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Abstract

Self-assembly allows obtaining materials with stimuli-responsive properties, offering
a highly attractive alternative for new designing strategies and material engineering.
However, the rational design of self-assembled materials with programmable proper-
ties requires a deep knowledge of the physical-chemical features controlling them.
A detailed comprehension of the mechanism governing the material’s response to
a single stimulus or a combination of them may be particularly challenging solely
through experimental results. In this view, molecular models and simulations may
be useful to understand these mechanisms.

The aim of this thesis is to explore the internal dynamics of new self-assembled
materials in relation to their responsiveness to various stimuli by using molecular
dynamics (MD) simulations. In addition, molecular simulations are also used to
support experimental evidences, enabling the observation of phenomena at the
molecular level.

In the light of this perspective, this thesis starts presenting a first work exploring
the dynamics of supramolecular self-assembled soft nanoparticles (NPs) scanning
surfaces functionalized with chemical gradients of receptors. In particular, the
utilization of coarse-grained (CG) molecular models give us the possibility to control
the fate of the nanoparticle by adjusting the chemical and physical properties of the
single assembling units. As a result, the combination of classical MD and enhanced
sampling simulations provides valuable insights into the design of nanoparticles with
controlled disassembly and cargo release.

Subsequently, we investigated the emergence of relevant physical behaviors in
response to external stimuli, such as the addition of second components in self
assembled micelles, or the application of electric fields on colloidal lattices by
employing CG-MD simulations. The second part of the thesis highlights the effects
of introducing second components, with different intermolecular interactions, on the
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rearrangement and self-organization of surfactants in self-assembled micelles. While,
in the third part of the thesis, the same model resolution enables us to explore the
semiconductive properties of a lattice of positively charged nanoparticles that self-
assemble in the presence of multivalent counterions, where the application of electric
fields promotes ion conduction within the lattice. In both cases, the combination of
MD simulations with machine learning approaches permits the observation of these
phenomena with a local point of view.

The fourth part of the thesis presents a work where simulations are used to
examine, from a submolecular perspective, thermo-responsive amphiphilic assem-
blies that undergo phase transition in correspondence to the lower critical solution
temperature. In particular, CG molecular models allow for the observation of the
monomer-monomer and monomer-solvent interactions at different temperatures. The
final case study focuses on the realization of a tubulin-based nanocapsule stabilized
by glue molecules. In this case, all-atom models lead to the quantification of the
effects of the glue molecules adhering on the surface of the nanocapsule.

In conclusion, the results discussed in this thesis show how molecular dynamics
simulations may provide a fundamental support for the development of new self-
assembled stimuli-responsive materials, starting through a deeper understanding of
the intermolecular interactions that characterize the macroscopic properties of the
aggregate.
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Chapter 1

State of the Art

Supramolecular chemistry enables the realization of self-assembled materials with
unique dynamic properties by manipulating the individual building blocks. Stimuli-
responsive polymers can be used to obtain self-assembled materials that adapt their
macroscopic properties in response to physical or chemical signals. This Chapter
provides an overview of state-of-the-art experimental approaches to characterize
self-assembling materials and their limitation. Finally, computational approaches
are presented as a tool to facilitate the development of new smart materials obtained
via self-assembled principles.

1.1 Self-assembly

As suggested by the Nobel Prize Jean-Marie Lehn, chemistry can be divided into two
branches: molecular chemistry, which focuses on covalent bonds, and supramolecular
chemistry, which considers the chemistry of molecular assemblies and intermolec-
ular bonds.[1] Supramolecular chemistry, also referred to as "chemistry beyond
the molecule", [2] thus concerns the study of molecular aggregates which are held
together by intermolecular interactions [1]. Examples of non-covalent interactions
are hydrogen bonding, dipole-dipole interactions, π-π stacking, and hydrophobic
effects. In particular, these interactions play a fundamental role in several biologi-
cal processes, such as protein aggregation, enzymatic reactions, antigen-antibody
association, cellular recognition, and the transmission of signals via neurotransmit-
ters. Inspired by these biological mechanisms, researchers have sought to develop
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new supramolecular materials with applications in various fields, including biology,
chemistry, and physics.

In the field of supramolecular chemistry, two different types of entities can be
identified: the molecular building blocks, also named constituent units or monomers,
and the supramolecular assemblies, which instead refer to the molecular aggre-
gates that can be formed by more or less ordered structures. The spontaneous
non-covalent association of the monomers, resulting into the formation of higher
scale supramolecular objects, is known as self-assembly.[1] Supramolecular chem-
istry also encompasses the concept of molecular recognition, which describes the
energy and the information involved in the selective binding between a substrate
and receptor molecules. The monomer-monomer interaction is influenced by several
factors such as the shape and size of the molecules, the dimensions of the contact
surfaces, the affinity between them, as well as the interaction with the environment
(e.g. solvent) and the external conditions (e.g. temperature).[1] The processes of
molecular recognition and self-assembly can then occur in two ways: either in a
spontaneous manner, when the formation of the final aggregate occurs directly (self-
assembly), or in a directed manner, when it is guided by external species such as
templates, substrates, or additional entities [3].

The realization of supramolecular systems requires a precise design of their build-
ing blocks, which must possess specific structural, conformational, thermodynamic,
and bonding characteristics. Non-bonded interactions that contribute to the formation
of supramolecular systems include van der Waals interactions originated from the
dispersive or inductive forces, electrostatic interactions among different charged ions
or dipoles, charge transfer between energy-rich and energy-poor components (such
as π-π stacking, or metals and ligands attractions), hydrogen bonding, metal coordi-
nation, and reversible bonds like imine or disulfide formation (see Figure 1.1).[4]
However, it should be noted that non-covalent interactions are generally weaker than
covalent bonds, resulting in supramolecular structures that are thermodynamically
less stable and thus more dynamical than covalent (macro)molecular systems.

Although intermolecular interactions are generally considered weak, they can
form stable assemblies when present in large numbers due to the multivalency effect.
In fact, after the onset of a first non-covalent bond between two monomers, the
probability of aggregation with other building blocks might increase.[5] The balance
of multiple concerted interactions thus determines the shape and function of the final
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Fig. 1.1 Examples of non-covalent interactions in supramolecular materials.

assembly.[6, 7] Additionally, the reversibility of non-covalent interactions allows for
self-organization of structures that, for example, self-heal when damaged, adapt to
respond when stimulated, etc. [1, 4, 8–10]. The stability of the final structure depends
on the balance between the enthalpic and entropic terms of the Gibbs-Helmholz
equation (∆G = ∆H − T ∆S). Ideally, the change in enthalpy should result from
the aggregation of the building blocks and the release of energy associated to the
formation of new bonds, while entropy should disfavor the formation of an organized
architecture. However, in practice, influences from the external environment may
encourage the assembly, making the evaluation of the difference between the two
energies difficult.[4]

The final self-assembled architectures typically reach the thermodynamic equi-
librium state (Figure 1.2, #1) of the energy landscape associated to the considered
chemical system and the relative environmental parameters such as temperature,
pressure, and surrounding solvent. However, under certain conditions, as the pres-
ence of strong non-covalent interactions, the aggregate may reach a kinetically
trapped metastable state, which resides in local rather than global minima (Figure
1.2, #2 and #3). Additionally, systems that occupy dissipative non-equilibrium states
(Figure 1.2, #4), such as living supramolecular polymers, are maintained in such
non-equilibrium states by constant influx of energy or matter. With the removal of
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the energy supply, the system moves toward the closest non-dissipative equilibrium
state or disintegrates.
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Fig. 1.2 Example of a free energy profile showing the thermodynamic states in supramolecular
self-assembly.

Researchers have always been interested in utilizing supramolecular materials
to replicate the self-assembling features present in nature, such as the aggregation
of phospholipids in the formation of lipid membranes or the stacking of tubulin
monomers in the formation of microtubules. As a result, self-assembly has become a
widely used technique for creating a variety of materials with different properties by
customizing the constituent building blocks. In particular, such an approach lays the
foundation of modern material design to create "bottom up" materials that assemble
molecule-by-molecule to form complex supramolecular architectures.

However, when designing the monomeric subunits, it is important to consider all
the factors influencing the self-assembling process and, in that, the final structure [11].
There have been various studies conducted to understand how to properly design
the single subunits based on the desired outcome. For example, in the formation of
a vesicle from the self-assembly of amphiphilic monomers, the shape and size of
the aggregate strongly depend on the relative size of the hydrophobic part compared
to the hydrophilic one, as well as the relative composition and geometry of the
single monomers (see Figure 1.3) [12]. On the other hand, the thermodynamic
equilibrium among the amphiphilic monomers depends on the interfacial energy
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of the hydrophobic/hydrophilic interfaces and the entropy loss required for the
amphiphiles to fit into the aggregate. When the interfacial energy is high and the
entropy loss is low, the formation of a vesicle is favored, while the formation of a
bilayer is more probable with stiff monomers. The shape persistence also depends
on the ability of monomers to arrange [12].

a

v R1
R2

Fig. 1.3 Schematic representation of a vesicle portion obtained from the self-assembly of
surfactants (cones). Considering the vesicle curvature H and the Gaussian curvature K, the
surfactant packing parameter related to the curvature by v

al = 1+Hl + Kl2

3 , where v is the
hydrophobic volume of the monomer, a the interfacial area, and l the chain length normal to
the interface. Thus, by varying the dimension of the hydrophobic head or the hydrophilic tail
of the subunit, it is possible to obtain, for example, a bilayer, a cylinder or a sphere [12].

1.2 Examples of natural self-assembled materials

Self-assembly is widely employed by nature to build materials that are fundamental
for living organisms. In the field of biology, most of the systems that constitute the
foundation of life are composed of units that aggregate to form high-scale complex
structures with specific shapes, sizes, and spatial distributions. [7] Examples of such
structures include protein filaments, double-stranded nucleic acids, microtubules,
cell membranes, viruses capsid, to cite a few.

Protein folding is one of the most explicative examples involving a self-assembling
mechanism. Proteins are made up of covalently linked amino acids, where in-
tramolecular interactions play a crucial role in the formation of secondary and
tertiary conformations, while intermolecular interactions are responsible for the
quaternary structure, such as in the formation of fibrils. On the other hand, the
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configuration of DNA is strongly influenced by non-covalent interactions between
the two strands, namely hydrogen bonds and π-π stacking interactions between
nucleotides, resulting in a stable structure that contributes to the stability of DNA
helices.[13]

Alternatively, silk is composed by silk fibroin protein that is approximately 1
µm in length, and silkworms are able to spin fibers up to 2 km of in length [14, 15].
The production of silk by spiders is also noteworthy, as it involves the replication
of spidroins and the creation of silk with specific strength and elasticity based on
the type of intermolecular connection between repeating regions [16]. This property
has potential application, such as the production of sutures. Other two examples
of self-assembled fibers include collagen and keratin. Collagen, the most abundant
protein in vertebrates, helps to maintain the integrity of tissues and cells. There
are various types of collagen that self-assemble into different complex structures,
such as tendons, which are able to convert elastic energy into kinetic energy during
muscle and tendon stretching [17, 18]. Keratin is an insoluble filament that self-
assembles into helices to form hairs and wool, and has potential applications in tissue
engineering and regenerative medicine.[19]

In many cases, the resulting self-assembled material is almost static, meaning
that once the building blocks have self-assembled into a final structure, the ma-
terial does not change its structural properties. However, there are examples of
dynamic self-assemblies, which continuously change their shape and properties.
Microtubules, for instance, are composed of tubulin subunits that continuously self-
assemble into tubules and disassemble at the charged ends of the protofilament (see
Figure 1.4a).[20] This dynamic process involves three different steps: nucleation,
elongation, and depolymerization, and the dynamics will vary based on the number
of nucleation sites and on the number of tubulin subunits present in the system.[21]
A more complex example of a dynamic self-assembled system is the cytoplasmic
membrane, which is a phospholipid bilayer that separates the cell from the exter-
nal environment. The arrangement of phospholipids in the membrane is based on
hydrophilic-hydrophobic interactions, specifically, the polar ends are exposed to the
solvent while the non-polar ends facing the inner part of the membrane.[22] Phos-
pholipids are able to continuously rearrange within the membrane, allowing the cell
to change shape and to move, permitting for example the transport of water-soluble
ions and molecules, the motion, and the fusion and subdivision of the cells.
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Viruses can also be considered as self-assembled architectures. Their shell is
typically composed of self-assembled proteins. There are two types of viruses:
enveloped viruses, which have a capsid surrounded by a phospholipid membrane,
and non-enveloped viruses, which do not. The latter are the simplest type of viruses
and are composed by a self-assembled layer of proteins called capsid that encloses
the genomic material. The tobacco mosaic virus is an example of a non-enveloped
virus whose self-assembly process has been explored well in vitro [23]. It is a rod-
shaper virus, meaning that it consists of a helical array of identical protein subunits,
with the RNA embedded in each molecule. The self-assembling process of this virus
is complex and begins with the nucleation of a starting protein disk, through which
the RNA strand can insert.[24] From this point, the proteins self-assemble and the
helical can be formed (see Figure 1.4b).

a b

Fig. 1.4 Examples of natural soft self-assembled systems. a Schematic representation of the
microtubule structure. b Schematic representation of the tobacco mosaic virus from Ref.
[23] and reproduced under the permission of Royal Society.

1.3 Synthetic self-assembling systems

Inspired by such natural materials, many researchers have been focusing on the
design of synthetic self-assembling systems. As a first example of building blocks,
peptides are frequently utilized to design self-assembled materials due to their various
advantages, such as the possibility to utilize the 20 distinct amino acids as monomers
or to synthesize new peptides with specific functional groups. Additionally, the use
of peptides facilitates the compatibility of the final aggregate with the biological
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environment and its relative applications.[25] By utilizing peptides, and exploiting
the multiple non-covalent interactions among them, it is possible to create a range of
self-assembling architectures, from one-dimensional structures such as fibers [26]
(Figure 1.5a) to three-dimensional aggregates such as nanospheres [27]. Additionally,
complex configurations can also be achieved, as demonstrated by Kornmueller et
al. [28], who observed a double-helix-like structure through the aggregation of an
amphiphilic peptide at varying concentrations (Figure 1.5c). Similarly, Pan et al. [29]
designed amphiphilic surfactants that self-assemble into a bilayer under appropriate
conditions, while Khoe et al. [30] observed a donut-shaped nanostructure resulting
from a properly cone-shaped designed peptide (Figure 1.5b).

a

b

c

Fig. 1.5 Examples of bioinspired synthetic self-assembled systems. a Schematic illustration
of the process of peptide-amphiphile units into supramolecular fibers. Figure from Ref. [26]
replicated under the permission of The National Academy of Sciences (Copyright 2002).
b Scheme of the assembling process of peptides into a nanodonut shape. Reprinted with
permission from [30], American Chemical Society (Copyright 2008). c Structural parameters
of the double-helical model from Ref. [28], replicated with the permission of Creative
Commons license.

As previously mentioned, the design of appropriate building blocks is closely
finalized to achieve specific self-assembled structures with ad-hoc properties. In
this regard, researchers are making significant efforts to engineer new complex
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supramolecular materials by using different approaches. One strategy is to use am-
phiphilic polymers, which upon contact with aqueous solutions, self-assemble into a
supramolecular structure where the hydrophilic tails are in direct contact with the
solvent while the hydrophobic moieties constitute the core of the assembly. The size
of the final structure increases as the hydrophobicity of the polymer increases.[31]
A prominent example are benzene-1,3,5-tricarboxamide (BTA) monomers, charac-
terized by a hydrophobic core and hydrophilic branches, which form 1D fibers via
core-core stacking and three-fold hydrogen bonding between amide groups.[32] In
particular, the use of BTA monomers allows obtaining supramolecular fibers with a
number of properties based on the chemical structure of the BTA functional groups
[32]. One example is the BTA-fiber helices that can increase order and stability
over time [33] (Figure 1.6a). Alternatively, BTA monomers can be functionalized
with metal ions to get stable cylinders through the coordination bonds added by the
metals [34]. Further amphiphilic polymer-based systems have been designed by
Ouyang et al. [35] who obtained various types of Möbius strips by half-twisting, an
odd number of times, an amphiphilic-based band and then fixing the ends together
(Figure 1.6b). The utilization of amphiphilic polymers permits the realization of
more complex structures, such as 2D membranes or 3D micelles. For instance,
Imai et al. [8] discovered that by mixing two different amphiphilic copolymers in
an aqueous solution, the self-assembled micelles are initially formed but then they
self-correct by exchanging copolymers until they finally reach the thermodynamic
equilibrium.

Another option to synthesize supramolecular materials is combining organic
polymers with metals, where metal-organic coordination bonds control the self-
assembling process. Self-assembled coordination cages, for instance, can be consid-
ered as nanoscale containers for performing reactions, encapsulating and transporting,
or stabilizing reactive molecules [36]. As the confined space inside a cage must be
recognized by a specific molecule, the design of the assembled structure is crucial.
Specifically, cages are composed of metal centers acting as nodes, and synthesized
organic ligands which bridge the nodes into a 3-dimensional structure [37, 38]. How-
ever, during the design process one has to consider the host-guest equilibrium in
solution and the interaction between the cage and the guest as, in some cases, the
disassembly of the cage may occur [39]. These host-guest systems can then be used
to design novel synthetic receptors, sensors, and molecular transporters [36]. For
example, the optical properties of chromophore dimers can be modulated through
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the interaction within the cage [39] (Figure 1.6c) or different acid-mediated reactions
can be catalyzed through different cationic intermediates [40].

a

b

c

Fig. 1.6 Examples of synthetic self-assembled systems. a Stability of the BTA fiber helices
over time, from Ref. [33]. b Theoretical parameters and experimental observation of the
Möbius strips. Figure adapted from Ref. [35] under the permission of Creative Commons
license. c Example of supramolecular cages utilized to control the optical properties of two
different cromophores. Figure adapted from Ref. [39] under the permission of Creative
Commons license.

1.4 Dynamic self-assembled architectures

All the applications discussed so far involve self-assembled units that aggregate in
accordance with thermodynamic processes. As a result, the final structure represents
the equilibrium state of the system, in which the only considered dynamics involve
the continuous exchange of monomers between the assembled and disassembled
states in solution in order to reach the most stable configuration (as illustrated in
Figure 1.2).[41] Nonetheless, most self-assembled architectures posses an intrinsic
dynamics of molecular exchange between the structures that characterizes their
equilibrium configuration. Moreover, processes such as translation, replication,
and chemical transport that are fundamental to living organisms possess dynamic
features.[42, 43] Most of self-assembled materials can then be considered dynamics
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in certain conditions (temperature, pressure, etc.), especially the ones that exist
in a dissipative state, as living materials. Dynamic self-assembled structures can
adapt and transform in response to the external environment.[44] Imparting the
dynamic properties to the static self-assembled architectures, such as self-healing
or stimuli-responsive features, would necessitate obtaining materials with dynamic
properties.

Living materials are capable to self-heal and regenerate, at both microscopic and
macroscopic levels, such as DNA repairing the healing of a wound on a finger.[45]
Supramolecular assemblies, and especially their dynamic non-covalent interactions,
are well-suited for the development of self-healing artificial materials with applica-
tions in material coatings. As an example, conductive stretchable materials, such
as metal nanowires, have potential for various applications, including skin sensors
and artificial muscles. Song et al. designed a stretchable conductor based on silver
nanowire hydrogels and backfilling polymers, which preserve their conductive capa-
bility at strains from 100 to 800% within 500 cycles (see Figure 1.7a).[46] Another
potential application for self-healing materials includes their use as coatings to pre-
vent corrosion of aluminum alloys commonly employed in aircraft structures, which
can repair damaged areas on their own. A recent study [47] proposed an eco-friendly
pH-responsive coating composed of a molecular sieve containing pH-sensitive sub-
stances and ions capable to stop corrosion, and to recover when damaged up to 3.5
wt%. The self-healing mechanism is illustrated in Figure 1.7b.

1.4.1 Stimuli-responsive assemblies

Other examples of dynamic self/assembled materials are the stimuli-responsive
materials. The ability to sense and react to changes in the external environment
is a feature common to all living systems. For example, the Mimosa pudica plant
is able to change the leaf orientation in response to different stimuli such as light,
touch and temperature [48], while some Cephalopods are able to change their skin
tone to mimic their surroundings as defense from predators [49]. The realization of
active materials capable of responding to stimuli in a controllable and predictable
fashion presents significant but fascinating challenges, especially because mimicking
of biological systems requires controlling structural and compositional features at
different length scales.[50] Self-assembled materials offer a well-suited platform
to this purpose, as the non-covalent interactions characterizing them are sensitive
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a

b

Fig. 1.7 Examples of self-healing assemblies. a Photographs demonstrating good electrical
conductivity of silver nanowires hydrogel when stretched, twisted and bent. Figure from
Ref. [46] replicated under the permission of Creative Commons license. b The self-healing
mechanism of Ce-ZSM-5 self-healing coating. Figure from Ref. [47], and replicated under
the permission of Elsevier

.

to variations of the external environment. Self-assembled materials, thanks to
their dynamical supramolecular nature, are for example capable to react to single
stimuli (such as pH, chemical gradients, light, magnetic field, or ultrasounds), or a
combination of them, modifying their intrinsic chemical or physical properties. The
adaptivity and self-regulation capabilities of these materials make them well suited
to builds smart and responsive materials in a variety of fields.

Thermo-responsive polymers are the most used as the weak non-covalent interac-
tions are particularly sensible to thermal stimuli which are indeed easy to be applied
[52]. In particular, thermo-responsiveness is considered for those polymers able to
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Fig. 1.8 Examples of external stimuli. Figure from Ref. [51] and reproduced under the
permission of John Wiley and Sons license.

exhibit a lower critical solution temperature (LCST) or an upper critical solution
temperature (UCST). In the first case, polymers are completely miscible in water for
temperature below the LCST, while, in the other case, polymers are miscible in water
for temperatures above the UCST [53]. Therefore, the behavior of the polymers
depends on the balance between polymer-polymer interactions and polymer-aqueous
solution interactions. One interesting application is in the field of building energy
efficiency, where windows represent the main source of energy loss. In this context,
Zhou et al. [54], proposed a different model of window, which contains a hydrogel
within the glasses, and is able to block the solar energy transmission when the
temperature is above the LCST (see Figure 1.9).

Alternatively, external fields can be applied to activate responsive materials. The
usage of external field entails various advantages, such as, remote and non-invasive
control, but also they can be modulated by varying different parameters, as duration,
intensity, and frequency. Under the application of light, photo-responsive polymers
are able to suddenly convert the energy into a chemical reaction, or into other forms
of energy, such as heat, sound, light, or electricity [55, 56]. For example, photo-
reponsive polymers patched with microneedles can be used to efficiently localize
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Fig. 1.9 Thermo-responsive polymers. Definition of a lower critical solution temperature
(LCST) and b upper critical solution temperature (UCST). c Temperature-responsive win-
dows tested at different time of a day from ref [54], reproduced under the permission of
Elsevier.

and treat tumors, or wound healing [57]. Magneto- or electro-responsive polymers
are normally composed of a soft polymer matrix which includes magneto or electro-
responsive particles, and can be used to realize a broad range of materials, with
applications from tissue engineering to actuators [58]. Among others, Ma et al. [59]
realized a soft robot incorporating hard magnetic particles into a shape memory
polymer.

Among the chemical stimuli, the variation of pH is generally adopted with those
polymers composed of weak acid or basis and characterized by functional groups
that protonate or deprotonate in specific chemical condition solutions. pH-responsive
polymers can then undergo hydrophobic, conductive or morphological changes [60].
Zeng et al. [61], for instance, obtained a functionalized cotton fabric which exhibits
a superhydrophobic or superhydrophilic behavior based on the pH thereby helping
the separation of oil and water. Alternatively, both pH and temperature perturbation
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can be combined, especially in peculiar cases such as the oral therapy for colon
disease: due to the long transportation route along the gastrointestinal tract, there is
a high possibility for the drug to be decomposed by other organs; thus the hydrogels
can be employed as delivery systems, since they load a large quantity of drug, they
are alkaline-pH responsive, and shrink at 37 ◦C [62].

a b

c
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22 °C

90 °C

Fig. 1.10 Applications of stimuli-responsive materials. a Magneto-responsive soft robots
from Ref. [59]. b pH responsive cotton fabric from Ref. [61]. c CO2 responsive cotton of
Ref. [63]. All the figures were reproduced with the permission from the American Chemical
Society.

The development of stimuli-responsive molecular systems opens up the possibil-
ity to design various type of materials, therefore, recent research is moving toward
the design of eco-friendly and reusable materials. CO2 responsive materials are
widely studied as CO2 is considered a "green" chemical trigger, obtaining respon-
sive absorbents of heavy atoms from polluted water [64], or of anionic dyes from
wastewater (see Figure 1.10c) [63].



16 State of the Art

1.5 Characterization of stimuli-responsive materials

Based on the preceding discussion, supramolecular materials, particularly stimuli-
responsive materials, exhibit internal dynamics that enable the aggregate to adapt its
chemical or physical properties as a response to stimuli. Therefore, comprehending
and regulating the dynamic response of these materials is fundamental for designing
supramolecular materials capable of adapting to external stimuli. Despite the ad-
vanced experimental techniques that are currently available, studying these systems
is not trivial as the dynamics occurs at the molecular level and on short time-scales.
Thus, a combination of various techniques is typically required for characterization
purposes.

One approach for detecting the dynamics of individual building blocks involves
labeling them with fluorescent molecules, chiral centers, or molecules with higher
mass to facilitate better characterization and observation of the aggregate. Spec-
troscopy techniques provide valuable structural and morphological information at the
atomic and molecular level, enabling insight into the stability of the final assembly.
Nuclear magnetic resonance (NMR) spectroscopy, for instance, can provide infor-
mation on specific species and functional groups under various conditions, allowing
then for the study of the effects of different stimuli, such as changing solvents or
variation of temperature.[65–67] Raman spectroscopy, on the other hand, reveals
the crystallinity of the aggregate [68, 69]. Similarly, absorption techniques, such as
UV-vis and FT-IR, can be used to obtain information related to the composition of
the aggregate.[70, 71] Circular dichroism (CD) is also used to detect intermolecular
interactions and is capable of revealing the presence of π −π stacking.

Microscopy, on the other hand, allows for imaging of materials at nanoscale
resolution, revealing structural and morphological details. Electron microscopy,
such as transmission electron microscopy (TEM) and scanning electron microscopy
(SEM) (Figure 1.11a), allows for the estimation of the size of fibrils and micelles,
while fluorescence microscopy enables the observation of dynamic processes.[70,
72] Stochastic optical reconstruction microscopy (STORM) permits the detection
of dynamic mechanisms, as, for example, BTA fibers exchange pathways with a
resolution ∼20-50 nm (Figure 1.11b).[73]

Diffraction techniques are useful for detecting the arrangement of molecules in
the assemblies. For example, x-ray diffraction can describe the atomic arrangement
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in powder, thin films, or bulks, but requires drying the sample. These techniques
are usually utilized to characterize the final aggregate by its size, thickness, and
shape. Small-angle x-ray scattering (SAXS), on the other hand, permits the study of
complex structures in real-time with a resolution up to 15 Ȧ. It is commonly used to
detect structural changes during the experiments.[69]

a b

Fig. 1.11 Examples of experimental characterization. a SEM images of cationic dyes in
different solvents. From Ref. [70]. b STORM experiments show exchange along the BTA
fibers from the beginning of the observation (left) to the end of the observation (right). From
Ref. [73].

Despite all these techniques partially satisfy the necessity to observe and describe
the structure of supramolecular materials, they have some limitations. For instance,
the requirement to utilize dried materials, as in TEM and SEM, provides structural
information at high resolution but does not reveal any information related to the
supramolecular dynamics. The usage of fluorescent molecules to label the individual
monomers can also impact the final structure of the aggregate, influencing its internal
dynamics. Finally, most of these approaches do not reach molecular resolution, which
is fundamental for investigating the molecular processes involved in the stimuli-
responsiveness. As a result, the utilization of molecular models and molecular
simulations is crucial for deepening the understanding of these supramolecular
processes.

