[

n(n−1)
2

−1
]

B1n

+

{
B̄11 +

(
1+

c̄55h
c55h̄

)
B̄12 + . . .+

[
1+

n(n−1)
2

]
c̄55h
c55h̄

B̄1n

}
+hk

[(
1− c̄55

c55

)
Ā31 +

(
1− c̄55

c55

)
Ā32 + . . .+

(
1− c̄55

c55

)
Ā3n

]

B12 = 3B13 −6B15 + . . .+(−1)n−1 n(n−1)
2

B1n

+

[
c̄55h
c55h̄

B̄12 +
3c̄55h
c55h̄

B̄13 + . . .+
n(n−1)

2
c̄55h
c55h̄

B̄1n

]
+hk

[(
1− c̄55

c55

)
Ā31 +

(
1− c̄55

c55

)
Ā32 + . . .+

(
1− c̄55

c55

)
Ā3n

]

A31 = 2A33 −5A35 + . . .+(−1)n−1
[

n(n−1)
2

−1
]

A3n

+

{
Ā31 +

(
1+

c̄33h
c33h̄

)
Ā32 + . . .+

[
1+

n(n−1)
2

]
c̄33h
c33h̄

Ā3n

}
+hk

[
(c31 − c̄31)

c33
B̄11 +

(c31 − c̄31)

c33
B̄12 + . . .+

(c31 − c̄31)

c33
B̄1n

]

A32 = 3A33 −6A35 + . . .+(−1)n−1 n(n−1)
2

A3n

+

[
c̄33h
c33h̄

Ā32 +
3c̄33h
c33h̄

Ā33 + . . .+
n(n−1)

2
c̄33h
c33h̄

Ā3n

]

(3.29)
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+hk
[
(c31 − c̄31)

c33
B̄11 +

(c31 − c̄31)

c33
B̄12 + . . .+

(c31 − c̄31)

c33
B̄1n

]

B31 = 2B33 −5B35 + . . .+(−1)n−1
[

n(n−1)
2

−1
]

B3n

+

{
B̄31 +

(
1+

c̄33h
c33h̄

)
B̄32 + . . .+

[
1+

n(n−1)
2

]
c̄33h
c33h̄

B̄3n

}
−hk

[
(c31 − c̄31)

c33
Ā11 +

(c31 − c̄31)

c33
Ā12 + . . .+

(c31 − c̄31)

c33
Ā1n

]

B32 = 3B33 −6B35 + . . .+(−1)n−1 n(n−1)
2

B3n

+

[
c̄33h
c33h̄

B̄32 +
3c̄33h
c33h̄

B̄33 + . . .+
n(n−1)

2
c̄33h
c33h̄

B̄3n

]
−hk

[
(c31 − c̄31)

c33
Ā11 +

(c31 − c̄31)

c33
Ā12 + . . .+

(c31 − c̄31)

c33
Ā1n

]

(3.29)

Rectifying the equations, the independent unknown quantities exhibited in the right-hand
side of Eq. 3.28 can be set to the new unknown vector ᾱ:

{α}= [S1]{ᾱ}

{α}=
{
[A1] [B1] [A3] [B3]

[
Ā1

]
[B̄1]

[
Ā3

]
[B̄3]

}T

{ᾱ}=
{[

Ã1
] [

B̃1
] [

Ã3
] [

B̃3
] [

Ā1
]

[B̄1]
[
Ā3

]
[B̄3]

}T

(3.29)

where,

{A1}=
[
A11 A12 . . . A1n

]T

{B1}=
[
B11 B12 . . . B1n

]T

{A3}=
[
A31 A32 . . . A3n

]T

{B3}=
[
B31 B32 . . . B3n

]T

{
Ā1

}
=
[
Ā11 Ā12 . . . Ā1n

]T

{B̄1}=
[
B̄11 B̄12 . . . B̄1n

]T
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{
Ā3

}
=
[
Ā31 Ā32 . . . Ā3n

]T

{B̄3}=
[
B̄31 B̄32 . . . B̄3n

]T

{
Ã1

}
=
[
A13 A14 . . . A1n

]T

{
B̃1

}
=
[
B13 B14 . . . B1n

]T

{
Ã3

}
=
[
A33 A34 . . . A3n

]T

{
B̃3

}
=
[
B33 B34 . . . B3n

]T

(3.30)

The [S1] in Eq. 3.30 is the key to the conversion of the old unknown coefficients to the
new unknown coefficients, which is achieved by Eq. 3.27.

In this section the substrate bottom surface (x3 = h) is fixed and the top surface of the
covering layer (x3 =−h̄ ) is free, so the specific forms of the displacement functions shown
in following:

ūi =

[
N

∑
n=0

ĀinPn

(
2x3

h̄
+1

)
sin

(
kx1

a

)
+

N

∑
n=0

B̄inPn

(
2x3

h̄
+1

)
cos

(
kx1

a

)]
e jωt (3.31)

ui =
(

1− x3

h

)[ N

∑
n=0

AinPn

(
2x3

h
−1

)
sin

(
kx1

a

)
+

N

∑
n=0

BinPn

(
2x3

h
−1

)
cos

(
kx1

a

)]
e jωt

(3.32)
Since f (x3) = 1 at x3 = 0, the unknown coefficient relationship obtained under the

displacement continuity condition is consistent with the result for the bottom surface being
free, i.e. Eqs. 3.31 and 3.32 substituted into Eq. 3.3, still yields to Eq. 3.24.

Substituting Eqs. 3.31 and 3.31 into Eq. 3.26, obtain:

− c33

kh
{A31 −3A32 +7A33 − . . .+(−1)n [n(n−1)+1]A3n}

− c31 [B11 −B12 +B13 − . . .+(−1)n B1n]

=
c̄33

kh̄

[
2Ā32 +6Ā33 +12Ā34 + . . .+n(n−1) Ā3n

]
+ c̄31 [B̄11 + B̄12 + B̄13 + . . .+ B̄1l]
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− c33

kh
{B31 −3B32 +7B34 − . . .+(−1)n [n(n−1)+1]B3n}

+ c31 [A11 −A12 +A13 − . . .+(−1)n A1n]

=
c̄33

kh̄
[2B̄32 +6B̄33 +12B̄34 + . . .+n(n−1) B̄3n]

+ c̄31
[
Ā11 + Ā12 + Ā13 + . . .+ Ā1l

]
c55

{
2
[
A31 −A32 + . . .+(−1)n−1 A3n

]
+

a
kh

[−B11 +3B12 −7B13 + . . .+(−1)n [n(n−1)+1]B1n]
}

= c̄55
{

2
[
Ā31 + Ā32 + . . .+ Ā3n

]
+

a
kh

[2B̄12 +6B̄13 +12B̄14 + . . .+n(n−1) B̄1n]
}

c55

{
2
[
B31 −B32 + . . .+(−1)n−1 B3n

]
+

1
kh

[−A11 +3A12 −7A13 + . . .+(−1)n [n(n−1)+1]A1n]

}
= c̄55 {2 [B̄31 + B̄32 + . . .+ B̄3n]

+
1
kh

[
2Ā12 +6Ā13 +12Ā14 + . . .+n(n−1) Ā1n

]}

(3.33)

These can be solved for as follows:

A12 = 3A13 −6A14 + . . .+(−1)n−1 n(n−1)
2

A1n

+

{(
1
2
+

c̄55h
c55h̄

)
Ā11 +

(
1
2
+

3c̄55h
c55h̄

)
Ā12 + . . .+

[
1
2
+

n(n−1)
2

c̄55h
c55h̄

]
Ā1n

}
+hk

(
c̄55

c55
−1

)
(B̄31 + B̄32 + . . .+ B̄3n)

A32 = 3A33 −6A34 + . . .+(−1)n−1 n(n−1)
2

A3n
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+

{(
1
2
+

c̄33h
c33h̄

)
Ā11 +

(
1
2
+

3c̄33h
c33h̄

)
Ā12 + . . .+

[
1
2
+

n(n−1)
2

c̄33h
c33h̄

]
Ā1n

}
+hk

(
c̄31 − c31

c33

)
(B̄31 + B̄32 + . . .+ B̄3n)

B12 = 3B13 −6B14 + . . .+(−1)n−1 n(n−1)
2

B1n

+

{(
1
2
+

c̄55h
c55h̄

)
Ā11 +

(
1
2
+

3c̄55h
c55h̄

)
Ā12 + . . .+

[
1
2
+

n(n−1)
2

c̄55h
c55h̄

]
Ā1n

}
+hk

(
1− c̄55

c55

)
(B̄31 + B̄32 + . . .+ B̄3n)

B32 = 3B33 −6B34 + . . .+(−1)n−1 n(n−1)
2

B3n

+

{(
1
2
+

c̄33h
c33h̄

)
Ā11 +

(
1
2
+

3c̄33h
c33h̄

)
Ā12 + . . .+

[
1
2
+

n(n−1)
2

c̄33h
c33h̄

]
Ā1n

}
−hk

(
c̄31 − c31

c33

)
(B̄31 + B̄32 + . . .+ B̄3n)

(3.34)

Substituting Eq. 3.34 back into Eq. 3.25, obtain:

A11 = 2A13 −5A14 + . . .+(−1)n−1
[

n(n−1)
2

−1
]

A1n

+

{(
3
2
+

c̄55h
c55h̄

)
Ā11 +

(
3
2
+

3c̄55h
c55h̄

)
Ā12 + . . .+

[
3
2
+

n(n−1)
2

c̄55h
c55h̄

]
Ā1n

}
+hk

(
c̄55

c55
−1

)
(B̄31 + B̄32 + . . .+ B̄3n)A12

= 3A13 −6A14 + . . .+(−1)n−1 n(n−1)
2

A1n

+

{(
1
2
+

c̄55h
c55h̄

)
Ā11 +

(
1
2
+

3c̄55h
c55h̄

)
Ā12 + . . .+

[
1
2
+

n(n−1)
2

c̄55h
c55h̄

]
Ā1n

}
+hk

(
c̄55

c55
−1

)
(B̄31 + B̄32 + . . .+ B̄3n)

A31 = 2A33 −5A34 + . . .+(−1)n−1
[

n(n−1)
2

−1
]

A3n
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+

{(
3
2
+

c̄33h
c33h̄

)
Ā11 +

(
3
2
+

3c̄33h
c33h̄

)
Ā12 + . . .+

[
3
2
+

n(n−1)
2

c̄33h
c33h̄

]
Ā1n

}
+hk

(
c̄31 − c31

c33

)
(B̄31 + B̄32 + . . .+ B̄3n)

A32 = 3A33 −6A34 + . . .+(−1)n−1 n(n−1)
2

A3n

+

{(
1
2
+

c̄33h
c33h̄

)
Ā11 +

(
1
2
+

3c̄33h
c33h̄

)
Ā12 + . . .+

[
1
2
+

n(n−1)
2

c̄33h
c33h̄

]
Ā1n

}
+hk

(
c̄31 − c31

c33

)
(B̄31 + B̄32 + . . .+ B̄3n)

B12 = 3B13 −6B14 + . . .+(−1)n−1 n(n−1)
2

B1n

+

{(
1
2
+

c̄55h
c55h̄

)
Ā11 +

(
1
2
+

3c̄33h
c33h̄

)
Ā12 + . . .+

[
1
2
+

n(n−1)
2

c̄55h
c55h̄

]
Ā1n

}
+hk

(
1− c̄55

c55

)
(B̄31 + B̄32 + . . .+ B̄3n)

B31 = 2B33 −5B34 + . . .+(−1)n−1
[

n(n−1)
2

−1
]

B3n

+

{(
3
2
+

c̄33h
c33h̄

)
Ā11 +

(
3
2
+

3c̄33h
c33h̄

)
Ā12 + . . .+

[
3
2
+

n(n−1)
2

c̄33h
c33h̄

]
Ā1n

}
+hk

(
c̄31 − c31

c33

)
(B̄31 + B̄32 + . . .+ B̄3n)

B32 = 3B33 −6B34 + . . .+(−1)n−1 n(n−1)
2

B3n

+

{(
1
2
+

c̄33h
c33h̄

)
Ā11 +

(
1
2
+

3c̄33h
c33h̄

)
Ā12 + . . .+

[
1
2
+

n(n−1)
2

c̄33h
c33h̄

]
Ā1n

}
−hk

(
c̄31 − c31

c33

)
(B̄31 + B̄32 + . . .+ B̄3n)

(3.35)

According to Eq. 3.35, the transformation matrix [S1] can be acquired for a fixed condition
of the substrate bottom surface.



Chapter 4

Propagation properties of low-order
SAWs in a periodic isotropic structure
covering a finite layer

There have been a lot of achievements in the research on the propagation characteristics of
SAWs in semi-infinite layered spaces. Scholars have analyzed the propagation characteristics
of SAWs in layered structures of different dielectric materials through analytical methods,
semi-analytical methods, numerical methods, and experimental methods. Propagation prop-
erties of SAWs. However, when the widths of the upper attachment and the base layer are
different, more boundary conditions need to be considered than the above cases, so it is often
difficult to obtain an accurate solution by analytical method. This structure is common in
SAW devices, that is, the finite adhesion layer is regarded as the electrode, and the underlying
medium is regarded as the structural model of the substrate.

Studies on the structure of SAW devices are often based on two-dimensional models, in
which the electrodes are generally discontinuous. In view of the large computational effort
required to analyse the entire structure of a SAW device, which would be computationally
expensive if the FEM were used directly, numerical simulations are often carried out by
intercepting a unit of the structure. By setting reasonable boundary conditions, such as
periodic boundary conditions on both sides of the substrate vertical to the direction of wave
propagation, and by applying a PML to the bottom surface of the substrate to reduce the
effect of wave reflection on the bottom surface of the substrate, it is possible to analyse the
propagation characteristics of surface waves by means of a finite structural model. However,
according to the working principle of finite element, the accuracy of its calculation results is
closely related to the mesh division in the structure.



66
Propagation properties of low-order SAWs in a periodic isotropic structure covering a finite

layer

The Rayleigh-Ritz method has a wide range of applications in the vibration analysis of
structures as an energy method as well. It is based on the Hamiltonian principle and the prin-
ciple of energy minimisation, and is used to obtain the minimum (optimum) eigenfrequency
and the corresponding eigenvector of a structure in order to analyse the various mechanical
phenomena. To analyse the vibration of a structure by means of the Rayleigh-Ritz method,
a reasonable trial function is set up and an appropriate amount of displacement function
expansion term is used to obtain a more accurate numerical solution. In general, the test
function contains information about the shape characteristics and boundary conditions of
the structure and is approximated by algebraic polynomials to improve the accuracy of the
calculation. If the Rayleigh-Ritz method is to be used to analyse the vibration of a multi-unit
body, the transfer matrix can be used to relate the various parts of the structure to obtain the
stiffness and mass matrices of the whole structure, thus finding the eigenfrequencies of the
structure as a whole.

In general, compared with the finite element method, the Rayleigh-Ritz method has lower
requirements on the computer (the parameters of the calculator used for the calculations
in this article are: Intel(R) Core(TM) i5 8250U CPU @ 1.60 GHz 1.80 GHz R AM 8.00
GB), and the calculation cost is relatively lower. In the last chapter, we mainly discussed
the propagation characteristics of low-order SAWs in structures covered with thin layers
on finite large isotropic substrates considering various boundary conditions. This chapter
studies the propagation characteristics of low-order SAWs in a periodic structure covered
with a finite-sized thin layer on an isotropic substrate. The influence of low-order SAWs
propagation characteristics. First, by setting a reasonable displacement function, the stiffness
matrix and mass matrix of each part of the structure are obtained, and then the transfer matrix
is obtained according to the boundary conditions, and the stiffness matrix and mass matrix
of each part are integrated into a new stiffness matrix and mass matrix, thus obtaining The
characteristic equation of the whole structure uses the relationship between angular frequency
and wave velocity to obtain corresponding results.

4.1 Problem description

This structure mainly adds a finite layered structure on the upper surface of the isotropic
substrate. At this time, the structure can be divided into four parts, as shown in Fig. 4.1.

By setting the boundary at x1 =
−a
2 and x1 =

a
2 (generally a is taken to be one wavelength)

as periodic boundaries with h = 6λ , the calculation of a semi-infinite space is transformed
into a finite computational model.

Part one displacement functions can be expressed as:
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u(1)i = f (1) (x3)

{
A(1)

il Pl

(
2x3

h
−1

)
sin

[
2k

a−a1

(
x1 +

a1 +a
4

)]
+B(1)

il Pl

(
2x3

h
−1

)
cos

[
2k

a−a1

(
x1 +

a1 +a
4

)]}
e jωt

(4.1)

Part two displacement functions:

u(2)i = f (2) (x3)

[
A(2)

il Pl

(
2x3

h
−1

)
sin

(
kx1

a1

)
+B(2)

il Pl

(
2x3

h
−1

)
cos

(
kx1

a1

)]
e jωt (4.2)

Part three displacement functions:

u(3)i = f (3) (x3)

[
A(3)

il Pl

(
2x3

h̄
+1

)
sin

(
kx1

a1

)
+B(3)

il Pl

(
2x3

h̄
+1

)
cos

(
kx1

a1

)]
e jωt (4.3)

Part four displacement functions:

u(4)i = f (4) (x3)

{
A(4)

il Pl

(
2x3

h
−1

)
sin

[
2k

a−a1

(
x1 −

a+a1

4

)]
+B(4)

il Pl

(
2x3

h
−1

)
cos

[
2k

a−a1

(
x1 −

a+a1

4

)]}
e jωt

(4.4)

where i = 1,3 and f (r)(x3) is the boundary function of the Part r with respect to the direction
of x3 , refer to Tab. 3.1 for the expression form, r = 1,2,3,4 and Pn(x) is the Legendre
polynomial.

The calculation of this model needs to consider the following boundary conditions:

(1) Continuous displacement at the interface

u(2)i (x3 = 0) = u(3)i (x3 = 0) , x1 ∈
[
−a1

2
,
a1

2

]
(4.5a)

u(3)i

(
x1 =−a1

2

)
= u(2)i

(
x1 =−a1

2

)
, x3 ∈ [0,h] (4.5b)

u(2)i

(
x1 =

a1

2

)
= u(4)i

(
x1 =

a1

2

)
, x3 ∈ [0,h] (4.5c)

(2) Continuous stress at the interface

σ
(2)
3i (x3 = 0) = σ

(3)
3i (x3 = 0) , x1 ∈

[
−a1

2
,
a1

2

]
(4.6)



68
Propagation properties of low-order SAWs in a periodic isotropic structure covering a finite

layer

Fig. 4.1 A periodic solid covered by a finite layer

(3) Free boundary conditions

σ
(3)
3i

(
x3 =−h̄

)
= 0,x1 ∈

[
−a1

2
,
a1

2

]
(4.7a)

σ
(3)
3i (x3 = 0) = 0,x1 ∈

[
−a

2
,−a1

2

]
∪
[a1

2
,
a
2

]
(4.7b)

σ
(3)
1i

(
x1 =−a1

2

)
= σ

(3)
1i

(
x1 =

a1

2

)
= 0,x3 ∈

[
−h̄,0

]
(4.7c)

(4) Fixed boundary condition at the bottom of the substrate

u(r)i (x3 = h) = 0, x1 ∈
[
−a

2
,
a
2

]
,r = 1,2,4 (4.8a)

Free boundary condition at the bottom of the substrate

σ
(r)
3i (x3 = h) = 0, x1 ∈

[
−a

2
,
a
2

]
,r = 1,2,4 (4.8b)

4.2 Equation derivation

According to the model, the structure is divided into four parts for calculation, so according
to the previous chapter, the kinetic and potential energies of this structure can be expressed
as:
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T = T (1)+T (2)+T (3)+T (4) (4.9)

V =V (1)+V (2)+V (3)+V (4) (4.10)

The steps are the same as in the previous chapter, obtaining the same form of the
characteristic equation 3.15, with the stiffness matrix and mass matrix shown as:

[K] =



[
K(1)

]
[0] [0] [0]

[0]
[
K(2)

]
[0] [0]

[0] [0]
[
K(3)

]
[0]

[0] [0] [0]
[
K(4)

]



[M] =



[
M(1)

]
[0] [0] [0]

[0]
[
M(2)

]
[0] [0]

[0] [0]
[
M(3)

]
[0]

[0] [0] [0]
[
M(4)

]



{α}=



{
α(1)

}{
α(2)

}{
α(3)

}{
α(4)

}



(4.11)

The superscripts here represent the individual parts of the structure, where
{

α(r)
}

,(r =

1,2,3,4) is a column vector consisting of the unknown coefficients A(r)
in and B(r)

in , and the
elements in the matrix are referred to the Appendix section of Chapter 2 for their exact form.

According to the previous chapter, the boundary conditions can be used to obtain the
relationship between the corresponding unknown coefficients of each part, so that a transfer
matrix, [S], can be extracted. Therefore, the transfer matrix can be used to link the stiffness
matrix and mass matrix of each part to obtain the mass matrix,

[
M̃
]
, and stiffness matrix,[

K̃
]
:

[
K̃
]
= [S]T [K] [S] ,

[
M̃
]
= [S]T [M] [S] ,{α̃}= [S]T {α} [S] (4.12)

Then, Eq. 3.15 can be rewritten as:
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([
K̃
]
−ω

2 [M̃])
{α̃}= 0 (4.13)

By solving Eq. 4.13 for vR = ω

k , the wave velocities of the SAWs in the structure can be
obtained for a given boundary condition.

4.3 Numerical results and discussion

This section mainly discusses the effects of different boundary conditions, finite cover plate
thickness, and materials on the propagation characteristics of low-order SAWs in structures.
Here, the size of the cover layer is: a1 =

λ

2 , and the substrate is still six wavelengths thick.
The material parameters used refer to Tab. 3.2.

4.3.1 The influence of boundary conditions on the propagation charac-
teristics of SAWs

In this section we consider the wave velocities of low-order SAWs in a model structure
with a covering layer thickness of one tenth of a wavelength for different combinations of
boundary conditions, as shown in Tab. 4.1. Based on the results of the low-order SAW
velocities in the structure for each boundary condition shown in Tab. 4.1, the results obtained
when considering only the displacement continuity at the junction of each part and the
stress continuity at the intersection of the substrate and the cover layer on top of that are
consistent with those obtained in the previous chapter when considering the upper and lower
layer displacement continuity/displacement and stress continuity. The calculated results
are basically the same and do not reflect well the actual situation in this model where the
overburden is not of the same width as the substrate. According to the comparison of the
longitudinal data in Tab. 4.1 it can be found that the boundary conditions on each face of the
upper cover layer can have some influence on the low-order SAWs velocities in the structure.
Figs. 4.2 to 4.5 show the first five modes and corresponding stress distributions for free and
fixed substrate bottom boundary conditions, respectively, after considering Eqs. 4.5, 4.6 and
4.7, with Au as the covering material and a thickness of one-tenth of a wavelength.

4.3.2 Effect of the covering layer thickness on the wave velocity of low-
order SAWs

In this section we focus on the effect of the thickness of the covering layer on the dispersion
curves of the SAWs in the structure in the present computational model. From the previous
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Table 4.1 The velocities of the SAWs in the structure under different kinds of boundary
conditions

Boundary conditions
Normalized

Time Boundary conditions
Normalized

Time
velocity (s) velocity (s)

Eq. 4.8a

Only Eq. 4.5
0.4887

0.506

Eq. 4.8b

Only Eq. 4.5
0.4887

0.6330.7109 0.7109
0.9058 0.9058

Eqs. 4.5
and 4.6

0.4887

0.635
Eqs. 4.5
and 4.6

0.4887

0.584
0.6769 0.6769
0.7111 0.7111
0.9058 0.9058

Eqs. 4.5
and 4.7c

0.4935

1.126
Eqs. 4.5
and 4.6

0.4935

1.053
0.5164 0.5164
0.7334 0.7334
0.8555 0.8555
0.9058 0.9058

Eqs. 4.5
and 4.7

0.4938

1.187
Eqs. 4.5
and 4.7

0.4938

1.258
0.5195 0.5195
0.7281 0.7281
0.8180 0.8180
0.9058 0.9058

Eqs. 4.5, 4.6
and 4.7

0.4936

1.047
Eqs. 4.5, 4.6

and 4.7

0.4936

1.483
0.5164 0.5164
0.7336 0.7336
0.8561 0.8561
0.9058 0.9058
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(a) (b)

(c) (d)

(e)

Fig. 4.2 First five SAW modes with free boundary conditions on the bottom surface of the
substrate: (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode; (e) the 5th
mode
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(a) (b)

(c) (d)

(e)

Fig. 4.3 First five SAW modes with fixed boundary conditions on the bottom surface of the
substrate: (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode; (e) the 5th
mode
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(a) (b)

(c) (d)

(e)

Fig. 4.4 First five stress distributions of SAWs with free boundary conditions on the bottom
surface of the substrate: the stress distribution of (a) the 1st mode; (b) the 2nd mode; (c) the
3rd mode; (d) the 4th mode; (e) the 5th mode
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(a) (b)

(c) (d)

(e)

Fig. 4.5 First five stress distributions of SAWs with fixed boundary conditions on the bottom
surface of the substrate: the stress distribution of (a) the 1st mode; (b) the 2nd mode; (c) the
3rd mode; (d) the 4th mode; (e) the 5th mode
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Fig. 4.6 Dispersion curves with different boundary conditions at the bottom of the substrate

chapter we already know that the thickness of the covering layer has a significant effect on
the dispersion characteristics of the SAWs in the structure. In this chapter, the results of
the previous chapter are used to analyse the effect of the thickness of the cover layer on the
dispersion curves of the SAWs in each model. In consideration of the previous conclusions,
the boundary conditions described in Eqs. 3.3 to 3.6a and Eqs. 4.7 to 4.8 are considered
in this section, and Au is still used as the material for the overburden. Fig. 4.6 shows that
for the same range of thickness variations, the wave velocity in this case decreases as the
thickness of the covering layer increases, a trend that is generally consistent with the previous
chapter, but the number of wave velocities less than the Rayleigh waves in the substrate is
significantly greater in this computational model than the results obtained in the model with
a thin full covering layer in the previous chapter.

4.3.3 Effect of the covering layer material on the propagation charac-
teristics of low-order SAWs

In this section, the first analysis is that under the condition that the bottom surface of the
substrate is a free boundary condition, the corresponding dispersion curves are calculated by
using different covering materials, and the results are shown in Fig. 4.7.

As shown in Figs. 4.7 and 4.8, when Al2O3 is used as the covering layer material,
x3 ∈ [0,0.1λ ], the trend of the wave velocity variation is basically the same as in the full-
coverage condition. However, based on the results obtained in this section when compared
with Fig. 4.6, it can be seen that there is also a difference in the displacement modes of the
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Fig. 4.7 Dispersion curves with different covering materials with a free boundary condition
at the bottom of the substrate

SAWs in the structure for the covering layer material with v̄T
vT

>
√

2 and for the covering layer
material with v̄T

vT
<
√

2 for the same boundary conditions. Compared to the previous chapter
where the covering is the same width as the substrate, the number of dispersion curves has
increased for the same normalised wave speed range. Figs. 4.9 and 4.10 show the first four
order modes and corresponding stress distributions for a covering material of Al2O3 and a
thickness of one tenth of a wavelength. As with the results of the previous section, regardless
of whether the shear wave velocity of the overburden material is " loading" or " stiffening"
with respect to the substrate, the energy is mainly concentrated near the intersection after
taking into account the stress continuum between the upper covering layer and the substrate
interface.

4.4 Summary

This chapter studies the propagation characteristics of Rayleigh waves in a structure covered
by a finite thin layer, and discusses in detail the influence of various boundary conditions
on the velocity of low-order SAWs, the corresponding displacement modes and stress
distribution, mainly Including various boundary conditions, the thickness of the covering
plate, and the influence of the material of the covering layer on the wave velocities. The
specific conclusions are as follows:
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Fig. 4.8 Dispersion curves with different covering materials with a fixed boundary condition
at the bottom of the substrate

(1) In the case of a finite covering layer, it is necessary to consider the boundary conditions
corresponding to each surface of the upper covering layer to meet the actual situation.
Among them, the side parallel to the x3-axis has a greater influence on the low-order
wave velocity in the structure, and on this basis, the boundary conditions corresponding
to the free surface and the contact surface parallel to the x1-axis also need to be
considered. In addition, the obvious difference from the previous chapter is that, on
the basis of considering the free boundary and displacement continuation conditions,
the stress continuum boundary at the interface between the upper and lower layers
needs to be further considered. As in the previous chapter, the boundary of the bottom
surface will not have a significant impact on the velocity of low-order SAWs in the
structure.

(2) Same as the previous chapter, for the covering material with v̄T
vT

< 1√
2
, within the

calculation range of covering thickness in this chapter, the velocities of low-order
SAWs in the structure decreases with increasing thickness of the cover layer, and
the number of low-order SAWs will change with the increase of the thickness of the
covering layer. But it is not the case for covering materials with v̄T

vT
>
√

2. When the
covering thickness is extremely small (h̄ < 0.01λ ), the low-order wave velocities in
the structure increase rapidly with the thickness of the covering layer, and change in
the velocities of the low-order SAWs in this computational model tends to stabilise
when the thickness continues to increase.
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(a) (b)

(c) (d)

Fig. 4.9 First four SAW modes with free boundary conditions on the bottom surface of the
substrate: (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode



80
Propagation properties of low-order SAWs in a periodic isotropic structure covering a finite

layer

(a) (b)

(c) (d)

Fig. 4.10 First four SAW modes with fixed boundary conditions on the bottom surface of the
substrate: (a) the 1st mode; (b) the 2nd mode; (c) the 3rd mode; (d) the 4th mode
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(a) (b)

(c) (d)

Fig. 4.11 First four stress distributions of SAWs with free boundary conditions on the bottom
surface of the substrate: the stress distribution of (a) the 1st mode; (b) the 2nd mode; (c) the
3rd mode; (d) the 4th mode
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(a) (b)

(c) (d)

Fig. 4.12 First four stress distributions of SAWs with fixed boundary conditions on the bottom
surface of the substrate: the stress distribution of (a) the 1st mode; (b) the 2nd mode; (c) the
3rd mode; (d) the 4th mode
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4.5 Appendix

When the bottom surface of the substrate is free, f (r)(x3) = 1, and r = 1,2,3,4, if only the
displacement continuity between the parts is considered, i.e., substituting the displacement
functions Eqs. 4.1 to 4.4 into 4.5a, yields:

A(1)
11 =−A(1)

12 −A(1)
13 − . . .−A(1)

1n −A(2)
11 −A(2)

12 − . . .−A(2)
1n

B(1)
11 =−B(1)

12 −B(1)
13 − . . .−B(1)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(1)
31 =−A(1)

32 −A(1)
33 − . . .−A(1)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(1)
31 =−B(1)

32 −B(1)
33 − . . .−B(1)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(3)
11 =−A(3)

12 −A(3)
13 − . . .−A(3)

1n +A(2)
11 −A(2)

12 + . . .+(−1)n−1 A(2)
1n

B(3)
11 =−B(3)

12 −B(3)
13 − . . .−B(3)

1n +B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

A(3)
31 =−A(3)

32 −A(3)
33 − . . .−A(3)

3n +A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

B(3)
31 =−B(3)

32 −B(3)
33 − . . .−B(3)

3n +B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

A(4)
11 =−A(4)

12 −A(4)
13 − . . .−A(4)

1n −A(2)
11 −A(2)

12 − . . .−A(2)
1n

B(4)
11 =−B(4)

12 −B(4)
13 − . . .−B(4)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(4)
31 =−A(4)

32 −A(4)
33 − . . .−A(4)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(4)
31 =−B(4)

32 −B(4)
33 − . . .−B(4)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

(4.14)

On the basis of the displacement continuum, if only Eq. 4.6 is considered, i.e:
c33

∂u(2)3
∂x3

+ c31
∂u(2)1
∂x1

= c̄33
∂u(3)3
∂x3

+ c̄31
∂u(3)1
∂x1

c55

(
∂u(2)3
∂x1

+
∂u(2)1
∂x3

)
= c̄55

(
∂u(3)3
∂x1

+
∂u(3)1
∂x3

) (4.15)

Substituting the displacement function into Eq. 4.15 to obtain:

A(1)
11 =−A(1)

12 −A(1)
13 − . . .−A(1)

1n −A(2)
11 −A(2)

12 − . . .−A(2)
1n

B(1)
11 =−B(1)

12 −B(1)
13 − . . .−B(1)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n
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A(1)
31 =−A(1)

32 −A(1)
33 − . . .−A(1)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(1)
31 =−B(1)

32 −B(1)
33 − . . .−B(1)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(3)
11 =

{
A(2)

11 −2A(2)
13 +5A(2)

15 + . . .+(−1)n
[

n(n−1)
2

−1
]

A(2)
1n

}
−
{(

1+
c̄55h
c55h̄

)
A(3)

12 +

(
1+3

c̄55h
c55h̄

)
A(3)

13 + . . .+

[
1+

n(n−1)
2

]
c̄55h
c55h̄

A(3)
1n

}
+hk

(
1− c̄55

c55

)(
B(3)

21 +B(3)
22 + . . .+B(3)

2n

)

A(3)
12 =

c55h̄
c̄55h

[
A(2)

12 −3A(2)
13 −6A(2)

15 + . . .+(−1)n−1 n(n−1)
2

A(2)
1n

]
+

[
A(3)

12 +3A(3)
13 + . . .+

n(n−1)
2

A(3)
1n

]
+hk

(
1− c̄55

c55

)(
B(3)

31 +B(3)
32 + . . .+B(3)

3n

)

B(3)
11 =

{
B(2)

11 −2B(2)
13 +5B(2)

15 + . . .+(−1)n
[

n(n−1)
2

−1
]

B(2)
1n

}
−
{(

1+
c̄55h
c55h̄

)
B(3)

12 +

(
1+3

c̄55h
c55h̄

)
B(3)

13 + . . .+

[
1+

n(n−1)
2

]
c̄55h
c55h̄

B(3)
1n

}
+hk

(
1− c̄55

c55

)(
A(3)

31 +A(3)
32 + . . .+A(3)

3n

)

B(3)
12 =

c55h̄
c̄55h

[
B(2)

12 −3B(2)
13 −6B(2)

15 + . . .+(−1)n−1 n(n−1)
2

B(2)
1n

]
+

[
B(3)

12 +3B(3)
13 + . . .+

n(n−1)
2

B(3)
1n

]
− h̄k

(
c55

c̄55
−1

)(
A(3)

31 +A(3)
32 + . . .+A(3)

3n

)

A(3)
31 =

{
A(2)

31 −2A(2)
33 +5A(2)

35 + . . .+(−1)n
[

n(n−1)
2

−1
]

A(2)
3n

}

(4.16)
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−
{(

1+
c̄33h
c33h̄

)
A(3)

32 +

(
1+3

c̄33h
c33h̄

)
A(3)

33 + . . .+

[
1+

n(n−1)
2

c̄33h
c33h̄

]
A(3)

3n

}
+hk

(
1− c̄33

c33

)(
B(3)

11 +B(3)
12 + . . .+B(3)

1n

)

A(3)
32 =

c33h̄
c̄33h

[
A(2)

32 −3A(2)
33 −6A(2)

35 + . . .+(−1)n−1 n(n−1)
2

A(2)
3n

]
+

[
A(3)

32 +3A(3)
33 + . . .+

n(n−1)
2

A(3)
3n

]
− h̄k

(
c33

c̄33
−1

)(
B(3)

11 +B(3)
12 + . . .+B(3)

1n

)

B(3)
31 =

{
B(2)

31 −2B(2)
33 +5B(2)

35 + . . .+(−1)n
[

n(n−1)
2

−1
]

B(2)
3n

}
+

[
B(3)

32 +3B(3)
33 + . . .+

n(n−1)
2

B(3)
3n

]
+hk

(
1− c̄33

c33

)(
A(3)

11 +A(3)
12 + . . .+A(3)

1n

)

B(3)
32 =

c33h̄
c̄33h

[
B(2)

32 −3B(2)
33 −6B(2)

35 + . . .+(−1)n−1 n(n−1)
2

B(2)
3n

]
+

[
B(3)

32 +3B(3)
33 + . . .+

n(n−1)
2

B(3)
3n

]
− h̄k

(
c33

c̄33
−1

)(
A(3)

11 +A(3)
12 + . . .+A(3)

1n

)
A(4)

11 =−A(4)
12 −A(4)

13 − . . .−A(4)
1n −A(2)

11 −A(2)
12 − . . .−A(2)

1n

B(4)
11 =−B(4)

12 −B(4)
13 − . . .−B(4)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(4)
31 =−A(4)

32 −A(4)
33 − . . .−A(4)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(4)
31 =−B(4)

32 −B(4)
33 − . . .−B(4)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

(4.16)

When only Eq. 4.7a is considered, that is:
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c̄13

∂u(3)3
∂x3

+ c̄11
∂u(3)1
∂x1

= 0

c̄55

(
∂u(3)3
∂x1

+
∂u(3)1
∂x3

)
= 0

,z ∈
[
−h̄,0

]
(4.17)

Substituting the displacement functions Eqs. 4.1 to 4.4 and Eq. 4.14 into 4.17, obtain:

A(1)
11 =−A(1)

12 −A(1)
13 − . . .−A(1)

1n −A(2)
11 −A(2)

12 − . . .−A(2)
1n

B(1)
11 =−B(1)

12 −B(1)
13 − . . .−B(1)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(1)
31 =−A(1)

32 −A(1)
33 − . . .−A(1)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(1)
31 =−B(1)

32 −B(1)
33 − . . .−B(1)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(3)
11 =

2a2
1c̄13

2a2
1c̄13 + c̄11h̄2k2

[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
− a1c̄13h̄k

2a2
1c̄13 + c̄11h̄2k2

[
B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
−

2a2
1c̄13

2a2
1c̄13 + c̄11h̄2k2

{
4A(3)

13 −5A(3)
14 + . . .+

[
(−1)n−1 n(n−1)

2
+1

]
A(3)

1n

}

A(3)
12 =

c̄11h̄2k2

2a2
1c̄13 + c̄11h̄2k2

[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
+

a1c̄13h̄k
2a2

1c̄13 + c̄11h̄2k2

[
B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
+

2a2
1c̄13

2a2
1c̄13 + c̄11h̄2k2

[
3A(3)