1.6 The role of molecular models and simulations

Despite the numerous experimental techniques developed to characterize the mi-
croscopic features of the self-assembled structures, the observation of their internal
dynamic is still challenging. The use of molecular modeling and simulations permits
(i) to develop a model of the system considered, which contains information related
to the interactions between the different species, such as the different monomers
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and the solvent. In this way, (ii) molecular models allow simulating the system via
different methods as Monte Carlo (MS) or molecular dynamics (MD), from which
the physical observable specific to the model can be obtained. MD simulations
permit to follow the dynamics of the system, which depend on its equation of motion,
while in MC the study is exclusively statistic and the system is governed by its
potential energy and statistical mechanics. Molecular modeling and simulations
are crucial to enrich the investigation of dynamic mechanisms underlying these
phenomena. Molecular modelling finds wide applications in various fields such as bi-
ology, chemistry and physics for exploring and predicting the behavior of molecules
and molecular systems [74]. Molecular models can also be used to design delivery
systems, create new materials, characterize their structure and properties, and to in-
vestigate the interactions between single building blocks in self-assembled materials.
Molecular models also support and help interpret experimental data by analyzing
molecules with higher resolution and by controlling the atoms, bonds, angles and
dihedrals in the studied molecular structure [75]. The resolution of a model allows
investigating different aspects of chemical structures, ranging from atomistic resolu-
tion where every particle represents a single atom, or coarse-grained (CG), in which
a particle (bead) represents a small group of atoms. Since atomistic models limit the
time- and space-scales that can be explored, enhanced sampling techniques and CG
models are usually employed to improve the exploration of the energy landscape
while maintaining a certain chemical detail, despite the reduction of the molecular
resolution. Different representations of molecular systems permit the observation of
different aspects of the self-assembling materials. Therefore, a proper combination
of finer CG models and minimalistic representations of molecular systems allows
merging of macroscopic evidence with more detailed sub-molecular observations.

As a representative case, the dynamic behavior of benzene-1,3,5-tricarboxamide
(BTA)-based supramolecular polymers is highly dependent on monomer-monomer
interactions, and the study of the polymerization process in water is experimentally
inaccessible (Figure 1.12a). To understand this complex process, the utilization
of molecular models can help to understand this complex process. As mentioned
before, the choice of the appropriate level of resolution is fundamental to simulate
the appropriate space and time scales, as the atomistic model does not allow simu-
lating the self-assembling process of this system (Figure 1.12b). A first solution to
accelerate the simulations is the use of coarse-grained (CG) models, which permit
the observation of the self-assembling process and the dynamics internal to the aggre-
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a b c

e
d

Fig. 1.12 Molecular simulations of BTA fiber formation. a Chemical structure of a BTA
monomer and b its atomistic model. Figure adapted from Ref. [76] c Snapshots reporting the
different steps in the self-assembling process from BTA monomers to the assembled fibers.
Figure adapted from Ref. [77] d Examples of CG models of BTA monomer. Figure adapted
from Ref. [76] e Monomer exchange in BTA water-soluble fiber. Figure adapted from Ref.
[78], replicated under the permission of Creative Commons license

.

gate. One case is the use of MARTINI-based models, where every bead represents
three to five heavy atoms of the chemical structures (Figure 1.12d). Bochicchio
et al. demonstrated that MARTINI-based CG-MD simulations, developed from
the atomistic model, not only confirm the behavior observed with experimental
evidences, but also provide information about the dynamics at the supramolecular
level.[76] Additionally, by developing a MARTINI-based CG model in implicit sol-
vent, Bochicchio et al. observed the self-assembling process of different monomers
in different concentrations (Figure 1.12c).[77] However, in some cases, the reso-
lutions dictated by the MARTINI force field is too detailed. Minimalistic models
can then be useful to explore general aspects of the self-assembling process.[79]
Another approach to accelerate the simulations is to employ enhanced sampling
techniques, such as metadynamics, which allows, for example, studying the free-
energy differences and barriers associated to the monomer exchange process in BTA
fibers.[78] The application of these techniques leads then to the observation of the
dynamic adaptivity of supramolecular systems, and their dynamic response to the
application of external stimuli. For example, still considering the self-assembling of
BTA monomers, Torchi et al. tested the dynamic adaptivity of the BTA monomers
in a self-assembled fiber containing few charged monomers that selectively interact
with an oppositely charged recruiter molecule (DNA strand) dispersed in solution
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(Figure 1.12e).[80] With MD simulations they observe the reorganization of the BTA
charged monomers to interact with the DNA recruiter. Furthermore, they tested the
responsivity of this charged BTA structure to external electrostatic field.

Analogously, the same approaches can be applied to every complex supramolec-
ular system. For example, CG models and metadynamics simulations revealed that
the responsiveness to UV-light in supramolecular tubules is strictly related to the
presence of defects on the structure, leading to the monomers the possibility to allow
the trans-to-cis isomerization.[81] MD simulations have played a crucial role also in
understanding the potential precursor of the hydrochloride salt of fampridine and
predicting the formation of their crystal in the study by Montis et al. [82]. In the
latter case, the simulations also opened up new possibilities in the design of new
organic crystalline materials. In the work of Datta et al., focused on the study of
self-assembled poly-catenanes composed of single building blocks, MD simulations,
along with enhanced sampling techniques, explore the free-energy associated to
the secondary nucleation of a catenane onto the surface of an existing one, deemed
responsible for the formation of these topologically interlocked structures (Figure
1.13a-c).[83] Lochenie et al. [84] have demonstrated the importance of combin-
ing experimental approaches with MD simulations in order to fully understand the
physical-chemical phenomena involved in their system. In particular, using all-atom
simulations, the authors calculated the number of hydrogen bonds between Pt-PyAG
monomers in different solvents, while by employing CG models, they observed the
formation of fibers from Pt-PyAG monomers and the assembly of these fibers in
different solvents (Figure 1.13d-f).

It is worth noting that the results obtained from MD simulations are strongly
dependent on the quality of the molecular model employed. In order to efficiently
optimize the CG model based on the MARTINI force field, there are various tools
available, such as Swarm-CG that exploits an automatic multi-porpose scheme based
on swarm particle optimization.[85]

Once the simulations have been carried out different analysis may be conducted
on the final trajectory, starting from standard calculations, such as number of contacts,
gyration radius, and radial distribution functions, or utilizing advanced techniques
of analysis, such as machine learning algorithms. In the study of Gasparotto et al.
[86], the use of a machine learning approach allowed the authors to characterize
the internal dynamics of a self-assembled BTA fiber. This approach also enabled
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Fig. 1.13 Examples of molecular dynamics simulations results. a-c (a) All-atom and, in
transparency, coarse-grained model of one monomer, (b) free-energy profile, (c) histogram
showing the dependency of the choice of the solvent on catenanes, toroids and open-ended
coils. Figure adapted from Ref. [83], replicated under the permission of Springer Nature
Limited d-f (d) All-atom model of one monomer, (e) monitoring of the assembling process
through the calculation of the number of cluster and the calculation of the number of
hydrogen bonds, (f) coarse-grained model of the same monomer. Figure adapted from Ref.
[84], replicated under the permission of Creative Commons license

.

the classification of self-assembled materials based on their structure, stability and
dynamics. Gardin et al. [87], in their recent work, demonstrated the applicability of
this approach to all types of self-assembled material.

In summary, molecular models and simulations are important tools for gaining
a deep understanding of the behavior of supramolecular materials. They allow
predicting molecular behavior and the analysis of molecular structures at various
resolutions.

1.7 Aim of the thesis

Supramolecular chemistry offers a wide range of valuable examples to guide the
design of dynamic self-assembled materials with advanced properties. By manipulat-
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ing the constituent building blocks and the interaction between them, it is possible to
produce new materials with unexpected properties and a number of applications in
biotechnology, chemistry, and material science. The use of stimuli-responsive materi-
als as constituent units in self-assemblies has introduced the unique prospect to tailor
the macroscopic properties of supramolecular architectures in response to external
stimuli or signals. In particular, I focused on physical or chemical signals, such as,
chemical gradients, electrostatic fields, and variation of temperature. However, the
ability to design these fundamental units to control the properties of such assemblies
remains an open challenge. The use of molecular models allows predicting the
behavior of supramolecular materials, facilitating their design and functionalization.
Furthermore, molecular simulations provide a comprehensive understanding of the
physical-chemical mechanisms embedded into the self-assembling process, thereby
giving a molecular-level insight into the behavior of these complex systems which is
not accessible through experimental methods.

The aim of this PhD work is to investigate the dynamic behavior of self-assembled
structures in response to various external stimuli. To overcome the limitations in the
experimental resolution, the study utilizes molecular dynamics simulations. How-
ever, classical molecular simulations can access only restricted time-scales, and
therefore CG molecular models and enhanced sampling techniques like metadynam-
ics have been employed to capture rare molecular events, which play a crucial role
in controlling the dynamic adaptivity of supramolecular structures.

This Thesis contains a description of the methods utilized in the studies (Chaper
2) and the presentation of the case studies explored during my PhD career. In partic-
ular, the results include examining multivalent interactions on dynamic nanoparticles
with bioinspired chemotactic properties (Chapter 3), exploring the impact of mixing
different surfactants on the internal dynamics of micelles (Chapter 4), studying the
effects of electrostatic stimuli on co-assembled nanoparticles forming a colloidal
lattice structure (Chapter 5), investigating the influence of temperature variations
on soft polymeric assemblies (Chapter 6), and exploring the formation of GTP-
responsive nanocapsules using microtubules (Chapter 7).

Chapter 3. In nature, various systems exhibit the ability to release chemical
species in response to external stimuli. For instance, leukocytes can bind the sur-
faces of blood capillaries, roll and scan surface markers, slow down, stop, and then
release inflammatory signals. Consequently, replicating such abilities in synthetic
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materials would be a significant advancement in many fields, including biomedicine,
sensing, and adaptive materials. As a case study, we investigated the use of vari-
ous amphiphilic monomers to design a supramolecular nanoparticle that manifests
autonomous chemotactic behavior.

Chapter 4. Micelles are characterized by an innate dynamics, which determine
the properties of the aggregate. However, a clear understanding of their internal dy-
namics is non-trivial. The reorganization and compartmentalization of the monomers
in the aggregate are influenced by changes in the shape and chemical structure of
the self-assembling units. To gain insight into the dynamics of micelles, we selected
three surfactants and examined their dominant molecular environments and the
movement and exchange of self-assembling monomers.[88, 89]

Chapter 5. The self-assembly of nanoparticles into more complex structures pro-
vides excellent controllability, which has resulted in increasing interest in colloidal
superlattices based on self-assembled nanoparticles. Recent studies have demon-
strated that, when small species are dispersed in the lattice, the supramolecular
structure is analogue to the one of atomic crystals, in which the nanoparticles repre-
sent the atoms analogues, while the smaller specie act as electron equivalents.[90–99]
Inspired by these observations and a previous work [100] that involved gold nanopar-
ticles functionalized with positively charged ligands self-assembling in the presence
of multivalent anions, we investigated the supramolecular semi-conductive properties
of a lattice composed of these nanoparticles and the mediating anion species when
subjected to different electrostatic fields.

Chapter 6. Soft stimuli-responsive materials are attractive due to their adaptabil-
ity and suitability for a wide range of applications. In particular, the intermolecular
interactions that charaterize the supramolecular polymers are extremely sensible
to the variations of temperature. In correspondence to the lower critical solution
temperature, thermo-responsive polymers undergo a phase transition, from complete
miscibility to phase separation, when the temperature overcomes a certain threshold.
To gain insight into how self-assembled aggregates are affected by temperature
fluctuations, we examined a nanoparticle composed by amphiphilic oligomers.

Chapter 7. Guanosine triphosphate (GTP) is known to be over-expressed in
certain diseased cells, therefore, the realization of GTP-responsive nanocarriers can
be a potential solution for the treatment of cancer and RNA-virus-induced diseases.
The interaction within α- and β -tubulin with GTP results in the formation of a
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leaf-like nanosheets, which transform into spherical nanocapsules in the presence
of a glue molecule. In this study, simulations were utilized to gain insights into the
positioning of the glue molecules on the tubulin heterodimer and their interaction
with it.



Chapter 2

Methods

In order to gain further insights in the internal mechanisms of stimuli-responsive
self-assembled materials, it is essential to observe these materials at a molecular
resolution. In this regard, molecular modeling and simulations are crucial to enrich
the investigation of dynamic mechanisms underlying these phenomena. The purpose
of this Chapter is to give a general overview of the theory behind molecular dynam-
ics simulations, coarse-graining approaches, enhanced sampling techniques, and
machine-learning based approaches for analyzing the resulting trajectories.

2.1 Molecular models

A molecular model is a three-dimensional representation of chemical or biological
molecules that is used to observe their structure, investigate their physical and
chemical properties, compare different molecules, visualize their dynamics, and
predict their behavior. This is achieved by solving the equations of quantum and
classical physics.[101, 102] The resolution of the molecular models defines the type
of phenomena that can be observed.

Molecular modeling techniques can be classified into several categories based
on their resolution and, as a consequence, on the achievable timescale, such as
ab initio quantum mechanics, molecular dynamics (MD), coarse-graining (CG),
mesoscale, and continuum approaches. Quantum mechanics offers the highest
accuracy and is primarily used to study electronic structures. Molecular dynamics
and coarse-grained dynamics are based on classical mechanics and are often utilized
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to study the conformation of complex molecules with a sub-molecular or molecular
resolution and to observe dynamic processes as self-assembling processes.[102]
The level of detail in molecular model also influences the time-scale that can be
simulated, ranging from 10−15 seconds for quantum mechanics to seconds or hours
with continuum approaches, where, however, the chemical structure of molecules is
not considered.
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Fig. 2.1 Schematic representation of multiscale modeling. The choice of the spatial resolution
allows for the observation of phenomena that occurs at specific timescales.

The theory that describes the molecular models influences the phenomena that
can be observed with the simulations. The models considered in this Thesis relied
on molecular mechanics, which are represented as interacting spheres connected by
springs.

2.2 Force fields

The motion of the particles in a system is determined by the interactions between and
within molecules. The description of these inter- and intra- molecular interactions
depends on the definition of the potential energy function, which in turn depends on
the force field considered. Therefore, a force field is the mathematical description
of the energy of a system, which depends on the coordinates of its particles.[103]
Generally, the potential energy function defines both intra- and inter-molecular
interactions:
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V = Vbonded +Vnon−bonded (2.1)

The terms used to describe intra- and inter- molecular interactions can vary in
complexity based on the chosen force field. One of common method for describing
bonded interactions is:

Vbonded = ∑
bonds

ki

2
(li − li,o)2 + ∑

angles

ki

2
(θi −θi,0)

2 + ∑
torsions

Vn

2
(1+ cos(nω − γ))

(2.2)

The first two terms in the equation are harmonic potentials that describe bond
stretching and angle bending, while the third term is a torsional potential that models
the ability of a bond to rotate. Differently from bond and angle description, the
torsional terms can be modeled with different potential functions. Additionally,
improper torsional parameters are necessary to maintain the planarity of certain
structures, such as aromatic rings. On the other hand, non-bonded interaction are
calculated between all pairs of atoms (i and j) that are in different molecules or in
the same molecule but separated by at least three bonds. Non-bonded interactions
consider both the short- and long-range interactions, where the former ones decay
faster than the latter ones. Specifically, short-range interactions are highly sensitive to
the local environment and can be influenced by adjacent particles, while long-range
interactions are more influenced by the global distribution of particles in the system.
The definition of the non-bonded interactions typically includes two terms, one for
the electrostatic interactions (acting on a long-range) and the other for van der Waals
interactions (acting on short distances):

Vnon−bonded =
N

∑
i=1

N

∑
j=i+1

(
4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6]
+

qiq j

4πε0ri j

)
(2.3)

Where, ri j is the distance between the two interacting particles i and j, σ is the
distance at which the in interaction between the two particles is zero, ε is the well
depth that indicate how strong is the attraction, qi and q j are the charges of the
two particles, and ε0 is the dielectric constant (ε0 = 1 in all atom MD in explicit
solvent). In a simple force field, the electrostatic interactions are described by the
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Coulomb potential and the van der Waals interactions by the Lennard-Jones (LJ) 12-6
potential. In particular, van der Waals interactions are usually truncated at a certain
cutoff distance, while the electrostatic interactions can be considered exclusively
in a certain cutoff, or can be calculated using the particle-mesh Ewald algorithm
or Ewald summation. However, calculating the interaction energies is the most
time-consuming part of an MD simulation. To reduce the computational time, it is
necessary to restrict the pairs of particles for which the interactions are calculated by
choosing a cut-off radius.

2.3 Multiscale modeling

Molecular models are essential to explore systems at molecular level. Atomistic
models describe with high fidelity the chemical structure of the system studied.
These models are usually employed to explore the interactions between different
molecules, that occur at time-scales of ∼ 10−9 s. Since the aim of this Thesis is to
explore the stimuli-responsivness dynamics of self-assembled systems, which occurs
at higher time-scales (from ∼ 10−6 s up to seconds or minutes), atomistic models
cannot be considered. In this regard, this Thesis focuses mainly on the use of fine or
minimalistic coarse-grained (CG) models, which represent a good compromise in
terms of spacial and time resolution.

a

b

All atom
134 atoms

United atom
56 atoms

SIRAH CG
16 beads

MARTINI CG
12 beads

DRY MARTINI CG
13 beads

Fig. 2.2 Examples of multiscale models. a Chemical structure of a POPC molecule. b
Examples of models at different resolution. Figure adapted from Ref. [104], replicated under
the permission of American Chemical Society
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Two different approaches can be used to develop a CG model: a top-down
approach, if the non-bonded interactions between the different chemical building
blocks are tuned from the experimental results, and a bottom-up approach, if the
atomistic models are used as a reference. [105–108]. In this view, bottom-up CG
models reproduce exclusively certain structural details at specific energy states, while
top-down CG models are more general and can be utilized to study different systems
without the need to re-parametrize the force field every time. Bottom-up models are
based on the definition of force fields, such as the MARTINI force field, which is an
effective solution to study self-assembled supramolecular materials without losing
the definition of the chemical structure of the system studied.

2.3.1 Explicit solvent MARTINI force field

The MARTINI force field [105, 109] is based on a four-to-one mapping, in which
four heavy atoms and their associated hydrogens are typically represented by a
single interaction site (CG-bead). This allows for a fairly accurate representation
of the chemical structure of the system being studied. However, the mapping rule
is not strict, and it is sometimes possible to group three, five, or more atoms in a
single interaction center. The interaction sites can be classified into four types: polar,
nonpolar, apolar, and charged. Each type has various subtypes, allowing for the
fine-tuning of interactions for different chemical structures. Like all-atom models,
the MARTINI force field defines both non-bonded and bonded interactions. The
non-bonded interactions are described by the LJ 12-6 potential, which is divided into
different levels to represent different interactions, such as strong polar interactions
in water or various degrees of hydrophobic repulsion between polar and non-polar
phases. If the CG-beads are charged, the electrostatic interactions are described
by the Coulomb potential. Bonded interactions are modelled using weak harmonic
potential for bonds, angles, and dihedrals, as in all-atom models.

Thanks to the stability of the MARTINI force field and the reduction in degrees
of freedom, it is possible to increase the integration time step and therefore increase
the number of steps simulated. However, since the CG energy landscape is smoother
than the atomistic one, the dynamics observed cannot be directly compared to
those observed in all-atom simulations. To compare the results from AA and CG
simulations, a conversion factor of 4 should be applied [105, 106].
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All the CG models described by the MARTINI force field utilized in the works
reported in this Thesis are created following a three steps process: i) grouping the
chemical structure into small chemical building blocks, each of which is preferably
composed of four heavy atoms (though sometimes a smaller or larger number may be
used), ii) selecting bonded interactions, with the standard bond length (0.47nm) and
force constant (Kbond = 1250 kJ mol−1 nm−2) able to be adjusted to better describe
the chemical structure, and iii) optimizing the model by comparing it to the finer
models (such as all-atom models) to optimize bonded and non-bonded interactions
and match the free energy landscape, allowing for results that can be compared to
real systems. In all the CG models discussed in this thesis, steps ii) and iii) were
implemented using the tool published in reference [85].

It is important to note that, as this is a CG model, the results are subject to certain
approximations such as a decrease in entropy due to reduced fluctuations. As a result,
the entropy loss is compensated by a reduction in the enthalpy term, and all results
should therefore be considered qualitative rather than quantitative.

2.3.2 Implicit solvent (dry) MARTINI force field

The MARTINI force field significantly accelerates the sampling of the phase space by
approximately three orders of magnitude compared to the all-atoms model. However,
CG-MD simulations are still slow for those systems characterized by a high number
of water molecules. One method of reducing the number of molecules in molecular
simulations is to utilize the Dry MARTINI force field [111], which is based on the
standard wet MARTINI force field but excludes the aqueous phase. Dry MARTINI
utilizes the same bead type as the standard MARTINI force field, but includes
adjustment to the bonded and non-bonded interactions to account for the effects
of water. It should be noted, however, that since this type of force field is even
coarser than the classic MARTINI force field, the results obtained from these MD
simulations should therefore be considered qualitative. The use of the Dry MARTINI
force field also allows for the simulations that are orders of magnitude larger than
those simulated in water.

There are, however, some limitations to be considered when using Dry MARTINI
force field. The bonded and non-bonded interactions have been modified, resulting
in increased interactions of polar beads to mimic hydrophobic effects and decreased
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Fig. 2.3 Examples of MARTINI mapping, where the CG beads are reported in transparency
in correspondence to the all atom (AA) models. The systems reported are DPPC, cholesterol,
water, benzene, a protein helical fragment, and a few amino acids (valine, glutamic acid,
arginine, and tryptophan). Figure adapted from Ref. [110], replicated under the permission
of Springer Nature Limited

interactions of polar and charged particles to account for the implicit screening effect
of water molecules. It is also important to note that Dry MARTINI can only be used
to study systems in water solutions, as the interactions with water are always taken
into account as an implicit solvent [111].

Nevertheless, the primary advantage of Dry MARTINI is the acceleration of MD
simulation, particularly for systems in which water molecules occupy a large portion
of the simulation box, such as in studies of micelles. In these cases, speed-up factors
of up to two orders of magnitude have been observed.
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2.3.3 Minimalistic models

Minimalistic models are defined with top-down approaches and represent exclusively
a specific configuration of the system to be studied. In this thesis, minimalistic
models are utilized as toy models to explore the system before the development of
finer CG models. In fact, since minimalistic resolution is lower compared to the
MARTINI-based models, they allow computing faster simulations and observing
phenomena that occur at higher time-scales. In this regard, minimalistic models are
described by interacting spheres, where bonded and non-bonded interactions are
tuned in order to observe specific dynamics behaviors.

2.4 Molecular dynamics

Molecular Dynamics (MD) simulations are based on the resolution of Newton’s
equation of motion that allows to study the movement of every atom in a molecular
system over time. These simulations can provide detailed information about molecu-
lar behavior at the atomic level, such as protein folding or the addition or removal
of a ligand. In MD simulations, atoms are represented as beads and bonds among
them are modeled as springs. By adjusting certain parameters, such as the size of
the beads and the stiffness of the springs, it is possible to accurately replicate the
molecular system to be studied.

After assigning initial positions and velocities to each particle, a first step of
energy equilibration is needed. Once the system has equilibrated, the simulation
can be extended for a specified amount of time, and the properties of interest can be
measured. In this way, it is possible to obtain microscopic level information, such
as the formation of hydrogen bonds, strength of interactions, etc., that may not be
observable at the macroscopic level in real experiments.[112]

In atomistic models, each atom is represented by a particle. The motion of a
particle i with mass mi can be described by Newton’s equation of motion as:

mir̈i(t) = fi (2.4)

where fi is the force acting on the molecule i. Thus, considering a system
composed by N molecules interacting through forces, the motion will be described
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by N sets of similar equation. Different algorithms have been proposed to solve
Eq.2.4, one of the simplest is the Verlet algorithm. The position of a particle i at time
t +∆t can be expressed in terms of its position, velocity, and acceleration at a time t,
through the Taylor series expansion:

ri(t +∆t)≈ ri(t)+∆t ṙi(t)+
1
2

∆t2r̈i(t) (2.5)

that can also be written as:

ri(t +∆t)≈ ri(t)+∆tvi(t)+
∆t2

2mi
Fi(t) (2.6)

where Fi(t) is equal to the opposite of the derivative of the potential energy V

(Fi(t) =−∂V /∂ri), and can also contain external forces that can be applied to the
system, as temperature, pressure, etc. In the same way, it is also possible to obtain
for the expansion at t −∆t:

ri(t −∆t) = ri(t)−∆tvi(t)+
∆t2

2mi
Fi(t) (2.7)

Adding the Eqs.2.6 and 2.7 it is possible to obtain a velocity-independent scheme:

ri(t +∆t) = 2ri(t)− ri(t −∆t)+
∆t2

mi
Fi(t) (2.8)

Eq.2.8 is the Verlet algorithm, in which, given a set of initial position and initial
velocities, Eq.2.6 can be used to obtain a set of coordinate. Subsequently, Eq.2.8 can
be used to generate a trajectory of arbitrary length. Verlet algorithm only generates
the positions, to obtain the velocities the following formula should be used:

vi(t) =
ri(t +∆t)− ri(t −∆t)

2∆t
(2.9)

However, MD simulations only allow the control of microscopic properties of the
system. In order to compare simulation results with the experimental observation, it
is essential to regulate the macroscopic properties, such as temperature and pressure.
Therefore, according to the Gibbs’ concept, an ensemble is a collection of systems
that share common macroscopic properties, as total energy, temperature, and volume.
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While the evolution of every system is described by the microscopic laws of motion
from different initial conditions, meaning that at every time step the system is
described by a distinct microscopic state.[113] Ensembles can be defined for several
thermodynamic situations:

• The Canonical ensemble (NVE) corresponds to an isolated system, thus with
fixed volume V , energy E, and number of atoms N

• The Isothermal-Isobaric ensemble (NVT) corresponds to a closed system
where the number of atoms N, the volume V , and the temperature T are fixed

• The Gran Canonical ensemble (µVT) corresponds to an open system with
constant chemical potential µ , volume V , and temperature T

• The Microcanonical ensemble (NPT) characterized by constant number of
atoms N, pressure P and temperature T

However, the resolution of the equations of motion is extremely time-consuming,
and depends on the number of atoms present in the system studied. Therefore, one
way to reduce the computational time of MD simulations is to study a system that
is as small as possible, while still being large enough to avoid discontinuities in
the potential energy calculation and to prevent the finite-size effects. If the system
is too large, periodic boundary conditions (PBC) can be used to approximate an
infinite system with a small part, called unit cell. In PBC, when a particle reaches
one side of the unit cell, it reappears on the opposite side with the same velocity.
The unit cell is surrounded by the copies in all directions. In this way, each particle
interacts with its neighbors, even if they are on the opposite side of the simulation
box. This approach is important because it allows the thermodynamic properties,
such as temperature, pressure, and density, to be preserved. It is worth nothing that
the cutoff radius chosen for non-bonded interactions should be shorter than half the
size of the unit cell, in order to avoid particles interacting with themselves.
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Fig. 2.4 Periodic boundary conditions (PBC)

2.5 Enhanced sampling

It is worth noting that the results of MD simulations are only valid if the system
being simulated is ergodic over the duration of the simulation, meaning that the
system has explored all the possible states in a statistically uniform and random
manner. However, these configurations are often separated by high energy barriers
that can only be crossed through rare, high enough fluctuations, or, in other cases,
the diffusion of the system in the configuration space may be slow. In most cases,
the sampling of classical MD is unsatisfactory, and even more severe, it is difficult to
check (if not simulating forever). In either of these scenarios, a significant amount of
computational time may be necessary to obtain a sufficient sample of configurations
for statistical analysis. To address this issue, several methods have been proposed,
including biased simulation approaches and metadynamics.