13 −6A(3)
14 + . . .+

(−1)n−1 n(n−1)
2

A(3)
1n

]

− c̄11h̄2k2

2a2
1c̄13 + c̄11h̄2k2

[
A(3)

13 +A(3)
14 + . . .+A(3)

1n

]

B(3)
11 =

2
(
3a2

1c̄33 + c̄31h̄2k2)
3
(
2a2

1c̄33 + c̄31h̄2k2
) [B(2)

11 −B(2)
12 + . . .+(−1)n−1 B(2)

1n

]
+

h̄k
(
6a2

1c̄33 + c̄31h̄2k2)
6a1

(
2a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]

(4.18)



4.5 Appendix 87

− 1
3

{
5B(3)

14 +14B(3)
16 + . . .+

[
n(n−1)

2
−1

]
B
(3)

1n

}

+
1
3

{
7B(3)

15 +18B(3)
17 + . . .+

[
n(n−1)

2
−3

]
B(3)

1n

}
−

2a2
1c̄33h̄k

3a1
(
2a2

1c̄33 + c̄31h̄2k2
) {5A(3)

33 +12A(3)
35 + . . .+

[
n(n−1)

2
+2

]
A(3)

3n

}

+
2a2

1c̄33h̄k
3a1

(
2a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

− c̄31h̄3k3

3a1
(
2a2

1c̄33 + c̄31h̄2k2
) (A(3)

33 +A(3)
35 + . . .+A(3)

3n

)
B(3)

13 =− c̄31h̄2k2

6
(
2a2

1c̄33 + c̄31h̄2k2
) [B(2)

11 −B(2)
12 + . . .+(−1)n−1 B(2)

1n

]
− c̄31h̄3k3

6a1
(
2a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]

+
1
3

{
5B(3)

14 +14B(3)
16 + . . .+

[
n(n−1)

2
−1

]
B
(3)

1n

}

− 1
3

[
10B(3)

15 +21B(3)
17 + . . .+

n(n−1)
2

B(3)
1n

]
− a1c̄33h̄k

3
(
2a2

1c̄33 + c̄31h̄2k2
) {2A(3)

33 −5A(3)
34 + . . .+(−1)n−1

[
n(n−1)

2
−1

]
A(3)

3n

}

+
c̄31h̄3k3

3a1
(
2a2

1c̄33 + c̄31h̄2k2
) (A(3)

33 +A(3)
35 + . . .+A(3)

3n

)

A(3)
31 =− a1c̄31h̄k(

2a2
1c̄33 + c̄31h̄2k2

) [B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]
+

2a2
1c̄33(

2a2
1c̄33 + c̄31h̄2k2

) [A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]
−

2a2
1c̄33(

2a2
1c̄33 + c̄31h̄2k2

) {4A(3)
33 −5A(3)

34 + . . . +

[
(−1)n−1 n(n−1)

2
+1

]
A(3)

3n

}

(4.18)
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A(3)
32 =

a1c̄31h̄k(
2a2

1c̄33 + c̄31h̄2k2
) [B(2)

11 −B(2)
12 + . . .+(−1)n−1 B(2)

1n

]
+

c̄31h̄2k2(
2a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]
+

2a2
1c̄33(

2a2
1c̄33 + c̄31h̄2k2

) [3A(3)
33 −6A(3)

34 + . . .+(−1)n−1 n(n−1)
2

A(3)
3n

]

− c̄31h̄2k2(
2a2

1c̄33 + c̄31h̄2k2
) (A(3)

33 +A(3)
34 + . . .+A(3)

3n

)

− 4a1c̄11h̄k
3
(
2a2

1c̄13 + c̄11h̄2k2
) {4A(3)

13 −5A(3)
14 + . . .+

[
(−1)n−1 n(n−1)

2
+1

]
A(3)

1n

}

+
2a1c̄13c̄31h̄k

3c̄33
(
2a2

1c̄13 + c̄11h̄2k2
) [3A(3)

13 +10A(3)
15 + . . .+

n(n−1)
2

A(3)
1n

]

− 2a1c̄13c̄31h̄k
3c̄33

(
2a2

1c̄13 + c̄11h̄2k2
) {5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

− c̄11c̄31h̄3k3

3a1c̄33
(
2a2

1c̄13 + c̄11h̄2k2
) (A(3)

13 +A(3)
15 + . . .+A(3)

1n

)
− 1

3

{
5B(3)

34 +14B(3)
36 + . . .+

[
(−1)n−1 n(n−1)

2
−1

]
B(3)

3n

}
+

1
3

{
7B(3)

35 +18B(3)
37 + . . .+

[
(−1)n−1 n(n−1)

2
−3

]
B(3)

3n

}

B(3)
32 =− a1c̄11h̄k(

2a2
1c̄13 + c̄11h̄2k2

) [A(2)
11 −A(2)

12 + . . .+(−1)n−1 A(2)
1n

]
+

c̄11h̄2k2

2
(
2a2

1c̄13 + c̄11h̄2k2
) [B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]

+
a1c̄11h̄k

2a2
1c̄13 + c̄11h̄2k2

[
3A(3)

13 −6A(3)
14 +10A(3)

15 + . . .+(−1)n−1 n(n−1)
2

A
(3)

1n

]

+
a1c̄11h̄k(

2a2
1c̄13 + c̄11h̄2k2

) (A(3)
13 +A(3)

14 + . . .+A(3)
1n

)
−B(3)

34 −B(3)
36 − . . .−B(3)

3n

B(3)
33 =−

h̄k
[
a2

1 (2c̄11c̄33 −2c̄13c̄31)+ c̄11c̄31h̄2k2]
6a1c̄33

(
2a2

1c̄13 + c̄11h̄2k2
)

(4.18)
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[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
+

(c̄11c̄33 −2c̄13c̄31) h̄2k2

6c̄33
(
2a2

1c̄13 + c̄11h̄2k2
) [B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
+

a1c̄11h̄k
3
(
2a2

1c̄13 + c̄11h̄2k2
) {4A(3)

13 −5A(3)
14 + . . .+

[
(−1)n−1 n(n−1)

2
+1

]
A(3)

1n

}

− 2a1c̄13c̄31h̄k
3c̄33

(
2a2

1c̄13 + c̄11h̄2k2
) [3A(3)

13 +10A(3)
15 + . . .+

n(n−1)
2

A(3)
1n

]

+
2a1c̄13c̄31h̄k

3c̄33
(
2a2

1c̄13 + c̄11h̄2k2
) {5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

B(3)
31 =−

h̄k
[
a2

1 (8c̄11c̄33 −2c̄13c̄31)+ c̄11c̄31h̄2k2]
6a1c̄33

(
2a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . . +(−1)n−1 A(2)

1n

]
+

6a2
1c̄13c̄33 +(c̄13c̄31 + c̄11c̄33) h̄2k2

3c̄33
(
2a2

1c̄13 + c̄11h̄2k2
) [

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]
+

c̄11c̄31h̄3k3

3a1c̄33
(
2a2

1c̄13 + c̄11h̄2k2
) (A(3)

13 +A(3)
15 + . . .+A(3)

1n

)
+

1
3

{
5B(3)

34 +14B(3)
36 + . . .+

[
(−1)n−1 n(n−1)

2
−1

]
B(3)

3n

}
− 1

3

{
10B(3)

35 +21B(3)
37 + . . .+

[
(−1)n−1 n(n−1)

2

]
B(3)

3n

}
A(4)

11 =−A(4)
12 −A(4)

13 − . . .−A(4)
1n −A(2)

11 −A(2)
12 − . . .−A(2)

1n

B(4)
11 =−B(4)

12 −B(4)
13 − . . .−B(4)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(4)
31 =−A(4)

32 −A(4)
33 − . . .−A(4)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(4)
31 =−B(4)

32 −B(4)
33 − . . .−B(4)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

When considering Eq. 4.7b at the interface displacement and stress continuity, it can be
obtained:
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A(1)
11 =−A(1)

12 −A(1)
13 − . . .−A(1)

1n −A(2)
11 −A(2)

12 − . . .−A(2)
1n

B(1)
11 =−B(1)

12 −B(1)
13 − . . .−B(1)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(1)
31 =−A(1)

32 −A(1)
33 − . . .−A(1)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(1)
31 =−B(1)

32 −B(1)
33 − . . .−B(1)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(3)
11 =

6a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
−

4a2
1c̄13c55h̄

c̄55h
(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]

− a1c̄13h̄k (3c̄55 −2c55)

c̄55
(
6a2

1c̄13 + c̄11h̄2k2
) [B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
+

6a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A(3)

1n

}

+
2a2

1c̄13

6a2
1c̄13 + c̄11h̄2k2

{
7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

A(3)
12 =

3c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]

−
(
c̄11h̄2k2 −6a2

1c̄13
)

c55h̄
2c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]

+

[
6a2

1c̄13 (2c̄55 − c55)+ c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
)

[
B(2)

31 −B(2)
32 + . . .(−1)n−1 B(2)

3n

]
+

c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) {3A(3)

14 +7A(3)
15 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

−
3a2

1c̄13(
6a2

1c̄13 + c̄11h̄2k2
) [12A(3)

14 +30A(3)
16 + . . .+n(n−1)A(3)

1n

]

A(3)
13 =− c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]

(4.19)
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−
(
2a1

2c̄13 + c̄11h̄2k2)c55h̄
2c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]

−
[
2a2

1c̄13c55 + c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
) [

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]
−

2a2
1c̄13(

6a2
1c̄13 + c̄11h̄2k2

) [10A(3)
15 +15A(3)

17 + . . .+
n(n−1)

2
A(3)

1n

]

− c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) {5A(3)

14 +9A(3)
15 + . . .+

[
n(n−1)

2
−1

]
A(3)

1n

}

B(3)
11 =

144a4
1c̄2

33 +18a2
1c̄33c31h̄2k2 + c̄31 (c31 − c̄31) h̄4k4

24a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
)

[
B(2)

11 −B(2)
12 + . . . + (−1)n−1 B(2)

1n

]
+

c55h̄
6c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

+
h̄k

[
6a2

1c̄33 (6c̄55 − c55)+ c̄31 (3c̄55 − c55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]
−

c33h̄2k
(
18a2

1c̄33 + c̄31h̄2k2)
12a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
1
3

{
7B(3)

15 +18B(3)
17 + . . .+

[
n(n−1)

2
−3

]
B(3)

1n

}
+

24a2
1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

+
12a2

1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

B(3)
12 =

h̄2k2 [6a2
1c̄33 (10c̄31 −7c31)+ c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
+

c55h̄
10c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

(4.19)
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−
h̄k

[
6a2

1c̄33 (10c̄55 + c55)+ c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(2)

31 −A(2)
32 + . . .+(−1)n−1A(2)

3n

]
+

c33h̄2k
(
42a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
1
5

{
9B(3)

16 +22B(3)
18 + . . .+

[
n(n−1)

2
−6

]
B(3)

1n

}
−

60a2
1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

−
24a2

1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

B(3)
13 =

h̄2k2 [6a2
1c̄33 (c31 −2c̄31)+ c̄31 (c̄31 − c31) h̄2k2]

24a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
− c55h̄

6c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

+
h̄k

[
6a2

1c̄33c55 + c̄31 (c55 −3c̄55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) [

A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
c33h̄2k

(
c̄31h̄2k2 −6a2

1c̄33
)

12a1c̄33h
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

− 1
3

[
10B(3)

15 +21B(3)
17 + . . .+

n(n−1)
2

B(3)
1n

]

+
12a2

1c̄33h̄k− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

B(3)
14 =

h̄2k2 [2a2
1c̄33c31 − c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]

− c55h̄
10c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

(4.19)
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+
h̄k

[
6a2

1c̄33c55 + c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) [

A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
c33h̄2k

(
2a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

− 1
5

{
14B(3)

16 +27B(3)
18 + . . .+

[
n(n−1)

2
−1

]
B(3)

1n

}

+
h̄k

(
4a2

1c̄33 + c̄31h̄2k2)
20a1

(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

+
c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

A(3)
31 =− a1 (3c̄31 −2c31) h̄k(

6a2
1c̄33 + c̄31h̄2k2

) [B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]
+

6a2
1c̄33(

6a2
1c̄33 + c̄31h̄2k2

) [A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
4a2

1c33h̄
h
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

+
2a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

A(3)
32 =

[
6a2

1c̄33 (2c̄31 − c31)+ c̄31 (c31 − c̄31) h̄2k2] h̄k
4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
+

3c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]

+
c33h̄

(
6a2

1c̄33 − c̄31h̄2k2)
2c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) {3A(3)

34 +7A(3)
35 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

(4.19)
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−
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) [6A(3)

34 +15A(3)
36 + . . .+

n(n−1)
2

A(3)
3n

]

A(3)
32 =

[
6a2

1c̄33 (2c̄31 − c31)+ c̄31 (c31 − c̄31) h̄2k2] h̄k
4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
+

3c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]

+
c33h̄

(
6a2

1c̄33 − c̄31h̄2k2)
2c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) {3A(3)

34 +7A(3)
35 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

−
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) [6A(3)

34 +15A(3)
36 + . . .+

n(n−1)
2

A(3)
3n

]

A(3)
33 =−

[
2a2

1c̄33c31 + c̄31 (c31 − c̄31) h̄2k2] h̄k
4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
− c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]

+
c33h̄

(
2a2

1c̄33 + c̄31h̄2k2)
2c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

− c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +9A(3)
35 +14A(3)

36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

−
a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) [20A(3)

35 +42A(3)
37 + . . .+n(n−1)A(3)

3n

]

B(3)
31 =

h̄k
[
6a2

1 (6c̄11c̄33 − c̄13c̄31)+ c̄11 (3c̄31 − c31) h̄2k2]
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . . + (−1)n−1 A(2)

1n

]
+

c55h̄2k
[
6a2

1 (c̄13c̄31 −4c̄11c̄33)− c̄11c̄31h̄2k2]
12a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]

(4.19)
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+

{
144a4

1c̄13c̄33c̄55 −6a2
1 [2c̄11c̄33 (c̄55 −2c55)+ c̄13c̄31 (c55 −2c̄55)] h̄2k2

24a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄4k4

24a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)}[

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]

− c33h̄
6c̄33h

[
B(2)

32 −3B(2)
33 + . . .+

(−1)n−1 n(n−1)
2

B(2)
3n

]

+
36a2

1c̄33c̄11h̄k+ c̄11c̄31h̄3k3 −12a2
1c̄13c̄31h̄k

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

+
12a2

1c̄11c̄33h̄k+ c̄11c̄31h̄3k3

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

+
1
3

{
7B(3)

35 +18B(3)
37 + . . .+

[
n(n−1)

2
−3

]
B(3)

3n

}

B(3)
32 =−

h̄k
{

6a2
1 [12c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . .+ (−1)n−1 A(2)

1n

]
[

A(2)
12 −3A(2)

13 + . . .+
(−1)n−1 n(n−1)

2
A(2)

1n

]

− h̄2k2

{
6a2

1 [c̄13c̄31 (2c̄55 − c55)+4c̄11c̄33 (2c55 −3c̄55)]

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)}[

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]

− c33h̄
10c̄33h

[
B(2)

32 −3B(2)
33 + . . .+

(−1)n−1 n(n−1)
2

B(2)
3n

]

−
72c̄11c̄33h̄ka2

1 + c̄11c̄31h̄3k3 −12c̄13c̄31h̄ka2
1

20a1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
)

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

(4.19)
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−
24c̄11c̄33h̄ka2

1 + c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

+
1
5

{
9B3

36 +22B3
38 + . . .+

[
n(n−1)

2
−6

]
B3

3n

}

B(3)
33 =

h̄k
[
6a2

1c̄13c31 + c̄11 (c31 −3c̄31) h̄2k2]
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) [

A(2)
11 −A(2)

12 + . . .+(−1)n−1 A(2)
1n

]
+

c̄31c55h̄2k
(
c̄11h̄2k2 −6a2

1c̄13
)

12a1c̄33c̄55h
(
6a2

1c̄13 + c̄11h̄2k2
) [A2

12 −3A2
13 + . . .+(−1)n−1 n(n−1)

2
A2

1n

]

+
c̄31h̄2k2 [6a2

1c̄13 (c55 −2c̄55)+ c̄11 (c̄55 − c55) h̄2k2]
24a2

1c̄55c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
+

c33h̄
6c̄33h

[
B(2)

32 −3B(2)
33 + . . .+

(−1)n−1 n(n−1)
2

B(2)
3n

]

−
c̄11c̄31h̄3k3 −12c̄13c̄31h̄ka2

1
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) {5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

− c̄11c̄31h̄3k3

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

− 1
3

[
10B(3)

35 +21B(3)
37 + . . .+

n(n−1)
2

B(3)
3n

]

B(3)
34 =−

h̄k
{

6a2
1 [2c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . .+ (−1)n−1 A(2)

1n

]
+ h̄2k2

[
2a2

1 (6c̄13c̄31c̄55 −6c̄11c̄33c̄55 −3c̄13c̄31c55 +4c̄11c̄33c55)

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)][B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]

+
c33h̄

10c̄33h

[
B(2)

32 −3B(2)
33 + . . .+

(−1)n−1 n(n−1)
2

B(2)
3n

]

(4.19)
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+
12a2

1c̄11c̄33h̄k+ c̄11c̄31h̄3k3 −12a2
1c̄13c̄31h̄k

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

+
4a2

1c̄11c̄33h̄k+ c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

− 1
5

{
14B(3)

36 +27B(3)
38 + . . .+

[
n(n−1)

2
−1

]
B(3)

3n

}
A(4)

11 =−A(4)
12 −A(4)

13 − . . .−A(4)
1n −A(2)

11 −A(2)
12 − . . .−A(2)

1n

B(4)
11 =−B(4)

12 −B(4)
13 − . . .−B(4)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(4)
31 =−A(4)

32 −A(4)
33 − . . .−A(4)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(4)
31 =−B(4)

32 −B(4)
33 − . . .−B(4)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

(4.19)

The independent unknown coefficients exhibited in the right-hand side of the equation in
Eq. 4.19 can be set to the new unknown vector, {ᾱ}:

{α}= [S1]{ᾱ}

{α}=
{[

A(1)
1

] [
B(1)

1

] [
A(1)

3

] [
B(1)

3

] [
A(2)

1

]
. . .

[
A(4)

1

] [
B(4)

1

] [
A(4)

3

] [
B(4)

3

]}T

{ᾱ}=
{[

Ã(1)
1

] [
B̃(1)

1

] [
Ã(1)

3

] [
B̃(1)

3

] [
A(2)

1

]
. . .