2.5.1 Biased simulations

Enhanced sampling simulations are often utilized to accelerate the sampling of
the configurational space or to study the free energy surface (FES) of a system.
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However, in some cases, the primary focus of enhanced simulations may not be
the FES itself, but rather the study of a particular phenomenon without considering
the energy barriers involved. To achieve this, biased simulations can be used to
effectively guide the system to overcome energy barriers and explore the phase space
in a more efficient manner, simply by applying a directional force as a bias. For
example, Koner et al. [114] utilized umbrella sampling calculations [115] to tune the
intermolecular interactions in order to obtain an intertwining of organic nanotubes
consistent with experimental results. Alternatively, replica exchange MD simulations
can be utilized to investigate the different assembled configurations of proteins in
explicit solvent.[116]

2.5.2 Metadynamics

The metadynamics method involves the use of an external (Gaussian) bias potential
to accelerate the sampling of the configuration space. The bias is applied to a selected
number of degree of freedom, known as collective variables (CVs) with the ultimate
goal of reconstructing the free energy surface (FES) as a function of the chosen CVs.

The history-dependent bias potential, which is a function of the CVs, consists of
a sum of Gaussians deposited on the system trajectory in the CVs space in order to
discourage the system from revisiting configurations that have already been sampled.
In continuous direct metadynamics, the bias potential is continuously applied during
the MD simulation. Letting S be the set of n functions of the microscopic coordinates
R of the system:

S(R) = (S1(R), ...,Sn(R)) (2.10)

The bias potential at time t can be written as:

VG(S, t) =
∫ t

0
dt ′ωexp

(
−

n

∑
i=1

(Si(R)−Si(R(t ′)))2

2σ2
i

)
(2.11)

where ω is the energy rate (the ratio of the height of the Gaussian and the
deposition stride), and σi is the width of the Gaussian for the ith CV.

There are several advantages to use metadynamics in MD simulations: (i) it
speeds up the sampling of rare events by forcing the system to move away from
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local energy minima, (ii) it enables the system to explore reaction pathways, (iii)
it does not require prior knowledge of the landscape, and (iv) if the simulation
is run for a sufficient duration, it is possible to estimate the FES from the bias
potential. Additionally, to further enhance the exploration of the configurational
space, it is possible to conduct multiple parallel metadynamics MD simulations,
known as multiple walkers simulations, in which each simulation contributes to the
history-dependent bias potential.

However, metadynamics also has some limitations: (i) the bias potential does not
converge to a constant value of the free energy in a single run, but rather oscillates
around it, making it difficult to determine when to end the simulation; (ii) the
selection of appropriate CVs can be challenging. The first issue can be addressed
through the use of well-tempered metadynamics, in which the bias deposition rate
decrease over the course of the simulation. In well-tempered metadynamics, the bias
potential is described by a different expression:

V (S, t) = kB∆T ln
(

1+
ωN(S, t)

kB∆T

)
(2.12)

where N(S, t) is the histogram of the S variables collected during the simulation,
and ∆T is an input parameter with the dimension of temperature.

When selecting CVs in metadynamics, the following criteria should be consid-
ered: (i) the CVs should distinguish between the initial, final, and any intermediate
state, (ii) the CVs should include all the slow modes of the system, and (iii) they
should be kept to a minimum number. Because metadynamics involves a reduction in
dimensionality, if the CVs do not adequately distinguish between different states in
the simulation, the results may not contain valuable information. Slow CVs must be
included to properly describe the transitions between configuration states, but it can
be helpful to include some fast CVs to speed up the convergence of the simulation.
Additionally, the convergence rate is also affected by the number of CVs chosen, so
the number of CVs should be minimized in order to limit the dimensionality of the
space being explored. Suitable CVs can be selected from a set of pre-implemented
options in PLUMED [117–119], such as the number of contacts or distances, or they
can be developed specifically for the system being studied.
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2.6 Standard analysis of MD simulations

As previously mentioned, molecular models can be used to observe the dynamics
behavior of the supramolecular materials, but also to characterize them from a
structural and dynamic point of view. There are various calculations in literature
that can be applied to the final trajectories to characterize the materials in different
degrees of complexity. Typically, studies based on MD simulations contains a
combination of them. This Thesis employs both standard and advanced analysis
methods to describe the intrinsic dynamics of the stimuli-responsive materials under
investigation.

The standard analyses in this study are performed using the Gromacs package,
which is also the software utilized for conducting the MD simulations. For instance,
the gyration radius is commonly employed to measure the dimensions of spherical
systems such as micelles or nanoparticles. Alternatively, the solvent accessible
surface area (SASA) can be utilized to measure the surface area exposed to the
solvent (either implicit or explicit) and may correlate with the level of assembly
in the system. The coordination number is often used to quantify the strength of
the interactions between the monomers in assembled structures or aggregates with
external species.

However, there may be phenomena that cannot be detected by these types of
analyses or even by a combination of them. In such cases, it is necessary to consider
more complex techniques to detect them.

2.7 Advanced analysis of MD simulations

Recent advances in computational power and techniques have made it possible to
predict and classify models of target physical properties using a combination of MD
simulations and machine learning (ML) algorithms. In particular, machine learning
techniques can be used to explore and describe materials and their structures by ex-
tracting meaningful information and patterns from the simulations results. However,
to improve the performance of the ML approaches, systems must be described by
a limited number of variables, ideally different from the simple coordinates of the
system – a system with N particles is described by 3N coordinates. Descriptors,
which are functions of the coordinates of the system under consideration (such



2.7 Advanced analysis of MD simulations 39

as angles, coordination numbers), can provide a more compact description of the
phenomena to be analyzed. The reliability of the results depends on the descriptor’s
ability to accurately represent the property of interest. However, selecting an appro-
priate descriptor can be challenging as there is not a single, universally applicable
descriptor. [120]

Several dimensionality-reduction machine learning techniques have been devel-
oped to evaluate the collective dynamics behavior of complex chemical/molecular
systems under both equilibrium and non-equilibrium conditions. The Smooth Over-
lap of Atomic Position (SOAP) [121] descriptor provides a high-dimensional de-
scription of molecular environments. This description, called "atomic-environment",
is a high dimensional vector that stores all the information about a specific central
reference atom. The technique involves the application of a Gaussian smoothed
density profile at the selected reference site; the SOAP environment takes into ac-
count the contributions of other particles within a certain cutoff radius rcut . Then,
the SOAP power spectra can be calculated as:

p(r)i
nn′l = π

√
8

2l +1

l

∑
m=−l

ci
nlm(r)∗ ci

n′lm(r) (2.13)

where ci
nlm are the expansion coefficients of the particle density surrounding

the ith center. Additionally, this is the output that can be obtained from the SOAP
calculation using the DScribe [122] package. Once obtained the measure of two
environments corresponding to two different sites, it is possible to calculate a simi-
larity measure within these environments, which is defined by a linear kernel of their
density representation:

KSOAP(i, j) = ρi(r) ·ρ j(r) ∝ pi ·p j (2.14)

The similarity measure within two different environments corresponds to the dot
product of the power spectra of the two sites. The local densities, represented by
ρi(r) and ρ j(r), are centered at the i− th and j− th sites, respectively, within the
cutoff radius rcut . Equation 2.14 can be also considered as a measure of the similarity
between the two environments, with a value of Ksoap that ranges from 0, indicating
completely different environments, to 1, indicating matching environments. As a
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result, the power spectra and the SOAP kernel can be used to define a similarity
metric between two sites, known as the SOAP distance:

dSOAP(i, j) =
√

2−2 ·KSOAP(i, j) ∝

√
2−2pi ·p j (2.15)

However, the output from the SOAP algorithm is a high-dimensional vector,
which is too complex to be efficiently analyzed using machine learning techniques.
Therefore, a Principal Component Analysis (PCA) can be utilized to reduce the
number of components in the SOAP distance vector. PCA is an algorithm that reduces
the dimensionality of the data by preserving the variation within the dataset.[123]

Once the number of variable has been reduced, the use of a ML approach, such
as the Probability Analysis of Molecular Motif (PAMM) [124, 125], allows for
the analysis of the results using a clustering technique. PAMM is a density-based
clustering technique that recognizes molecular motifs in a system, such as defects, by
studying the probability distribution of fragments observed in an atomistic simulation.
The parameter space is divided into a sparse grid in order to reduce the dimensionality
of the dataset and estimate the density using the Kernel-density estimation. The
unsupervised cluster subdivision process, based on the quick-shift algorithm, starts
from a random point in the grid and connects it to the nearest grid point at a higher
probability density until a stopping criterion is reached. The next clusters are detected
in the same way, avoiding points already assigned to a cluster. The distributions
of the different clusters are then fitted in order to interpret the different modes and
identify the different motifs in the system.

Recently, this approach permits to observe the internal dynamics in BTA fibers
[86] and to classify different self-assembled materials based on their structure,
stability, and dynamics [87]. This Thesis reports some examples of applications
of this advanced methods, demonstrating its importance in the study of stimuli-
responsive processes.



Chapter 3

Modeling autonomous chemotactic
self-assembled nanoparticles that
respond to surface gradients

The work described in this Chapter has been published in the following paper: "C.
Lionello, A. Gardin, A. Cardellini, D. Bochicchio, M. Shivrayan, A. Fernandez, S.
Thayumanavan and G. M. Pavan. Toward chemotactic supramolecular nanopar-
ticles: From autonomous surface motion following specific chemical gradients to
multivalency-controlled disassembly. ACS Nano 2021, 15, 16149–16161" [126], and
has been adapted with permission of Creative Commons CC BY license.

Abstract

Nature designs chemotactic supramolecular structures with the ability to selectively
bind specific groups present on surfaces, autonomously scan them moving along
density gradients, and react once encountering a critical concentration. These prop-
erties are crucial in several biological functions and therefore provide inspirations
for designing artificial systems capable of similar bioinspired autonomous behaviors.
One approach is to use soft molecular units that self-assemble in aqueous solution
forming nanoparticles (NPs) that display specific chemical groups on their surface,
enabling for multivalent interactions with complementarily functionalized surfaces.
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surface gradients

However, a first challenge is to explore the behavior of these assemblies at sufficiently
high-resolution to investigate the molecular factors controlling their behaviors.

Here, we demonstrate that by coupling coarse-grained (CG) molecular mod-
els and advanced simulation approaches, the (autonomous or driven) motion of
self-assembled NPs on a receptor-grafted surface can be studied at sub-molecular
resolution. In particular, we focus on self-assembled NPs composed of facially am-
phiphilic oligomers. We observe how tuning the multivalent interactions between the
NP and the surface allows to control NP binding, its diffusion along chemical surface
gradients, and ultimately, the NP reactivity at determined surface group densities.
In silico experiments provide physical-chemical insights on key molecular features
in the self-assembling units which determine the dynamic behavior and fate of the
NPs on the surface: from adhesion, to diffusion, and disassembly. These findings
offer a privileged perspective into the chemotactic properties of supramolecular
assemblies, thus improving our knowledge on how to design new types of materials
with bioinspired autonomous behaviors.

3.1 Introduction

Learning how to design new smart materials, with, for example, the capacity of cells
to adapt their cellular activity, to respond to selective recognition/binding of ligands
[127–131] in a controlled way would be of great interest [132–136]. A specific
example is provided by leukocytes, which bind the surfaces of blood capillaries,
roll and scan surface markers, slow down, stop, and release inflammatory signals.
Such binding, rolling, and reacting capabilities are controlled by a complex interplay
between protein-protein and protein-carbohydrate interactions at the interface.[137,
81, 138, 132–135]

While mimicking the complexity and autonomous precision of the immune
system is a challenging task, imparting similar autonomous functionalities to syn-
thetic materials (Figure 3.1) would be a significant breakthrough in many fields,
including biomedicine, sensing, and adaptive materials. However, achieving this
goal requires gaining a deeper understanding of the molecular factors that control
the selective non-covalent interactions and the complex interplay between them
at the interface. In particular, responsive nanoparticles (NPs) have shown binding
capabilities associated with customized releasing of encapsulated cargos.[132–136]
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Both monovalent and multivalent interactions has been exploited in the design of
selective interactions. As examples, Liao et al. studied the correlation between
monovalent labelling schemes on a gold NP and its diffusion rate on supported lipid
bilayer membranes [139], while Overseem and coworkers investigated multivalent
binding profiles of influenza virus on surfaces with receptor density gradients [140].
However, the rational design of chemotactic functional materials requires a level of
observations that is difficult to achieve solely with experimental techniques. This
is because tracking, tracing and observing the movement of small, soft NPs on
surfaces at sufficiently high spatio-temporal resolution is challenging [141, 142], and
gaining insights into the molecular factors and processes that govern NP chemotactic
responsive behavior is even more complex, as it requires observing these materials
in action at a submolecular resolution.

In this view, various molecular models and simulations approaches have been
proposed to reach this goal. For instance, coarse-grained (CG) models have been
used to study the adhesion and dynamics of minimalistic nanoparticles on ligand-
functionalized surfaces [143–146], allowing the calculation of the number of inter-
actions between the spherical NP and the surface receptors [146, 147]. A similar
approach has been applied to monitor the rolling of a soft spherical cell model on sur-
faces under the presence of an external flow.[144] Alternatively, the diffusion profile
of a rigid sphere on a cross-linked membrane has been largely investigated.[147–
149] Specifically, variations of surface receptor density and multivalent interactions
between NP and gel-like membrane were observed to have many effects on the diffu-
sivity of the NP, eventually inducing NP trapping in high-density regions.[147, 149]

In order to design supramolecular assemblies that have the ability to selectively
bind surfaces, autonomously scan them moving along chemical surface gradients,
and trigger controlled dynamic responses, it is necessary to use finer-level molecular
models. Finer-level molecular models, and in particular CG models with a resolution
of ∼5 Ȧ, coupled with advanced molecular simulations and analysis, have been
adopted to study the dynamics and dynamic properties of supramolecular self-
assemblies [132, 76, 150]. In silico simulations can provide a unique perspective
into the response of supramolecular polymeric materials to different biorelevant
stimuli, such as changes in temperature, salts, solvents, and light.[132, 80] All-
atom molecular dynamics (AA-MD) simulations of protein-responsive assemblies
have allowed the comparison of the self-assembly stability of NPs composed of
soft amphiphilic oligomers bearing biotin ligands with specific and non-specific
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interactions with complementary extravidin. In particular, it was demonstrated how
specific binding events with the complementary protein were capable of destabilizing
the assembled NPs [132].

Despite such interesting structural/energetic insights, it is worth noting that fas-
cinating bioinspired properties such as chemotaxis have an intrinsically dynamic
character, which encourages the study of the dynamic behavior of chemotactic assem-
blies at high (submolecular) resolution in search of molecularly relevant information
on how to control them.

In this study, we propose a reverse multiscale modeling approach for the design
of supramolecular NPs that exhibit autonomous chemotactic behavior. Our approach
begins with a minimalistic coarse-grained (mCG) model of supramolecular NPs that
can selectively bind groups present on surfaces, and uses classical and advanced
simulations to study their dynamic chemotactic behavior. Focusing on a realistic
example of supramolecular assemblies, we then increase the resolution of our mod-
els to a finer coarse-grained (fCG) level, and we explore molecular strategies for
controlling the autonomous behavior of the responsive NPs on the surface. In silico
modelling experiments finally show how to control the chemotactic properties and
dynamic disassembly of the supramolecular NPs. This multiscale approach provides
a flexible platform for the rational design of assembled structures with programmable
autonomous chemotactic properties.

Fig. 3.1 Schematic representation of cells (e.g., leukocytes) that bind and autonomously
roll/translocate on surfaces, scanning them and releasing (inflammatory) signals in the
presence of high-densities of surface markers indicative of, e.g., an infection. Figure adapted
from Ref. 126 with permission of Creative Commons CC BY license.
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3.2 Computational approach

We developed coarse-grained molecular models of different scales-resolution to study
the chemotactic response of several soft nanoparticles (NPs) on receptors-grafted
surfaces. In particular, these models allow us to investigate the consequences of
the variations in the monomer-monomer and monomer-receptors interactions on the
behavior and stability of the assembled NP on the surface. All the MD simulations
have been carried out using Gromacs software [151] patched with PLUMED [118],
while the VMD visualization suite was used to display and render the simulated
systems.

Minimalistic coarse-grained (mCG) model and simulation setup

We started by developing a minimalistic mCG model composed of three different
bead types representing the monomers within the assembly, the guest particles
contained inside the self-assembled NP, and the receptors grafted on the surface.
The interactions within these beads were defined using a Lennard Jones (LJ) 12-6
potential setting the LJ parameters to σ = 0.47 nm and ε = 10 kJ mol−1, for the
monomer-monomer interactions (∆Eass) and to σ = 0.35 nm and ε = 40 kJ mol−1 for
the monomer-receptor interaction (∆Ebind). This resulted in a ∆Eass/∆Ebind ratio
of ∼ 1/4 which is comparable to that of similar self-assembling oligomers containing
a ligand that specifically binds to a complementary receptor protein (based on the
avidin-biotin interaction) [132]. Additionally, a weakly 9-3 LJ attractive potential of
2.0 kJ mol−1 (20 times weaker than specific interactions) was added to the surface
in order to mimic the weak non-specific interactions between the NP and the surface,
and to prevent the NP to penetrate inside the surface in the receptor-free surface
regions. The surface receptor CG beads were kept frozen during the simulations. The
NP-surface system was then initially minimized using the steepest descent algorithm,
and a leap-frog stochastic dynamics integrator was used for the production run. A
Langevin dynamics was conducted using Coulomb and Van der Waals cutoffs of 1.1
nm, and a relative dielectric constant of εr = 15 (to implement electrostatic screening
of the solvent, accordingly with the Dry MARTINI force field standards) [111].
All simulations using this model have been conducted at 300 K of temperature,
in NVT conditions using a 20 fs timestep. Due to the anisotropic nature of the
system, Periodic Boundary Conditions were considered only along x- and y-axis.
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Metadynamics (MetaD) simulations were used to enhance the NP sampling of the
surface. A MetaD bias was applied to the x- and y-distances (used as the collective
variable, CV) of the NP center of mass respect to the origin of the system, depositing
every 5000 steps Gaussian kernels of height 20 kJ/mol−1 and width of 1.0 for both
variables.

All-atom (AA) and submolecular resolution (fCG) models

The self-assembling units considered herein are amphiphilic oligomers, characterized
by a branched scaffold with three hydrophobic decyl chains, and three hydrophilic
polyethylene glycol moieties (Figure 3.2b). Additional groups can then be added on
the hydrophilic strands, for example, in this case, carboxylic acid groups (COOH
groups) permit to functionalize the final aggregates. Therefore, monomers deproto-
nate in water at neutral pH providing a charge of -1e, -2e, or -3e, as shown in Figure
3.2b. The capability of these monomers to self-assemble into charged NPs able to
bind positively charged surfaces is confirmed by the experimental results reported in
Appendix A. The atomistic model of the oligomer was built with Avogadro [152]
based on their chemical structure, which have been parametrized based on the Gen-
eral Amber Force Field (GAFF) [153], using Antechamber [154]. Consequently,
the fine fCG models of the oligomers were built based on the MARTINI force field
[105]. The bonded parameters have been optimized automatically to reproduce the
bond, angle and dihedral distributions of the AA-MD simulations using Swarm-CG
[85]. The non-bonded parameters have been optimized by choosing the appropriate
MARTINI bead types in order to (i) reproduce the radius of gyration and the Solvent
Accessible Surface Area (SASA) of the all-atom model seen in AA-MD simulations,
and (ii) to reproduce the free-energy of dimerization between two oligomers in water
obtained via metadynamics (AA-MetaD vs. CG-MetaD) simulations between two
monomers (see Figure 3.3). For the best reliability, first a wet MARTINI-based CG
model was created and optimized, which has been then used to optimize the Dry
MARTINI-based CG model used for the simulations of Figures 3.7-3.12. The self-
assembled NPs were then obtained by inserting 100 dry-CG monomers in a box and
a classical MD simulation was run. The larger and more stable NP was found to be
composed of 44 monomers and was used as a reference in all the simulations (Figure
3.2c). Ten CG beads were added inside the aggregate in order to represent guest
particles, and their interaction was weak enough to allow for prompt monitoring of
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Fig. 3.2 Submolecular resolution of mCG and fCG models to study self-assembled NPs and
their adhesion onto functionalized surfaces. a Minimalistic CG model of a supramolecular
NP where blue beads indicate the self-assembled monomers and the violet beads reproduce an
encapsulated guest, while the surface receptors are colored in green. The monomer-monomer
and monomer-receptors interactions are tuned to reach the ∆Eass/∆Ebind ratio of ∼ 1/4.
b-d Finer CG models to study self-assembled NPs and their adhesion onto functionalized
surfaces. (b) Chemical structure, all-atom (AA), and fine coarse-grained (fCG) models of
facially amphiphilic monomers. These self-assembling units are composed of a branched
core (in black), hydrophobic groups (red), and hydrophilic groups (red), which can be
functionalized in different ways (i.e., with COO- charged groups, in yellow, in the example
studied herein). (c) fCG model of a NP obtained via self-assembly of 44 oligomers in water.
Guest fCG particles (in purple) are encapsulated in the NP and used to track guest release
upon eventual NP disassembly. (d) fCG model of a surface functionalized with +1e charged
groups (dark green CG beads are constrained in their position, while the topmost white ones
carry a +1e charge). Figure adapted from Ref. 126 with permission of Creative Commons
CC BY license.
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their release in case of the NP’s disassembly (σ = 0.43 nm and ε = 6.5 kJ mol−1).
The alkylamine groups on the surface were also modeled at the same resolution level
based on the Dry MARTINI force field. In detail, the amino-groups are defined by
three CG beads: a base one, grafted to the surface, a central CG bead, mimicking a
carbon linker, and a charged hydrophilic head. To keep the receptor position fixed,
the base CG beads of the receptor groups were kept frozen during the simulations.

Fig. 3.3 Free Energy Surface (FES) of trimeric amphiphile dimerization obtained with well-
tempered metadynamics technique. The validation of Coarse-Grained (CG) model (blue line)
has been tuned on the all-atom (AA) profile (red line) as a function of the distance between
the center of the two monomers. The distance variable refers to the COM distance (AA case)
and the bead-to-bead distance (CG case) of the central residue of the standard monomer.
Figure reproduced from Ref. 126 with permission of Creative Commons CC BY license.

fCG unbiased MD simulations

All fCG simulations were performed in implicit solvent, with a relative dielectric
constant of εr = 15 to model the electrostatic screening of the solvent [111]. Explicit
counter-ions were added to neutralize the system’s charge. All CG-MD simulations
of the fCG model were run in NVT conditions at T = 300 K. The systems were
preliminary minimized using the steepest descent algorithm and a leap-frog stochastic
dynamics integrator was then used for all unbiased MD production runs, using a 20
fs time step, and Coulomb and Van der Waals cutoffs of 1.1 nm. For the simulations
regarding the static NP adhesion on different receptor density regions (as reported in
Figure 3.7), three distinct NPs have been initially centered on top of four different 20
x 20 nm2 surfaces, respectively, characterized by four different densities: ρ1 = 0.034
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rec/nm2, ρ2 = 0.09 rec/nm2, ρ3 = 0.64 rec/nm2 and ρ4 = 1 rec/nm2. Each system
was then equilibrated for 1 µs of CG-MD simulation.

Infrequent MetaD simulations for the study of NP unbinding

We ran 30 infrequent CG well-tempered MetaD simulations to obtain information
on the characteristic timescale and the associated free energy barrier to be crossed
in the system to detach a NP, represented by the fCG model and composed of -1e
self-assembled oligomers, from a single surface receptor (Figure 3.9a). In these
runs, as CV we used the number of contacts between the NP’s charged beads and
the surface receptor CG beads. We used a bias factor of 10, a Gaussian height of
1.2 kJ mol−1, a deposition stride of 1 Gaussian every 50000 time step with a sigma
of 0.5 nm. Simulations were terminated once the number of contacts was 0. The
characteristic timescale for the event was then calculated from the Poissonian fit of
the unbiased transition time distributions obtained from the 30 infrequent MetaD
runs. The unbiased transition time (t) can be calculated from each individual MetaD
run as:

t = tMetaD⟨eβ (V (s(R),t))⟩MetaD (3.1)

where V (s(R), t) is the time dependent bias provided for the transition during
the run, the exponential (brackets) is averaged over the MetaD run and β is kT−1.
The transition times (t) calculated from the MetaD runs were then used to build the
transition probability distribution Pn≥1, namely the probability to observe at least
one exchange event by time t:

Pn≥1 = 1− e−t/τ (3.2)

where τ is the characteristic time for rare events. Figure 3.4 shows the ex-
change times collected from the individual runs. These fit well with Poissonian
transition probability distributions Pn≥1. From the Pn≥1 distribution, it is then possi-
ble to calculate the characteristic timescale (TAU: τ) for the NP unbinding from a
single/monovalent interaction with a surface receptor (Figure 3.9a).
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Fig. 3.4 Transition times extracted from the infrequent MetaD simulations. The plot reports
the transition times collected from the replica infrequent MetaD simulations (orange seg-
ments), and the related Poissonian fitted distribution (in blue), for the detachment of the
-1e charged fCG-NP from a single surface ligand (monovalent interaction). The analysis
provides an estimated unbinding timescale of τ = 1.14 ·10−3 s. Figure reproduced from Ref.
126 with permission of Creative Commons CC BY license.

Multiple-walker explorative CG-MetaD simulations

In the multiple-walker MetaD simulations, the surface was characterized only by the
four central areas measuring 60 x 60 nm2 (Figure 3.9b). Multiple-walker MetaD was
used to explore in parallel 36 simulations of the same fCG system. The bias acted
along the x- and y-distance of the NP’s center of mass from the origin of the system.
The bias was constructed by depositing every 500 CG-MD steps Gaussian kernels of
height 1.2 kJ mol−1 and width of 0.1 for both variables. Repeating the simulations
with or without using the Particle Mesh Ewald (PME) summation to treat long-range
electrostatics provided consistent results, proving the general validity of the approach
in exploring the chemotactic NP behavior on the surface.
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In silico NP rolling and exfoliation experiments

We then built a surface model with dimension of 120x30 nm2, consisting of four
consecutive regions with varying receptor densities: ρ0 = 0 rec/nm2, ρ1 = 0.12
rec/nm2, ρ2 = 0.52 rec/nm2, ρ3 = 1.12 rec/nm2, each measuring 30x30 nm2 (see
Figure 3.11a). In these CG-MD simulations, we utilized the fCG model of NP and
the CG-MD runs were carried out in NVT conditions at 300 K, with Coulomb and
Van der Waals interactions modelled using a 1.1 nm cutoff. A constant force of
F = −100 kJ/mol/nm was applied to the center of mass of the NP in these MD
simulations, along the main x-axis of the surface (Figure 3.11a), in order to generate
a pulling effect on the NP comparable to that one of a flux existing in the blood
vessels (NP diffusion rate: 0.5−1 cm/s) [155]. To prevent the NP from jumping far
from the surface in the receptor-free region, a wall on z-axis was implemented using
the PLUMED plugin at the center of mass of the NP at 5 nm with kappa=150.0 and
exp=2.

3.3 Results and discussion

Chemotaxis of a supramolecular model nanoparticle

In order to understand the key principles to design synthetic chemotactic nanopar-
ticles, it is crucial to observe the dynamic behavior of soft assemblies on receptor-
grafted surfaces at high resolution. To this end, we have started by examining a mini-
malistic supramolecular NP model composed of self-assembling units (monomers)
that are capable of establishing specific interactions with complementary functional-
ized receptors present on a surface (Figure 3.5a). The outcome of this adhesion is
primarily determined by the competition between the intermolecular interactions of
monomers within the assembly, referred as ∆Eass, and the multivalent interactions
with the surface, referred as ∆Ebind. Specifically, ∆Ebind depends on the strength
of the interaction between the monomers’ ligands and the receptors on the surface,
the number of receptors grafted on the surface, and the ability of the soft NP to adapt
to the surface, thus maximizing the interactions within it, which also depends on
∆Eass. The fate of the soft aggregate is determined by the balance between these
two energies. When ∆Eass is much higher than ∆Ebind, a rigid adhesion of the NP
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on the surface occurs, while for ∆Eass being similar to ∆Ebind, the NP is able to
deform its shape, favoring an increase in the number of interactions with the surface.
On the other hand, for ∆Eass much smaller than ∆Ebind, the NP will disassemble
due to the high number of interaction with the receptors. The main challenge is thus
to understand how to balance these two energies through the use of coarse-grained
molecular models (as in the example in Figure 3.5b).

a

b

Monomer Receptor, chemical group, etc.

Fig. 3.5 Multivalent adhesion and chemotaxis in natural and synthetic assemblies. a Min-
imalistic Coarse-Grain (mCG) model of a self-assembled NP. When establishing a mul-
tivalent binding with a complementary functionalized surface, the NP’s fate depends on
the competition between the monomers-receptors interactions (∆Ebind: in red) and the
monomer-monomer self-assembly energy (∆Eass: preserving the assembled structure, in
blue). Whether the ∆Eass globally prevails, competes with the ∆Ebind, or is dominated
by the latter, would result in a rigid, soft adhesion, or even in the disassembly of the NP. b
Example molecular model of a supramolecular NP (monomers colored in blue and green)
before (left) and after adhesion (right) on a ligand-coated surface (ligands in gray, active
binding groups in orange). Figure adapted from Ref. 126 with permission of Creative
Commons CC BY license.
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Minimalistic coarse-grained simulations

As a first case study, we consider a minimalistic CG (mCG) model that reproduces
an assembled NP composed of 1925 CG beads, each of which representing one
single monomer. The grafted surface was instead coated with single-bead receptors,
and characterized by two different regions of distinct receptor density, namely the
number of receptors in the lower density region being 1/64 that of the higher density
region (as depicted in Figure 3.6). The Lennard-Jones (LJ) potential is utilized to
model interactions between the different components of the system, obtaining a
∆Eass/∆Ebind ratio of ∼ 1/4 which is similar to that recently estimated for self-
assembling oligomers containing a biotin ligand that specifically binds avidin [132].
To achieve this, we describe ∆Eass interactions using a 12-6 LJ potential, with σ =
0.47 nm and ε = 10 kJ mol−1, while the monomer-receptor interactions, ∆Ebind,
are modeled with as σ = 0.35 nm and ε = 40 kJ mol−1. The white areas of the
surface represent regions of weak, non-specific interaction, modeled as a 9-3 LJ
potential with ε = 2.0 kJ mol−1, which is 20 times weaker than the monomer-
receptor interaction. These simulations, however, have shown the tendency of the
NP to rapidly bind a receptor on the surface, without the possibility to surf and
scan the entire surface. In fact, the characteristic timescales to escape from the first
NP-receptor interaction exceed the typical timescales accessible by classical CG-MD
simulations (in this case in many systems), which for this reason results ineffective
to study the dynamics of the system.

To overcome this limitation, one approach is to enhance the sampling of the sys-
tem through biased simulations. We conducted metadynamics (MetaD) simulations
that enhanced the motion of the NP on the surface. An energy bias was applied to
the center of mass of the NP, activating changes in x- and y- coordinates, the plane
of the surface, without any constriction along the z-direction. These variations of
the NP position on the xy-plane promote a random walk on the surface, where the
NP could either slide, translate, roll or in principle even bounce on/off the surface.
CG-MetaD simulations highlight the tendency of the NP to move from low to high
density regions and, in particular, to slide and diffuse on the less dense areas and to
roll on the denser ones. Additionally, despite the absence of constriction along the z
direction, the NP did not show any tendency to jump on the surface, neither in the
receptor-free regions, due to non-specific interactions with the empty areas on the
surface.
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Even if the CG-MetaD simulations have been used exclusively with an explorative
intention, they provide for the qualitative understanding of the NP’s motion on
a receptor-functionalized surface. In particular, the exploration depends on the
Brownian motion at a thermalized regime, which promotes the random movement,
and on the specific interactions in the different densities regions, which affects the
residence time. However, it is important to notice that the only motion detected
goes from the lower to the higher density regions, that is the consequence of the
free energy of adhesion. Furthermore, when ∆Eass « ∆Ebind and the simulated
timescale is long enough, the probability of the NP to disassemble is higher than the
one to escape from that region, this then means that the higher density regions can
be considered as density traps.

Figure 3.6 reports the two different behaviors of the NP that have been observed.
In low-density regions, the NP preserves its spherical shape during the diffusion
process, even if in some cases, it loses some monomers due to the high interaction
with the receptors. On the other hand, in the high-density region, the number of
interactions with the surface increases, leading to a deformation of the NP that
disassemble under the application of the MetaD potential. In this occasion, the
release of the guest particles inserted into the NP, characterized by a weak interaction
with the other beads, is observed. These simulations demonstrate that once the NP
is on the region with the higher receptor density, despite the continuous application
of the potential bias, the NP is not able to escape from it and disassemble. This
suggests, that probably, even in a real system the NP can disassemble under the
presence of external forces, releasing the cargo.

High-resolution insight into multivalent interactions

The results of previous mCG simulations have shown the crucial role of intermolec-
ular interactions in the chemotactic mechanism. However, the resolution of the
model does not allow a resolution fine enough to describe the chemical structure of
existing systems. In order to gain a better understanding of how the ∆Eass affects
the stability of the assembly, a finer CG (fCG) model permits to model both the
NP and the surface with a ∼5 Ȧ resolution. This level of resolution allows for the
study of, for example, the intermolecular interactions between the self-assembling
units and multivalent interactions with the surface, enabling the understanding of the
effects of the variations in the chemical structure of the single monomers. As a case
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Random scan

Stop

Fig. 3.6 Simulating the density-responsive behavior of chemotactic NPs using minimalistic
models. Minimalistic mCG model of a supramolecular NP (blue CG beads: self-assembled
monomers) with encapsulated guests (violet CG beads). In the surface model, two areas
are distinguishable: with high and low receptor densities (green CG beads). In particular,
the CG-MetaD trajectory (red dotted arrows) shows NP rolling and diffusion on the surface.
Starting from a receptor-poor region, the NP randomly explores the surface during the CG-
MetaD run, until reaching a receptor-rich region. Once the NP binds a receptor-rich region
of the surface, the MetaD simulation suggests that the presence of a force continuously
pulling the NP may induce NP disassembly over time, and the consequent release of the
encapsulated guest particles (in violet). Figure adapted from Ref. 126 with permission of
Creative Commons CC BY license.

example, in this work we considered facially amphiphilic oligomers, which form
NPs in aqueous medium and are able to encapsulate hydrophobic guests.[132] Am-
phiphilic oligomers are particularly useful as both the hydrophilic and hydrophobic
strands can be functionalized with specific chemical groups, enabling the binding
to specific receptors (∆Ebind) in the first case or varying the stability of the final
structure (∆Eass) in the second case.

The oligomers studied herein are characterized by a branched scaffold with
three hydrophobic decyl chains, and three hydrophilic polyethylene glycol moieties
(Figure 3.2b). Different chemical groups can then be grafted on the hydrophilic
strands, which will be then exposed to the solvent after the self-assembly.[132, 156]
In this case, the hydrophilic strands have been functionalized with carboxylic acid
groups (COOH groups). These groups deprotonate in water at neutral pH providing
a charge of -1e, -2e, or -3e to the oligomers, as shown in Figure 3.2b. Furthermore,
experimental evidences demonstrate that these oligomers are able to self-assemble
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into charged NPs able to bind positively charged surfaces. The information related
to the experimental tests are exposed in the Appendix A.

The fCG, described by the dry MARTINI force field [105, 111], is obtained
from the AA oligomer model already described in the computational approach
paragraph. In particular, after an initial optimization of the bonded interactions
through the Swarm-CG software [85], the non-bonded interactions are tuned to obtain
a dimerization free-energy profile consistent with the atomistic results, as reported in
Figure 3.3.[76, 157] Once obtained the fCG model, the most stable aggregate is made
by 44 self-assembling oligomers. Additionally, in order to study the disassembly and
release, we insert 10 beads into the self-assembled NPs to simulate an encapsulated
cargo (Figure 3.2c). Finally, different surfaces are decorated with varying number
of receptors, modeled as 3 CG beads, where the top one had a +1e charge and the
bottom one was constrained in its position (Figure 3.2d).

Consequently, we conduct multiple simulations to investigate the adhesion
strength of the NP on four different surfaces with varying receptor density, referred
to as ρ1, ρ2, ρ3, ρ4, with the highest density corresponding to ρ4 = 1 group/nm2 (as
shown in Figure 3.7). These simulations are used to examine the effects of variations
in the ratio ∆Eass/∆Ebind, as depicted in Figure 3.5a. The fCG-MD simulations
reveal a strong correlation between the strength and the number of monomer-receptor
interactions. In particular, to simulate rigid binding, deformation, and disassembly,
three different NP surface charge densities are investigated, i.e. -44e, -88e, and -132e,
respectively (see Figure 3.7)

The relationship between the stability of the NP and the number of interactions
between the monomers and receptors is proven through the calculation of the number
of contacts between the negatively charged beads of the oligomers and the positive
beads of the surface receptors, as shown in Figure 3.8. The most extreme case, where
one single monomer of the NP has a protonation state of -3e and was placed on the
surface ρ4, results in disassembly due to the maximum possible number of contacts,
thus approximately 132. The correlation between the number of interactions with
the surface was further supported by the experimental evidences reported in Figures
A.1 and A.2 in the Appendix A.

The use of classical, unbiased fCG-MD simulations turn out to be effective
exclusively in the study of the static binding of NPs on coated surfaces. However,
the detachment of a charged bead from the surface requires timescales that cannot be
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simulated with classical unbiased CG-MD simulations. To overcome this limitation,
we again employed infrequent CG-MetaD simulations to estimate the characteristic
timescale of this unbinding (according to similar setup as that used for mCG). These
simulations reveal that it is necessary to overcome an energy barrier of ∼6.5 kcal
mol−1 at room temperature, with an estimated time of ∼1.14 ms (∼1011 simulation
time steps, τ), as reported in Figures 3.4 and 3.9a. It should be noted that these
systems are complex and variable, and thus, the data obtained should be interpreted
qualitatively. However, the number of interactions considered in this analysis un-
derestimate the real number of interaction existent between the NP and the surface.
Therefore, in reality, the time of unbinding of the NP from a receptor covered surface
should be longer compared to the one estimated herein.

In this context, MetaD simulations are employed to accelerate the movement
of the NP by applying a gaussian-like bias potential on the xy position of the NPs’
center of mass. Specifically, a larger surface is created with four distinct regions
that featured varying densities of receptors. The NP is initially placed in a corner
of the region with the lowest density of receptors (see Figure 3.9b-d). In addition,
the NP’s movement is confirmed and supported by experimental evidences (see
Figures A.3 in Appendix A). Figures 3.9c-d display all the 36 trajectories and their
temporal evolution, which demonstrate the tendency to move in a monodirectional
path from lower to higher density regions. Despite the applied bias potential leading
to a random motion of the NPs, they still exhibited a movement toward the center of
the surface starting from the corner. Once the NPs reach the highest density areas, it
is highly unlikely for them to escape, thus confirming the hypothesis of a molecular
trap as previously observed in the mCG study.

To validate the observed behavior of NPs moving randomly on surfaces with
homogeneous receptor density, we conduct two separate examples (as seen in Figure
3.10). The temporal-colored trajectories illustrate that as long as the nanoparticle
is on a homogenous surface, it tends to randomly explore the surface. However,
when the NP is placed on a surface with two different densities, it moves towards
the region with the highest density and upon reaching it, the diffusion slows down
due to an increase in the number of interactions. Based on these results, it can be
concluded the NP will be observed most likely in that areas of high receptor density
if ∆Eass > ∆Ebind, or will disassemble if ∆Eass < ∆Ebind.
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The results obtained from both the minimalistic and the finer CG models indicate
the same phenomenon, that is the autonomous diffusion of NPs from lower to
higher density surfaces. This observation persists even if the two systems considered
different types of intermolecular interactions, namely Van der Waals interaction in
the first case, and electrostatic interactions in the second. It is noteworthy that the
chemotactic response of NPs on coated surfaces can be designed and controlled by
acting on the strength of the multivalent interactions established between the NPs
and the higher/lower density regions of the surface during their motion.

In silico experiments of disassembly and release

As the previous MD simulations demonstrate, the exploration path of NPs on coated
surfaces can be controlled. However, the disassembly and release of encapsulated
guests have yet to be investigated. In this regard, an in silico experiment was
developed utilizing the fCG models already discussed in the previous paragraph. A
surface with four different receptor densities (from ρ0, with no receptors, to ρ3) was
created (see Figure 3.11a), and a constant force was applied on the NP, simulating
the effect of the flux present in blood vessels. This allowed to explore the NP motion
on functionalized surfaces under external perturbation. The simulations revealed,
in some cases, the disassembly of the NPs and release of cargo. The disassembly
was quantified by measuring changes in the NPs’ Solvent Accessible Surface Area
(∆SASA).

This in silico study shows that an increase in the number of interactions between
NPs and receptors leads to an increased exposure of the NPs to the solvent, even after
the exfoliation of the NP (Figure 3.11b). The results also indicate that an increase
in the number of charges on the oligomer surface results in earlier NP disassem-
bly at lower surface densities of receptor groups (Figure 3.11b). Furthermore, by
calculating the number of contacts between the oligomers and the guest particles,
the percentage of guest release is determined as a function of the surface density of
receptors, as shown in Figure 3.11c. These simulations demonstrate that by varying
the number of charges on the NPs, it is possible to trigger the disassembly and release
of cargo on different receptor densities, with significant percentages of guest release
being higher than 20%.
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However, as mentioned at the beginning of this section, the ∆Eass/∆Ebind ratio
and the fate of the NPs, can be influenced not only by the variation of the number
of negative charges on the surface of the NPs, thus acting on the ∆Ebind, but also
by the strength of the intermolecular interactions, thereby acting on ∆Eass. To
demonstrate that, as done for the case of thermo-responsive oligomers [158], we
tuned the hydrophobicity of the NP, by modifying the chemistry of the oligomers’
hydrophobic strands. Starting from the Original configuration of the oligomer (the
one considered in the previous simulations and reported in Figure 3.12a), different
chemical sequences are replaced to its C10 hydrophobic chains. In particular,
considering the cases indicated in Figure 3.12b, Type-1 is obtained adding a CG-bead
representing four carbon units (C14), while in Type-2 one halogenated carbon group
(in orange) is added in order to increase the hydrophobicity of the oligomer. In
Type-3 and Type-4 the last bead is replaced with phenyl and naphthyl functional
groups respectively, affecting not only the ∆Eass but also the final shape due to a
different rearrangement of these groups in the core of the NP.

We then replicated the same simulations already carried out for the Original
configurations (then with -1e, -2e, -3e charges on the hydrophilic groups) and we
compared the final results with the one in Figure 3.11b-c. In particular, Figure
3.12c shows the results obtained for the oligomers with charge -3e. Considering that
Type-1, Type-3 and Type-4 are more hydrophobic than the Original configuration,
the new designed NPs manifest a more stable behavior. In fact, Type-1 and Type-3
variants disassemble in the higher density surface (ρ3), in other words, they require a
higher number of interactions with the receptor beads to disassemble on ρ2. Due to
the high stability of the NP based on Type-4 oligomers, no disassembly is observed,
as in this case ∆Eass is higher than ∆Ebind (as shown in Figure 3.12d). In case
of Type-2 oligomer-based NP, the behavior shown is similar to the Original NP,
as the bead added is less hydrophobic. The results related to the -1e and -2e NPs
variants are reported in Figures A.4-A.5, Appendix A. These results demonstrate
that the balance between ∆Eass and ∆Ebind can be controlled by acting on different
parameters. To this regard, Figure 3.12d clearly shows how comparable behaviors in
the system can be obtained with different NPs. While these cases change both in the
hydrophobic groups and in the number of NP binding charges, thus variations acted
both on ∆Eass and ∆Ebind, the final balance of the two energies lead to the same
fate of the NPs on the surface.
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The kinetics of the stable NPs can be compared, as reported in Figure 3.12d, by
evaluating the velocity and the Mean Square Displacement (MSD) in the regimes
where the NPs maintain their integrity (Figure 3.13). Our analysis reveals that the
motion of the NPs is influenced by the receptor density on the surface, the number
of charges present on the NPs’ surfaces, and on the stability of the NPs. As depicted
in Figure 3.13, the diffusion of the NPs slows down when they are in higher density
regions, as the number of oligomer-receptor interactions increases. The fCG-CG
NPs exhibit a more sub-diffusive behavior, until the point where ∆Ebind becomes
stronger than ∆Eass, at which the disassembly of the NP is more likely to occur
rather than diffusion. These simulations show how given the characteristics of a
specific surface, different NPs can be rationally designed, in principle, to control the
disassembly and the release of the encapsulated guest only after a certain density of
groups is encountered in a functionalized region.

3.4 Conclusion

This work proposes a computational approach to investigate the chemotactic be-
havior of soft NPs through the combination of top-down and bottom-up multiscale
molecular models and the use of advanced simulation approaches. By using mini-
malistic and finer molecular models, we examine the fundamental process behind
the chemotactic behavior of various NPs. Initially, the effects of the competition be-
tween intermolecular interactions (∆Eass energy) and monomer-receptor interaction
(∆Ebind energy) are investigated, as their balance controls the motion and fate of the
NPs. Additionally, by utilizing a real case study based on oligomers self-assembly,
we propose a chemical example for the creation of chemotactic-responsive systems.
Moreover, variations in the NPs’ charges or in the hydrophobic properties demon-
strate to be useful to tune and control the interaction between the NP and the surface,
including rolling, stopping, and in some cases, disassembly and guest release in
targeted areas of the surface. Furthermore, in silico experiments provided insight into
the stability of the customized structures, where, by knowing the characteristics of a
target surface, and through the rational design of tailor NPs, controllable chemotaxis
can be achieved in artificial molecular systems.
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Fig. 3.7 CG-MD simulation of static NP adhesion to surfaces characterized by different den-
sities of receptor groups. Snapshots taken after 1 µs of fCG-MD showing NP destabilization
and disassembly upon adhesion may be observed while increasing the charge densities on the
surface and on the NPs from -44e to -132e. Figure adapted from Ref. 126 with permission
of Creative Commons CC BY license.
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Fig. 3.8 (a) CG-MD simulation snapshot of a single self-assembled nanoparticle made of
44 trimeric amphiphiles validated as shown in Figure S1. Color code: charged beads are
depicted in yellow, while blue beads represent the complementary monomer structure. (b) An
example of ligands decorated surface. The charged beads are in white, while the remaining
ligands are colored in green and gray. (c) Number of contacts between the NP charged
beads and the surface ligand charged beads calculated in unbiased CG-MD simulations for
different ligand concentrations (ρ1, ρ2, ρ3, ρ4) and protonation states (-1e, -2e, -3e). Figure
reproduced from Ref. 126 with permission of Creative Commons CC BY license.
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Fig. 3.9 Submolecular fCG models of NP chemotaxis. a Free-energy barrier (∼6-7 kcal
mol−1) and characteristic escape time scale (τ ∼ 10−3 s CG) for fCG-NP unbinding from the
surface in the case of a monovalent interaction. b Example of CG-MetaD trajectory extracted
from the ensemble of panels c and d. c 36 trajectories of fCG-NPs on the surface from 36
multiple-walker CG-MetaD simulations (each color represents a different CG-MetaD run). d
36 multiple-walker CG-MetaD trajectories shown in panel b, colored based on the simulation
time (dark blue to red and yellow). In all CG-MetaD runs, the fCG-NP is seen to move from
the lowest to highest-receptor density regions on the surface over time. Figure reproduced
from Ref. 126 with permission of Creative Commons CC BY license.
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Fig. 3.10 CG-MetaD trajectories of fCG-NPs onto different surface models. Left: The
fCG-NP moves randomly in 2D in the case where the density of surface receptor groups is
low and uniform (ρ). Right: Motion of the NP onto a surface with two different, yet relatively
low, receptor density regions (ρ0 and a higher ρ1). The NP motion becomes irreversible when
it visits regions where the ρ is high enough to have ∆Ebind > ∆Eass. Figure reproduced
from Ref. 126 with permission of Creative Commons CC BY license.
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Fig. 3.11 In silico experiments of NP rolling, disassembling, and guest releasing in the
presence of an external flux. a CG-MD simulation setup of tested NPs represented with a
fCG model. b,c Monitoring NP disassembly and guest release. b Percentage variation of the
NP SASA (∆SASA) for the NPs as a function of the oligomer charge. c Percentage of guest
release as a function of the oligomer charge. Raw data are shown in transparent colors, solid
trend lines are shown to guide the eye. Figure reproduced from Ref. 126 with permission of
Creative Commons CC BY license.
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Fig. 3.12 Modulating the NP chemotaxis and responsiveness by tuning the hydrophobicity
of the self-assembling units. a Original reference oligomer (C10 hydrophobic tails). b
Hydrophobic groups of the Type-1, Type-2, Type-3, and Type-4 oligomer variants and their
corresponding fCG models. c Comparison of ∆SASA (NP SASA variation) and percentage
of guest release for NPs composed of the different trivalent (-3e) oligomer variants. Same
data for the (-2e) NP variants are reported in Appendix A (see Figures A.4 and A.5). d
Similar NP behaviors can be obtained by NPs composed of oligomer variants having a
similar ∆Eass/∆Ebind balance. Raw data are shown in transparent colors, solid trend lines
are shown to guide the eye. Figure reproduced from Ref. 126 with permission of Creative
Commons CC BY license.
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Fig. 3.13 X-position (x(t)) and x-Mean Square Displacement (x-MSD) of the fCG-NPs
(Original, Type-1 (-1e), Type-3 (-1e), and Type-4 (-2e)) along the receptor-density-gradient
surface displayed in Figure 3.11a of the main manuscript. The slope of the x(t) profiles
represents the fCG-NP velocity along x direction. The data show that the higher is the
receptor density on the surface (ρ), or the oligomer’s charge (colored curves), the lower is
the slope of the x(t) (black dotted lines): i.e., the fCG-NP motion on the surface becomes
slower while the multivalent interactions between the NPs and the surface increase. Figure
reproduced from Ref. 126 with permission of Creative Commons CC BY license.



Chapter 4

Into the dynamic of self-assembled
micelles

The work contained in this Chapter has been published in the following paper: "A.
Cardellini, M. Crippa, C. Lionello, S. P. Afrose, D. Das, G. M. Pavan. Unsupervised
data-driven reconstruction of molecular motifs in simple to complex dynamic mi-
celles. J. Phys. Chem. B 2023, 127, 2595–2608" [159], and has been adapted with
permission of Creative Commons CC BY license.

Abstract

The reshuffling mobility of molecular building blocks in self-assembled micelles is a
key determinant of many interesting properties, from emerging morphologies and sur-
face compartmentalization to dynamic reconfigurability and stimuli-responsiveness
of these supramolecular soft particles. However, such complex structural dynam-
ics is typically non-trivial to elucidate, especially for multi-component assemblies.
Here, I describe a machine-learning approach that allow us to reconstruct the struc-
tural and dynamic complexity of mono- and bi-component surfactant micelles from
high-dimensional data extracted from equilibrium molecular dynamics simulations.
Unsupervised clustering of smooth overlap of atomic position (SOAP) data enables
to identify, in a set of multi-component surfactant micelles, the dominant local molec-
ular environments and to retrace their dynamics, in terms of exchange probabilities
and transfer pathways of the constituent building-blocks. Provided a variety of mi-
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celles, different in size and chemical nature, this approach can effectively recognize
common molecular motives in an exquisitely agnostic, unsupervised way and to
correlate them with the belonging species.

4.1 Introduction

The stability of a self-assembled materials depends not only on the external stimuli,
but also from the internal ones. Numerous studies have evidenced that the internal
reshuffling of building blocks and their arrangement into dynamic domains have a
significant impact on the final properties of self-assembled architectures.[160–162]
As an example, in supramolecular polymers, the rearrangement of the assembling
units in a fiber, influenced by the presence of defective domains, affects the velocity
of reorganization under the presence of specific stimuli.[163] Thus, it is crucial to
comprehend the structural and dynamic environments present in soft assemblies
for the rational design of self-assembling structures with controllable dynamic
properties.[164, 165, 160, 166, 167]

The ability to control the levels of order/disorder, such as defects, in supramolec-
ular materials allows for the control over fluid-like domains [87, 104] and their
stability [168], activation of stimuli-responsive attitude [169], and acceleration
of chemical reaction [88, 89]. Multi-component assemblies, in particular, are at-
tracting significant attention because they offer the potential to create complex
molecular features.[170, 169] For instance, surfactant-based micelles composed by
different assembling units can be utilized to develop new supramolecular living
structures.[88, 89, 171]

While several experimental techniques, such as Stochastic Optical Reconstruc-
tion Microscopy (STORM) [73], or Hydrogen/deuterium exchange (HDX) mass
spectrometry [172], provide the ability to observe supramolecular assemblies with a
resolution of ∼20–50 nm, the investigation of the intrinsic molecular mobility within
them requires a submolecular resolution. All-atom (AA) and coarse-grained (CG)
molecular dynamics (MD) simulations combined with machine learning approaches
perfectly fit for this purpose, given their efficiency in the identification of molecular
motifs in supramolecular assemblies, as demonstrated in recent works.[86, 87, 104]
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In multi-component soft assemblies, the level of complexity is highly elevated
due to the involvement of various self-assembling units in intermolecular interactions
with other units and the solvent. Consequently, the prediction of the final structure
and rearrangement of the building blocks can be challenging. To address this
challenge, the combination of MD simulations and machine learning-based analysis
is essential in understanding the correlation between the structural motives and
chemical compounds. In this view, we propose a computational approach, based
on the Smooth Overlap of Atomic Position (SOAP) and a clustering technique,
to characterize the complexity of bi-component surfactant micelles, utilized as a
representative case study, from both structural and dynamical point of view.

Initially, a minimalistic physical model was investigated to prove the arrangement
of surfactants within micelles and validate the analysis protocol. Afterwords, the
chemical structures presented in references 88, 89 were taken into consideration.
The unsupervised analysis approach facilitated the recognition of several molecular
environments within the bi-component micelles and their correlation to specific
surfactant species. The procedure employed is intended to serve as a general method
to investigate the global and microscopic structural and dynamical characteristics of
complex multi-component self-assembled materials.

4.2 Computational approach

Minimalistic coarse-grained (mCG) model

The minimalistic CG (mCG) model describes two types of amphiphilic-like molecu-
lar building blocks, referred to as R and B, and represented with red and blue heads,
respectively, in Figure 4.1a. These monomers are made of one bead for the heads and
four beads for the tails (Figure 4.1a). Heads and tails are bonded through harmonic
potentials to form a linear structure. The non-bonded interactions are described
using Lennard-Jones (LJ) potentials. The LJ parameters have been adjusted in order
to obtain the hydrophobic tails pointing inside the shell of hydrophilic heads. All
parameters have been optimized by comparing them to an equivalent system simu-
lated in explicit solvent, described by the standard MARTINI force field parameters
(see Figure 4.1).[105] The utilization of the implicit solvent enhanced the reshuffling
surfactants within micelles.
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Fig. 4.1 Parametrization of the mCG model. a Radial distribution functions (g(r)) of the
head beads (pink) respect to the geometric center of the last tail beads (yellow), both in
implicit (top) and explicit (bottom) solvent model. b Radial distribution functions (g(r)) of
the heads distribution around the core of each micelle in case of completely mixed (left) and
compartmentalization (right) regime among red and blue surfactants. g(r)s are compared in
implicit (top) and explicit (bottom) solvent models. Figure reproduced from Ref. 159 with
permission of Creative Commons CC BY license.