[
Ã(4)

1

] [
B̃(4)

1

] [
Ã(4)

3

] [
B̃(4)

3

]}T

(4.20)
where

{
A(1)

1

}
=
[
A(1)

11 A(1)
12 . . . A(1)

1n

]T

{
B(1)

1

}
=
[
B(1)

11 B(1)
12 . . . B(1)

1n

]T
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{
A(1)

3

}
=
[
A(1)

31 A(1)
32 . . . A(1)

3n

]T

{
B(1)

3

}
=
[
B(1)

31 B(1)
32 . . . B(1)

3n

]T

{
A(2)

1

}
=
[
A(2)

11 A(2)
12 . . . A(2)

1n

]T

{
B(2)

1

}
=
[
B(2)

11 B(2)
12 . . . B(2)

1n

]T

{
A(2)

3

}
=
[
A(2)

31 A(2)
32 . . . A(2)

3n

]T

{
B(2)

3

}
=
[
B(2)

31 B(2)
32 . . . B(2)

3n

]T

{
A(3)

1

}
=
[
A(3)

11 A(3)
12 . . . A(3)

1n

]T

{
B(3)

1

}
=
[
B(3)

11 B(3)
12 . . . B(3)

1n

]T

{
A(3)

3

}
=
[
A(3)

31 A(3)
32 . . . A(3)

3n

]T

{
B(3)

3

}
=
[
B(3)

31 B(3)
32 . . . B(3)

3n

]T

{
A(4)

1

}
=
[
A(4)

11 A(4)
12 . . . A(4)

1n

]T

{
B(4)

1

}
=
[
B(4)

11 B(4)
12 . . . B(4)

1n

]T

{
A(4)

3

}
=
[
A(4)

31 A(4)
32 . . . A(4)

3n

]T

{
B(4)

3

}
=
[
B(4)

31 B(4)
32 . . . B(4)

3n

]T

{
Ã(1)

1

}
=
[
A(1)

12 A(1)
13 . . . A(1)

1n

]T

{
B̃(1)

1

}
=
[
B(1)

12 B(1)
13 . . . B(1)

1n

]T

{
Ã(1)

3

}
=
[
A(1)

32 A(1)
33 . . . A(1)

3n

]T

{
B̃(1)

3

}
=
[
B(1)

32 B(1)
33 . . . B(1)

3n

]T

(4.21)
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{
Ã(3)

1

}
=
[
A(3)

13 A(3)
14 . . . A(3)

1n

]T

{
B̃(3)

1

}
=
[
B(3)

14 B(3)
15 . . . B(3)

1n

]T

{
Ã(3)

3

}
=
[
A(3)

33 A(3)
34 . . . A(3)

3n

]T

{
B̃(3)

3

}
=
[
B(3)

34 B(3)
34 . . . B(3)

3n

]T

(4.21)

{
Ã(4)

1

}
=
[
A(4)

12 A(4)
13 . . . A(4)

1n

]T

{
B̃(4)

1

}
=
[
B(4)

12 B(4)
13 . . . B(4)

1n

]T

{
Ã(4)

3

}
=
[
A(4)

32 A(4)
33 . . . A(4)

3n

]T

{
B̃(4)

3

}
=
[
B(4)

32 B(4)
33 . . . B(4)

3n

]T

The matrix [S1] can be acquired according to Eq. 4.19.
When the bottom of the substrate is fixed, then f ((r))(x3) = (1− x3

h ), r = 1,2,4. Accord-
ing to the previous chapter, it can be obtained that the transfer matrix obtained by considering
other boundary conditions without considering the stress continuity at the interface between
the covering layer and the substrate is consistent with the results of the previous section.
Therefore, this section will not be repeated in this section and only the case of stress continuity
on the intersection with x3 = 0 is discussed below.

Substituting the displacement functions into Eqs. 4.5, 4.6 and 4.7, obtained:

A(1)
11 =−A(1)

12 −A(1)
13 − . . .−A(1)

1n −A(2)
11 −A(2)

12 − . . .−A(2)
1n

B(1)
11 =−B(1)

12 −B(1)
13 − . . .−B(1)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(1)
31 =−A(1)

32 −A(1)
33 − . . .−A(1)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(1)
31 =−B(1)

32 −B(1)
33 − . . .−B(1)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(3)
11 =

6a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
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+
2a2

1c̄13c55h̄
c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) {A(2)

11 −3A(2)
12 +7A(2)

13 + . . .

+ (−1)n−1 [n(n−1)+1]A(2)
1n

}
− a1c̄13h̄k (3c̄55 −2c55)

c̄55
(
6a2

1c̄13 + c̄11h̄2k2
) [B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
− a1c̄13h̄k (3c̄55 −2c55)

c̄55
(
6a2

1c̄13 + c̄11h̄2k2
) [B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
+

2a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

{
7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

A(3)
12 =

3c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
+

(
c̄11h̄2k2 −6a2

1c̄13
)

c55h̄
4c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) {A(2)

11 −3A(2)
12 +7A(2)

13 + . . .

+ (−1)n−1 [n(n−1)+1]A(2)
1n

}
+

[
6a2

1c̄13 (2c̄55 − c55)+ c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
)

[
B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
+

c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) {3A(3)

14 +7A(3)
15 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

−
3a2

1c̄13(
6a2

1c̄13 + c̄11h̄2k2
) [12A(3)

14 +30A(3)
16 + . . .+n(n−1)A(3)

1n

]

A(3)
13 =− c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
−

(
2a1

2c̄13 + c̄11h̄2k2)c55h̄
4c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) {A(2)

11 −3A(2)
12 +7A(2)

13 + . . .

+ (−1)n−1 [n(n−1)+1]A(2)
1n

}
−

[
2a2

1c̄13c55 + c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
) [

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]

(4.22)
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−
2a2

1c̄13(
6a2

1c̄13 + c̄11h̄2k2
) [10A(3)

15 +15A(3)
17 + . . .+

n(n−1)
2

A(3)
1n

]

− c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) {5A(3)

14 +9A(3)
15 + . . .+

[
n(n−1)

2
−1

]
A(3)

1n

}

B(3)
11 =

144a4
1c̄2

33 +18a2
1c̄33c31h̄2k2 + c̄31 (c31 − c̄31) h̄4k4

24a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
+

c55h̄
12c̄55h

[
B(2)

11 −3B(2)
12 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

+
h̄k

[
6a2

1c̄33 (6c̄55 − c55)+ c̄31 (3c̄55 − c55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]
−

c33h̄2k
(
18a2

1c̄33 + c̄31h̄2k2)
12a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
1
3

{
7B(3)

15 +18B(3)
17 + . . .+

[
n(n−1)

2
−3

]
B(3)

1n

}
+

24a2
1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

+
12a2

1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

B(3)
12 =

h̄2k2 [6a2
1c̄33 (10c̄31 −7c31)+ c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
+

c55h̄
10c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

−
h̄k

[
6a2

1c̄33 (10c̄55 + c55)+ c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]
+

c33h̄2k
(
42a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

(4.22)
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+
1
5

{
9B(3)

16 +22B(3)
18 + . . .+

[
n(n−1)

2
−6

]
B(3)

1n

}
−

60a2
1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

−
24a2

1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

B(3)
13 =

h̄2k2 [6a2
1c̄33 (c31 −2c̄31)+ c̄31 (c̄31 − c31) h̄2k2]

24a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
− c55h̄

6c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

+
h̄k

[
6a2

1c̄33c55 + c̄31 (c55 −3c̄55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) [

A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
c33h̄2k

(
c̄31h̄2k2 −6a2

1c̄33
)

12a1c̄33h
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

− 1
3

[
10B(3)

15 +21B(3)
17 + . . .+

n(n−1)
2

B(3)
1n

]

+
12a2

1c̄33h̄k− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

B(3)
14 =

h̄2k2 [2a2
1c̄33c31 − c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]

− c55h̄
10c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

+
h̄k

[
6a2

1c̄33c55 + c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) [

A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
c33h̄2k

(
2a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

− 1
5

{
14B(3)

16 +27B(3)
18 + . . .+

[
n(n−1)

2
−1

]
B(3)

1n

}
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+
h̄k

(
4a2

1c̄33 + c̄31h̄2k2)
20a1

(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

+
c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

A(3)
31 =− a1 (3c̄31 −2c31) h̄k(

6a2
1c̄33 + c̄31h̄2k2

) [B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]
+

6a2
1c̄33(

6a2
1c̄33 + c̄31h̄2k2

) [A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
4a2

1c33h̄
h
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

+
2a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

A(3)
32 =

[
6a2

1c̄33 (2c̄31 − c31)+ c̄31 (c31 − c̄31) h̄2k2] h̄k
4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
+

3c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]

+
c33h̄

(
6a2

1c̄33 − c̄31h̄2k2)
2c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) {3A(3)

34 +7A(3)
35 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

−
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) [6A(3)

34 +15A(3)
36 + . . .+

n(n−1)
2

A(3)
3n

]

A(3)
33 =−

[
2a2

1c̄33c31 + c̄31 (c31 − c̄31) h̄2k2] h̄k
4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]
− c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]
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+
c33h̄

(
2a2

1c̄33 + c̄31h̄2k2)
2c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

− c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +9A(3)
35 +14A(3)

36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

−
a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) [20A(3)

35 +42A(3)
37 + . . .+n(n−1)A(3)

3n

]

B(3)
31 =

h̄k
[
6a2

1 (6c̄11c̄33 − c̄13c̄31)+ c̄11 (3c̄31 − c31) h̄2k2]
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) [

A(2)
11 −A(2)

12 + . . .

+ (−1)n−1 A(2)
1n

]
+

c55h̄2k
[
6a2

1 (c̄13c̄31 −4c̄11c̄33)− c̄11c̄31h̄2k2]
12a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]

+

{
144a4

1c̄13c̄33c̄55 −6a2
1 [2c̄11c̄33 (c̄55 −2c55)+ c̄13c̄31 (c55 −2c̄55)] h̄2k2

24a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄4k4

24a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)}[

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]
+

c33h̄
12c̄33h

{
B(2)

21 −3B(2)
22 + . . .+(−1)n−1 [n(n−1)+1]B(2)

2n

}
+

36a2
1c̄33c̄11h̄k+ c̄11c̄31h̄3k3 −12a2

1c̄13c̄31h̄k
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

B(3)
32 =−

h̄k
{

6a2
1 [12c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . .+ (−1)n−1 A(2)

1n

]
+

c55h̄2k
[
−6a2

1 (c̄13c̄31 −8c̄11c̄33)+ c̄11c̄31h̄2k2]
20a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]
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− h̄2k2

{
6a2

1 [c̄13c̄31 (2c̄55 − c55)+4c̄11c̄33 (2c55 −3c̄55)]

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)}[

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]
+

c33h̄
20c̄33h

{
B(2)

21 −3B(2)
22 + . . .+(−1)n−1 [n(n−1)+1]B(2)

2n

}
−

72c̄11c̄33h̄ka2
1 + c̄11c̄31h̄3k3 −12c̄13c̄31h̄ka2

1
20a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
)

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

−
24c̄11c̄33h̄ka2

1 + c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

+
1
5

{
9B(3)

36 +22B(3)
38 + . . .+

[
n(n−1)

2
−6

]
B(3)

3n

}

B(3)
33 =

h̄k
[
6a2

1c̄13c31 + c̄11 (c31 −3c̄31) h̄2k2]
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
+

c̄31c55h̄2k
(
c̄11h̄2k2 −6a2

1c̄13
)

12a1c̄33c̄55h
(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

12 −3A(2)
13 + . . .

+ (−1)n−1 n(n−1)
2

A(2)
1n

]

+
c̄31h̄2k2 [6a2

1c̄13 (c55 −2c̄55)+ c̄11 (c̄55 − c55) h̄2k2]
24a2

1c̄55c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
− c33h̄

12c̄33h

{
B(2)

31 −3B(2)
32 + . . .+(−1)n−1 [n(n−1)+1]B(2)

3n

}

(4.22)
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−
c̄11c̄31h̄3k3 −12c̄13c̄31h̄ka2

1
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) {5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

− c̄11c̄31h̄3k3

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

− 1
3

[
10B(3)

35 +21B(3)
37 + . . .+

n(n−1)
2

B(3)
3n

]

B(3)
34 =−

h̄k
{

6a2
1 [2c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . .+ (−1)n−1 A(2)

1n

]
−

c55h̄2k
[
a2

1 (8c̄11c̄33 −6c̄13c̄31)+ c̄11c̄31h̄2k2]
20a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]

+ h̄2k2

[
2a2

1 (6c̄13c̄31c̄55 −6c̄11c̄33c̄55 −3c̄13c̄31c55 +4c̄11c̄33c55)

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)][B2

31 −B2
32 + . . .+(−1)n−1 B2

3n

]
− c33h̄

20c̄33h

{
B(2)

31 −3B(2)
32 + . . .+(−1)n−1 [n(n−1)+1]B(2)

3n

}
+

12a2
1c̄11c̄33h̄k+ c̄11c̄31h̄3k3 −12a2

1c̄13c̄31h̄k
20a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

+
4a2

1c̄11c̄33h̄k+ c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

− 1
5

{
14B(3)

36 +27B(3)
38 + . . .+

[
n(n−1)

2
−1

]
B(3)

3n

}
A(4)

11 =−A(4)
12 −A(4)

13 − . . .−A(4)
1n −A(2)

11 −A(2)
12 − . . .−A(2)

1n
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B(4)
11 =−B(4)

12 −B(4)
13 − . . .−B(4)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(4)
31 =−A(4)

32 −A(4)
33 − . . .−A(4)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(4)
31 =−B(4)

32 −B(4)
33 − . . .−B(4)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

The transfer matrix, {S1} for the corresponding boundary conditions can be obtained accord-
ing to Eq. 4.21, which leads to the corresponding characteristic equation.





Chapter 5

Propagation characteristics of low-order
SAWs in a finite plate covered by
periodic electrodes

Nowadays, because the overall model of the SAW device structure is mostly complex, it is
difficult to directly obtain an accurate solution through the analytical method, so the design
and research of the SAW device are generally carried out by numerical analysis methods,
among which the FEM is more commonly used one of the means. In actual SAW devices,
there are often hundreds of electrodes. The larger the number of units, the more computational
cost will undoubtedly be invested. Therefore, in order to control the computational cost, only
one of them is usually analyzed separately in most research work.

The Rayleigh-Ritz method can obtain the stiffness matrix and mass matrix of each part
of the structure, store them in the matrix in the form of symbolic functions, and then directly
call the corresponding functions through various parameters to quickly obtain the required
values. In this way, the calculation consumption of a single branch is saved to a large extent.
However, through the boundary conditions between the parts in the structure, the transfer
matrix between two adjacent parts can be obtained relatively easily. According to the order
of distribution of each part in the structure, any two points can be obtained by multiplying
the matrices sequentially. The relationship between parts can be sorted out to obtain the
transfer matrix of the whole structure, and the stiffness matrix and mass matrix of each part
are connected to obtain the characteristic equation of the whole structure. In general, the
more comprehensive the boundary conditions considered, the more unknown coefficients
can be solved, that is, the smaller the obtained transfer matrix.

To the best of the author’s knowledge, there are no studies on the propagation properties of
SAWs in finite-size elastic plate structures covered with periodic electrodes by the Rayleigh-
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Ritz method. In this chapter, the Rayleigh-Ritz method is still used to obtain the stiffness
matrix and mass matrix of each part of the model, and then the transfer matrix is used to
connect the various parts to obtain the characteristic equation that characterizes the entire
structure. On the basis of the previous two chapters, this chapter also analyzes the dispersion
characteristics of the low-order SAWs in the finite structure covered with multi-electrodes
under different combinations of the covering layer materials.

This chapter mainly studies the propagation characteristics of low-order SAWs in isotropic
substrates in the case of multiple elements. First, based on the conclusions obtained in the
previous chapter, this chapter considers the stress boundary conditions corresponding to each
free surface in the model and the stress continuity condition on the interface between the upper
and lower layers, and uses the bottom surface of the substrate as a fixed boundary condition,
thus deriving The transfer matrix corresponding to the general multi-electrode structure is
obtained, and the characteristic equation of the overall structure is further obtained; then,
the dispersion relationship in the structure composed of multiple electrodes is numerically
calculated; finally, the structure of two and three electrode combinations is taken as an
example , adopting different permutations and combinations of covering materials, the
influence of the combination of the covering layer materials on the velocity dispersion
characteristics of low-order SAWs in the structure is analyzed.

5.1 Problem description

The model structure used in this chapter is shown in Fig. 5.1. The unit size used in this
chapter is the same as that in the previous chapter. The whole structure is composed of
multiple units connected along the x1 direction.

If the structure only includes a few electrodes at this time, as shown in Fig. 5.1, it is
advisable to set the boundary between x1 =−a

2 and x1 =
a
2 as a periodic boundary, λ = 2a1.

Let the displacement function form of the covering layer be:

ū(r)i = f̄ (x3)

{
Ā(r)

in Pn

(
2x3

h̄
+1

)
sin

{
k
a1

[
x1 −

(r−3)λ

2

]}
+B̄(r)

in Pn

(
2x3

h̄
+1

)
cos

{
k
a1

[
x1 −

(r−3)λ

2

]}}
e jωt

(5.1)

The displacement function of the substrate takes the form as:
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Fig. 5.1 A finite solid covered by periodic electrodes

u(r)i = f (x3)

{
A(r)

in Pn

(
2x3

h
−1

)
sin

{
2k

λ −a1

[
x1 −

(r−2)λ +a1
4

]}
+B(r)

in Pn

(
2x3

h
−1

)
cos

{
2k

λ −a1

[
x1 −

(r−2)λ +a1
4

]}}
e jωt

(5.2)

where r = 1,2,3, ...R, denotes the numbering of the individual parts of the unit and the
substrate, and f (x3) and f̄ (x3) are the boundary functions in the x3 direction. In this chapter,
we mainly analyze the propagation characteristics of the SAWs in the structure under the
fixed boundary conditions of the substrate bottom surface, and f (x3) =

(
1− x3

h

)
, f̄ (x3) = 1.

According to the conclusion of Chapter 4, this model only considers the following
boundary conditions:

(1) Continuous displacement at the interface

u(r)i (x3 = 0) = ū(r)i (x3 = 0) (5.3)

(2) Continuous stress at the interface

σ
(r)
3i (x3 = 0) = σ̄

(r)
3i (x3 = 0) (5.4)

(3) Free boundary conditions
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σ̄
(r)
3i

(
x3 =−h̄

)
= 0 (5.5)

(4) Fixed boundary condition at the bottom of the substrate

u(r)i (x3 = h) = 0 (5.6)

5.2 Equation derivation

According to the model, the structure is divided into R parts for calculation, so according to
the previous chapter, the kinetic energy and potential energy of this structure can be expressed
as:

T = T (1)+T (2)+T (3)+ . . .+T (R) (5.7)

V =V (1)+V (2)+V (3)+ . . .+V (R) (5.8)

The steps are the same as in the previous chapter. After sorting, the form of the character-
istic equation Eq. 3.15 is still obtained, but the stiffness matrix and mass matrix have certain
changes:

[K] =


[K](1) [0] . . . [0]
[0] [K](2) . . . [0]
...

... . . . ...
[0] [0] . . . [K](R)



[M] =


[M](1) [0] . . . [0]
[0] [M](2) . . . [0]
...

... . . . ...
[0] [0] . . . [M](R)



{α}=


{α}(1)

{α}(2)
...

{α}(R)



(5.9)

The boundary conditions, known as Eqs. 5.3 to 5.6, are used to obtain the transfer matrix
[S1], and the characteristic equations of the computational model are obtained via Eq. 4.12.
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In order to fit the actual situation, on the basis of the conclusion in the previous chapter,
this chapter adopts the boundary condition that the bottom surface of the substrate is fixed.
And in this chapter, the simple transfer matrix method is still used to connect the various
parts together according to the boundary conditions to form the characteristic equation of the
structure.

The transfer matrix connecting each part of this structure can be abbreviated as:
A(r)

1n

B(r)
1n

A(r)
3n

B(r)
3n

= [Sr r−1]


A(r−1)

1n

B(r−1)
1n

A(r−1)
3n

B(r−1)
3n

+[Sr r]


Ã(r)

1n

B̃(r)
1n

Ã(r)
3n

B̃(r)
3n

 (5.10)

In Eq. 5.10, r ̸= 2, when r = 2, the formula is written as:
A(2)

1n

B(2)
1n

A(2)
3n

B(2)
3n

= [I]


A(2)

1n

B(2)
1n

A(2)
3n

B(2)
3n

 (5.11)

where [I] is the identity matrix. And
{

Ã(r)
1n B̃(r)

1n Ã(r)
3n B̃(r)

3n

}T
means that in addition to

the known coefficients A new vector of unknown coefficients composed of other unknown
coefficients.

According to the layer matrix relationship between each part, combined with Eq. 5.10,
the transfer matrix of the r(r ≥ 5) part of the base can be expressed as:

A(r)
1n

B(r)
1n

A(r)
3n

B(r)
3n

= [Sr r−1][Sr−1 r−2] . . . [S32]


A(2)

1n

B(2)
1n

A(2)
3n

B(2)
3n

+ . . .

+[Sr r−1][Sr−1 r−1]


A(r−1)

1n

B(r−1)
1n

A(r−1)
3n

B(r−1)
3n

+[Sr r]


Ã(r)

1n

B̃(r)
1n

Ã(r)
3n

B̃(r)
3n



(5.12)
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= [Sr 2]


A(2)

1n

B(2)
1n

A(2)
3n

B(2)
3n

+ . . .+[S̄r r−1]


A(r−1)

1n

B(r−1)
1n

A(r−1)
3n

B(r−1)
3n

+[Sr r]


Ã(r)

1n

B̃(r)
1n

Ã(r)
3n

B̃(r)
3n


Matrix coefficients such as [Sr r−1], [Sr−1 r−1], [S32], [Sr r], etc. in Eqs. 5.10 to 5.12

are obtained by substituting the displacement function into The relationship between the
unknown coefficients is obtained after the boundary conditions are obtained. After sorting,
new matrices [Sr 2], [S̄rr−1], etc. can be obtained. Finally, combine the matrix between the
unknown coefficients of each part, and then obtain the obtained transfer matrix according
to the distribution order of each part in the stiffness matrix and mass matrix, and the matrix
includes the boundary conditions in the structure, the size parameters of each part, and
the materials used The physical parameters and other factors play an important role in the
analysis of wave propagation problems in structures.

[S1] =



[S11] [S12] [0] . . . [0]
[0] [I] [0] . . . [0]
[0] [S32] [S33] . . . [0]
...

...
... . . . ...

[0] [Sr−1 2] [0] . . . [0]
[0] [Sr2] [0] . . . [Srr]


(5.13)

In the appendix of this chapter, the relationship between the unknown coefficients in the
case of three unit combinations is listed.

5.3 Numerical results and discussion

In this section, we investigate the effect of the number of electrodes and the combination of
different covering materials on the SAW propagation characteristics in this structural model.
In the following case studies, a fixed boundary condition at the base of the structure is used
to In the following case studies, fixed boundary conditions on the bottom surface of the
structure are used to better match the situation of the actual SAW device.
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Fig. 5.2 Dispersion curves with the different number of Au electrodes

5.3.1 Effect of the number of elements on the dispersion curve of low-
order SAWs

In this subsection, the parameters of Au and Al2O3 are used for the overlay material respec-
tively, and the material parameters of fused quartz are still used for the substrate . This
section examines whether the number of units has an effect on the propagation of the SAWs
in the structure when analysed by the above method. As can be seen from Figs. 5.2 and 5.3,
the number of electrodes in the structure has almost no effect on the dispersion curve of the
SAWs in this model for the same covering parameters. Since Fig. 5.1 is actually made up of
several models as in Fig. 4.1, the number of electrodes has no effect on the wave velocity of
the lower order SAWs in the structure, provided that the dimensions and materials of each
cell model are the same and the stiffness and mass matrices of each part of the cell are the
same.

5.3.2 Dispersion characteristics of low-order SAWs in structures with
different covering material combinations

This section mainly studies the propagation characteristics of SAWs in a structure covered
with multiple electrodes, where the material of the electrode layer is different but the size
of the structure is the same. First, the structure covered with two electrodes is taken as
an example. At this time, there are four kinds of combination forms, and two of them are
selected here in which the covering layer is made of different materials, that is, the covering
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Fig. 5.3 Dispersion curves with different numbers of Al2O3 electrodes

material of one unit is Au, and the other is Al2O3. The corresponding dispersion curve
is shown in Fig. 5.4. For the model covered with three electrodes, there are 8 different
material combination modes, only some combinations are listed here: Au+Al2O3 +Al2O3,
Al2O3+Au+Au, Au+Al2O3+Au and Al2O3+Au+Al2O3, the dispersion curves of each
combination are shown in Fig. 5.5 in turn.

Compared with the model with only one covering material in the previous section, the
dispersion curve changes significantly, and the difference becomes more obvious as the
thickness of the upper layer increases.

(a) (b)

Fig. 5.4 Dispersion curves for the structure with two electrodes: (a) Au+Al2O3; (b) Al2O3+
Au
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(a) (b)

(c) (d)

Fig. 5.5 Dispersion curves for structure with three electrodes: (a) Au+Al2O3 +Al2O3; (b)
Al2O3 +Au+Au; (c) Al2O3 +Au+Al2O3; (d) Au+Al2O3 +Au
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5.4 Summary

In this chapter, a simple transfer matrix is derived for a structure covered with multiple
periodic electrodes under fixed bottom surface conditions, leading to a reconstruction of
the characteristic equations of the structure and a numerical discussion of the effect of the
number of electrodes and the material combination of the electrode layers on the dispersion
characteristics of the low-order wave velocity in the structure. The specific conclusions are
as follows:

(1) In this calculation model, a combination of trigonometric functions and Legendre
polynomials is used as the displacement function, and the boundary condition that the
bottom edge of the base is fixed is considered. According to the research results, in this
calculation model, the number of electrodes in the structure will not have a significant
impact on the propagation velocity of the low-order SAWs in the model.

(2) For a structure covered with multiple electrodes, and the materials of the electrode
layers are different, the combination of different materials will have a certain influence
on the dispersion characteristics of the low-order SAWs in the structure. According
to the research results in this chapter, it is found that the combination sequence of
materials is the main influencing factor.

5.5 Appendix

This shows the coefficient relationship when there are three unit combinations:

A(1)
11 =−A(1)

12 −A(1)
13 − . . .−A(1)

1n −A(2)
11 −A(2)

12 − . . .−A(2)
1n

B(1)
11 =−B(1)

12 −B(1)
13 − . . .−B(1)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(1)
31 =−A(1)

32 −A(1)
33 − . . .−A(1)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(1)
31 =−B(1)

32 −B(1)
33 − . . .−B(1)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(3)
11 =

6a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
+

2a2
1c̄13c55h̄

c̄55h
(
6a2

1c̄13 + c̄11h̄2k2
) {A(2)

11 −3A(2)
12 +7A(2)

13 + . . .

+ (−1)n−1 [n(n−1)+1]A(2)
1n

}
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− a1c̄13h̄k (3c̄55 −2c55)

c̄55
(
6a2

1c̄13 + c̄11h̄2k2
) [B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
+

6a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A(3)

1n

}

+
2a2

1c̄13

6a2
1c̄13 + c̄11h̄2k2

{
7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

A(3)
12 =

3c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
+

(
c̄11h̄2k2 −6a2

1c̄13
)

c55h̄
4c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) {A(2)

11 −3A(2)
12 +7A(2)

13 + . . .

+ (−1)n−1 [n(n−1)+1]A(2)
1n

}
+

[
6a2

1c̄13 (2c̄55 − c55)+ c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
)

[
B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
+

c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) {3A(3)

14 +7A(3)
15 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

−
3a2

1c̄13(
6a2

1c̄13 + c̄11h̄2k2
) [12A(3)

14 +30A(3)
16 + . . .+n(n−1)A(3)

1n

]

A(3)
13 =− c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) [A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
−

(
2a1

2c̄13 + c̄11h̄2k2)c55h̄
2c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) {A(2)

12 −3A(2)
13 +12A(2)

14 + . . .

+
(−1)n−1 [n(n−1)]

2
A(2)

1n

}

−
[
2a2

1c̄13c55 + c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
) [

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]

(5.14)
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−
2a2

1c̄13(
6a2

1c̄13 + c̄11h̄2k2
) [10A(3)

15 +15A(3)
17 + . . .+

n(n−1)
2

A(3)
1n

]

− c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) {5A(3)

14 +9A(3)
15 + . . .+

[
n(n−1)

2
−1

]
A(3)

1n

}

B(3)
11 =

144a4
1c̄2

33 +18a2
1c̄33c31h̄2k2 + c̄31 (c31 − c̄31) h̄4k4

24a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
+

c55h̄
12c̄55h

[
B(2)

11 −3B(2)
12 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

+
h̄k

[
6a2

1c̄33 (6c̄55 − c55)+ c̄31 (3c̄55 − c55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]
−

c33h̄2k
(
18a2

1c̄33 + c̄31h̄2k2)
12a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
1
3

{
7B(3)

15 +18B(3)
17 + . . .+

[
n(n−1)

2
−3

]
B(3)

1n

}
+

24a2
1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

+
12a2

1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

B(3)
12 =

h̄2k2 [6a2
1c̄33 (10c̄31 −7c31)+ c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .

+ (−1)n−1 B(2)
1n

]
+

c55h̄
10c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

−
h̄k

[
6a2

1c̄33 (10c̄55 + c55)+ c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]
+

c33h̄2k
(
42a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

(5.14)
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+
1
5

{
9B(3)

16 +22B(3)
18 + . . .+

[
n(n−1)

2
−6

]
B(3)

1n

}
−

60a2
1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

−
24a2

1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

+ (−1)n−1 B(2)
1n

]
− c55h̄

6c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

+
h̄k

[
6a2

1c̄33c55 + c̄31 (c55 −3c̄55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) [

A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
c33h̄2k

(
c̄31h̄2k2 −6a2

1c̄33
)

12a1c̄33h
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

− 1
3

[
10B(3)

15 +21B(3)
17 + . . .+

n(n−1)
2

B(3)
1n

]

+
12a2

1c̄33h̄k− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

B(3)
14 =

h̄2k2 [2a2
1c̄33c31 − c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]

− c55h̄
10c̄55h

[
B(2)

12 −3B(2)
13 + . . .+

(−1)n−1 n(n−1)
2

B(2)
1n

]

+
h̄k

[
6a2

1c̄33c55 + c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) [

A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
c33h̄2k

(
2a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

− 1
5

{
14B(3)

16 +27B(3)
18 + . . .+

[
n(n−1)

2
−1

]
B(3)

1n

}

(5.14)
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+
h̄k

(
4a2

1c̄33 + c̄31h̄2k2)
20a1

(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

+
c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

A(3)
31 =− a1 (3c̄31 −2c31) h̄k(

6a2
1c̄33 + c̄31h̄2k2

) [B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]
+

6a2
1c̄33(

6a2
1c̄33 + c̄31h̄2k2

) [A(2)
31 −A(2)

32 + . . .+(−1)n−1 A(2)
3n

]

−
4a2

1c33h̄
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(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

32 −3A(2)
33 + . . .+

(−1)n−1 n(n−1)
2

A(2)
3n

]

+
6a2
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6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +14A(3)
36 + . . .+

[
n(n−1)

2
−1

]
A(3)

3n

}

+
2a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

35 +18A(3)
37 + . . .+
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n(n−1)

2
−3

]
A(3)

3n

}

A(3)
32 =

[
6a2

1c̄33 (2c̄31 − c31)+ c̄31 (c31 − c̄31) h̄2k2] h̄k
4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
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B(2)
11 −B(2)

12 + . . .
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1n

]
+

3c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)
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32 + . . .+(−1)n−1 A(2)

3n

]

+
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(
6a2

1c̄33 − c̄31h̄2k2)
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(
6a2
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32 −3A(2)
33 + . . .+
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2

A(2)
3n

]
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2
(
6a2
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34 +7A(3)
35 + . . .+

[
n(n−1)

2
−3

]
A(3)

3n

}

−
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
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34 +15A(3)
36 + . . .+

n(n−1)
2

A(3)
3n

]

A(3)
33 =−

[
2a2
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4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) [

B(2)
11 −B(2)

12 + . . .+(−1)n−1 B(2)
1n

]
− c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) [A(2)

31 −A(2)
32 + . . .+(−1)n−1 A(2)

3n

]

+
c33h̄

(
2a2
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(
6a2
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32 −3A(2)
33 + . . .+
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2
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3n

]

(5.14)



5.5 Appendix 123

− c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(3)

34 +9A(3)
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36 + . . .+
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2
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A(3)

3n

}

−
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6a2

1c̄33 + c̄31h̄2k2
) [20A(3)
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3n

]
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h̄k
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)
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]
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)
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13 + . . .+
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1n

]

+

{
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1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄4k4

24a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)}[

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]
+

c33h̄
12c̄33h

{
B(2)

21 −3B(2)
22 + . . .+(−1)n−1 [n(n−1)+1]B(2)
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}
36a2

1c̄33c̄11h̄k+ c̄11c̄31h̄3k3 −12a2
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12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)
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5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

+
12a2

1c̄11c̄33h̄k+ c̄11c̄31h̄3k3

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

+
1
3

{
7B(3)

35 +18B(3)
37 + . . .+

[
n(n−1)

2
−3

]
B(3)

3n

}

B(3)
32 =−

h̄k
{

6a2
1 [12c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
+

c55h̄2k
[
−6a2

1 (c̄13c̄31 −8c̄11c̄33)+ c̄11c̄31h̄2k2]
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(
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1c̄13 + c̄11h̄2k2
)
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[
A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]

− h̄2k2

{
6a2

1 [c̄13c̄31 (2c̄55 − c55)+4c̄11c̄33 (2c55 −3c̄55)]

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)}[

B(2)
31 −B(2)

32 + . . .+(−1)n−1 B(2)
3n

]
+

c33h̄
20c̄33h

{
B(2)

21 −3B(2)
22 + . . .+(−1)n−1 [n(n−1)+1]B(2)

2n

}
−

72c̄11c̄33h̄ka2
1 + c̄11c̄31h̄3k3 −12c̄13c̄31h̄ka2

1
20a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
)

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

−
24c̄11c̄33h̄ka2

1 + c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .

+

[
n(n−1)

2
−3

]
A(3)

1n

}
+

1
5

{
9B(3)

36 +22B(3)
38 + . . .+

[
n(n−1)

2
−6

]
B(3)

3n

}

B(3)
33 =

h̄k
[
6a2

1c̄13c31 + c̄11 (c31 −3c̄31) h̄2k2]
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) [

A(2)
11 −A(2)

12 + . . .+(−1)n−1 A(2)
1n

]
+

c̄31c55h̄2k
(
c̄11h̄2k2 −6a2

1c̄13
)

12a1c̄33c̄55h
(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

12 −3A(2)
13 + . . .+(−1)n−1 n(n−1)

2
A(2)

1n

]

+
c̄31h̄2k2 [6a2

1c̄13 (c55 −2c̄55)+ c̄11 (c̄55 − c55) h̄2k2]
24a2

1c̄55c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
B(2)

31 −B(2)
32 + . . .+(−1)n−1 B(2)

3n

]
− c33h̄

12c̄33h

{
B(2)

31 −3B(2)
32 + . . .+(−1)n−1 [n(n−1)+1]B(2)

3n

}
−

c̄11c̄31h̄3k3 −12c̄13c̄31h̄ka2
1

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)
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}
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− c̄11c̄31h̄3k3

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

− 1
3

[
10B(3)

35 +21B(3)
37 + . . .+

n(n−1)
2

B(3)
3n

]

B(3)
34 =−

h̄k
{

6a2
1 [2c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

11 −A(2)
12 + . . .+(−1)n−1 A(2)

1n

]
−

c55h̄2k
[
a2

1 (8c̄11c̄33 −6c̄13c̄31)+ c̄11c̄31h̄2k2]
20a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(2)

12 −3A(2)
13 + . . .+

(−1)n−1 n(n−1)
2

A(2)
1n

]

+ h̄2k2

[
2a2

1 (6c̄13c̄31c̄55 −6c̄11c̄33c̄55 −3c̄13c̄31c55 +4c̄11c̄33c55)

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)][B2

31 −B2
32 + . . .+(−1)n−1 B2

3n

]
− c33h̄

20c̄33h

{
B(2)

31 −3B(2)
32 + . . .+(−1)n−1 [n(n−1)+1]B(2)

3n

}
+

12a2
1c̄11c̄33h̄k+ c̄11c̄31h̄3k3 −12a2

1c̄13c̄31h̄k
20a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

{
5A(3)

14 +14A(3)
16 + . . .+

[
n(n−1)

2
−1

]
A
(3)

1n

}

+
4a2

1c̄11c̄33h̄k+ c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(3)

15 +18A(3)
17 + . . .+

[
n(n−1)

2
−3

]
A(3)

1n

}

− 1
5

{
14B(3)

36 +27B(3)
38 + . . .+

[
n(n−1)

2
−1

]
B(3)

3n

}
A(4)

11 =−A(4)
12 −A(4)

13 − . . .−A(4)
1n −A(2)

11 −A(2)
12 − . . .−A(2)

1n

B(4)
11 =−B(4)

12 −B(4)
13 − . . .−B(4)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(4)
31 =−A(4)

32 −A(4)
33 − . . .−A(4)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(4)
31 =−B(4)

32 −B(4)
33 − . . .−B(4)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(5)
11 =−A(5)
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13 − . . .−A(5)
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12 + . . .+A(2)
1n

B(5)
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13 − . . .−B(5)

1n +B(2)
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12 + . . .+B(2)
1n
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A(5)
31 =−A(5)

32 −A(5)
33 − . . .−A(5)

3n +A(2)
31 +A(2)

32 + . . .+A(2)
3n

B(5)
31 =−B(5)

32 −B(5)
33 − . . .−B(5)

3n +B(2)
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3n

A(6)
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1c̄13 + c̄11h̄2k2

(
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12 + . . .+A(2)
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)
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(
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)
−
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6a2
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)
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14 + . . .