The models in Figure 4.2a-c, top, have σRR = 0.7nm and a reduced σBB =

0.47nm. The εRB determining the depth of the LJ interaction potential for the inter-
species hetero-interaction energy between R and B heads was kept constant in all
mCG systems (εRB = 0.5kJmol−1), while the intra-species homo-interaction (i.e.,
εRR and εBB) was varied to promote mixing (εRR = εBB = 0.5kJmol−1), segregation
(εRR = εBB = 4kJmol−1), or an intermediate behavior (εRR = 4kJmol−1 and εBB =

0.5kJmol−1). It is worth noting that, the properties of tail beads were kept constant
for all the case studies and were identical in both R and B molecules. Specifically,
for each mCG tail bead σtail = 0.47nm, while εtail = 5kJmol−1, defining both the
intra- and inter-species interactions.

mCG-MD simulations

All CG-MD simulations of the minimalistic model were carried out using the Gro-
macs software [173] in NVT conditions at T = 300K. The dimensions of the
simulation box were set to 20× 20× 20nm3, and the simulations have been con-
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ducted in periodic boundary conditions. In all mCG micelle models, the number of
molecules is NR = 100 and NB = 100 surfactant molecules.

After a brief preliminary minimization, the MD simulations were performed
in implicit-solvent through Langevin dynamics, using the stochastic dynamics (sd)
integrator, where the parameter tau-t= 0.1ps accounts for both the friction of the
solvent and thermal fluctuations of the system. The time step was set at ∆t = 40fs,
and the non-bonded interaction potentials were truncated and shifted at a cutoff
distance of 1.2nm. For each simulation of self-assembly, at least 20µs of CG-MD
were performed, sampling the conformations every 1ns. Only the equilibrium part
of each trajectory, corresponding to the last 5µs, was considered for analysis, as all
simulations were initiated with randomly dispersed configurations. For the mixed
system (RR=BB=RB), we performed a longer simulation of 40µs, keeping always
the last 5µs for the analysis, as representative of the equilibrium of the system.

The CG-MD simulations of the control model in explicit solvent were carried
out in NPT conditions, utilizing the md integrator, with a time step of ∆t = 40fs.
The equilibrated part of the trajectories is 5µs long and the conformations were
sampled every 1ns. The temperature of the system was maintained constant through
the use of the velocity rescaling thermostat [174], with a time constant of τT = 1ps
and a coupling temperature of T = 300K. Pressure was kept constant using the
Parrinello-Rahman barostat [175], with a time constant of τp = 8ps and a reference
pressure of p = 1 bar.

All-atom (AA) and finer coarse-grained models (fCG)

All-atom models (AA) of the surfactants of Figure 4.3a were built in Avogadro [152]
and parametrized using the OPLS-AA force field [176]. Van der Waals interactions
were modeled using Lennard-Jones potential (LJ) with a cutoff of 1nm. Electrostatic
interactions at short range were calculated by summing the contributions of all
particles within a 1nm cutoff, while long-range interactions were evaluated using
Particle-Mesh Ewald (PME) summation in Fourier space [177]. To generate the CG
models, the AA surfactants were first solvated in a cubic box of 5nm filled with
explicit SPC/E water molecules [178]. Then, a production run was conducted for
10ns in NPT ensemble [174]. Using the AA-MD trajectories as a reference, the
bond, angle, and dihedral distributions of the CG beads were optimized using the
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Swarm-CG tool [85], following the four-to-one mapping typical of the MARTINI
force field [105]. The non-boded interactions among the beads were described using
the standard MARTINI 2.2 force-field [105] in explicit water.

AA and fCG-MD simulations

The AA-MD simulations of each surfactant were conducted through several steps,
including a total energy minimization and two equilibration steps to achieve T =

300K and p = 1 bar. The first equilibration was performed in NVT ensemble for
100,ps, using the v-rescale thermostat [179] with a time constant of τT = 0.1,ps.
The second equilibration was conducted in NPT ensemble for the same duration,
using the Parrinello-Rahman barostat [175] with a time constant of τp = 2,ps. After
the equilibration of the thermodynamic conditions, an additional 5ns of production
run was performed in the NPT ensemble, utilizing the Nose-Hoover thermostat [180]
(τT = 0.4ps) and the Parrinello-Rahman barostat [175] (τp = 8ps).

The self-assembly CG-MD simulations were conducted using the MARTINI
parametrization in explicit solvent [105]. No-polarizable-type P4-MARTINI beads
have been used to model the explicit solvent, without any ionic strength. The dimen-
sions of the simulation box were Lx = 20.0nm, Ly = 20.0nm, and Lz = 20.0nm in
the x-, y-, and z-directions, respectively. The number of water beads in the box was
ranging from 55000 to 60000 to keep a constant pressure while varying the surfactant
concentration. The simulation protocol consisted of an initial 50.0ns of equilibra-
tion run to thermalize the system at p = 1.0bar and T = 300K, using the v-rescale
thermostat [174] (τT = 2ps) and Berendsen barostat [181] (τp = 12ps). During
the subsequent 10µs of production run, the system was maintained at p = 1.0bar
and T = 300K, using the v-rescale thermostat and the Parrinello Rahman barostat
[175]. A time-step of 20fs was used to integrate Newton’s equations of motion, and
short-range interactions were truncated at 1.2nm. The simulations were conducted
using periodic boundary conditions in all the three dimensions. All simulations have
been performed using Gromacs [173].
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Unsupervised Machine Learning of molecular motifs

SOAP analysis

To investigate the internal molecular (surfactant) organization and dynamics within
micelles, an accurate representation of the molecular environment surrounding each
surfactant head is needed. SOAP vectors offer a high-dimensional data-driven
classification of molecular environments that has been recently proven useful to
classify molecular environments and classify assemblies based on those. In the case
of these micelles, SOAP vectors [121] were calculated for the center of mass (COM)
of each surfactant head in the equilibrated MD trajectories. At each frame of the CG-
MD simulation, SOAP describes the local distribution and structural organization
of surfactant head COMs within a specific cut-off radius. The equilibrated CG-MD
micelle trajectories (last 5µs and 3µs for the mCG and fCG models, respectively)
were extracted every 10ns and analyzed using the DScribe package [122].

Dimensionality Reduction and unsupervised PAMM clustering

The dimensionality reduction of the SOAP vectors was carried out through Principal
Component Analysis (PCA), by using TwoNN algorithm [182] and retain the first
5 Principal Components (PCs) in order to obtain at least 80% of total cumulative
variance of our dataset, as reported in Table 4.1. For visualization purpose, only
the first two PCA components of the 5-dimensional-dataset were plotted in Figures,
4.2a,b,c, 4.4a,c,e (left), 4.6a,e and 4.7a,e. The PCA algorithm was trained on
the complete SOAP dataset, which included the SOAP vectors of the compared
micelles.[87, 86]. Unsupervised clustering of the SOAP data was performed using the
Probabilistic Analysis of Molecular Motifs (PAMM) clustering algorithm.[125, 86]
The parameters used for computing the SOAP-based vectors, and for performing the
PCA and PAMM clustering analyses, are outlined in Table 4.1.

Starting from results of the clustering analysis, we established the inter-conversion
diagrams for each micelle by counting the total number of transitions between clus-
ters in each frame along the equilibrated CG-MD trajectories. The conditional
transition probabilities for each micelle were calculated by normalizing the results
over the total number of transitions originating from the considered cluster. The
population diagrams were obtained by averaging the distribution of clusters over
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the analyzed trajectories. Finally, we evaluated the suitability of this unsupervised
approach by determining the composition of each cluster by examining the specific
amphiphile species it contained.

Table 4.1 Parameters set in the unsupervised machine-learning analysis. Note that D is the
SOAP vector dimension computed for the relative cut-off. nPC and var are the number of
principal components and variance regarding the dimensionality reduction analysis (PCA),
respectively. Ngrid and fs are the number of grid points and a localization parameter of the
anisotropic multivariate Gaussian, respectively.

SOAP PCA PAMM
cut-off [Ȧ] D nPC var % Ngrid fs

mCG (fig 4.2) 30 324 5 88.5 2500 0.2
fCG (fig 4.4) 40 324 5 90.1 200 0.2
fCG (fig 4.6) 50 324 5 87.9 3800 0.2
fCG (fig 4.7) 50 324 5 87.9 3800 0.2

4.3 Results and discussion

Physical factors controlling bi-component micelles

The first part of this Chapter reports a case study of the minimalistic coarse-grained
(mCG) model of a bi-component self-assembled micelle. This model was designed
to examine the key factors that control the structure and dynamics of the micelle,
as well as to validate the use of machine learning in the analysis. The model,
depicted in Figure 4.1, represents the surfactant monomer as a five-beads amphiphile,
where four smaller beads constitute the hydrophobic tails and are kept constant
throughout all mCG studies, and one large bead simulate the hydrophilic head. The
non-covalent interactions between the surfactants are modeled using a Lennard Jones
(LJ) potential, whose parameters are present in the Computational approach section.
The LJ parameters are set to result in a self-assembled micelle structure, where the
solvophobic tails are directed inward and the solvophilic head are located on the
surface of the micelle (see Figure 4.1). As it is an implicit solvent model, all the
interactions between the different monomer and the solvent are accounted for in
the description of the non-bonbed interaction and are controlled by the stochastic
dynamics.
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The mCG model of 200 surfactants is diversified into two different species,
represented by 100 R and 100 B (colored red and blue in Figure 4.2a-c, top), to
obtain bi-component micelles. The diversity between the two species is modeled in
two different ways: (i) by modulating the homo and hetero head-head intermolecular
interactions, and (ii) by changing the size of the amphiphile heads. Both of these
approaches imitate the changes in the heads of two different surfactant species,
resulting in molecules differentiated in size and physical-chemical affinities. While
in real systems, changing surfactant species means altering both (i) and (ii), herein we
took advantage from the flexibility of the mCG model to independently investigate
the effects of interaction energy (i) and head size (ii), in order to reach a better
understanding of the key factors driving either uniform mixing of the two species or
their complete segregation into distinct domains within the micelle.

For example, we consider the impact of geometrical factors on the final assem-
bled structure by varying the dimensions of the head beads, which can have different
intermolecular interactions (Figure 4.2a-c, top). To this end, the radius of the B
amphiphile head was decreased in order to obtain the ratio σR/σB = 1.49, while
keeping unchanged the radius of the R head (Figure 4.2a-c). The structural and
dynamic properties of the assembled micelles are investigated through a machine
learning approach based on the SOAP descriptor. The SOAP vectors, which are
centered on the head bead, enable the detection of the local molecular environments
surrounding every surfactant. The SOAP spectrum of each surfactant then charac-
terizes the degree of order and disorder of the surfactant heads within the micelle
during the last 5 µs of the equilibrated mCG trajectories. The large SOAP dataset
obtained (100000 SOAP spectra: 200 SOAP spectra, one for each surfactant, at each
of the 500 sampled time steps) provides insights into the structural arrangement
and order of the surfactants heads, as well as the rearrangement of the monomers
within the micelle.[87, 86] The PAMM clustering method [125], applied on the PCA
dimensionality-reduced SOAP dataset, and reported in Figure 4.2, detects three main
clusters: the cyan cluster located on the bottom and topmost flat regions of micelles,
and the gray and fuchsia clusters distributed in the less dense corona surrounding
the micelles. The monitoring of the cluster during the MD simulations permits the
evaluation of the rearrangement probabilities of surfactants to transient from one
environment to another one, by estimating the transition rates. In particular, the
interconversion diagrams (Figure 4.2, bottom) demonstrate the stability of the cyan
cluster, with a probability range of ∼ 68−88% for a cyan surfactant to remain in
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its cluster. Meanwhile, the transition probability to the gray domain is unfavorable
(below ∼ 3%), and the transition to the fuchsia cluster ranges from ∼ 10− 29%.
Increased intermixing is observed between the gray and fuchsia clusters in all cases.

The results obtained by regulating the intermolecular interactions raises inter-
esting considerations regarding the correlation between the structural environments
identified through the data-driven analysis and the distribution of surfactant species
in those environments. In the case where LJ εRR = εBB = εRB,the distribution of
the species is not uniform in the cluster (see histograms in Figure 4.2a, bottom),
as, in particular, the cyan domains are populated up to ∼ 80% by the B surfactants.
Although a mixed configuration of the species was expected, with smaller head
groups of the B surfactants, surrounding larger ones (R surfactants), a kind of phase
separation occurred (see histograms in Figure 4.2a, bottom). This configuration is
likely due to the combination of two mechanisms: the B surfactants, with the smallest
sigma, tend to self-aggregate rather than surround the R heads, and the topological
properties of B tend to favor a double layer organization, leading to arrangements in
more flattened regions on the micelle surface. Alternatively, the example in Figure
4.2b shows a compartmentalization, where the cyan and gray clusters contain more
than 95% of either B or R surfactants, respectively, as confirmed by the transition
diagrams. The last example in Figure 4.2c, which is a more realistic model, high-
lights a closer correspondence between physical/structural micelle domains (SOAP
clusters) and surfactant species (B or R).

The system depicted in Figure 4.2b highlights the challenges present in the
prediction of the exact configuration and structural rearrangement of self-assembling
monomers by simply providing the topological and force field details. The internal
reorganization of the system is influenced by a combination of several aspects,
making the identification of a predominant behavior challenging. These difficulties
motivate the need for a more versatile, flexible, and transferable analysis approach
that can unveil the structural and dynamic nature of diverse aggregate without any
prior knowledge of their species. Such approach has the potential to be highly
beneficial in the analysis of chemically-relevant, high-resolution models of realistic
molecular systems where greater chemical detail is preserved.
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Fig. 4.2 Minimalistic mCG models and unsupervised ML analysis of complex micelles with
different surfactant head sizes and variable inter-surfactant interactions. (a) Partial R and B
amphiphile mixing is obtained for LJ εRR = εBB = εRB; (b) a net compartmentalization of R
and B is observed at εRR = εBB > εRB; (c) an intermediate mixing/segregation is captured for
εRR > εBB and εRR > εRB.(a-c) Top: Equilibrium mCG-MD snapshots of various micelles
made of R and B surfactants having LJ σR/σB = 1.49 (left); projection of the SOAP-dataset
PCA on the first two Principal Components (right). Three SOAP clusters are identified:
gray, magenta, and cyan. (a-c) Center: Equilibrum mCG-MD micelle snapshots showing the
SOAP clusters distribution, and their dynamic inter-conversion diagrams (percentage cluster
populations inside the coloured circles, normalized transition probabilities on the arrows
connecting the various clusters). (a-c) Bottom: SOAP-cluster compositions in terms of R
and B amphiphiles. Figure reproduced from Ref. 159 with permission of Creative Commons
CC BY license.

Into the dynamics of realistic bi-component micelles

We considered a realistic example, the bi-component micelles reported in Ref. 88,
where n-stearoyl L-histidine (H) self-assemble with either p-nitrophenyl ester of
n-stearoyl L-phenylalanine (F-NP) and p-nitrophenyl ester of n-stearoyl L-histidine
(H-NP) amphiphiles. In this Chapter, the first system will be referred as SYS A
and the second system as SYS B, as shown in Figure 4.5a,b. Furthermore, based
on experimental evidences, it is known that the self-assembly of F-NP and H leads
to various complex configurations, which enable and enhance catalytic reaction
between different surfactants at specific concentrations.[88, 89]
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We characterized the different monomers using a finer coarse-grained (fCG)
description, based on the MARTINI force field [105, 111]. The models are reported
in Figure 4.3a, where red and blue colors are selected to distinguish the head beads
belonging to diverse surfactant species within a single micelle. The self-assembled
configuration was obtained starting with a dispersed solution (Figure 4.3b-d) of
the equal amounts of H and F-NP monomers at different concentrations, 200, 310,
or 400 surfactants in total, in explicit water. A fCG-MD simulation of 10µs was
performed to reach an equilibrated system, with the last 3µs considered for the
analysis. Some representative snapshots are shown in Figure 4.3c,d, including the
final configuration for the case with 310 and 400 surfactants.

The snapshots of the final configurations reveal that the rearrangements of the
amphiphiles depends strongly on the nature and orientation of the smaller micelles,
resulting in a different self-assembled configurations. Since these model-systems
represent a zoom close to the micelle, the concentration is higher than the Critical
Micelle Concentration (CMC) [88], making it unlikely to observe surfactants in
the monomeric form. The SOAP and PAMM analyses conducted herein (see 4.4)
followed the same protocol presented for the minimalistic models in Figure 4.2.

The SOAP and PAMM analysis resulted in the detection of three different clusters,
which are represented by the colors yellow, magenta and light blue in Figure 4.4.
The projection of the first two principal components, shown in the interconnection
diagrams of Figure 4.4a,c,e, reveal differences in the signal caused by the varying
dimensions of the micelles. The yellow cluster represents surfactants located in the
corona region, which contains the highest percentage of surfactants, ranging from
48% to 79%. At the same time, the light blue cluster identifies an internal domain
sparsely populated (2% and 13%), and is present only in micelles with 310 and 400
monomer units. It is also never exposed to the solvent. The surfactants in the light
blue cluster are encapsulated within the micelle in a double-layer configuration. The
magenta cluster is the connection between the other two clusters, and represent the
flatter top and bottom of the compressed micelles (Figures 4.4a-d), especially in the
case with 310 surfactants. The inter-conversion diagrams shown at the bottom of
Figure 4.4a,c,e, demonstrate that all the identified clusters are dynamically persistent,
with probabilities higher than 86% (except for the magenta cluster in Figure 4.4a,
b). The transition between the different clusters is infrequent, leading to limited
mobility of the monomers, which maintain their surrounding in the configuration
within a micelle. Although the dynamics in these fCG micelles is slower than in
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Fig. 4.3 Finer chemically-relevant bi-component micelle models. (a) Chemical structures
(AA) and fine coarse-grained (fCG) models of SYS A surfactants: p-nitrophenyl ester of
n-stearoyl L-phenylalanine, F-NP and n-stearoyl L-histidine, H. (b) Increased size micelles
made of 200, 310, or 400 surfactants, respectively, have been obtained via self-assembly of an
equal number of red and blue surfactants during fCG-MD simulations. (c-d) Representative
snapshots of 10 µs self-assembly fCG-MD simulations to form two example of SYS A
micelles containing 310 (c) and 400 (d) surfactants in total. Figure reproduced from Ref.
159 with permission of Creative Commons CC BY license.

the minimalistic one, they still exhibit internal dynamic complexity. The histograms
in Figures 4.4b,d,f, which report the population of surfactants in different clusters,
indicate that the yellow and magenta clusters are predominantly composed of H
(red) and F-NP (blue) surfactants, respectively, with limited infiltration of secondary
species. On the other hand, the light blue cluster is entirely made up of F-NP
amphiphiles, indicating a structural reconfiguration of the micelles in which the light
blue surfactants are encapsulated within the aggregate at a certain concentration.
Both the histograms and the inter-conversion diagrams highlight that the exchange
of F-NP (blue) surfactants from the light-blue to the yellow clusters is possible
only through an intermediate transition involving the magenta domains, while the
transition in the other direction is highly unlikely.

Subsequently, we conducted an investigation into an additional system, referred
to as SYS B, with a reduced diversity between the two monomers, as the chemical
structure of the hydrophilic heads is more similar than in SYS A (see Figure 4.5a,
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Fig. 4.4 SOAP dataset clustering of SYS A micelles containing 200 (a,b), 310 (c,d), or
400 (e,f) surfactants in total. (a,c,e) Top: PCA projections of the SOAP datasets on the
first two Principal Components with the side view representation of micelles according
to both the cluster identification and the molecular species details at fCG-MD time =
10 µs (a,c) and 9.3 µs (e). Bottom: Cluster inter-conversion diagrams, reporting (i) the
surfactant populations per-cluster (percentages inside the colored circles), (ii) the normalized
probabilities for surfactants to remain within a given cluster (arrows starting/ending from/to
the same colored circle), and (iii) the transition probabilities towards a different cluster
(arrows connecting diverse colored circles) in the time-interval of the analysis (dt = 10 ns).
(b,d,f) Top: Equilibrium fCG-MD snapshots of micelles at 10 µs showing the decomposition
in SOAP-detected clusters. Bottom left: bar plot of the percentage composition per-cluster
in terms of red and blues amphiphiles. Bottom right: Equilibrium fCG-MD snapshots of
micelles at 10 µs showing the molecular species distinction. Figure reproduced from Ref.
159 with permission of Creative Commons CC BY license.

b). This system exhibits a more pronounced reshuffling of surfactants compared
to SYS A. As previously mentioned, the bi-component micelles were composed
of 50% H-NP plus 50% H (see Figure 4.5b) and were simulated with the same
methodology applied for SYS A. The differences between the two systems, i.e.,
the variations in the compartmentalization of the monomer units, are made evident
by the calculation of the radial distribution functions (g(r)) and the coordination
number (Figure 4.5a, b). The radial distribution functions were calculated between
the hydrophilic heads of H monomer and the center of mass of hydrophobic tails,
which represent the micelle core. The radial distribution function reveals a high
probability of encountering red (H) surfactant heads in SYS A located approximately
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3.5 nm from the micelle core, indicating a more localized spatial distribution in the
corona region of the micelles (with diameter ranges from 7 and 8 nm). Conversely, in
SYS B, the radial distribution functions display a more mixed rearrangement of red
(H) surfactant heads, which are detected both in the external corona region (roughly
at r = 3.5 nm) and in the top and bottom-most domains (1nm < r < 2nm) of flatten
micelles. The evaluation of the number of contacts (Figure 4.5a,b) is higher for
SYS B micelles, confirming the mixed configuration within the two surfactants. The
results obtained are then validated through the machine learning analysis, comparing
the results of SYS A and SYS B micelles composed of 200 (Figure 4.6) and 310
(Figure 4.7) surfactants.
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Fig. 4.5 Finer chemically-relevant bi-component micelle models of both SYS A and SYS B
systems. (a-b) Top: Chemical structures (AA) and fine coarse-grained (CG) models of p-
nitrophenyl ester of n-stearoyl L-phenylalanine, F-NP (a), n-stearoyl L-histidine, H(a,b), and
p-nitrophenyl ester of n-stearoyl L-histidine H-NP (b). Although the same color code, F-NP
and H-NP have distinct non-covalent parameters for those beads mapping chemically diverse
rings highlighted in green and purple circle. (a-b) Center: Radial distribution function, g(r),
between the hydrophilic heads of H monomer and the center of mass of hydrophobic tails
representing the micelle core. Pink, blue, and cyan g(r) profiles correspond to 200, 310, 400
surfactant micelles, respectively. (a-b) Bottom: Percentage of FNP - H and HNP - H couple
contacts in SYS A (a) and SYS B (b), respectively. Figure reproduced from Ref. 159 with
permission of Creative Commons CC BY license.

The SOAP and PAMM analysis, as presented in Figures 4.6b,f and 4.7b,f, con-
ducted in both SYS A and SYS B systems, identifies three main clusters: green, gray,
and pink, ordered from the most populated to the least populated. Furthermore, the



4.3 Results and discussion 83

population of the pink cluster increases with an increase in the number of surfactants
composing the micelles, ranging from ∼ 1−2% to ∼ 11−15% (as shown in Figures
4.6 and 4.7). Both systems exhibit the absence of transitions between the pink and
the green clusters, which confirms the presence of distinct environments within the
micelles. The structure of the micelles are composed of a pink cluster in the topmost
region, surrounded by a gray region, and an external green corona (side and top
views of the micelles of Figure 4.7c,g).
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Fig. 4.6 Effect of chemical diversity on the structural and dynamical features of bi-component
micelles. Data obtained from equilibrated fCG-MD simulations of 200-amphiphile micelles
in case of SYS A (left) and SYS B (right) systems. (a,e): PCA projections of the SOAP
datasets on the first two Principal Components. (b,f): cluster inter-conversion diagrams,
reporting (i) the surfactant populations per-cluster (percentages inside the colored circles),
(ii) the normalized probabilities for surfactants to remain within a given cluster (arrows
starting/ending from/to the same colored circle) or (iii) the transition probabilities towards
a different cluster (arrows connecting diverse colored circles) in the time-interval of the
analysis (dt = 10 ns). (c,g): Equilibrium fCG-MD snapshots showing the SOAP-detected
clusters (left) and the distribution of red and blue surfactant heads (right) in the micelles. (d,h):
Population histograms showing the surfactant composition in each detected SOAP-cluster in
terms of red and blues amphiphiles. Figure reproduced from Ref. 159 with permission of
Creative Commons CC BY license.

However, the results show some differences between the two systems. Generally,
the probability of a surfactant staying within a cluster in SYS B is lower compared
to that in SYS A. Alternatively, the transitions between different clusters are higher
in SYS B as compared to SYS A. This is due to higher reshuffling capability of the
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two species present in SYS B. In addition, from the population histograms in Figures
4.6d,h and 4.7d,h, it is evident that the SOAP clusters in SYS A are mostly composed
by only one of the surfactant species. The green cluster is made up of ∼ 80−95%
red surfactants, while the gray and the pink environments contain almost exclusively
blue surfactants. In contrast, the clusters in SYS B are more heterogeneous, as the
green cluster in 200 mol-SYS B system is composed of ∼ 60% and ∼ 40% of red
and blue surfactants, while the gray environment in 310 mol-SYS B contains ∼ 70%
blue surfactants and ∼ 30% red surfactants. It is worth mentioning that the clustering
analysis is dependent on the dataset in which the classification is carried out. As a
result, minor variations in the clustering may arise when comparing the molecular
motives of the same micelle that are included in different starting datasets (as seen
in Figures 4.4, 4.6, and 4.7). In other words, the identification of internal structural
domains is not absolute, but always relative to a collection of assemblies (dataset).

In conclusion, the machine learning approach presented in this Chapter has
demonstrated the correlation between physically and structurally different clusters
and their composition in terms of surfactant species even in this finer CG models.
By combining the results from Figures 4.4-4.6-4.7 with those obtained for the
minimalistic mCG models in Figure 4.2, the critical factors that control the structural
and dynamic complexity of amphiphile micelles can be identified. The topological
differences between the surfactant molecules and intermolecular interaction are
found to be key drivers of surfactant rearrangement in the micelle, resulting either
compartmentalization or complete mixing. Furthermore, the SOAP-based machine
learning analysis provides quantitative insights by reconstructing collective structural
motives and uncovering dominant dynamic pathways in terms of transient and
residence probabilities among different environments in bi-component micelles.
Moreover, the realistic molecular systems (Figures 4.4-4.6-4.7) provide evidence of
the impact of even minor molecular variations among the two species. This focus
the attention on both the structural and energetic properties of the self-assembling
units in influencing the obtainment of an intermixed or segregated final structure.
In this regard, the machine learning approach proposed is able to recognize such
perturbations, even when small differences among the amphiphiles result in diverse
molecular behaviors in the assembly.
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Fig. 4.7 Effect of chemical diversity on the structural and dynamical features of bi-component
micelles. Data obtained from equilibrated fCG-MD simulations of 310-amphiphile micelles
in case of SYS A (left) and SYS B (right) systems. (a,e): PCA projections of the SOAP
datasets on the first two Principal Components. (b,f): cluster inter-conversion diagrams,
reporting (i) the surfactant populations per-cluster (percentages inside the colored circles),
(ii) the normalized probabilities for surfactants to remain within a given cluster (arrows
starting/ending from/to the same colored circle) or (iii) the transition probabilities towards
a different cluster (arrows connecting diverse colored circles) in the time-interval of the
analysis (dt = 10 ns). (c,g): Equilibrium fCG-MD snapshots showing the SOAP-detected
clusters (left) and the distribution of red and blue surfactant heads (right) in the micelles. (d,h):
Population histograms showing the surfactant composition in each detected SOAP-cluster in
terms of red and blues amphiphiles. Figure reproduced from Ref. 159 with permission of
Creative Commons CC BY license.

4.4 Conclusion

The comprehension of the structural and dynamic complexity of multi-component
self-assembling systems is a complicate challenge. In this Chapter we presented
an unsupervised machine learning approach to examine the structural and dynamic
behavior of bi-component micelle models. By combining SOAP descriptors and
unsupervised clustering (PAMM) with finer chemically-relevant and minimalistic
physical models, we observe the principal factors that regulate the rearrangement of
surfactants in dynamic self-assembled micelles.

The unsupervised machine learning approach used herein has proved to allow
for the reconstruction of the structural and dynamic features of multi-component
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micelles. The analysis detects assembled domains with conformational differences,
such as flat and compact vs. toroidal less-dense domains in slightly compressed
micelles. This method enables the identification of dominant structural environments
on micelles, the estimation of their stability, and the resolution of the dynamic
exchange of the self-assembling monomers among the identified clusters. As a result,
a comprehensive picture of the micelles is obtained, including their structural density,
and pathways for exchange and reshuffling of self-assembling molecules within
them.