+ (−1)n−1 n(n−1)
2
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]
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1c̄13 + c̄11h̄2k2
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)
+
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5A(6)

14 +14A(6)
16 + . . .+
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2
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]
A(6)
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}
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15 +18A(6)
17 + . . .+
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2
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}
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)
+

[
6a2

1c̄13 (2c̄55 − c55)+ c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
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1c̄13 + c̄11h̄2k2
) (
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32 + . . .+B(2)
3n

)
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6a2
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(
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14 + . . .+A(5)
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)
−
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(
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[
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2
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]
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2a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
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16 + . . .+
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c̄11h̄2k2
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1c̄13c55 + c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
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1n

)
−

c33h̄2k
(
18a2

1c̄33 + c̄31h̄2k2)
12a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(5)

32 −A(5)
33 + . . .+(−1)n−1 n(n−1)

2
A(5)

3n

]

−
h̄k

[
6a2

1c̄33 (6c̄55 − c55)+ c̄31 (3c̄55 − c55) h̄2k2]
6a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(5)
32 +A(5)

34 + . . .+A(5)
3n

)
+

1
3

{
7B(6)

15 +18B(6)
17 + . . .+

[
n(n−1)

2
−3

]
B(6)

1n

}
+

24a2
1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(6)

34 +14A(6)
36 + . . .+

[
n(n−1)

2
−1

]
A(6)

3n

}
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+
12a2

1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(6)

35 +18A(6)
37 + . . .+

[
n(n−1)

2
−3

]
A(6)

3n

}

B(6)
12 =

h̄2k2 [6a2
1c̄33 (10c̄31 −7c31)+ c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
)

(
B(2)

11 +B(2)
12 + . . .+B(2)

1n

)
−

h̄k
[
6a2

1c̄33 (10c̄55 + c55)+ c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(2)
31 +A(2)

32 + . . .+A(2)
3n

)
− c55h̄

10c̄55h

[
B(5)

12 −B(5)
13 + . . .+(−1)n−1 n(n−1)

2
B(5)

1n

]

−
h̄2k2 [6a2

1c̄33 (10c̄31 −7c31)+ c̄31 (c̄31 − c31) h̄2k2]
20a2

1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
)

(
B(5)

12 +B(5)
14 + . . .+B(5)

1n

)
−

c33h̄2k
(
42a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(5)

32 −A(5)
33 + . . .+(−1)n−1 n(n−1)

2
A(5)

3n

]

−
h̄k

[
6a2

1c̄33 (10c̄55 − c55)+ c̄31 (c̄55 + c55) h̄2k2]
10a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(5)
32 +A(5)

34 + . . .+A(5)
3n

)
+

1
5

{
9B(6)

16 +22B(6)
18 + . . .+

[
n(n−1)

2
−6

]
B(6)

1n

}
−

60a2
1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(6)

34 +14A(6)
36 + . . .+

[
n(n−1)

2
−1

]
A(6)

3n

}

−
24a2

1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(6)

35 +18A(6)
37 + . . .+

[
n(n−1)

2
−3

]
A(6)

3n

}

B(6)
13 =

h̄2k2 [6a2
1c̄33 (c31 −2c̄31)+ c̄31 (c̄31 − c31) h̄2k2]

24a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(2)
11 +B(2)

12 + . . .+B(2)
1n

)
+

h̄k
[
6a2

1c̄33c55 + c̄31 (c55 −3c̄55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(2)
31 +A(2)

32 + . . .+A(2)
3n

)
+

c55h̄
6c̄55h

[
B(5)

12 −B(5)
13 + . . .+(−1)n−1 n(n−1)

2
B(5)

1n

]

−
h̄2k2 [a2

1 (6c̄31c̄33 −3c̄33c31)+ c̄31 (c31 − c̄31) h̄2k2]
6a2

1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
)
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(
B(5)

12 +B(5)
14 + . . .+B(5)

1n

)
+

c33h̄2k
(
−6a2

1c̄33 + c̄31h̄2k2)
12a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(5)

32 −A(5)
33 + . . .+(−1)n−1 n(n−1)

2
A(5)

3n

]

−
h̄k

[
6a2

1c̄33c55 + c̄31 (−3c̄55 + c55) h̄2k2]
6a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(5)
32 +A(5)

34 + . . .+A(5)
3n

)
− 1

3

[
10B(6)

15 +21B(6)
17 + . . .+

n(n−1)
2

B(6)
1n

]

+
12a2

1c̄33h̄k− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(6)

34 +14A(6)
36 + . . .+

[
n(n−1)

2
−1

]
A(6)

3n

}

− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(6)

35 +18A(6)
37 + . . .+

[
n(n−1)

2
−3

]
A(6)

3n

}

B(6)
14 =

h̄2k2 [2a2
1c̄33c31 − c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(2)
11 +B(2)

12 + . . .+B(2)
1n

)
+

h̄k
[
6a2

1c̄33c55 + c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(2)
31 +A(2)

32 + . . .+A(2)
3n

)
+

c55h̄
10c̄55h

[
B(5)

12 −B(5)
13 + . . .+(−1)n−1 n(n−1)

2
B(5)

1n

]

−
h̄2k2 [2a2

1c̄33c31 + c̄31 (c31 − c̄31) h̄2k2]
20a2

1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
) (

B(5)
12 +B(5)

14 + . . .+B(5)
1n

)
−

c33h̄2k
(
2a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(5)

32 −A(5)
33 + . . .+(−1)n−1 n(n−1)

2
A(5)

3n

]

−
h̄k

[
6a2

1c̄33c55 + c̄31 (c̄55 + c55) h̄2k2]
10a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(5)
32 +A(5)

34 + . . .+A(5)
3n

)
− 1

5

{
14B(6)

16 +27B(6)
18 + . . .+

[
n(n−1)

2
−1

]
B(6)

1n

}
+

4a2
1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(6)

35 +18A(6)
37 + . . .+

[
n(n−1)

2
−3

]
A(6)

3n

}

+
c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(6)

34 +14A(6)
36 + . . .+

[
n(n−1)

2
−1

]
A(6)

3n

}

A(6)
31 =− a1 (3c̄31 −2c31) h̄k(

6a2
1c̄33 + c̄31h̄2k2

) (B(2)
11 +B(2)

12 + . . .+B(2)
1n

)
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+
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) (A(2)

31 +A(2)
32 + . . .+A(2)

3n

)
− 2a1h̄k (3c̄31 −2c31)(

6a2
1c̄33 + c̄31h̄2k2

) (B(5)
12 +B(5)

14 + . . .+B(5)
1n

)
−

4a2
1c33h̄

h
(
6a2

1c̄33 + c̄31h̄2k2
) [A(5)

32 −3A(5)
33 + . . .+(−1)n−1 n(n−1)

2
A(5)

3n

]

−
12a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) (A(5)

32 +A(5)
34 + . . .+A(5)

3n

)
+

2a2
1c̄33

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(6)

35 +18A(6)
37 + . . .+

[
n(n−1)

2
−3

]
A(6)

3n

}

+
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) {5A(6)

34 +14A(6)
36 + . . .+

[
n(n−1)

2
−1

]
A(6)

3n

}

A(6)
32 =

[
6a2

1c̄33 (2c̄31 − c31)+ c̄31 (c31 − c̄31) h̄2k2] h̄k
4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(2)
11 +B(2)

12 + . . .+B(2)
1n

)
+

3c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) (A(2)

31 +A(2)
32 + . . .+A(2)

3n

)
+

h̄k
[
6a2

1c̄33 (c31 −2c̄31)+ c̄31 (c̄31 − c31) h̄2k2]
2a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(5)
12 +B(5)

14 + . . .+B(5)
1n

)
+

c33h̄
(
6a2

1c̄33 − c̄31h̄2k2)
2c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(5)

32 −3A(5)
33 + . . .+(−1)n−1 n(n−1)

2
A(5)

3n

]

− 3c̄31h̄2k2(
6a2

1c̄33 + c̄31h̄2k2
) (A(5)

32 +A(5)
34 + . . .+A(5)

3n

)
+

c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) {3A(6)

34 +7A(6)
35 + . . .+

[
n(n−1)

2
−3

]
A(6)

3n

}

−
6a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) [6A(6)

34 +15A(6)
36 + . . .+

n(n−1)
2

A(6)
3n

]

A(6)
33 =−

[
2a2

1c̄33c31 + c̄31 (c31 − c̄31) h̄2k2] h̄k
4a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(2)
11 +B(2)

12 + . . .+B(2)
1n

)
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− c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) (A(2)

31 +A(2)
32 + . . .+A(2)

3n

)
+

h̄k
[
2a2

1c̄33c31 − c̄31 (c̄31 − c31) h̄2k2]
2a1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(5)
12 +B(5)

14 + . . .+B(5)
1n

)
+

c33h̄
(
2a2

1c̄33 + c̄31h̄2k2)
2c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(5)

32 −3A(5)
33 + . . .+(−1)n−1 n(n−1)

2
A(5)

3n

]

+
c̄31h̄2k2(

6a2
1c̄33 + c̄31h̄2k2

) (A(5)
32 +A(5)

34 + . . .+A(5)
3n

)
− c̄31h̄2k2

2
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(6)

34 +9A(6)
35 +14A(6)

36 + . . .+

[
n(n−1)

2
−1

]
A(6)

3n

}

−
a2

1c̄33(
6a2

1c̄33 + c̄31h̄2k2
) [20A(6)

35 +42A(6)
37 + . . .+n(n−1)A(6)

3n

]

B(6)
31 =

h̄k
[
6a2

1 (6c̄11c̄33 − c̄13c̄31)+ c̄11 (3c̄31 − c31) h̄2k2]
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

(
A(2)

11 +A(2)
12 + . . .+A(2)

1n

)
+
(

B(2)
31 +B(2)

32 + . . .+B(2)
3n

)
{

144a4
1c̄13c̄33c̄55 + c̄11c̄31 (c55 − c̄55) h̄4k4

24a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

−
6a2

1 [2c̄11c̄33 (c̄55 −2c55)+ c̄13c̄31 (c55 −2c̄55)] h̄2k2

24a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) }

+
h̄k

[
a2

1 (6c̄13c31 −36c̄11c̄33)+ c̄11 (c31 −3c̄31) h̄2k2]
6a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

(
A(5)

12 +A(5)
14 + . . .+A(5)

1n

)
+

c55h̄2k
(
6a2

1 (c̄13c̄31 −4c̄11c̄33)− c̄11c̄31h̄2k2)
12a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(5)

12 −3A(5)
13 + . . .+(−1)n−1 n(n−1)

2
A(5)

1n

]

−
(

B(5)
32 +B(5)

34 + . . .+B(5)
3n

){144a4
1c̄13c̄33c̄55 + c̄11c̄31 (c55 − c̄55) h̄4k4

12a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
6a2

1 [2c̄11c̄33 (c̄55 −2c55)+ c̄13c̄31 (c55 −2c̄55)] h̄2k2

12a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) }
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− c33h̄
6c̄33h

[
B(5)

32 −3B(5)
33 + . . .+(−1)n−1 n(n−1)

2
B(5)

3n

]
+

12a2
1c̄11c̄33h̄k+ c̄11c̄31h̄3k3

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(6)

15 +18A(6)
17 + . . .+

[
n(n−1)

2
−3

]
A(6)

1n

}

+
36a2

1c̄11c̄33h̄k+ c̄11c̄31h̄3k3 −12a2
1c̄13c̄31h̄k

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

{
5A(6)

14 +14A(6)
16 + . . .+

[
n(n−1)

2
−1

]
A(6)

1n

}
+

1
3

{
7B(6)

35 +18B(6)
37 + . . .+

[
n(n−1)

2
−3

]
B(6)

3n

}

B(6)
32 =−

h̄k
{

6a2
1 [12c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

(
A(2)

11 +A(2)
12 + . . .+A(2)

1n

)
− h̄2k2

{
6a2

1 [c̄13c̄31 (2c̄55 − c55)+4c̄11c̄33 (2c55 −3c̄55)]

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)}(

B(2)
31 +B(2)

32 + . . .+B(2)
3n

)

+
h̄k

{
6a2

1 [12c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}
10a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

(
A(5)

12 +A(5)
14 + . . .+A(5)

1n

)
+

c55h̄2k
[
−6a2

1 (c̄13c̄31 −8c̄11c̄33)+ c̄11c̄31h̄2k2]
20a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(5)

12 −3A(5)
13 + . . .+(−1)n−1 n(n−1)

2
A(5)

1n

]

− h̄2k2

{
6a2

1 [c̄13c̄31 (2c̄55 − c55)+4c̄11c̄33 (2c55 −3c̄55)]

20a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

20a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)}(

B(5)
31 +B(5)

32 + . . .+B(5)
3n

)
− c33h̄

10c̄33h

[
B(5)

32 −3B(5)
33 + . . .+(−1)n−1 n(n−1)

2
B(5)

3n

]
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−
72c̄11c̄33h̄ka2

1 + c̄11c̄31h̄3k3 −12a2
1c̄13c̄31h̄k

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

{
5A(6)

14 +14A(6)
16 + . . .+

[
n(n−1)

2
−1

]
A(6)

1n

}
−

24c̄11c̄33h̄ka2
1 + c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(6)

15 +18A(6)
17 + . . .+

[
n(n−1)

2
−3

]
A(6)

1n

}

+
1
5

{
9B(6)

36 +22B(6)
38 + . . .+

[
n(n−1)

2
−6

]
B(6)

3n

}

B(6)
23 =

h̄k
[
6a2

1c̄13c31 + c̄11 (c31 −3c̄31) h̄2k2]
12a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) (

A(2)
11 +A(2)

12 + . . .+A(2)
1n

)
+

c̄31c55h̄2k
(
c̄11h̄2k2 −6a2

1c̄13
)

12a1c̄33c̄55h
(
6a2

1c̄13 + c̄11h̄2k2
) (B(2)

31 +B(2)
32 + . . .+B(2)

3n

)
+

h̄k
[
6a2

1c̄13c31 + c̄11 (−3c̄31 + c31) h̄2k2]
6a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
) (

A(5)
12 +A(5)

14 + . . .+A(5)
1n

)
+

c̄31c55h̄2k
(
−6a2

1c̄13 + c̄11h̄2k2)
12a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) [A(5)

12 −3A(5)
13 + . . .(−1)n−1 n(n−1)

2
A(5)

1n

]

−
c̄31h̄2k2{6a2

1c̄13 (2c̄55 − c55)+ c̄11 (c55 − c̄55) h̄2k2}
12a2

1c̄55c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

(
B(5)

31 +B(5)
32 + . . .+B(5)

3n

)
− c33h̄

6c̄33h

[
B(5)

32 −3B(5)
33 + . . .+(−1)n−1 n(n−1)

2
B(5)

3n

]
−

c̄11c̄31h̄3k3 −12a2
1c̄13c̄31h̄k

12a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {5A(6)

14 +14A(6)
16 + . . .+

[
n(n−1)

2
−1

]
A(6)

1n

}

− c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(6)

15 +18A(6)
17 + . . .+

[
n(n−1)

2
−3

]
A(6)

1n

}

− 1
3

[
10B(6)

36 +21B(6)
38 + . . .+

n(n−1)
2

B(6)
3n

]

B(6)
34 =−

h̄k
{

6a2
1 [2c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
)

(
A(2)

11 +A(2)
12 + . . .+A(2)

1n

)
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+

[
2a2

1 (6c̄13c̄31c̄55 −6c̄11c̄33c̄55 −3c̄13c̄31c55 +4c̄11c̄33c55)

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

40a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)] h̄2k2

(
B(2)

31 +B(2)
32 + . . .+B(2)

3n

)

+
h̄k

{
6a2

1 [12c̄11c̄33 + c̄13 (c31 −2c̄31)]+ c̄11 (c̄31 + c31) h̄2k2}
10a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

(
A(5)

12 +A(5)
14 + . . .+A(5)

1n

)
+

c55h̄2k
(
−6a2

1 (c̄13c̄31 −8c̄11c̄33)+ c̄11c̄31h̄2k2)
20a1c̄33c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(5)

12 −3A(5)
13 + . . .+(−1)n−1 n(n−1)

2
A(5)

1n

]

−

{
2a2

1 [6c̄13c̄31c̄55 +4c̄11c̄33c55 −3c̄13c̄31c55]

20a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

+
c̄11c̄31 (c55 − c̄55) h̄2k2

20a2
1c̄55c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)} h̄2k2

(
B(5)

31 +B(5)
32 + . . .+B(5)

3n

)
+

c33h̄
10c̄33h

[
B(5)

32 −3B(5)
33 + . . .+(−1)n−1 n(n−1)

2
B(5)

3n

]
+

12c̄11c̄33h̄ka2
1 + c̄11c̄31h̄3k3 −12a2

1c̄13c̄31h̄k
20a1c̄33

(
6a2

1c̄13 + c̄11h̄2k2
)

{
5A(6)

14 +14A(6)
16 + . . .+

[
n(n−1)

2
−1

]
A(6)

1n

}
+

4c̄11c̄33h̄ka2
1 + c̄11c̄31h̄3k3

20a1c̄33
(
6a2

1c̄13 + c̄11h̄2k2
) {7A(6)

15 +18A(6)
17 + . . .+

[
n(n−1)

2
−3

]
A(6)

1n

}

− 1
5

{
14B(6)

36 +27B(6)
38 + . . .+

[
n(n−1)

2
−1

]
B(6)

3n

}
A(7)

11 =−A(7)
12 −A(7)

13 − . . .−A(7)
1n −A(2)

11 −A(2)
12 − . . .−A(2)

1n

B(7)
11 =−B(7)

12 −B(7)
13 − . . .−B(7)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(7)
31 =−A(7)

32 −A(7)
33 − . . .−A(7)

3n −A(2)
31 −A(2)

32 − . . .−A(2)
3n

B(7)
31 =−B(7)

32 −B(7)
33 − . . .−B(7)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(8)
11 =−A(8)

12 −A(8)
13 − . . .−A(8)

1n +A(2)
11 +A(2)

12 + . . .+A(2)
1n
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B(8)
11 =−B(8)

12 −B(8)
13 − . . .−B(8)

1n +B(2)
11 +B(2)

12 + . . .+B(2)
1n

A(8)
31 =−A(8)

32 −A(8)
33 − . . .−A(8)

3n +A(2)
31 +A(2)

32 + . . .+A(2)
3n

B(8)
31 =−B(8)

32 −B(8)
33 − . . .−B(8)

3n +B(2)
31 +B(2)

32 + . . .+B(2)
3n

A(9)
11 =

6a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

(
A(2)

11 +A(2)
12 + . . .+A(2)

1n

)
− a1c̄13h̄k (3c̄55 −2c55)

c̄55
(
6a2

1c̄13 + c̄11h̄2k2
) (B(2)

31 +B(2)
32 + . . .+B(2)

3n

)
−

12a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

(
A(6)

12 +A(6)
14 + . . .+A(6)

1n

)
−

4a2
1c̄13c55h̄

c̄55h
(
6a2

1c̄13 + c̄11h̄2k2
) [A(8)

12 −3A(8)
13 +6A(8)

14 + . . .

+ (−1)n−1 n(n−1)
2

A(8)
1n

]
+

2a1c̄13h̄k (3c̄55 −2c55)

c̄55
(
6a2

1c̄13 + c̄11h̄2k2
) (B(8)

22 +B(8)
24 + . . .+B(8)

2n

)
+

6a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

{
5A(9)

14 +14A(9)
16 + . . .+

[
n(n−1)

2
−1

]
A(9)

1n

}

+
2a2

1c̄13

6a2
1c̄13 + c̄11h̄2k2

{
7A(9)

15 +18A(9)
17 + . . .+

[
n(n−1)

2
−3

]
A(9)

1n

}

A(9)
12 =

3c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) (A(2)

11 +A(2)
12 + . . .+A(2)

1n

)
+

[
6a2

1c̄13 (2c̄55 − c55)+ c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
)

(
B(2)

31 +B(2)
32 + . . .+B(2)

3n

)
− 3c̄11h̄2k2

6a2
1c̄13 + c̄11h̄2k2(

A(8)
12 +A(8)

14 + . . .+A(8)
1n

)
−

c55h̄
(
−6a2

1c̄13 + c̄11h̄2k2)
2c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
)

[
A(8)

12 −3A(8)
13 +6A(8)

14 + . . . + (−1)n−1 n(n−1)
2

A(8)
1n

]

(5.14)



136
Propagation characteristics of low-order SAWs in a finite plate covered by periodic

electrodes

+
h̄k

[
6a2

1c̄13 (−2c̄55 + c55)+ c̄11 (c̄55 − c55) h̄2k2]
2a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
) (

B(8)
22 +B(8)

24 + . . .+B(8)
2n

)
−

6a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2

{
6A(9)

14 +15A(9)
16 + . . .+

n(n−1)
2

A(9)
1n

}

+
c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) {3A(9)

14 +7A(9)
15 + . . .+

[
n(n−1)

2
−3

]
A(9)

1n

}

A(9)
13 =− c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) (A(2)

11 +A(2)
12 + . . .+A(2)

1n

)
−

[
2a2

1c̄13c55 + c̄11 (c55 − c̄55) h̄2k2] h̄k
4a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
) (

B(2)
31 +B(2)

32 + . . .+B(2)
3n

)
+

c̄11h̄2k2

6a2
1c̄13 + c̄11h̄2k2

(
A(8)

12 +A(8)
14 + . . .+A(8)

1n

)
+

c55h̄
(
2a2

1c̄13 + c̄11h̄2k2)
2a1c̄55h

(
6a2

1c̄13 + c̄11h̄2k2
) [A(8)

12 −3A(8)
13 +6A(8)

14 + . . .

+ (−1)n−1 n(n−1)
2

A(8)
1n

]
+

h̄k
[
2a2

1c̄13c55 + c̄11 (−c̄55 + c55) h̄2k2]
2a1c̄55

(
6a2

1c̄13 + c̄11h̄2k2
)

(
B(8)

22 +B(8)
24 + . . .+B(8)

2n

)
−

a2
1c̄13

6a2
1c̄13 + c̄11h̄2k2[

20A(9)
15 +42A(9)

17 + . . .+n(n−1)A(9)
1n

]
− c̄11h̄2k2

2
(
6a2

1c̄13 + c̄11h̄2k2
) {5A(9)

14 +9A(9)
15 + . . .+

[
n(n−1)

2
−1

]
A(9)

1n

}

B(9)
11 =

144a4
1c̄2

33 +18a2
1c̄33c31h̄2k2 + c̄31 (c31 − c̄31) h̄4k4

24a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(2)
11 +B(2)

12 + . . .+B(2)
1n

)
+

h̄k
[
6a2

1c̄33 (6c̄55 − c55)+ c̄31 (3c̄55 − c55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(2)
31 +A(2)

32 + . . .+A(2)
3n

)
− c55h̄

6c̄55h

[
B(8)

12 −B(8)
13 + . . .+(−1)n−1 n(n−1)

2
B(8)

1n

]

−
144a4

1c̄2
33 +18a2

1c̄33c31h̄2k2 + c̄31 (c31 − c̄31) h̄4k4

12a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(8)
12 +B(8)

14 + . . .+B(8)
1n

)
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−
c33h̄2k

(
18a2

1c̄33 + c̄31h̄2k2)
12a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
) [A(8)

32 −A(8)
33 + . . .+(−1)n−1 n(n−1)

2
A(8)

3n

]

−
h̄k

[
6a2

1c̄33 (6c̄55 − c55)+ c̄31 (3c̄55 − c55) h̄2k2]
6a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(8)
32 +A(8)

34 + . . .+A(8)
3n

)
+

1
3

{
7B(9)

15 +18B(9)
17 + . . .+

[
n(n−1)

2
−3

]
B(9)

1n

}
+

24a2
1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(9)

34 +14A(9)
36 + . . .+

[
n(n−1)

2
−1

]
A(9)

3n

}

+
12a2

1c̄33h̄k+ c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(9)

35 +18A(9)
37 + . . .+

[
n(n−1)

2
−3

]
A(9)

3n

}

B(9)
12 =

h̄2k2 [6a2
1c̄33 (10c̄31 −7c31)+ c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
)

(
B(2)

11 +B(2)
12 + . . .+B(2)

1n

)
−

h̄k
[
6a2

1c̄33 (10c̄55 + c55)+ c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(2)
31 +A(2)

32 + . . .+A(2)
3n

)
−

h̄2k2 [6a2
1c̄33 (10c̄31 −7c31)+ c̄31 (c̄31 − c31) h̄2k2]

20a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
)

(
B(8)

12 +B(8)
14 + . . .+B(8)

1n

)
−

c33h̄2k
(
42a2

1c̄33 + c̄31h̄2k2)
20a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(8)

32 −A(8)
33 + . . .+(−1)n−1 n(n−1)

2
A(8)

3n

]

−
h̄k

[
6a2

1c̄33 (10c̄55 − c55)+ c̄31 (c̄55 + c55) h̄2k2]
10a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
)

(
A(8)

32 +A(8)
34 + . . .+A(8)

3n

)
+

1
5

{
9B(9)

16 +22B(9)
18 + . . .+

[
n(n−1)

2
−6

]
B(9)

1n

}
−

60a2
1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(9)

24 +14A(9)
26 + . . .+

[
n(n−1)

2
−1

]
A(9)

2n

}

−
24a2

1c̄33h̄k+ c̄31h̄3k3

20a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(9)

25 +18A(9)
27 + . . .+

[
n(n−1)

2
−3

]
A(9)

2n

}

B(9)
13 =

h̄2k2 [6a2
1c̄33 (c31 −2c̄31)+ c̄31 (c̄31 − c31) h̄2k2]

24a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
)
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(
B(2)

11 +B(2)
12 + . . .+B(2)

1n

)
+

h̄k
[
6a2

1c̄33c55 + c̄31 (c55 −3c̄55) h̄2k2]
12a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
)

(
A(2)

31 +A(2)
32 + . . .+A(2)

3n

)
+

c55h̄
6c̄55h

[
B(8)

12 −B(8)
13 + . . .+(−1)n−1 n(n−1)

2
B(8)

1n

]

−
h̄2k2 [a2

1 (6c̄31c̄33 −3c̄33c31)+ c̄31 (c31 − c̄31) h̄2k2]
6a2

1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
)

(
B(8)

12 +B(8)
14 + . . .+B(8)

1n

)
+

c33h̄2k
(
−6a2

1c̄33 + c̄31h̄2k2)
12a1c̄33h

(
6a2

1c̄33 + c̄31h̄2k2
)

[
A(6)

32 −A(6)
33 + . . .+(−1)n−1 n(n−1)

2
A(6)

3n

]

−
h̄k

[
6a2

1c̄33c55 + c̄31 (−3c̄55 + c55) h̄2k2]
6a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(8)
32 +A(8)

34 + . . .+A(8)
3n

)
− 1

3

[
10B(9)

15 +21B(9)
17 + . . .+

n(n−1)
2

B(9)
1n

]

+
12a2

1c̄33h̄k− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {5A(9)

24 +14A(9)
26 + . . .+

[
n(n−1)

2
−1

]
A(9)

2n

}

− c̄31h̄3k3

12a1
(
6a2

1c̄33 + c̄31h̄2k2
) {7A(9)

25 +18A(9)
27 + . . .+

[
n(n−1)

2
−3

]
A(9)

2n

}

B(9)
14 =

h̄2k2 [2a2
1c̄33c31 − c̄31 (c̄31 − c31) h̄2k2]

40a2
1c̄33

(
6a2

1c̄33 + c̄31h̄2k2
) (

B(2)
11 +B(2)

12 + . . .+B(2)
1n

)
+

h̄k
[
6a2

1c̄33c55 + c̄31 (c̄55 + c55) h̄2k2]
20a1c̄55

(
6a2

1c̄33 + c̄31h̄2k2
) (

A(2)
31 +A(2)

32 + . . .+A(2)
3n

)
+

c55h̄
10c̄55h

[
B(8)

12 −B(8)
13 + . . .+(−1)n−1 n(n−1)

2
B(8)

1n

]

−
h̄2k2 [2a2

1c̄33c31 + c̄31 (c31 − c̄31) h̄2k2]
20a2

1c̄33
(
6a2

1c̄33 + c̄31h̄2k2
) (

B(8)
12 +B(8)

14 + . . .+B(8)
1n
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Chapter 6

Analysis of the propagation
characteristics of low-order SAWs in the
three-dimensional finite elastic structure
by CUF

In the research of SAW devices, the FEM is one of the main tools. Due to the complex
structure of the actual SAW devices, it is generally difficult to obtain an accurate solution
directly through the analytical method, and the FEM is limited in the shape of the structure.
It is small and can analyze more complex structures based on modeling, so it has a large
number of applications in device research and design. Generally, hundreds of pairs of IDTs
are arranged on the substrate of a SAW device along the wave propagation direction, so the
size of the device along the wave propagation direction is often much larger than the size of
the other two sides. As for a single unit structure (the unit structure in this chapter refers to
the structure covering only one electrode), the width of the electrode and the distance between
the fingers are close to the size of the SAW device in the direction of wave propagation.
Therefore, in order to simplify the model and reduce the calculation cost, the characteristics
of SAWs propagation can be used to replace the analysis of the entire structure by analyzing
the propagation characteristics of SAWs in a unit cell under reasonable boundary conditions.

As the main tool for analyzing and designing SAW devices, the FEM has obvious
advantages in analyzing complex structures, but its calculation cost will rise sharply with
the increase of the complexity of the structure. In this chapter, CUF is used to transform the
three-dimensional geometric model into a one-dimensional beam calculation model, so as to
obtain a more streamlined stiffness matrix and mass matrix. On the basis of ensuring reliable
calculation results, finite element calculations can be realized with fewer degrees of freedom;
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By setting the viscous-spring artificial boundary on the boundary element, it is possible to
use the finite-scale model to analyse the propagation characteristics of the SAWs.

The main feature of CUF is that it allows to deal with the expansion of arbitrary functions
of unknown variables over the thickness/cross-section domain in a compact form, since the
governing equations are actually obtained in terms of some basic kernels, which neither
depend on the function expansion The order of , also does not depend on the basis function
equation used. Therefore, it can be widely used in the dynamic, static and buckling mechani-
cal behavior of beams, plates, shells and other structures. When using the CUF framework
to analyze the mechanical properties in a multi-layer structure, the nodes on the interface
are generally used to ensure the continuity of the displacement on the contact surface. For
a structure with a large number of layers, it can also be analyzed in combination with the
theory of multilayer boards.

Viscous-spring artificial boundary conditions can "absorb" waves on the boundary and
prevent them from reflecting back to the structure by setting reasonable damping and spring
coefficients. And because it acts on the nodes of the finite element, it can be matched with
the nodes of the finite element constructed by the CUF framework. The spring stiffness
matrix of the artificial boundary is added to the stiffness matrix of the structure itself, and the
damping coefficients are organized into the form of a damping matrix, so that the generalized
characteristic equation can be obtained. By solving this equation, the characteristic frequency
of the structure can be obtained, and then the velocities of the low-order SAWs in the structure
can be obtained by using the relationship between angular frequency, wave number and wave
velocity.

In this chapter, by setting artificial boundaries on different sides of the model, the
location of the necessary interface for adding artificial boundaries is analyzed; on this basis,
the convergence of finite element calculations under different structures is analyzed; The
influence of the size of each direction on the velocity of the low-order SAWs; the numerical
analysis of the velocity and mode of the low-order SAWs in the structure under the influence
of the T-shaped covering layer.

6.1 Problem description

In this chapter, a series of structural models as shown in Fig. 6.1 are applied. The thickness
of the substrate (x3 axis direction) is six wavelengths, the structure width (x1 axis direction)
is one wavelength, and the structure length (x2 axis direction) for three wavelengths.
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(a) (b)

Fig. 6.1 The schematic of the structure used in this chapter: (a) a finite elastic solid with
artificial boundary on the boundary elements; (b) a finite solid covered by a T-plate

6.2 Related theories

6.2.1 One-dimensional beam model under CUF framework

This chapter uses the one-dimensional beam model in CUF to analyze the SAWs propagation
characteristics in the above structure. First, the displacement function used here has the
following form:

U(r) (x1,x2,x3) =
(

u(r)x1 u(r)x2 u(r)x3

)T
(6.1)

U(r) (x1,x2,x3) = Fτ (x1,x2)Ni (x3)q(r)
τi

τ = 1,2, . . . ,T; i = 1,2, . . . ,Nn

(6.2)

where r = 1,2, where 1 refers to the base, 2 refers to the covering layer; Fτ(x1,x2) represents
the section function, and Ni(x3) represents the i−order one-dimensional shape function, qτi

represents the nodal displacement vector. Under the framework of CUF, the displacement
function of the multi-layer structure can be written as:

u(r) (x1,x2,x3) = F1 (x1,x2)N1 (x3)q(r)11 +F2 (x1,x2)N2 (x3)q(r)22 + . . .

+FM (x1,x2)NNn (x3)q(r)MNn

u(r)2 (x1,x2,x3) = F1 (x1,x2)N1 (x3)q(r)11 +F2 (x1,x2)N2 (x3)q(r)22 + . . .

+FM (x1,x2)NNn (x3)q(r)MNn

u(r)3 (x1,x2,x3) = F1 (x1,x2)N1 (x3)q(r)11 +F2 (x1,x2)N2 (x3)q(r)22 + . . .

+FM (x1,x2)NNn (x3)q(r)MNn

(6.3)
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The stresses and strains in the structure can be written as:

ε(r) (x1,x2,x3) = bNi (x3)Fτ (x1,x2)U(r)
iτ

σ (r) (x1,x2,x3) = CbNi (x3)Fτ (x1,x2)U(r)
iτ

(6.4)

[C] represents the elastic constant matrix, and [b] is the Jacobian matrix.

[b] =



0 ∂

∂x2
0

∂

∂x1
0 0

0 0 ∂

∂x3
∂

∂x3
0 ∂

∂x1

0 ∂

∂x3

∂

∂x2
∂

∂x2

∂

∂x1
0


(6.5)

According to the principle of virtual work, the variation of strain energy, δLint can be
expressed as:

δLint = δuT [K]u (6.6)

The virtual work done by the elastic force, δLine can be expressed as:

δLint =−δLine =
∫

V
δuρüdV (6.7)

where u = Ueiωt . And Eq. 6.7 can be written in the form of characteristic equation:

(
[K]−ω

2[M]
)
{U}= 0 (6.8)

The elements in the stiffness matrix here can be expressed as:

[Ki jτs
uu ] =

∫
V
([b]NiFτ)

T [C]
(
[b]N jFs

)
dV (6.9)

The elements in the mass matrix can be written as:

[Mi jτs
uu ] =

∫
V
([I]NiFτ)

T
ρ
(
[I]N jFs

)
dV (6.10)

where [I] represents the identity matrix.
In this chapter, the Lagrangian expansion is used as the section function, and the expres-

sion forms of the Lagrangian elements with different cut-off points are different, as shown in
Fig. 6.2 for the four-node and nine-node Lagrangian elements, They are denoted as L4 and
L9 respectively, and the corresponding Fτ(α,β ) are respectively written as:
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F1 (α,β )=
1
4
(1−α)(1−β )

F2 (α,β )=
1
4
(1+α)(1−β )

F3 (α,β )=
1
4
(1+α)(1+β )

F4 (α,β )=
1
4
(1−α)(1+β )

α,β∈ [−1,1]

(6.11)

F1 (α,β ) = 1
4

(
α2 −α

)(
β 2 −β

)
,F2 (α,β ) = 1

2

(
β 2 +β

)(
1−α2)

F3 (α,β ) = 1
4

(
α2 −α

)(
β 2 +β

)
,F4 (α,β ) = 1

2

(
α2 −α

)(
1−β 2)

F5 (α,β ) = 1
4

(
α2 +α

)(
β 2 +β

)
,F6 (α,β ) = 1

2

(
β 2 −β

)(
1−α2)

F7 (α,β ) = 1
4

(
α2 +α

)(
β 2 −β

)
,F8 (α,β ) = 1

2

(
α2 +α

)(
1−β 2)

F9 (α,β ) =
(
1−α2)(1−β 2) ,α,β ∈ [−1,1]

(6.12)

(a) (b)

Fig. 6.2 The schematic of different Lagrange element models: (a) four-node Lagrange
element (L4); (b) nine-node Lagrange element (L9)

For the x3 direction in the structure, the beam element is used, which is similar to the
Lagrangian element. The corresponding function forms of beam elements with different
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numbers of nodes are also different. In the calculations in this chapter, two-node (B2) and
three-node (B3) are mainly used, and four nodes (B4), the specific expression is as follows:

N1(ζ ) =
1
2
(1−ζ ), N2(ζ ) =

1
2
(1+ζ ) ,

ζ1 =−1, ζ2 = 1
(6.13)

N1(ζ ) =
1
2

r (1−ζ ) , N2 =
1
2

ζ (1+ζ ) ,

N3(ζ ) =−(1−ζ )(1+ζ ) ,

ζ1 =−1, ζ2 = 1, ζ3 = 0

(6.14)

N1(ζ ) =− 9
16

(
ζ + 1

3

)(
ζ − 1

3

)
(ζ −1)

N2(ζ ) =
9
16

(
ζ + 1

3

)(
ζ − 1

3

)
(ζ +1)

N3(ζ ) =
27
16 (ζ +1)

(
ζ − 1

3

)
(ζ −1)

N4(ζ ) =−27
16 (ζ +1)

(
ζ + 1

3

)
(ζ −1)

ζ1 =−1, ζ2 = 1, ζ3 =−1
3 , ζ4 =

1
3

(6.15)

6.2.2 Viscous-spring artificial boundary condition

As shown in Fig. 6.1, viscoelastic artificial boundaries are set on the unit nodes on the side
of the base. By setting reasonable springs (Ks), dampers (Cd) and material coefficients (B),
the boundaries can "absorb" fluctuations, thereby achieving a Suitable for solving periodic
boundaries of SAWs in structures.

KN,T
s = αN,T µΣAi,

CN,T
d = ρBcN,T ΣAi,

(6.16)

N and T here represent the forward and tangential directions of the artificial boundary,
respectively. The specific structural diagram is shown in Fig. 6.3.

After considering the artificial boundary conditions, the characteristic equation 6.8 is
rewritten as:

[K̃][U ]+ [D][U̇ ]+ [M][Ü ] = [0] (6.17)

where [K̃] = [K]+ [KS], through
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Fig. 6.3 The schematic of the viscous-spring artificial boundary condition

[q] =

{
{U}{
U̇
}} , [q̇] =

{{
U̇
}{

Ü
}} (6.18)

Eq. 6.17 can be transformed into:[
[K] [D]

[0] [I]

]{
{U}{
U̇
}}−

[
[0] [M]

−[I] [0]

]{
{U}{
Ü
}}=

{
[0]
[0]

}
(6.19)

obtain:

([A]+ω[B]) [q] = 0 (6.20)

and vR = ω

k , where k = 2π

λ
, λ is wavelength.