We also evaluated the sensitivity of the unsupervised analysis proposed herein
in correlating structural motives with different molecular species based solely their
arrangement and movement within the self-assembled micelle. From our results,
the formation of structural domains (clusters) in a micelle, which relies on different
physical features, does not necessarily depend on the segregation of the molecular
species. Instead, these may be simply a result of how the assembling units aggregate
in certain conditions. In structurally non-uniform micelles, surfactants can intermix
almost completely in all regions of the micelle as long as they are similar enough
to cross-interact. On the contrary, different amphiphile species tend to separate in
different micelle environments if the co-assembled species differ in topology and
intermolecular interactions. The comparison between fCG and mCG evidences
the role played by the geometrical features and details of the molecular building
blocks, as the molecular structure encodes different shape recognitions and different
intermolecular interactions in the building blocks.

In conclusion, the unsupervised data-driven analysis approach presented in this
Chapter represents a high-potential method for reconstructing and understanding the
structural and dynamical complexity of soft self-assembled micelles, as well as for
investigating the key factors that can influence their complex behavior.



Chapter 5

Emergent supramolecular conductive
behaviors in colloidal superlattices

The work contained in this Chapter has been published in the following paper:
"C. Lionello, C. Perego, A. Gardin, R. Klajn and G. M. Pavan. Supramolecular
semiconductivity through emerging ionic gates in ion-nanoparticle superlattices.
ACS Nano 2023, 17, 275-287" [183], and has been adapted with permission of
Creative Commons CC BY license.

Abstract

The self-assembly of nanoparticles driven by small molecules or ions may produce
colloidal superlattices with properties evocative of those of metals or semiconduc-
tors. However, how much the properties of such supramolecular crystals actually
resemble those of atomic materials often remains unclear. Herein, coarse-grained
molecular simulations demonstrate how a behavior evocative of that of electronic
semiconductors may arise even on a higher scale in a colloidal superlattice. In
particular, we focus on gold nanoparticles functionalized with positively charged
groups that self-assemble into FCC crystals through the mediation of citrate coun-
terions. In silico ohmic experiments show to what extent the dynamically diverse
behavior of the counterions in different superlattice domains permits the opening of
conductive ionic gates above certain levels of applied electric fields. The observed
binary conductive/non-conductive behavior is reminiscent of that of conventional
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semiconductors, while, at a supramolecular level, crossing the “band gap” requires a
sufficient electrostatic stimulus to break the electrostatic interactions and make ions
diffuse throughout the superlattice’s cavities.

5.1 Introduction

Colloidal superlattices, which are based on the assembly of functionalized nanopar-
ticles (NPs) [184–195], have been receiving considerable attention due to the ease
of controlling the NPs’ self-assembly into different supramolecular crystalline or
quasi-crystalline architectures [196–201, 184, 202–206]. There have been vari-
ous methods proposed to control the self-assembling process, such as the rational
design of NP shape and surface chemistry [207–212], manipulation of the self-
assembling process [213, 193, 100], or utilization of molecular binding units. The
use of molecular binding units includes, for instance, NPs functionalized with DNA
strands [207, 214–219, 91], and the utilization of electrostatic interactions. In par-
ticular, the employment of electrostatic interactions has been of interest, as they
permit the realization of binary lattices [208, 220–222], homo-NP superlattices
[100, 223–225], or supramolecular fibers [226]. The final properties of a colloidal
superlattice are not only dependent on the interactions within the NPs and their
organization [227, 228, 225, 229], but also on the presence and the behavior of the
mediating species [97, 226, 230, 98, 231, 232, 99, 100]. Supramolecular materials
have garnered significant interest due to their plasmonic, magnetic, and electrical
properties [233–236], but especially because they are considered as larger-scales
analogs of atomic crystals, with NPs serving as superatoms [237–242]. Despite
the presence of various methods for controlling the formation of the supercrys-
tals [221, 243, 244, 100, 225], the factors underlying the emergence of collective
properties remain an unresolved challenge.

Recent studies have shown the utilization of DNA interactions to create various
superstructures that mimic the conformations of metallic lattices.[90–96] The NPs
composing the crystal structure are referred to as atom equivalents, and the smaller
species responsible for the assembled structure are referred to as superelectron equiv-
alents. The movement of these superelectrons within the synthetic lattice, similar
to the movement of electrons in metals, has been demonstrated through a combina-
tion of experimental evidences and molecular simulations.[90–96, 245] Similarly,
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aggregates of gold NPs functionalized with positively charged (11-mercaptoundecyl)-
N,N,N-trimethylammonium (TMA) groups, in the presence of Cl− ions were found
to have semiconductive properties, which could be useful for the realization of new
conductive materials.[97–99] Another study looked at the self-assembly of TMA-
NPs, which represent the atom analogs (AAs) driven by the presence of various types
of anions, such as citrate (CIT) and ATP. This study was carried out both from the
static and dynamic perspective, allowing for an exploration of the motility of the CIT
ions, which were considered as electron analogs (EAs).[100]

In this context, a number of hierarchical scale analogies have been drawn be-
tween supramolecular lattices and atomic lattices due to the observed motion of EAs
in AA superlattices, particularly in the realm of semiconductors where a notable
charge transport of EAs components has been observed through the lattice defects in
superionic crystals [246–250]. However, the precise characteristics of metals, semi-
conductors, and superionic conductors are difficult to be observed in supramolecular
crystals. The study presented in this Chapter aims to use coarse-grained (CG) molec-
ular simulations to examine the underlying features of EA motion and conductivity.
The supramolecular lattice studied is the FCC lattice composed of TMA-NPs and
CIT ions, as discussed in Ref.[100] In particular, an in silico approach is developed to
investigate the lattice’s ohmic properties under the application of an external electric
field. Through this method, the differences in ion-driven conduction compared to the
classical metallic conductivity are highlighted, while at the same time, similarities
with semiconductive materials are revealed. The use of CG models with a resolution
around < 5 Ȧ enables the investigation of the mechanism behind ionic conduction,
providing further insights towards controlling the emergent properties of colloidal
supercrystals.

5.2 Computational approach

Coarse-grained molecular dynamics simulation protocol

The coarse-grained (CG) models of TMA-Au NPs and citrate ions, both in explicit
and in implicit solvent, were developed from the all-atom (AA) simulations of
TMA-Au NP subsections in citrate-rich water solvent, as outlined in Ref. 100.
The AA model was parametrized with Amber force field [153] and minimized in
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explicit solvent. Subsequently, starting from the AA trajectories, the CG model
was parametrized with the MARTINI force field [105] in explicit solvent. The
study presented herein employs the CG model in implicit solvent, built upon the
dry MARTINI force field description.[111] The use of these models permits the
investigation of the submolecular dynamics of complex supramolecular aggregates,
as well as to reach the relevant sizes and timescales that characterize their collective,
macroscopic behavior.[76, 77, 100] It should be noted, however, that the information
obtained from these models is to be considered solely qualitative, even though the
results can still be used to compare the system’s dynamics under various external
conditions and to provide indicative trends of the resulting dynamic behavior.

Every considered system was made of four TMA-Au NPs and 1072 citrate3−

anions. The single TMA-Au NP was defined by a gold core of diameter ∼ 7.4 nm,
composed of 12527 beads that interact via Lennard-Jones interactions and organized
in an FCC lattices. The NP was coated with a shell of 804 positively (+1) charged
TMA ligands bound to the NP surface via harmonic potentials of length 0.395 nm and
force constant k = 1.0×104 kJmol−1nm−2, modeled, according to the MARTINI
CG scheme, with 13 beads each (Figure 5.1a). The citrate anions, added to neutralize
the total charge of the systems, are modeled as three CG beads each carrying one
negative charge, resulting in a total of −3e charge (Figure 5.1a). In accordance with
the experimental observation of Ref. 100, the NPs were arranged in the simulation
box to form an FCC lattice (see Figure 5.1b). The NPs were positioned at the same
distance observed in the self-assembling process reported in Ref. 100. The resulting
CG-MD simulation cell had an initial size of Lx = Ly = Lz = 14.35 nm. By applying
periodic boundary conditions (PBC) in all directions, an infinite superlattice was
modeled, although some residual finite size effects may not be entirely excluded due
to the limited size of the cell (Figure 5.3).

All CG molecular dynamics (CG-MD) simulations were performed using the
Gromacs software [151], integrating the dynamics of the CG particles via Langevin
equations of motion. Initially, a 20 ns NVT simulation was run to thermalize
the system at either T = 300 K or T = 333 K. During this equilibration phase,
a stochastic temperature coupling time of τT = 2 ps was used. Subsequently, a
100 ns of NPT simulation was conducted to allow the crystal to equilibrate at a
constant pressure of p = 2×10−6 bar via the Berendsen barostat method [181] with
a pressure coupling time of τp = 10 ps and temperature coupling time of τT = 2
ps. Finally, the same NPT scheme was employed to perform 20 µs-long production
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Fig. 5.1 Coarse-grained molecular model of TMA-Au NPs and citrate ions. a Chemical
formulas of the positively charged TMA ligands, negatively charged CIT ions, and CG
models of one CIT (red) and one TMA-NP (d = 7.4 nm, yellow) decorated with 804 charged
TMA ligands (cyan; terminal charges in blue). b CG model of the unitary FCC cell in the
superlattice, with Au-NPs colored yellow, TMA ligands colored blue, and citrate ions colored
red. The direction of the application of the electric field E is also evidenced. Figure adapted
from Ref. 183 with permission of Creative Commons CC BY license.

runs at either T = 300 K or T = 333 K and p = 2×10−6 bar. A 20-fs integration
time-step, which is standard in MARTINI models [105], was used. In the CG-MD
simulations with the external field, a constant, uniform electrostatic field along the
x-direction was applied with different values of the amplitude E, ranging from 0.005
V nm−1 to 0.11 V nm−1. The stability of the FCC lattice was not compromised
up to E = 0.11 V nm−1, but given the limited size of the system, it cannot be
excluded that other crystal structures are more favorable than the FCC structure at
high values of E. Sampling these out-of-equilibrium crystal rearrangements with
our model is prohibitive. Nonetheless, the assumption that the crystal remains in the
FCC structure, even under intense electrostatic fields, should not affect the general
purpose of our analyses, which is to observe a supramolecular semiconductive-like
behavior.

Study of citrates’ dynamics

In order to characterize in detail the structure and dynamics of the citrates within the
lattice model, several analyses were carried out. Firstly, the average displacement of
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the anions in the x-direction was determined over the simulation time. The positions
of all citrates in each simulated systems (with varying T and E) were averaged at
each time-step and any discontinuities in the ion path due to PBC were removed to
accurately determine their total movement. Based on the average displacement of
citrates, the ionic current density was calculated as j = Nqvd , where N represents
the number density of the citrates, their charge being q =−3e, and vd is the average
drift velocity. From the ionic current density, the resistivity of the material can be
estimated as ρ = |E/ j|.

To gain further insight into the dynamics of the citrates, the SOAP analysis was
utilized to differentiate between different molecular states populated by the anionic
species.[251, 87] We computed the SOAP descriptors for each CIT ion by examining
the relative spatial displacement of the CIT ions within a specified SOAP cutoff
(rcut). At every sampled MD step we computed the SOAP spectra of each center
of mass of all citrate ions. The SOAP spectra served as a fingerprint descriptor
of the level of order/disorder in the displacement of the surrounding CITs’ centers
of mass within the cutoff. We performed this SOAP analysis using the Python
package DScribe[122], using rcut = 65 Å (rcut = 65 Å was found to be the best
compromise between computational cost and the level of detail/information), and
nmax,lmax = 8.

We computed the SOAP vectors of every citrate ion, for all the collected CG-
MD trajectories, with a sampling stride of dt = 50 ns, generating a comprehensive
dataset of SOAP information associated to the citrates at different temperature
(T = 300 and 333 K) and electrostatic field (E ranging from 0.005 V nm−1 to 0.11
V nm−1) conditions. To rationalize this high-dimensional dataset, we applied a
clustering algorithm to identify the most probable molecular states of the anions. The
dimensionality of the data was reduced using Principal Component Analysis (PCA),
performed using the Python package Scikit-Learn [252], and retaining only the first
three principal components. The resulting three-dimensional descriptors were then
processed using the Probabilistic Analysis of Molecular Motif (PAMM) unsupervised
clustering scheme.[125] This allowed to classify all the sampled configurations of
the citrates in the crystal into three different states: citrates at the interface between
the two NPs (blue in all figures), those in the octahedral cavities (red), and those in
the tetrahedral cavities (cyan). The molecular motif classification allowed to quantify
the population of the three different states, as well as the probability of transition
between them (along the collected CG-MD trajectories), providing information on
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the structure and dynamics of the citrates under different temperature and electrostatic
drive conditions.

5.3 Results and discussion

This Chapter focuses on the investigation of a colloidal superlattice composed of
positively charged TMA-NPs self-assembled into an FCC lattice in presence of
negatively charged trivalent CIT ions (Figure 5.2a).[100] Studies of all-atom and
implicit-solvent CG models have shown that CIT ions play a crucial role in increasing
the stability of the self-assembly of two TMA-NPs by overcoming their electrostatic
repulsion.[100] Once the interactions within the TMA-NPs have been stabilized,
the CIT ions were found to retain their dynamical properties (Figure 5.2c). A
machine-learning approach was used to classify the CIT ions into three different
environments based on the level of order/disorder in the environment surrounding
them. The analysis - via unsupervised clustering and dimensionality reduction -
distinguishes three main CIT environments, differing each other in their internal
order and dinamicity. In Figure 5.2c, CIT ions at the interface between the two NPs
are colored in blue, CIT ions interacting only with a single NP are colored in red.
The analysis also reveals an intermediate layer (colored in green). It was observed
that the ions at the interface are more static than those on the surface of a single NP,
but the ionic environments are continuously exchanging the CIT ions, maintaining
an equilibrium condition as seen in the interconnection plot of Figure 5.2c (right).
The dynamics of this system and its hierarchy, with static TMA-NPs surrounded by
dynamic small negatively-charged CIT ions, make it ideal for the study of ordered
supramolecular lattices and their potential conducive properties.

We proposed an ad hoc ohmic in silico experiment developed to examine the
correlation between the mobility of the EAs (i.e. CITs) in the superlattice and the
conductive/non-conductive behavior of such supramolecolar lattices. Our experiment
uses a CG model in implicit solvent to simulate an FCC lattice composed of four
positively charged TMA-NPs replicated in three dimension through PBC to create an
infinite lattice. 1072 −3e CIT ions are added into the lattice to neutralize the charge
of the NPs. A homogeneous directional electric E is applied along the x-direction to
promote and track the diffusion of the CIT ions within the lattice (Figure 5.3: left and
center). The recirculation of the ions in the system is facilitated by the PBC, meaning
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Fig. 5.2 NP-citrate colloidal superlattices and in silico ohmic experiments of ionic con-
ductivity. a Trivalent citrate ions (CIT) driving the self-assembly of TMA-Au NPs into
crystalline FCC superlattices in an aqueous solution (for experimental details, see Ref.100)
Left: schematic representation of an Au NP. Center: a representative SEM image of a
colloidal crystal coassembled from 7.4 nm TMA-Au NPs and citrate anions. Right: Au NPs
colored as golden spheres, citrates colored in red. b Structural formulas of the positively
charged TMA ligands and of the negatively charged CIT ions, and CG models of one CIT
(red) and one TMA-NP (d = 7.4 nm, yellow) decorated with 804 charged TMA ligands
(cyan; terminal charges in blue). c CG-MD simulation showing CIT ions mediating the
interaction between two TMA-NPs (TMA ligands not shown for clarity). Unsupervised
clustering of SOAP data extracted from the CG-MD simulation detects three different/distinct
CIT environments.[100] CIT ions at the NP-NP interface are colored blue, CIT ions bound
to one NP only - in red. The two CIT domains communicate by exchanging CITs via an
intermediate green domain. Inset: detail of the CIT ions close to the NP-NP interface,
colored based on their SOAP-detected cluster/state. Right: transition plot showing the
dynamic interconnections between the SOAP environments. The numbers on the arrows
are normalized transition probabilities (probability that one CIT in a given environment
undergoes a transition into another in the time-interval used in the analysis).[100] Figure
adapted from Ref. 183 with permission of Creative Commons CC BY license.
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that once a CIT ion exits from one side of the simulation box, it is reinserted on the
opposite side, mimicking an infinite source of CIT ions. Consequently, to investigate
the effects of external perturbations on the mobility of ions and the conductive
properties of the assembly, 20 µs production runs are conducted under various
electric fields ranging from E = 0 (referred to as unperturbed case) to 0.11Vnm−1

at two different temperatures (T = 300 K and T = 333 K).
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Fig. 5.3 Schematic representation of the MD approach. Left: scheme of the in silico ohmic
experiments to study the ionic conductivity of the superlattices. Center: CG model of the
bulk of an FCC TMA-NP superlattice (unitary FCC cell containing four TMA-NPs, and its
replication in space): Au-NP in yellow, TMA ligands in blue, CIT in red. A uniform electric
field (E) oriented along x direction is applied during the MD simulations, and the mobility
of the CIT ions is systematically monitored for different E intensities. Example: motion
of CITs during the MD simulation at E = 0.09 V nm−1. The CIT ions are initially colored
based on their x position (left, t = 0 µs): reshuffling of colors after t = 20 µs of MD (right)
demonstrates reshuffling and diffusion of the CIT ions. Figure adapted from Ref. 183 with
permission of Creative Commons CC BY license.

Once obtained the trajectories, we analyze the dynamics of CIT ions under
different E intensities. For instance, as depict in Figure 5.3 (right), CIT ions are
color-coded based on their x position at the beginning and after 20 µs of CG-MD
under E = 0.09 V nm−1. The final snapshot shows a global rearrangement of the
anions along the simulation. Similarly, in Figure 5.4a, where the final snapshots
are reported for T = 300 K and E = 0, E = 0.01 V nm−1, and E = 0.11 V nm−1,
the CIT ions are colored based on their x-position. As all simulations start from
the same configuration, variations in the coloring pattern in the final configurations
reflect the variations in anions’ diffusion along the E direction. By examining the
final patterns, it is evident that weaker electric fields, such as E = 0 and E = 0.01
V nm−1, have limited effects on the movements of CIT ions, while they increase
with higher E intensities, such as E = 0.09 V nm−1 and 0.11 V nm−1. A similar
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behavior is observed at T = 333 K, where the thermal agitations also increase the
motility of the ions (see Figure 5.4b).

a

MD

E = 0.11 V nm-1E = 0 V nm-1 E = 0.01 V nm-1
0 μs

20 μs

MD

E = 0.11 V nm-1E = 0 V nm-1 E = 0.01 V nm-1
0 μs

20 μs

b

Fig. 5.4 Ionic motion in the colloidal crystal. Snapshots at the beginning (left) and after
20 µs of MD simulation (right) at a T = 300 K and b T = 333 K for different values of
the electrostatic field, E (the initial configuration is identical in all simulations). CIT ions
are colored according to their initial x position at the beginning of the MD (t = 0) in the
simulation boxes, TMA groups are not shown for clarity. CIT diffusion along the x axis is
proven by the red-white-blue color reshuffling at the end of the simulations. Figure adapted
from Ref. 183 with permission of Creative Commons CC BY license.

To gain a more precise understanding of the diffusivity of the CIT ions, we
calculated their average displacement along the x-direction during the simulations, as
shown in Figure 5.5. It is important to note that all systems reach the equilibrium, as
the x-displacement display a constant rate during the MD. After an initial transition
phase, it is evident that CIT diffusion is enhanced by both increasing the electric field
E intensity and temperature T . However, it is worth noting that the simulations utilize
an approximated CG model in implicit solvent, meaning that eventual polarization
effects in the solvent as a response of the electric field are not explicitly considered.
As a result, the obtained results should be considered only qualitatively. However,
despite such approximations, the results are neat.

From the ⟨x⟩-displacement, we calculated the ionic current as j = Nqvd , where
N is the number density of the CIT ions, q =−3e is the CIT charge, and vd is the
average drift velocity (in x direction) measured in the simulations. The absolute
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Fig. 5.5 Ionic conductivity of the colloidal crystal. a Average displacement of the CIT ions
along x direction (direction of the applied E) at T = 300 K as a function of MD simulation
time. Data are reported for different values of applied E (see color legend). b Same as a at
T = 333 K. From the slope of the colored lines, it is possible to estimate the average current
density j in all simulated cases. Figure adapted from Ref. 183 with permission of Creative
Commons CC BY license.

values are figured in Figure 5.6a as a function of the applied electric field E. The
calculation of the density current allows us to distinguish two regimes: the non-
conducive regime, in which the ionic current is almost negligible (for E lower than
∼ 0.05−0.07 V nm−1 at T = 333−300 K, respectively), and the conductive regime,
where the increase in ionic current is almost proportional to the increase in E at
higher electric fields. Consequently, from the density current and the intensities of
E, we estimate the resistivity of the superionic lattice through the Ohm’s law as
ρ = |E/ j| (see Figure 5.6b), which decreased with increasing E. The combination
of the two results from the calculation of j and ρ reveals a non-ohmic behavior
of the lattice with respect to the CIT ions diffusion, which is in contrast to the
typical characteristics of metals but more in line with semiconductors. The binary
non-conductive/conductive behavior is reminiscent of electronic semiconductors,
with the exception that in this superionic crystal, the conduction depends on CIT
ions and intermolecular interactions. Specifically, it is the presence of intermolecular
interactions between the CIT ions and TMA-NP that requires the application of an
energy high enough to overcome the energy barrier and allow conduction in the
superlattices. The results demonstrate that the minimum electric field required to
activate the ionic hopping and conduction is E ∼ 0.05 V nm−1. Another difference
compared to metallic materials is their dependence on temperature. In metals,
an increase in the temperature results in a decrease in the conductive properties.
However, in this case, the calculation of density current and resistivity reveals that
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with increasing temperature, there is an increase in j and a decrease in ρ (as shown
in Figure 5.6). These enhanced thermal vibrations provide extra energy to overcome
the energy barrier. This aligns with the behavior of superionic conductors [246–248]
where a rise in temperature leads to increase disorder and higher ion mobility through
the sublattice. Although the results and the applied electric field intensity should
be treated as qualitative due to the reference to a CG model, they demonstrate the
presence of a conductive and non-conductive behavior dependent on temperature,
which is similar to the behavior of semiconductors but on a larger scale. This is
further confirmed by the resistivity values, which fall within the typical range of
semiconductive materials (between ∼ 10−5 and ∼ 105 Ωm).
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Fig. 5.6 Ionic conductivity of the colloidal crystal. d Current density j associated to the CIT
diffusion along x as a function of T and E. As the E intensity overcomes a threshold value
(vertical dashed line), the system switches from non-conductive to conductive regime. e
Resistivity ρ associated to the CIT current, as a function of T and E. Figure adapted from
Ref. 183 with permission of Creative Commons CC BY license.

These allow us to obtain insights into the macroscopic properties of the lattices.
However, to gain a deeper understanding of the underlying mechanisms of the
CIT conduction, it is essential to also observe the process at a microscopic level.
Therefore, we aim to investigate the local phenomena controlling CIT diffusion, to
determine if there are differences in the CIT motion or if some are more static than
others. To this end, we employ a data-driven approach that has been recently applied
to various supramolecular systems.[87, 251, 100] The SOAP analysis is performed
to investigate the level of order or disorder in the ionic domains of the TMA-NPs
FCC superlattice and the organization of the CIT ions within them. This is achieved
by centering the SOAP vector [121, 253, 254] at the center of mass of each CIT
ion in the lattice. The unsupervised clustering of the 428800 SOAP spectra (1072
SOAP spectra x 400 snapshots in every MD simulation), through the Probabilistic
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Analysis of Molecular Motifs (PAMM) approach [125] allows for the examination
of the high-dimensional information obtained from the SOAP analysis.

The PAMM analysis results identify three different clusters, represented by
the colors red, blue and cyan in Figure 5.7b,c,g. The ions with the same color
belong to the same cluster and are surrounded by a similar SOAP environment,
while ions with different colors belong to different ionic environments. The blue
color indicates the CIT ions at the interface between two TMA-NPs, the red color
represents the CIT ions in the octahedral cavities in the FCC lattice, and the cyan
color represents the ions in the tetrahedral cavities (as shown in Figure 5.7b,c,g). The
high-dimensional SOAP data is reduced with Principal Component Analysis (PCA),
allowing the visualization of the different environments. The first two Principal
Components (PC) at T = 300 K and T = 333 K are shown in Figure 5.7d,h, where
the three different colors represent the different SOAP-detected motifs identified by
the PAMM analysis. It is important to note that the two CIT clusters occupying the
tetrahedral and octahedral cavities are not in direct contact with each other, as they
are separated by the CIT ions at the NP-NP interface.

At every time step considered, the motion of all CIT ions and the SOAP envi-
ronment which they belong to, are detected using the SOAP analysis, enabling the
reconstruction of dynamic complexity for each considered E and T . This analysis
permits the calculation of the transition probability matrices (reported in Figure
5.7f,j) which define the average probability for a CIT ion to remain in its current
SOAP environment (diagonal entries) or to pass through to another state (off-diagonal
entries) in the time interval between two consecutive analyzed snapshots. Based on
the calculated probabilities, it is possible to estimate the average transition rate for a
CIT ion. For instance, the transition time of a CIT ion occupying octahedral cavities
to the NP-NP interface environment at T = 300 K is approximately ∼ 0.002ns−1,
resulting in a transition timescale of ∼ 500ns. The numbers on the diagonal of
the matrices reflect the stability of the clusters. In this study, the red cluster is the
most dynamics, while the blue cluster is the most stable. CIT ions belonging to
the blue cluster can be considered as the "glue" holding TMA-NPs self-assembled
and also undergoing continuous ions exchange, as previously demonstrated in Ref.
100. Similar observations can be made for the system at T = 333 K (Figure 5.7j),
where the internal dynamics are further enhanced. Finally, the transition matrices
indicate that at E = 0, CIT ions cannot directly exchange between octahedral (red)
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Fig. 5.7 Data-driven detection of dynamic ionic environments in the NP superlattice. a
Snapshot of the superlattice system at T = 300 K and E = 0 (after 20 µs of MD simula-
tion). Au NPs are colored yellow, TMA ligands in gray. CIT ions are colored (blue, red,
or cyan) according to their detected SOAP state. b Cavities in the FCC superlattice: the
octahedral cavities are identified in red (red dots: cavity centers, dashed red lines: cavity
sides), the tetrahedral ones in cyan. c-f SOAP+PAMM analysis identifying the main CIT
SOAP environments in the unperturbed systems (E = 0) at T = 300 K. c The SOAP+PAMM
analysis detects three main CIT environments at T = 300 K: CIT ions at the NP-NP in-
terface are colored in blue, and CIT ions in the tetrahedral cavities in cyan, CIT ions in
the octahedral cavities in red. d Unsupervised clustering (PAMM) of the CIT SOAP data
(PCA projection) allows identifying three main SOAP clusters, corresponding to the different
CIT states/environments in the system. The clustering is performed on the first three PCs
of the SOAP dataset; the projection on the first two PCs is shown. e Cluster population
histogram. f Normalized transition probability matrix indicating the probabilities for a CIT
in a given state to remain in that state (pii, diagonal entries) or to undergo a transition to
another SOAP environment (pi j, off-diagonal entries) in the time interval sampled during
the analysis (in this case, dt = 50 ns). From the off-diagonal transition probabilities, one can
also estimate the transition rates as ki j = pi j/dt and a characteristic transition timescale as
ti j = k−1

i j . g-j SOAP+PAMM analysis for the unperturbed systems (E = 0) at T = 333 K.
Figure reproduced from Ref. 183 with permission of Creative Commons CC BY license.
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and tetrahedral (cyan) cavities, but can communicate indirectly via the more static
interface domain (blue).