6.3 Numerical results and discussions

In this chapter, the x1-axis direction is the direction of wave propagation, and the x3-axis is
the thickness direction of the structure, that is, the direction of wave attenuation, as shown
in Fig. 6.1. In this section, we use CUF combined with viscous-spring artificial boundaries
to numerically analyze the propagation characteristics of SAWs in three-dimensional finite
structures. The influence of SAW velocity, on this basis, the influence of adding covering layer
on the wave velocity of low-order SAWs in the structure is analyzed, and when the covering
layer is T-shaped, the change of low-order SAWs velocity in the structure is analyzed. Tab.
6.1 gives the physical parameters of the relevant materials involved in the calculations in this
chapter, consistent with the previous three chapters, this section still uses the dimensionless
wave velocity vR

vT
, vR represents the low-order SAWs velocity in the structure, vT =

√
µ

ρ
,

where µ and ρ represent the shear modulus and density of the substrate material, respectively.
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Table 6.1 The material properties used in this section

Material
Elastic constants

Viscous-spring artificial boundary
related parameters

ν E(GPa) ρ (kg/m3) αN αT B

Fused glass 0.21 73.1 2203 -0.125 -0.050 -0.010
Cu 0.35 110.0 8960 -0.002 -0.003 -0.053

6.3.1 Low-order SAWs in finite elastic plate

In this section, Cu is used as the structural material, and the SAWs velocities in the structure
is calculated with artificial boundaries on all four sides of the elastic plate (T1) and artificial
boundaries only on the side perpendicular to the wave propagation direction (T2) ; the
convergence of different beam elements and section elements is analyzed; and the influence
of each size parameter on the propagation of SAWs in the structure. When the T1 and T2
artificial boundary modes are used in the Fig. 6.1(a) model, 12 (2×6) L9 elements are used
for the cross section, B4 is used for the beam element, and the ordinate is normalized The
first-order SAW velocity of , the abscissa is the number of beam elements, and the calculation
results are shown in Fig. 6.4.

It can be concluded from Fig. 6.4 that when the number of beam elements is greater
than 4, the calculation results obtained by T1 and T2 modes are basically consistent. When
analyzing the convergence of beam elements and cross-section elements, the T2 model is
used, that is, artificial boundaries are only set on the surface perpendicular to the x1 axis,
so that the results shown in Fig. 6.5 can be obtained. According to (a) in Fig. 6.5, it is
not difficult to find that in the case of the same cross-sectional unit (L4 is selected as the
cross-sectional unit in this figure), the three beam units have good convergence; but under
the same structural conditions , it is obvious that the more the number of nodes in the unit,
the less the number of units needed to obtain the solution with the same accuracy, so in the
subsequent calculation of the case, all B4 units are used in the x3 direction; and according
to (b) can be obtained, in this calculation case, for the same beam element (the B4 element
selected here), the convergence effects of L9 and L4 as cross-section elements are similar,
but in the case of the same degree of freedom, L9 can reduce the quantity.

When B4 is used as the beam unit and L4 is used as the cross-section unit, according to
the characteristic that the SAW energy is concentrated near the surface of the elastic body,
the wave velocity of the corresponding low-order SAWs can be determined through the
displacement mode. Fig. 6.6 shows the same transverse In the case of section unit division,
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Fig. 6.4 The relationship between the number of beam elements and the velocity of the SAWs
in the structure under T1 and T2

the displacement modes of the first-order Rayleigh wave corresponding to different numbers
of B4 units.

According to Fig. 6.7(a), it can be concluded that the element needs to have a certain
thickness to ensure the existence of stable Rayleigh waves in the structure. The calculation
results have no obvious effect; according to Fig. 6.7(b), it can be obtained that when the
structure width and thickness are constant, the size in the length direction of the model has
little influence on the wave velocity of the low-order SAWs in the structure.

6.3.2 The low-order SAWs in the structure covered by a layer

According to the conclusion obtained in the previous section, a covering layer is added to
the thick plate structure in this section, and the displacement continuity characteristic of the
Lagrangian unit of CUF is used to make the structure meet the displacement continuity on the
contact surface. In the calculation structure in this section, 12L9 is used as the section unit,
8B4 is used as the beam unit in the x3 direction and the T2 boundary condition. The cover
layer material is Cu, and the base material is fused glass. The specific material parameters
are shown in Tab. 6.1. Here, the thickness of the base plate is six wavelengths, and the length
is three wavelengths.

The dispersion curves of the first-order Rayleigh wave velocity under different cover
thicknesses are shown in Fig. 6.8, and compared with the analytical solution, the two are in
good agreement; the first-order Rayleigh wave velocity obtained under partial cover thickness
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(a)

(b)

Fig. 6.5 Convergence analysis of the finite element with T2: (a) same cross-section element
with different beam element; (b) same beam element with different cross-section element
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(a) (b) (c)

(d) (e)

Fig. 6.6 The first velocity of the Rayleigh wave in the structure with different beam node
elements: (a) 48L4, 2B4, vR = 0.8915; (b) 48L4,4B4,vR = 0.9124; (c) 48L4, 6B4, vR =
0.9292; (d) 48L4, 8B4, vR = 0.9395; (e)48L4, 10B4, vR = 0.9384
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(a)

(b)

Fig. 6.7 Convergence analysis of the finite element in different sizes: (a) the length of model:
3λ , the width of model: λ ; (b) the thickness of model: 6λ , the width of model: λ
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Fig. 6.8 Dispersion curves of the Rayleigh wave in the structure

The displacement mode of the wave velocity is shown in Fig. 6.9. At this time, the amplitude
is mainly concentrated near the interface between the covering and the substrate. This result
is basically the same as the result in Chapter 3.

6.3.3 The low-order SAWs in the structure when the covering is T-
shaped

This section mainly studies the propagation characteristics of SAWs in the structure when the
base is covered with a T-shaped thin layer. The size of the base and the material parameters
used in the structure are as shown in the previous section. Since the upper thin layer is T-type,
it is necessary to consider the appropriate unit division to ensure that the upper and lower
layers correspond to the nodes on the interface, as shown in Fig. 6.10, where a1, b1, c1 and
d1 represent the number of units on each edge of the T-type layer respectively. In this section,
the effects of the dimensions of the T-shaped covering layer on the SAW propagation velocity
in the structure are mainly considered.

The main advantage of the CUF formula is that it can often be calculated with fewer
degrees of freedom while ensuring the accuracy of the results. Through the numerical analysis
of the free vibration frequency of the model in this section, that is, without considering the
artificial boundary conditions, and except for the interface between the upper and lower
layers, the others are all free surfaces, and the five minimum frequencies listed in Tab. 6.2
can be obtained. Compared with the results obtained by COMSOL, according to the table
below, CUF obtains relatively reliable calculation results with fewer DOFs.



158
Analysis of the propagation characteristics of low-order SAWs in the three-dimensional

finite elastic structure by CUF

(a) (b) (c)

(d) (e)

Fig. 6.9 Mode shapes of the first velocity of the SAW in the structure with different thickness
of the covering: (a) 0.02λ , vR = 0.8922; (b) 0.02λ ,vR = 0.7777; (c) 0.06λ , vR = 0.7358; (d)
0.08λ , vR = 0.6985; (e) 0.1λ , vR = 0.6751
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Fig. 6.10 The schematic diagram of the mesh on the cross-section of the T-plate

Table 6.2 Convergence analysis of frequency for the finite substrate covered a T-plate

Meshing in the
substrate

Meshing in the
covering

Frequencies (MHz) DOFs

f1 f2 f3 f4 f5

4×12 4×2×2×8 143.20 173.03 301.91 348.75 355.34 4056
8×12 8×4×2×8 142.96 172.49 301.89 347.24 354.03 7272
8×24 8×4×4×16 142.92 172.07 301.73 347.60 353.74 13950
12×24 12×6×4×16 142.87 171.96 301.73 346.29 353.48 20118

COMSOL 142.82 171.71 301.66 345.71 353.14 145320
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Table 6.3 The first normalized velocity of the structure with different W

W Meshing in the covering DOFs vR

0.25λ 8×4×4×2 13320 0.9020
0.50λ 8×4×4×4 13410 0.9015
0.75λ 8×4×4×6 13500 0.9010
1.00λ 8×4×4×8 13590 0.9013
1.25λ 8×4×4×10 13680 0.9010
1.50λ 8×4×4×12 13770 0.9016
1.75λ 8×4×4×14 13860 0.8985
2.00λ 8×4×4×16 13950 0.8981
2.25λ 8×4×4×18 14040 0.8950
2.50λ 8×4×4×20 14130 0.8927

Table 6.4 The first normalized velocity of the structure with different b

b Meshing in the covering DOFs vR

0.25λ 8×2×2×18 13554 0.8987
0.50λ 8×4×4×16 13950 0.8981
0.75λ 8×6×6×14 14274 0.8953
1.00λ 8×8×8×12 14526 0.8975

When b = 0.5λ , h̄ = 0.1λ , and different W , L4 is used as the cross-section unit, B4 unit
is used in the x3 axis direction, and the artificial boundary is T2 mode. At this time, the
results shown in Tab. 6.3 can be obtained. It can be seen from the table that the SAW velocity
in the structure is not sensitive to the change of W . When W increases by 1000%, the wave
velocity only decreases by 1.03%.

In the case of W = 2λ , h̄ = 0.1λ , and different b, L4 is used as the cross-section unit, B4
unit is used in the x3 axis direction, and the artificial boundary is still T2 mode. At this time,
the results shown in Tab. 6.4 can be obtained. According to the results in the table, it can be
obtained that the velocity of SAW in this calculation model is not sensitive to the change of
b. When b increases by 300%, the wave velocity only decreases by 0.1%.

In the case of W = 2λ , b = 0.5λ , and different h̄, L4 is used as the cross-section unit,
B4 unit is used in the x3 axis direction, and the artificial boundary is still T2 mode. And the
results are shown in Tab. 6.5. When the covering layer is extremely thin (h̄ = 0.001λ ), the
first-order Rayleigh wave velocity at this time is close to the Rayleigh wave velocity in the
base material. As the thickness of the covering layer increases, the first-order Rayleigh wave
velocity in the structure The wave velocity decreases accordingly.
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Table 6.5 The first normalized velocity of the structure with different h̄

h̄ Meshing in the covering DOFs vR

0.001λ 8×4×4×16 13950 0.9057
0.010λ 8×4×4×16 13950 0.9049
0.050λ 8×4×4×16 13950 0.9016
0.100λ 8×4×4×16 13950 0.8981
0.200λ 8×4×4×16 13950 0.8879

Fig. 6.11 shows the modes corresponding to the first-order Rayleigh wave velocity in the
structure for the five T-plate thicknesses listed in Tab. 6.5. Different from the previous section,
because the T-shaped plate does not completely cover the upper surface of the substrate,
there will still be a large amplitude at the bottom of the substrate at this time, but as the
thickness of the T-shaped plate increases, its influence on the SAW velocity in the substrate
The amplitude at the bottom of the basement will gradually weaken as it increases, and the
energy is mainly concentrated at the interface between the upper and lower layers.

6.4 Summary

According to the calculation results in this chapter, it can be seen that the combination of
viscous-spring artificial boundary conditions and CUF can be used to analyze the propagation
of SAW in three-dimensional finite structures. Specifically, this chapter has the following
conclusions:

(1) The three-dimensional geometric model is transformed into a 1D beam calculation
model through CUF, which can effectively reduce the calculation cost. Especially for
complex structural models, CUF can obtain more reliable results with fewer degrees of
freedom.

(2) In this case, there is not much difference in the accuracy of calculation results between
L4 and L9 section elements, but under the same degree of freedom, the number of
elements required to be set for L9 is generally less than that for L4 in the same model.

(3) Since the viscous-spring artificial boundary mainly acts on the unit nodes, it has a
good match with the Lagrange expansion form in CUF. Based on the CUF framework,
the simulation of the semi-infinite space is realized by using the "absorption" property
of the artificial boundary, so that the propagation characteristics of the SAWs can be
analyzed through the finite structure.
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(a) (b)

(c) (d) (e)

Fig. 6.11 Mode shapes of the first velocity of the Rayleigh wave in the structure with different
thicknesses of the covering: (a) h̄= 0.001λ ; (b) h̄= 0.010λ ; (c) h̄= 0.050λ ; (d) h̄= 0.100λ ;
(e) h̄ = 0.200λ
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(4) And according to the calculation results in this chapter, the influence of T1 mode and
T2 mode on the lowest velocity of SAW in the structure is basically the same, and the
size in the x2 axis direction has little influence on the low-order SAWs in the structure.





Chapter 7

Conclusions and prospects

7.1 Conclusions

In this paper, based on the combination of the Rayleigh-Ritz method and the transfer matrix,
the trigonometric function is used to make the displacement functions satisfy the periodic
boundary conditions, so as to analyze the propagation characteristics of the low-order SAWs
in the two-dimensional finite elastic structure; through the CUF framework, the compact
stiffness matrix form of the three-dimensional finite elastic structure, using the viscous-
spring artificial boundary makes it possible to analyze the propagation characteristics of the
SAWs through the finite structure. The specific research content includes: the propagation
characteristics of the Rayleigh wave in the finite elastic plate; propagation characteristics of
SAWs in finite structure covered with the thin layer on an isotropic substrate; propagation
characteristics of SAWs in periodic structures when the width of the covering layer is
smaller than that of the substrate; in the finite elastic plate covered with periodic electrodes
propagation characteristics of SAWs; CUF is used to analyze the propagation characteristics
of low-order SAWs in three-dimensional finite structure. Numerical examples show that the
various boundary conditions in the structure, material and thickness of the covering will have
a certain degree of influence on the propagation characteristics of low-order SAWs in the
structure. This paper mainly obtains the following conclusions:

(1) To analyze the propagation characteristics of low-order Rayleigh waves in a finite elas-
tic plate, the elastic plate must have a certain thickness and satisfy periodic boundary
conditions. Only in a sufficiently thick elastic plate (this paper uses an elastic plate
with a thickness of six wavelengths) can there be relatively stable Rayleigh wave prop-
agation, and no matter whether the bottom surface of the structure is a free boundary
condition or a fixed boundary condition, the Rayleigh wave velocity corresponds to the
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stress modes of all conform to the corresponding stress boundary conditions, and the
fixed bottom edge of the base can make the Rayleigh wave appear in the thinner elastic
plate; in the case of a finite elastic plate with a small thickness, it is then generally
assumed that Lamb waves are generated in the plate, when the stresses on the free
surface of the structure may not be zero when the bottom edge of the substrate is a
fixed boundary. In the Rayleigh-Ritz method, the displacement function can be made
periodic by setting up a periodic function f (x1) (let the direction of x1 be the wave
propagation direction), so as to satisfy the periodic boundary conditions.

(2) In different finite elastic structures, the influence of boundary conditions on the propa-
gation characteristics of low-order SAWs is also different. According to the calculation
results from Chapter 2 to Chapter 4, it can be concluded that the more complex the
structure, the greater the influence of stress boundary conditions on the velocity of
low-order SAWs in the structure. For example, in a structure with the same width as
the cover layer and the base, when the base thickness is large, the boundary condi-
tions on the bottom edge of the base and the stress continuity boundary conditions on
the contact surface of the upper and lower layers have little effect on the dispersion
curves of the SAWs in the structure; in the structure described in Chapter 3, the stress
continuum condition at the interface of the upper and lower layers will have a certain
influence on the mode of the low-order SAWs and the corresponding stress distribution,
but there is no significant effect on the velocity of low-order SAWs in the structure,
and the dispersion curves obtained do not change significantly when the boundary
conditions of the free surface of the cover layer in the structure are considered in the
transfer matrix; the stress continuity conditions between the upper and lower layers
in the adopted structure will not only affect the modes and stress distributions of
the low-order SAWs in the structure, but also have a certain influence on the wave
velocity of the low-order SAWs in the structure, and whether or not the stress boundary
conditions on the free surface of the coatings are reflected in the transformation matrix
also affects the calculation results.

(3) For covering materials with v̄T
vT

< 1√
2
, in the calculation results of this paper, the

velocity of low-order SAWs in the structure decreases with the increase of covering
thickness; but for v̄T

vT
>

√
2, the low-order SAWs velocity in the structure tends to

increase with the increase of the covering thickness within the calculated thickness
range (h̄ ∈ [0,0.1λ ]) used in this paper. However, regardless of the type of covering
material, if the thickness of the substrate is sufficient, the boundary conditions on
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the bottom edge of the substrate will not have a significant impact on the velocity of
low-order SAWs in the structure.

(4) The CUF framework can effectively improve the finite element calculation efficiency of
three-dimensional geometry. By combining appropriate boundary conditions, such as
the viscous-spring artificial boundary used in this paper, the propagation characteristics
of SAWs in the structure can be analyzed at a relatively small computational cost
through a finite model. The research results show that in a three-dimensional structure,
the dimension in the length direction of the structure (x2 direction) has relatively little
influence on the velocity of low-order SAWs in the structure, and the dimension in the
thickness direction (x3 direction) of the structure has a relatively small influence on the
velocity of low-order SAWs in the structure. In the calculation model in Chapter 6,
when the thickness of the substrate is five wavelengths, it is considered that Rayleigh
waves appear in the substrate, and as the thickness of the covering layer increases, the
velocity of low-order SAWs in the structure slowing shrieking.

7.2 Innovations

The innovations of this thesis research include:

(1) The Rayleigh-Ritz method is extended by considering the boundary conditions to
obtain a modified structural stiffness matrix and mass matrix, and the effect of boundary
conditions on the propagation characteristics of low-order SAWs in the structure was
investigated and presented.

(2) With the extended Rayleigh-Ritz method, the SAW propagation characteristics of
periodic composite structures are studied, revealing the influence of the number, shape,
and material of electrodes on the dispersion curve of low-order SAWs.

(3) In the framework of Carrera’s unified formulation, an artificial boundary with viscous-
spring is added, and the analysis of the low-order SAWs propagation characteristics
of three-dimensional elastic structures is completed by the modified finite element
method with high computational efficiency.

7.3 Further work

For the actual SAW device structure, piezoelectric/piezoelectric semiconductor materials are
generally used as the substrate, but the main material studied in this paper is isotropic elastic
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material. Therefore, the work of this paper is still a preliminary exploratory research. Based
on the research in this paper, there are still many issues worthy of further exploration:

(1) The method adopted in this paper can be applied to the model where the substrate
is a piezoelectric/piezoelectric semiconductor material, considering the propagation
characteristics of low-order SAWs in the structure under the force-electric coupling
effect.

(2) At present, in order to improve the performance of SAW devices, multi-layer material
combinations are often used in the researched structures. Therefore, more boundary
conditions need to be considered in the two-dimensional model, and the increase in
components , will lead to an increase in the size of the matrix, and it is necessary to
further consider how to effectively reduce the calculation cost on the basis of ensuring
the reliability of the results.

(3) With the miniaturization of SAW devices, more and more attention has been paid to
the nonlinear effects. Therefore, it can be considered to explore the nonlinear factors
in the structure of SAW devices by introducing nonlinear terms in the above method.
Influence of low-order SAWs propagation properties in structures.
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