Subsequently, Figure 5.8 presents the results of simulations performed at T = 300
K. The final snapshots obtained from the MD simulations are shown in panels b
and c under the absence and presence of high applied E, respectively. It is apparent
that in the unperturbed state, the red and cyan clusters are separated within their
respective cavities, while in the presence of high E, they appear to be rearranged. The
quantitative data in the transition matrices (Figure 5.8d,e) supports this observation by
illustrating two distinct regimes. On the one hand, for electric fields with intensities
lower than 0.05Vnm−1, the systems exhibit similar behavior to the unperturbed case,
suggesting that the electric field applied is not strong enough to activate the diffusion
of CIT ions within the lattice. In this range, the supramolecular crystal displays non-
conductive properties (Figure 5.6) and the probability of transition between red and
cyan clusters is always zero, indicating that these two environments cannot directly
exchange CIT ions. On the other hand, for electric fields with intensities equal
or greater than 0.05Vnm−1, the dynamics of CIT ions in the lattice is enhanced,
as indicated by a decrease in the diagonal probabilities and an increase in the off-
diagonal ones. At 300 K for E ≥ 0.07Vnm−1, the blue cluster is the only SOAP
state with a residence probability ≥ 50%, while the red and cyan clusters are purely
transient states. This supports the assumption that the blue cluster plays a crucial
role in maintaining the self-assembled configuration. The lattice was observed to
become unstable and break apart with electric fields greater than 0.11Vnm−1. The
population of the different clusters remains unchanged, with the CIT ions at the
interface representing approximately 60% of the total population, the CIT ions in
the tetrahedral representing approximately 30%, and the CIT ions in the octahedral
cavities representing approximately 10% (see Figure 5.8).

The results demonstrate that the emergence of conductive properties in the lattice
is related to the emergence of a direct dynamic communication between the clusters
in the octahedral and tetrahedral cavities, as shown in the transition matrices that
indicate an increase in the communication from 0 to ∼ 30%. This highlights the
presence of ionic gates that enable the diffusion of CIT ions throughout the superionic
lattice, giving the CIT ions in the cavities conductive properties. The CIT ions at the
interface between the TMA-NPs play a crucial role in maintaining the integrity of
the lattice. This phenomenon is similar to the differentiation of valence electrons and
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Fig. 5.8 Mechanism of ionic conduction in the NP superlattice at 300 K. a The octahedral
and tetrahedral cavities in the FCC cell are indicated by red and cyan spheres, respectively.
b TMA-NP superlattice: Au NP in yellow, TMA ligands not shown for clarity, CIT ions
colored based on their SOAP state (left). Right: detail of the CIT ions in the tetrahedral
(cyan) and octahedral (red) FCC cavities at E = 0. c Fusion between cyan and red CIT SOAP
environments in the FCC lattice at E = 0.11Vnm−1 (TMA-NPs and the blue cluster not
shown for clarity). d-e Results of the SOAP+PAMM analysis of the superlattice simulation
at T = 300 K for increasing intensities of E. SOAP clusters population histograms (top) and
transition probability matrices (bottom) for all simulated cases. The analyses show how, at
T = 300 K, and for E < 0.05Vnm−1, all data are similar to the unperturbed case (E = 0),
while for E ≥ 0.05Vnm−1 the CIT dynamics changes (supramolecular conduction). Figure
reproduced from Ref. 183 with permission of Creative Commons CC BY license.
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coordination sites in conductive materials (based on metal bonding), where some
electrons are involved in forming the atomic bonds and others allow conductivity.

Our results demonstrate that such collective phenomena in NP superlattice cannot
be explained by the properties of the individual CIT ions environments in the unper-
turbed systems, and are instead emergent behavior originating from the coordinated
motions of ions in response to the applied stimulus (E). These findings highlight the
importance of studying such complex molecular systems at high enough resolution to
track the motion of individual ions and at a large enough scale to observe collective
behaviors.[79]

Finally, the results from the SOAP and PAMM analyses at T = 333 K are pre-
sented in Figure 5.9. Overall, despite increased dynamics due to thermal vibrations,
the mechanism behind the conductive properties is similar to that at T = 300 K. The
snapshots in panels b and c show a similar arrangement of the CIT environments
within the lattice, which retain a nearly constant population. The role of NP-NP
interface ions in maintaining the stability of the structure is also evident. Further-
more, the emergence of conductive properties is accompanied by direct diffusion
of CITs between the tetrahedral and octahedral cavities within the lattice. The only
difference is that in this case, a weaker electric field of 0.03Vnm−1 is required
for CIT diffusion, suggesting that the breakage of intermolecular interactions is
facilitated by thermal agitation. This is also opposite to the conduction of metals,
where an increase in temperature hinders conduction.

5.4 Conclusion

The process of designing new controllable materials relies on the identification of
analogies with existing, natural structures and the formulation of rules that can be
applied at various length scales. In this regard, although superlattices may exhibit
some analogies with atomic crystals, the differences in the driving forces utilized
complicate the understanding of the similarities of their supramolecular properties
with those of atomic crystals.

In this study, we proposed a computational approach to analyze the conductive
behavior of supramolecular colloidal crystals composed of TMA-functionalized
NPs (referred to as atom analogs) and CIT ions (referred to as electron analogs),
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Fig. 5.9 Ionic conduction in the NP superlattice at 333 K. a The octahedral and tetrahedral
cavities in the FCC cell (red and cyan spheres). b Left: TMA-NP superlattice (Au NP in
yellow, TMA ligands not shown for clarity, CIT ions colored based on their SOAP state).
Right: CIT ions in the tetrahedral (cyan) and octahedral (red) FCC cavities at E = 0 and
T = 333 K. c Cyan and red CITs gating in the FCC lattice at E = 0.11Vnm−1 (TMA-
NPs and blue CITs not shown for clarity). d-e Results of the SOAP+PAMM analysis of
the superlattice simulation at T = 333 K for increasing intensities of E. SOAP clusters
population histograms (top) and transition probability matrices (bottom) for all simulated
cases. The analyses show how, at T = 333 K, for E < 0.03Vnm−1 all data are similar
to the unperturbed case (E = 0), while for E ≥ 0.03Vnm−1 the CIT dynamics changes
(supramolecular conduction). Figure reproduced from Ref. 183 with permission of Creative
Commons CC BY license.
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see Figures 5.2-5.3). The main difference with traditional conductive materials is
that the current is carried by the CIT ions. Our aim was to establish an analogy
between the motion of CIT ion within the lattice and the properties of conductors,
semiconductors, and insulators. By utilizing CG molecular models, we were able
to study the complexity of this system and gain insights into its behavior while
preserving its physical features (Figures 5.2-5.3). Our results show that the lattice
exhibits supramolecular semiconductive behavior, driven by the diffusion of the CIT
ions under the influence of external electric fields (Figures 5.4-5.6). The in silico
experiments demonstrate that a certain intensity of electric field is required to cross
the energy "band gap" and activate the CITs diffusion (Figure 5.6a).

The machine-learning based approach proposed in this work identifies three
distinct ionic environments in these NP superlattices, as shown in Figure 5.7. The
CIT ions at the NP-NP interface are found to serve as bonding electron analogs,
stabilizing the FCC lattice. On the other hand, CIT ions in the octahedral and
tetrahedral cavities of the FCC lattice are found to be more dynamic and likely
to act as electron analogs (Figures 5.8 and 5.9). The study of the system at the
microscopic level reveals a correlation between the emergence of ionic conduction
and the connection between the CIT ions in the octahedral and tetrahedral cavities.

Although here we used approximated molecular models and the results have thus
a qualitative meaning, the MD simulations highlight that classical intermolecular
interactions in colloidal supercrystals may produce complex emergent charge trans-
port behaviors, similar to those typical of electronic materials. The method proposed
herein allowed to gain a qualitative understanding of the ionic conductive properties
such various colloidal superlattices. In this particular case, it led to the observation
of a binary non-conductive/conductive behavior based on non-covalent interactions.
This study also highlights the complexity of the supramolecular stimuli-responsive
assemblies, and how the collective molecular behaviors resulting from such complex-
ity can only be understood by studying the effect of the stimuli on large ensembles
of interacting individual entities.



Chapter 6

Modeling temperature responsive
assemblies

The work described in this Chapter has been published in the following paper: "H.
Liu, C. Lionello, J. Westley, A. Cardellini, U. Huynh, G. M. Pavan and S. Thayu-
manavan. Understanding functional group and assembly dynamics in temperature
responsive systems leads to design principles for enzyme responsive assemblies.
Nanoscale 2021, 13, 11568-11575" [170] and has been adapted with permission
from the Royal Society of Chemistry.

Abstract

Thermo-responsive polymeric assemblies undergo phase transition (from complete
miscibility to phase separation) in correspondence to the lower critical solution
temperature (LCST). In order to investigate this phenomenon, herein, we examine
the effects of temperature variations on self-assembled amphiphilic oligomers with
molecular models and experimental observations. Molecular simulations prove
that the dynamics of temperature-sensitive supramolecular assemblies is not only
affected by the dehydration of oligoethylene glycol (OEG) motifs, but also by the
thermally-promoted molecular motions. While both approaches detect a similar trend
in the size variation of the assembly, as a consequence of the different temperatures
applied.
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6.1 Introduction

Thermo-responsive polymeric systems are widely investigated, as intermolecular
interactions are particularly sensible to thermal stimuli.[52] There are two different
types of thermo-responsive polymers (see Figure 1.9). The first type exhibits a lower
critical solution temperature (LCST), rendering the polymers completely miscible
in water when the temperature is below the LCST. The second type presents an
upper critical solution temperature (UCST), resulting in complete miscibility in
water when the temperature is above the UCST.[53] Therefore, the behavior of
thermo-responsive polymers is dependent on the balance between polymer-polymer
interactions and polymer-aqueous solution interactions.

Among polymeric assemblies that experience a phase change in correspondence
to LCST [255–259], polymers composed of oligo- and poly-ethylene glycol, along
with poly(N-alkylacrylamides) have been widely investigated due to their respon-
siveness at temperature above LCST, which results in the disruption of hydrogen
bonds with water [260–264] and an increase in hydrophobicity [265, 266]. The
temperature-induced phase change is always coupled to a sharp increase in hy-
drophobicity, connected with a change in the number of hydrogen bonds. However,
recent studies have revealed that some oligoethyleneglycol (OEG) aggregates display
a more subtle morphological transition at temperatures below the LCST, named
sub-LCST transition, where the sizes of the assemblies significantly varies.[267]
Unfortunately, the mechanism behind the sub-LCST behavior is still unclear and
is dependent on both on the type of OEG-based amphiphiles and on the chain
length.[268–270] The variations in temperature also have an impact on the internal
dynamics of the assembly. While an increase in temperature should enhance the
dynamics of the nanoassembly [271–273], the relationship is inverse in case of
sub-LCST behavior where the increase in the hydrophobicity freeze the molecular
assemblies at higher temperature.[267]

The purpose of this study was to comprehend the influence of temperature
variations on amphiphilic assemblies when small hydrophobic patches were exposed
on the hydrophilic surface of the assemblies, as depicted in Figure 6.1. In this regard,
experimental observations were complemented by molecular dynamics simulations,
providing an analysis of the effects of temperature on the structural dynamics of
these complex, self-assembled systems.
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Fig. 6.1 Schematic presentation of the assembly dynamics reflected by sub-LCST and
dynamic transition point (DTP) and their relationship with the molecular hydrophobicity.
Due to their amphiphilic nature, the oligomers presented herein tend to aggregate into
excimer configurations in water. Figure reproduced from Ref. 170 with permission from the
Royal Society of Chemistry.

6.1.1 Experimental context

In this study, the focus is on thermo-responsive oligomers, which are low molecular
weight polymer analogs with a limited number of repeating units, whose physical
properties are dependent on the length of the chain.[274] The considered amphiphilic
oligomers containing 7-diethylaminocoumarin are synthesized through a multistep
procedure in which the intermediates are isolated and purified prior to proceed with
the next step [274]. The first synthesized amphiphilic oligomer is EG7-C6-Ph (Figure
6.2), whose amphiphilicity is modulated by functionalizing it with hydrophilic and
hydrophobic chains. The EG7-C6-Ph oligomer has a diethylenetriamine backbone,
where the terminal amino moieties are substituted with amphiphilic benzamides,
and the hydrophobic parts are based on hexyl (C6), while the hydrophilic parts are
based on heptaethylene glycol (EG7). The hydrophobic side of the molecule, which
contains both the 7-diethylaminocoumarin fluorophore moiety and a phenyl group
(Ph), is functionalized with an amphiphilic benzamide.

To study the effects of changes in hydrophobicity, the Ph group is then substituted
with various small hydrophobic patches, and the other case studies are shown in
Figure 6.2. The final oligomer is synthesized by adding the amphiphilic block to the
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EG7-C6-Me EG7-C6-Ph EG7-C6-Np

EG5-C6-Ph EG5-C10-Ph EG5-C10-Me

Fig. 6.2 Structures of amphiphilic oligomers investigated in this study. Figure adapted from
Ref. 170 with permission from the Royal Society of Chemistry.

diethylenetriamine core, and labeling it with the coumarin moiety through a click
chemistry reaction.

Experimentally, the temperature-dependent behavior of the assemblies is studied
by observing variations in the fluorescence signal. The amphiphilic assemblies
exhibit two fluorescence emission peaks with maxima at 479 nm and 536 nm, which
correspond to the fluorescence of aminocoumarin when it is in monomer and excimer
conformation, respectively (as shown in Figures 6.1 and 6.3a). The total fluorescence
intensity of both peaks decreases with the increase of the temperature due to the rise
in nonradiative decay. Of particular interest is the observation of the ratio between
the monomer (IM) and excimer (IE) radiation, which exhibits two distinct trends
based on the temperature applied (as depicted in Figure 6.3b). Specifically, the IM/IE

ratio decreases from T = 5 to T = 30 ◦C and increases from T = 30 to T = 65 ◦C.
Since the excimer emission is an indication of the proximity of two fluorophore
moieties within the nanoassembly, a decrease in the IM/IE ratio signifies the presence
of a tighter assembly. The decrease in the IM/IE ratio between 5 and 30 ◦C is a result
of the increase in the hydrophobic behavior of the oligomers due to the disruption
of hydrogen bonds within the OEG moieties and water, leading to a more compact
assemblies and higher excimer formation. On the other hand, between 30 and 65
◦C, the increase in temperature promotes the molecular motion, resulting in more
dynamic assemblies, less excimer formation, and a gradual increase in the IM/IE

ratio. This is confirmed by the variations in the dimension of the assemblies shown
in Figure 6.3c.
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Fig. 6.3 Experimental characterization of EG7-C6-Ph-constituted assemblies: a fluorescence
of the assemblies at different temperature. b IM/IE ratio versus temperature. c Particle sizes
at different temperature. Figure adapted from Ref. 170 with permission from the Royal
Society of Chemistry.

However, the resolution that is possible to reach experimentally techniques does
not allow obtaining molecular-level insights into the responsive behavior. Molecular
simulations may be useful to this end. The utilization of molecular models enables
tracking of interactions between the aggregate and water, allowing quantification
of variations in the hydrophobicity of the building blocks. Coarse-grained (CG)
models described by the MARTINI force field are characterized by a resolution 5
Ȧ, which permits the observation of self-assembly processes and interaction with
water molecules. The simulations of these CG models require a high computational
cost. Thus, as a proof of concept, our study focused on the investigation of the
excimer based on EG7-C6-Ph monomers at three different temperatures: the LCST,
one below the LCST, and one above the LCST.

6.2 Materials and methods

All-Atoms Molecular Dynamics (AA-MD) protocol

The all atom (AA) models of each oligomer were realized in Avogadro [152], and
the simulations in water were performed with Gromacs 2018.6 software [151]. The
system was firstly subjected to minimization, followed by 100 ps thermalization
simulation in the NVT ensemble at a temperature of 300 K using the V-resale
algorithm [179]. The thermalization was followed by a 100 ps NPT equilibration
to reach a pressure of 1 bar through the Berendsen barostat method [181]. Lastly, a
longer production of 100 ns was carried out in NPT conditions, utilizing the Nose-
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Hoover thermostat [180] and the Parrinello-Rahman barostat [175] to maintain the
temperature and pressure at 300 K and 1 bar, respectively. All simulations were
carried out with a time step of 2 fs, the standard time step for AA simulations.

Coarse-Grained Molecular Dynamics (CG-MD) protocol

The coarse-grained (CG) models, which were based on the MARTINI force field
[105], were derived from the previously obtained AA trajectories and parametrized
using the Swarm-CG software [85] (as shown in Figure 6.4). A preliminary aggregate

a b
Core

PEG

Hexyl

Ph

Coum

Fig. 6.4 a All-atom (AA) and b coarse-grained (CG) molecular models of EG7-C6-Ph.
Figure adapted from Ref. 170 with permission from the Royal Society of Chemistry.

was generated with a simulation in vacuum at 303 K, where 50 monomers were
randomly placed in a 100 nm3 simulation box (as shown in Figure 6.5), with periodic
boundary conditions in all the three dimensions. This aggregate was then placed in a
simulation box filled with explicit water molecules described by the MARTINI force
field, and the entire system was equilibrated in water at 303 K. After the equilibration,
simulations were run at 283 K, 303 K, and 333 K. It is worth noting that for the
system at 283 K, 10% of the water beads were replaced with anti-freezing MARTINI
water particles to prevent water freezing. The CG MD simulations were conducted
at 1 atm using the V-rescale thermostat [179] and Berendsen barostat [181] with
isotropic pressure scaling, with a compressibility of 4.5∗10−5 MPa−1 and coupling
time constants of 1 ps and 2 ps for the V-rescale and Berendsen coupling schemes,
respectively. For the CG-MD simulations in water, the electrostatic and van der
Waals cutoff were fixed at 1.1 nm. All the GC-MD simulations were run in Gromacs
[151].



112 Modeling temperature responsive assemblies

Fig. 6.5 CG-MD snapshots of 50 EG7-C6-Ph monomers (most left side) and the corre-
sponding self-assembly in water (most right side). Figure reproduced from Ref. 170 with
permission from the Royal Society of Chemistry.

6.3 Results and discussion

To study the effects of the variations of temperature on the oligomer-based assem-
blies at the macroscopic level, we developed all-atom (AA) and coarse-grained (CG)
models of the amphiphilic oligomer of Figure 6.4. The CG model was parametrized
according to the MARTINI force field [105] and optimized for the best agreement
with the AA model using the Swarm-CG software [85]. Initially, we placed 50 am-
phiphilic monomers in a simulation box in vacuum to obtain a preliminary assembly
(Figure 6.5, center), that, once simulated in water, rearranged the hydrophilic and
hydrophobic chains properly (Figure 6.5, right). In particular, as depicted in Figure
6.6, the hydrophilic OEG chains (PEG) were directly exposed to the solvent, while
the more hydrophobic groups of the oligomers were contained in the central part of
the aggregate. Subsequently, we carried out molecular dynamics (MD) simulations
at 10 ◦C, 30 ◦C, and 60 ◦C of the EG7-C6-Ph assembly in explicit solvent, using the
Gromacs software [151].

The radius of gyration (R) has been calculated from the MD trajectories, and used
as a metric to indicate the variations in the structure and compactness of assemblies
and their subgroups under different temperatures (as reported in Figure 6.7). We
specifically calculate the R values of the global assemblies (Ra), as well as the hexyl
(Rhexyl), coumarin (RCoum), and PEG (RPEG) groups of the oligomers. In Figure 6.7a,
the ratio of R for the various groups and the entire assembly is reported in order to
gain insights into the arrangement of the assembled structures. A ratio of R/Ra higher
than 1 suggests that the groups are situated on the surface of the assembly and thus
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Ph Hexyl CoumPEG

Fig. 6.6 CG-MD snapshot of the self-assembled EG7-C6-Ph monomers where the CG beads
of the PEG, R3 (Ph), hexyl, and Coumarin groups are colored in cyan, orange, yellow, and
purple, respectively. As expected, the hydrophilic chains (PEG) are directly exposed to the
solvent, while the more hydrophobic branches (Ph, Hexyl, and Coum) are oriented toward
the interior of the excimer. Figure adapted from Ref. 170 with permission from the Royal
Society of Chemistry.

exposed to the solvent, while a ratio of R/Ra lower than 1 indicates that the groups
are embedded in the interior of the assembly. Consequently, tracking the R/Ra ratio
at different temperatures enables the detection of structural rearrangements resulting
from variations in temperature. The ratios Rhexyl/Ra and RCoum/Ra, which are both
lower than 1, demonstrate the hydrophobic nature of these groups by occupying the
inner region of the assembly and avoiding the interactions with water. Alternatively,
the value of RPEG/Ra higher than 1 confirms the hydrophilic nature of PEG chains
and their arrangement on the exterior of the aggregate. On the other hand, Figure 6.7b
displays the Ra values of the assemblies simulated at the three different temperatures.
It can be seen that the gyration radius of the assembly at 30 ◦C is lower than at 10 ◦C
and 60 ◦C, a trend which is consistent with the fluorescence results depicted in Figure
6.3b and the hypotheses of PEG dehydration and thermally-promoted molecular
motion. Therefore, the decrease in the gyration radius at 30 ◦C is directly linked to
the breakage of the hydrogen bonds within water, resulting in a more hydrophobic
and compact assembly. At the same time, the increase in Ra at higher temperature is
driven by the increase in the thermal vibrations.

Subsequently, we calculated the number of interactions between the CG-beads
representing the PEG chains and water, as depicted in Figure 6.8b. At T = 10 ◦C
the number of PEG-water interactions is higher than at the other two temperatures,
thereby highlighting the hydrophilic properties of PEG at lower temperature. Simul-



114 Modeling temperature responsive assemblies

a b

283 K 303 K 333 K

2.6

2.8

3

3.2

283 K 303 K 333 K

R
a

[n
m

]

Gyration radius of assembly

0.6

0.8

1

1.2

1.4
R

C
o

u
m

,P
EG

,h
ex

yl
/R

a
[n

m
]

Coum PEG hexyl

Fig. 6.7 CG-MD snapshot of the self-assembled EG7-C6-Ph monomers where the CG beads
of the PEG, R3 (Ph), hexyl, and Coumarin groups are colored in cyan, orange, yellow, and
purple, respectively. Figure adapted from Ref. 170 with permission from the Royal Society
of Chemistry.

taneously, both the decrease in the PEG-PEG contact reported in Figure 6.8a and
the increase in interactions between the hydrophobic chains in the oligomer and the
water molecules (as shown in Figure 6.8c) indicate the swelling of the assemblies at
T = 60 ◦C. An increase in the temperature from 30 ◦C to 60 ◦C results in a higher
probability of water molecules penetrating the assembly due to the thermal-induced
motion of the oligomer. As a consequence, the coumarin groups are more in contact
with water molecules, as shown in Figure 6.8e. In fact, at T = 60 ◦C, the coumarin
groups are arranged in a more compact manner in order to reduce interactions with
water beads, as also evidenced by the reduction in the RCoum/Ra ratio in Figure 6.7a.

6.4 Conclusion

Thermo-responsive polymers are widely investigated for their abilities to undergo
conformational or phase change in correspondence to the lower critical solution
temperature (LCST). One example is the behavior of poly-ethylene glycol based
aggregates below the LCST, which become more hydrophobic at high temperature
and exhibit changes in size.

In this work, we investigated the behavior of EG7-C6-Ph assemblies both with
computational and experimental methods, by varying temperatures. In particular,
molecular dynamics simulations, and especially coarse-grained molecular models,
are employed to study both the variations in size and hydrophobicity. The calcula-
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Fig. 6.8 Number of contacts between a PEG-PEG beads, b PEG and water, c hydrophobic
groups and water for EG7-C6-Ph, calculated from the equilibrated trajectories. From 283 K
to 303 K there is a slight increase in the number of PEG-PEG contacts and decrease in PEG-
water contacts. This indicates that the 283 K assembly is more hydrated and hydrophilic than
the 303 K assembly. From 303 K to 333 K there is a decrease in the number of PEG-PEG
contacts because the structure vibrates more, and, therefore, it is less tightly packed, while
there is no significant difference in the number of PEG-water contacts. The increase of
hfob-water contacts and decrease of PEG-PEG contact from 303 K to 333 K indicate the
swelling of assemblies. d CG-MD snapshots of assembly at 283 K, 303 K, and 333 K.
The residual beads modelling the phenyl groups are highlighted in orange. e Percentage
of coumarin beads exposed to water over the total number of NP assembly beads. The
enhancement of temperature leads to a higher water penetration inside the NP core, thereby
increasing the percentage of coumarin surface accessible to the solvent. Figure reproduced
from Ref. 170 with permission from the Royal Society of Chemistry.

tions of the gyration radius show the trend of size changes, and highlight a decrease
in interactions between the hydrophilic chains of the oligomers and water molecules,
leading to increased hydrophobicity of the nanoassembly above the LCST. Further-
more, the swelling of the aggregates is observed at higher temperatures, indicated by
the increase in both size and number of water molecules penetrating the assembly. At
the same time, experimental evidences have detected the size transition by analyzing
the fluorescence spectrum of the aminocoumarin chain in both monomer and excimer
conformation, confirming the hypotheses of variations in the hydrophobicity of the
aggregates.
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In conclusion, the use of molecular models provide valuable insights into the
interactions between the oligomers and water, which is essential for understanding
the thermo-responsiveness of poly-ethylene glycol based aggregates.



Chapter 7

Modeling microtubule-based
GTP-responsive nanocapsules

The work described in this chapter has been published in the following paper: "N.
Uchida, A. Kohata, K. Okuro, A. Cardellini, C. Lionello, E. A. Zizzi, M. A. Deriu, G.
M. Pavan, M. Tomishige, T. Hikima and T. Aida. Reconstitution of microtubule into
GTP-responsive nanocapsules. Nature Commun. 2022, 13, 5424" [275], and has
been adapted with permission of Creative Commons CC BY license.

Abstract

With the purpose of developing drug nanocarriers, the utilization of nanocapsules
that can disassemble in response to guanosine triphosphate (GTP) can be a solution
to efficiently treat diseases caused by cancer and RNA viruses. GTP is, in fact,
present at high levels in such diseased tissues. Here, I discuss modeling results that
have been obtained in the context of a comprehensive study on the rearrangement
of microtubules into a nanocapsule that selectively responds to GTP. When the
tubulin monomer from microtubule is incubated at 37 ◦C with a mixture of GTP
and nonhydrolysable GTP∗, a tubulin nanosheet forms. Upon the addition of pho-
toreactive molecular glue to the resulting dispersion, the nanosheet is transformed
into a nanocapsule. Computational simulations allowed to obtain results useful to
complement the experiments, allowing to gain insights into the effects of interactions
between the glue molecules and tubulin-based assemblies.
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7.1 Introduction

The selection of the most suitable building blocks for the realization of drug delivery
carriers is crucial to ensure that the carrier disassembles in response to endogenous
receptors overexpressed in diseases cells.[276–284] Adenosine triphosphate (ATP)
has been considered as a potential option as endogenous receptor due to its high
presence in cancer tissues [278–282, 285], however, its high concentration in healthy
cells (>1 mM [286]) makes it challenging to control the release of ATP-based
delivery systems. An alternative option is the use of guanosine triphosphate (GTP),
which plays a fundamental role in various biological processes [287–300], such
as cell division [287], nucleotide synthesis [288], and cell signaling [289]. GTP
is extensively consumed in cell division processes as tubulin heterodimer (THD),
and the assembled configuration (microtubule, MT), utilizes it as energy source to
continuously polymerize and depolymerize.[290–295] Alternatively, GTP is also
involved in the replication of RNA viruses [301–304], as coronaviruses. GTP
is therefore present in certain diseased cells (1.5-4.5 mM [305]), i.e. in rapid
proliferating cancer cells [306], and in RNA virus-infected cells [307], while in
healthy cells, the concentration of GTP is instead negligible, minor than 0.3 mM
[308]. In this regard, the development of GTP-responsive devices may help in
treatment of diseases caused by cancer and RNA viruses. This case study focuses
on the development of a nanocapsule (CLNCGT P/GT P∗ shown in Figure 7.1c), that
responds to GTP.

The nanocapsule realized herein consists of tubulin heterodimer (THD), which
are composed of α-tubulin, colored green in Figure 7.1a, and β -tubulin, colored
cream. Both the components are capable of binding to GTP. When the α-tubulin
unit is bound to GTP, it cannot be hydrolyzed or substitute with other nucleoside
phosphates. On the other hand, when GTP is attached to the β -tubulin unit, it can be
hydrolyzed into GDP. As a consequence, in this study, the GTP units are replaced with
GTP*, a nonhydrolysable GTP analogue (guanylyl 5’-α ,β -methylenediphosphonate),
resulting in the formation of THDGT P∗. Both THDGT P and T HDGT P

∗ self-assemble
at 37 ◦C into microtubules MTGT P and MTGT P

∗, respectively (as shown in Fig-
ure 7.1b).[309, 310] The depolymerization of MTGT P results in the formation of
THDGDP, while, since GTP* is non-hydrolyzable, MTGT P

∗ does not depolymerize
into T HDGDP

∗.
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a b

c

Fig. 7.1 Strategy used to prepare THD-based GTP-responsive CLNCGT P/GT P∗. a Schematic
illustrations of tubulin heterodimers (THDs) hybridized with GTP (THDGT P), its non
hydrolysable analogue GTP* (THDGT P∗), and GDP (THDGDP) at its β -tubulin unit. b
Schematic illustration of two self-assembling modes of THD into microtubules (MTs).
MTGT P depolymerizes into THDGDP upon GTP hydrolysis. THDGDP rehybridizes with
GTP after a GTP treatment, facilitating the formation of MTGT P. In contrast, MTGT P∗ does
not undergo depolymerization. c Schematic illustration of the multistep procedure for the
synthesis of cross-linked nanocapsules (CLNCGT P/GTP∗) from MTGT P. MTGT P is depoly-
merized into THDGDP, which is incubated with a mixture of GTP* (83mol%) and GTP
(17mol%) to form nanosheet NCGT P/GTP∗. Upon treatment with GlueCO2−, NSGT P/GT P∗
is transformed into spherical nanocapsules (NCGT P/GT P∗), which are further exposed to
UV light, affording CLNCGT P/GTP∗. Upon the addition of GTP, CLNCGT P/GTP∗ collapses
through the conformational change of the THD units induced by GTP hydrolysis. Figure
adapted from Ref. 275 with permission of Creative Commons CC BY license.
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The combination of a specific molar ratio of THDGT P/THDGT P∗ results in the
formation of leaf-like two-dimensional nanosheets (NS) instead of MT, as depicted
in Figure 7.1c. Furthermore, the presence of glue molecules [311–313] causes the
NS to rearrange into a spherical nanocapsule, referred to as CLNCGT P/GT P∗ (Figure
7.1c), which can contains, for example, an anticancer drug. In this work, we study the
formation of CLNCGT P/GT P∗ in the presence of GlueCO2− at both at the microscopic
and molecular resolution through the combination of experimental and computational
approaches.

a b

Fig. 7.2 Representation of the glue molecules utilized to stabilize the CLNCGT P/GT P∗.
a Molecular structures of photoreactive molecular glues (GlueCO2−, GlueCO2−Me, and
GlueFITC) bearing three guanidinium ions (Gu+) and benzophenone (BP) groups at their
periphery and CO2−, CO2 Me, and FITC groups at the focal core. b The molecular glue
covalently binds to the protein surface at its photoexcited BP groups after the noncovalent
adhesion via a Gu+/oxyanion multivalent salt-bridge interaction. Figure adapted from Ref.
275 with permission of Creative Commons CC BY license.

7.1.1 Experimental context

Experimentally, the procedure for synthesizing NCGT P/GT P∗ from MTGT P is shown
in Figure 7.1c, with a specific example provided in Figure 7.3a. The first step consists
in the cooling of the 1,4-piperazinediethanesulfonic acid (PIPES) buffer (pH 6.8)
solution of MTGT P (5.8 mg ml−1, shown in Figure 7.3c) at 4 ◦C for 3 h to achieve
complete depolymerization into THDGDP, as depicted in Figure 7.3d. The resulting
monodisperse feature of THDGDP is confirmed by the dynamic light scattering (DLS)
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analysis displayed in Figure 7.3b, blue line. Subsequently, the THDGDP solution
0.3 mg ml−1 is added to a PIPES buffer solution containing 17 mol% GTP and 83
mol% GTP* (300 µM in total) at 37 ◦C for 30 minutes. During this step, THDGDP is
transformed into THDGT P and THDGT P∗ through the conversion GDP → GTP and
GDP → GTP*, which aggregate into 5 nm thick NSGT P/GT P∗, as reported in Figures
7.3e,f. It is important to note that the concentration of GTP* must be controlled
to obtain NSGT P/GT P∗, as in case of GTP and GTP* mixtures containing up to
70 mol% of GTP*, the THD has low probability to self assemble. On the other
hand, if the content of GTP* is above 85 mol%, the THD self-assembles mainly
into MT rather than NS. The optimal THDGT P/THDGT P∗ molar ratio to obtain NS
is therefore in the range of 70-85 mol%. By utilizing the 83 mol% of THDGT P∗,
nuclear magnetic resonance (NMR) spectroscopy in DMSO reveals the presence
of 65 mol% of THDGT P∗ in the NSGT P/GT P∗ obtained. Finally, NSGT P/GT P∗ is
incubated in PIPES buffer containing GlueCO2− for 30 min at 37 ◦C to produce the
NCGT P/GT P∗ shown in Figure 7.3g. The transformation from NS to NC is evidenced
by the increase in hydrodynamic diameter from 56 nm to 660 nm, shown in green and
orange in Figure 7.3b. Additionally, the transmission electron microscopy (TEM)
demonstrates that the NCGT P/GT P∗ is effectively a hollow sphere (Figure 7.3g).

However, NCGT P/GT P∗ are unstable in albumin or serum in buffer, indicating
that the assembly is not stable enough to be utilized as a drug delivery carrier. The
use of GlueCO2−, which contains multiple benzophenone (BP) groups, is crucial to
bind and stabilize the structure. BP groups, under photoexcitation, form covalent
bonds with the adhering proteins (Figure 7.2b). Fluorescent analysis demonstrates
the photoreactivity of GlueCO2− with the NCGT P/GT P∗ assembling units. To test the
stability of the NC in the presence of GlueCO2−, NCGT P/GT P∗ in a PIPES buffer
solution is exposed to UV light for two minutes. Both TEM (Figure 7.3h) and DLS
profiles (Figure 7.3b) show that the cross-linked (CL) CLNCGT P/GT P∗ maintains the
spherical shape and remains intact even after the incubation in albumin or serum,
demonstrating the crucial role of the GlueCO2− in stabilizing the capsule. However,
the exact location of the GlueCO2− molecules on the CLNCGT P/GT P∗ is not clear.
To gain insights into this interaction, we perform all-atom molecular dynamics
simulations.
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Fig. 7.3 Reconstitution of MT into CLNCGT P/GT P∗. a A typical procedure for the preparation
of CLNCGT P/GT P∗. b DLS profiles of MTGT P (gray), THDGDP (blue), NSGT P/GT P∗ (green),
NCGT P/GT P∗ (orange), and CLNCGT P/GT P∗ (red) in PIPES buffer. c–e TEM images of MTGT P

(5.8 mg ml−1; c), THDGDP (0.3 mg ml−1; d), and NSGT P/GT P∗ (0.3 mg ml−1; e). f AFM
image of NSGT P/GT P∗ (0.3 mg ml−1) and its height profile. g,h TEM images of NCGT P/GT P∗
(13 µg ml−1; g) and CLNCGT P/GT P∗ (13 µg ml−1; h). All TEM samples were negatively
stained with uranyl acetate. Inset scale bars, 250nm. Figure reproduced from Ref. 275 with
permission of Creative Commons CC BY license.
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7.2 Material and methods

We have carried out molecular dynamics (MD) simulations to investigate the role of
GlueCO2− molecules while self-assembling to the THDGT P∗. All the MD simulations
were performed using AmberTools [153], Gromacs software [151], and Visual
molecular Dynamics (VMD) package.

Equilibration of GlueCO2− in aqueous solution

The all-atom molecular model of GlueCO2− was created in Avogadro [152] and
parametrized using the general Amber force field (GAFF) [314]. The molecule was
positioned in a simulation box filled with explicit TIP3P water molecules [315],
considering the periodic boundary conditions in the three directions. Subsequently,
three chloride and one sodium counterions were added into the solution to achieve
an ionic strength of 0.15 M. The system was then minimized and pre-thermalized at
37 ◦C through 1 ns of NVT simulation. Consequently, a 200 ns MD simulation was
carried out in NPT conditions at a temperature of 37 ◦C and pressure of 1 atm with a
2 fs time step and a cut-off of 1.2 nm.

Development of GlueCO2− and THDGT P∗ models

The [THDGT P∗]3 configuration, corresponding to three laterally assembled THD,
was extracted from the Protein Data Bank (PDB) structure of THDGT P∗ (PDB code:
3J6E) [316]. Missing residues were compensated with the one from another THD
structure (PDB code: 1TUB) [317] to form a complete model of [THDGT P∗]3. Two
systems were then generated from this model: one composed by [THDGT P∗]3 and
30 randomly placed pre-equilibrated GlueCO2− molecules within the simulation
box, and the other one composed solely of [THDGT P∗]3 as a control. The periodic
boundary conditions were considered in all the three directions for both systems.
The simulation boxes were then filled with explicit TIP3P water molecules [315]
and a number of counterions necessary to neutralize the systems. The microtubule
topology was treated by the AMBER99-ILDN force field [318].



124 Modeling microtubule-based GTP-responsive nanocapsules

Adhesions of GlueCO2− onto THDGT P∗

The THDGT P∗ systems were first minimized and then pre-thermalized at 300 K
through 1 ns NVT and 1 ns NPT simulations, with THDGT P∗ atoms restrained with
a position restraint of 1000 kJ mol−1 nm−2. During these preliminary phases, the
systems reached the temperature of 37 ◦C and the correct solvent density (1 atm of
pressure). To allow the GlueCO2− molecules to approach the THDGT P∗, 20 ns of
NVT simulation was carried out at 37 ◦C, maintaining THDGT P∗ at a fixed position.
Subsequently, all restraints were removed in 200 ns of NPT production at 37 ◦C and
1 atm. Both electrostatic and Van der Waals interactions were treated within a 1.2
nm cutoff radius and Lennard-Jones interactions were described using the Particle-
Mesh Ewald method [177] with 1.2 nm cutoff. The V-rescale thermostat [179] was
employed with a coupling time step of 0.1 ps, whereas the Parrinello-Rahman barostat
[175] was considered with a coupling time step of 5.0 ps. From the equilibrated phase
of the MD trajectories, various analyses were conducted. The effect of GlueCO2−

adhesion on THDGT P∗ hydrophobicity and total solvent-accessible surface area was
detected using the Gromacs gmx sasa tool [319]. On the other hand, the variations in
electrostatic potentials on the THDGT P∗ surface induced by the presence of GlueCO2−

were investigated through the Adaptive Poisson-Boltzmann Solver (APBS) software
package [320].

Interactions of GlueCO2−

After this preliminary phase, we investigated the strength of GlueCO2− interactions
by calculating the radial distribution function g(r) between key groups in glue and
tubulin assemblies (nanosheets). In particular, high and sharp peaks at short distances
r in the g(r) profile highlights a high probability of finding groups in proximity to each
other during the simulations, indicating therefore strong and persistent interactions.
On the contrary, the absence of evident peaks in the g(r) profile, or peaks minor
than one, indicate negligible interactions (see Figure 7.7a). The radial distribution
functions were calculated specifically between the Gu+ groups of GlueCO2− and
the anionic amino acids (aspartic acid and glutamic acid) of THDGT P∗, the Gu+

groups of GlueCO2− and the OH groups of neutral amino acids (serine, threonine, and
tyrosine) of THDGT P∗, and the CO2-groups of GlueCO2− and the cationic amino acids
(lysine and arginine) of THDGT P∗. Additionally, g(r) were calculated to examine the
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nature of GlueCO2−-to-GlueCO2− interactions, in particular we calculated the g(r) for
CO2− vs. Gu+ groups present in the GlueCO2− molecules in the simulated systems.

7.3 Results and discussion

In order to investigate the adhesion of GlueCO2− molecules on the tubulin assembly
(nanosheet), we conducted molecular dynamics (MD) simulations utilizing all-atom
models. It is worth noting that tubulin NS are generally 0.04 µm2 wide and 4.2
nm thick, consequently the NCGT P/GT P∗, characterized by ∼6.2 µm2 of surface
area and 50 nm thickness, is composed by at least 1000 pieces of NSGT P/GT P∗.
Because of these sizes, it is not feasible to simulate the entire NC with molecular
models. Thus, we have focused on analyzing the effects of the formation of salt-
bridge interactions between 30 GlueCO2− molecules and three laterally assembled
THDGT P∗ units ([THDGT P∗]3) as a model for NS. The [THDGT P∗]3 model was
obtained by merging of two models present in the protein data bank (PDB codes:
3J6E and 1TUB) and is shown in Figure 7.4a. Furthermore, we parametrized a
GlueCO2− molecule, which exhibits the tendency to assume a globular conformation
in water and a hydrodynamic diameter of 1.5 nm (Figure 7.4b and Figure B.1 in B).

Fig. 7.4 Snapshots of the all-atom models of the [THDGT P∗]3 and GlueCO2− molecules. a
Three laterally assembled THDGT P∗ units ([THDGT P∗]3) in MTGT P∗ as a partial model of
NS. b An equilibrated MD snapshot of GlueCO2−. c, d The outer (c) and inner (d) views
of [THDGT P∗]3 hybridized with 30 equivalents of GlueCO2−. Figure adapted from Ref. 275
with permission of Creative Commons CC BY license.

The adhesion of 30 GlueCO2− equivalents (reported in Figure 7.4c,d) on the
surface of the [THDGT P∗]3 increases its hydrophobic nature (Figure 7.5a,b) due to
the neutralization of the surface charge by the presence of the charged GlueCO2−.
This is also confirmed by the estimation of the solvent accessible surface area of
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[THDGT P∗]3, where the percentage of hydrophobic surface exposed to the solvent
increases from 48% in absence of GlueCO2− to 57%, as depicted in Figure 7.5c.

a b c

Fig. 7.5 Estimation of the electrostatic surface potential and hydrophobic solvent-accessible
surface area of [THDGT P∗]3 in presence and absence of GlueCO2−. The outer a and inner
b views of [THDGT P∗]3 with its electrostatic surface potential in the absence (upper) and
presence (lower) of 30 equivalents of hybridized GlueCO2−. Negative and positive potential
areas are colored in red and blue, respectively. g The percentage of hydrophobic solvent-
accessible surface area in the absence (47.5 ± 0.5; red) and presence (56.7 ± 2.0; blue) of
30 equivalents of hybridized GlueCO2−. Bars represent mean values ± SD from 2000 data
points. Figure adapted from Ref. 275 with permission of Creative Commons CC BY license.

Additionally, the adhesion of GlueCO2− onto [THDGT P∗]3 influences the con-
formation of [THDGT P∗]3 by flattening the NS (Figure 7.6a). In particular, the
angle distribution highlights an increase in the angle from ∼154◦ characteristics
of the native structure up to ∼156◦ in presence of glue molecules, colored red and
blue, respectively, in Figure 7.6b. Nonetheless, it is worth noting that even after
the adhesion of GlueCO2− equivalents, the [THDGT P∗]3 maintains a certain level of
flexibility (Figure 7.6b).

Lastly, we investigated the adhesion sites by calculating the radial distribution
functions g(r) of the charged groups in GlueCO2− and the amino acid residues of
[THDGT P∗]3 (as shown in Figure 7.7a), considering the hypotheses that the CO2-
groups in acid and glutamic acid interact with the Gu+ groups in GlueCO2−, and the
cationic groups in lysine and arginine interact with the CO2- group in GlueCO2−. On
the one hand, the analysis confirms that the Gu+ groups in GlueCO2− are located
close to the CO2- groups on the [THDGT P∗]3 surface (depicted in blue in Figure
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a b

Fig. 7.6 Variations in bending capabilities of THDGT P∗]3 in presence and absence of
GlueCO2−.[THDGT P∗]3 observed from the top view a and its angle distributions b in the
absence (red) and presence (blue) of 30 equivalents of hybridized GlueCO2−. Figure adapted
from Ref. 275 with permission of Creative Commons CC BY license.

7.7a), while are not present near the polar but non-ionic hydroxyl groups in serine,
threonine, and tyrosine (Figure 7.7a, gray). On the other hand, the g(r) data does not
reveal the interaction between the CO2- group of GlueCO2− and the cationic groups
on the [THDGT P∗]3 surface (as shown in Figure B.2 in Appendix B). Therefore, the
g(r) confirms that there is interaction between the Gu+ and CO2− groups of the
GlueCO2− molecules through salt-bridge interactions (as shown in red in Figure 7.7a),
leading to the formation of a dense Gu+/CO2− salt-bridged polymeric network on the
[THDGT P∗]3 surface (see Figure 7.7b). It is exactly this interaction that may promote
and stabilize the curvature of the NSGT P/GT P∗ in the formation of NCGT P/GT P∗, as
also demonstrated experimentally in references 321, 322.

7.4 Conclusion

In this Chapter, we have studied, through all-atom molecular models, how the pres-
ence of glue molecules can deform and stabilize a tubulin-based assembly. The final
aggregate can be then utilized to realize a possible nanocarrier to treat cancer or virus-
infected cells by taking advantage of the biocompatibility of tubulin heterodimers
(THD) and of the over expression of guanosine triphosphate (GTP) in diseased tis-
sues. In particular, in presence of GTP, or a nonhydrolysable GTP analogue (guanylyl
5’-α ,β -methylenediphosphonate, GTP*), THDGT P∗ and THDGT P monomers poly-
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a b

Fig. 7.7 Insights in the disposition of GlueCO2− onto the surface of THDGT P∗. a Radial
distribution functions g(r) of the Gu+ groups in GlueCO2− with carboxylates (blue) and
non-ionic hydroxyl groups (gray) on the [THDGT P∗]3 surface, and the carboxylate at the
focal core of GlueCO2− (red). b Schematic illustration of a possible adhesion event of
GlueCO2− onto NSGT P/GT P∗ and its effects on the features of NSGT P/GT P∗. The Gu+ groups
in GlueCO2− form a salt bridge with carboxylates on the NSGT P/GT P∗ surface and at the focal
core of GlueCO2−, and the GlueCO2−-based polymeric network thus formed through this
process increases the hydrophobicity of the NSGT P/GT P∗ surface, making NSGT P/GT P∗ more
flatten. Figure adapted from Ref. 275 with permission of Creative Commons CC BY license.

merizes into tubulin nanosheets (NSGT P/GT P∗). Additionally, by exploiting the glue
molecules technology, and, in particular, utilizing the GlueCO2−, NSGT P/GT P∗ rear-
range into a nanocapsule-like configuration, named NCGT P/GT P∗, which stabilizes
after a photo-induced cross-linking within the glue molecules (CLNCGT P/GT P∗).

In this context, experimental evidences allow to monitor all the step to obtain the
CLNCGT P/GT P∗ by testing the variations in shape and sizes through different analyses
(i.e., Dynamic Light Scattering, Transmission Electron Microscopy, Atomic Force
Microscopy). In parallel, all-atom molecular dynamics simulations gain insights into
the intermolecular interactions between the GlueCO2− molecules and three lateral
assembled THDGT P∗. The analyses at the molecular resolution demonstrate the
effects of this adhesion on the hydrophobicity and flexibility of the [THDGT P∗]3, and
the location of the GlueCO2− on the tubulin surface.

These results have allowed the realization of a CLNCGT P/GT P∗ nanocarrier that
disassembles in correspondence of high densities of GTP releasing the encapsulated
drug.
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Conclusions

Self-assembled materials are ordered or disordered aggregates of molecules con-
nected via intermolecular bonds. As a consequence of these non-covalent inter-
actions, self-assembled materials are characterized by intrinsic dynamics that, in
some cases, allow the materials to respond and adapt to external stimuli. Therefore,
stimuli-responsive materials demonstrated great potential in the development of
advanced smart materials by allowing for precise control over the supramolecular
structure and properties. However, the designing process of the self-assembling
units is discouraged by the difficulties in predicting and controlling the properties of
the final aggregates. In this regard, molecular modeling and simulations provide a
significant support in comprehending the physical-chemical mechanisms that control
the self-assembling processes. In particular, molecular models permit the observation
of the responsive process at a molecular level, which cannot be achieved through
experimental approaches.

This PhD Thesis presents and discusses studies that employ molecular dynamics
(MD) simulations and advanced techniques to gain a deeper understanding of the
design of new responsive materials and to further comprehend phenomena detected
through experimental analyses. All-atom (AA), and, in particular, coarse-grained
(CG) models have proven to be extremely useful in the exploration of the dynamics
of self-assembled systems and their stimuli-responsive properties. For example, as
evidenced in the study of the motion of soft nanoparticles (NPs) on various receptor-
functionalized surfaces. We demonstrate how properties, such as chemotacticity or
semiconductivity, may emerge even in self-assembling materials. The chemotactive
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behavior of NPs was found to be controlled by the multivalent interactions (energy
of assembly and energy of binding) to control the disassembly on selective surfaces.
This confirms the importance of rational design in successfully controlling and pre-
dicting the behavior of soft NPs on specific surfaces. Subsequently, we examine the
dynamic complexity of bi-component micelles by varying the structural and ener-
getic properties of the second components. In the case of similar components, where
intermixed interactions are as favored as homo interactions, the two species are more
reshuffled in the micelle compared to the case in which differences in the intermolec-
ular interactions encourage a more separated configuration. It is interesting to note
that such unique properties emerge in these materials thanks to their supramolecular
character. Similarly, through the same approach, CG-MD simulations and machine
learning-based analyses reveal to be necessary to deeply understand the response
of self-assembled materials to certain stimuli. The application of various electric
fields on face-centered cubic lattices composed by TMA-NP and citrate ions causes
an increase in the diffusion of the smaller species. The calculation of density current
reveals a semiconductive behavior, indicating that ionic conduction is only permitted
by overcoming a certain energy barrier. This is also supported by the SOAP and
PAMM analyses, which identify the two local environments responsible for the
emergence of conduction.

Consequently, the same techniques, especially all-atom (AA) and CG models,
have been employed to two experimental systems. Through CG-MD simulations,
we investigate the impact of temperature variations on the size and hydrophobicity
of amphiphilic aggregates, obtaining outcomes consistent with the experimental find-
ings. Specifically, CG-MD results confirm that an increase in the temperature above
the LCST leads to an increase in the hydrophobicity of the assembly. Meanwhile,
the use of AA-MD simulations allows for the exploration of the intermolecular inter-
actions between tubulin heterodimers and the glue molecules used to stabilize the
nanocapsule. These simulations demonstrate the formation of salt bridge interactions
with the surface of the tubulin nanosheets, affecting their flexibility and neutralizing
their surface charge.

In conclusion, this Thesis encompasses various computational approaches aimed
to deeply understand the phenomena underlying the responsiveness of several materi-
als at a submolecular level, demonstrating the flexibility of these methods. Moreover,
the results that I have collected during my PhD highlight the crucial role of molecular
models and simulations in the rational design of new smart materials, leading to
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a more efficient optimization of intermolecular interactions in the development of
controllable self-assembled materials.
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Structural illumination microscopy (SIM)

The quantification and rearrangement of trimeric assemblies on positively charged
polylysine surfaces was carried out via Structural Illumination Microscopy (SIM).
First, 1 mg of either 1, 2 or 3 COOH trimer was dissolved in 100 µL acetone. To
this, a 1 mg/mL solution of DiD (1,1’ - Dioctadecyl - 3,3,3’,3’ - Tetramethylindodi-
carbocyanine, 4 - Chlorobenzenesulfonate Salt) was loaded at 10 v/v%. 1 mL DI
water was then added dropwise and stirred overnight to obtain trimeric assemblies
dispersed in water and non-covalently encapsulating DiD dye. Solutions of the
trimeric assemblies were then diluted to 0.05 mg/mL for SIM experiments. For
experiments with SIM, a glass chamber setup was fabricated. Briefly, two pieces
of clear double-sided tape of dimensions 1 cm x 3cm x 70 µm were placed on the
polylysine functionalized glass slide 1 cm apart. A coverslip was then placed over
the double-sided tape to form a thin chamber. For pH studies with SIM, 20 µL of
the solution containing trimeric assemblies were injected into the glass chamber. For
studies at neutral pH, 20 µL phosphate buffer at pH 7 was injected into the chamber
and allowed to sit for 2 minutes. This was followed by a washing step to remove the
buffer by injecting 75 µL DI water. Similarly, for studies at low pH, 20 µL phos-
phate buffer at pH 4 was injected into the chamber and allowed to sit for 2 minutes.
This was followed by the washing step to remove the buffer by injecting 75 µL DI
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water. Images were then captured, and the average number of particles counted using
Nikon-NIS Elements. In Figure A.1, the fluorescent dots in the SIM experiments
refer to the number of NPs bound to the surface. Figure A.1 shows that at neutral pH
(pH = 7), because of the deprotonation of the COOH groups (into COO- groups),
the number of NPs bound to the surface increases with the number of charged COO-
terminal groups in the oligomer (increased multivalent binding interactions). This is
quantified in the histograms in Figure A.2. The selective electrostatic nature of the
binding is also experimentally proven by the pH-dependent experiments (see Figure
A.1 going from neutral (a) to low pH (b)) the level of deprotonation and the number
of COO- groups strongly decreases, reducing the strength of electrostatic binding
and consequently the number of particles bound on the surface.

Fig. A.1 Structural Illumination Microscopy (SIM) images of a polylysine functionalized
surface showing adhesion of 1-COOH, 2-COOH, 3-COOH trimeric assemblies at pH = 7 (a)
and pH = 4 (b). White dots identify the surface bound NPs. Figure reproduced from Ref.
126.
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Fig. A.2 Quantification of trimeric assemblies on polylysine surfaces using SIM at pH =
7 and pH = 4. Increasing the multivalent interaction, the average particles adhered to the
surface rise up in case of neutral pH, instead the average particle counts remain constant
in case of pH = 4, remarking the increase of protonation of COO-terminal groups. Figure
reproduced from Ref. 126.

Fig. A.3 Structural Illumination Microscopy (SIM) images of a polylysine functionalized
surface showing a) adhesion of 1-COOH trimeric assemblies at the start of the experiment
and b) rearrangement of the trimeric assemblies as captured by the microscope after 140
minutes. Figure reproduced from Ref. 126.
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Fig. A.4 Comparison of ∆SASA (NP SASA variation) and percentage of guest release for
NPs composed of the different trivalent (-1e) dendron variants. The CG models of Original,
Type-1, Type-2, Type-3 and Type-4 residues are reported in Figure 3.12. Figure reproduced
from Ref. 126.

Fig. A.5 Comparison of ∆SASA (NP SASA variation) and percentage of guest release for
NPs composed of the different trivalent (-2e) dendron variants. The CG models of Original,
Type-1, Type-2, Type-3 and Type-4 residues are reported in Figure 3.12. Figure reproduced
from Ref. 126.
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a b 𝐆𝐥𝐮𝐞𝐂𝐎𝟐
−
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−
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Fig. B.1 Conformation of a GlueCO2− molecule in water. a, b Snapshots of GlueCO2– before
(a) and after (b) the MD simulation. Nitrogen, oxygen, carbon, and hydrogen atoms of
GlueCO2– are colored in blue, red, gray, and white, respectively. Water molecules and
chloride anions are not shown explicitly. c Gyration diameter of GlueCO2– calculated along
200 ns by MD simulation. Figure adapted from Ref. 275.
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Fig. B.2 Radial distribution functions g(r) of the Gu+ groups in GlueCO2− with CO2− groups
(blue) and nonionic hydroxyl groups (gray) on [THDGT P∗]3, and the CO2− group at the
focal core of GlueCO2− with cationic groups on [THDGT P∗]3 (green). Figure reproduced
from Ref. 275.
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