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Abstract

This thesis focuses on improvements and development of analytical models and

artificial intelligence (AI) implementation for optical network design, planning

and controlling based on the physical-layer-aware quality of transmission (QoT)

estimation.

In general, with the increasing demand for capacity and traffic, network operators

have started to look toward innovative solutions that can maximize transmission

speeds and capacities. In this perspective, open and disaggregated optical network

infrastructures have been considered as they offer more flexibility and allow for a

multi-vendor approach to be realized. In such frameworks, software-defined net-

working (SDN) can be used to implement optical network control and management

with lightpaths (LPs) being assigned dynamically. A partially disaggregated optical

network with a SDN approach to control and management, is composed of disag-

gregated re-configurable optical add-drop multiplexers (ROADMs) connected by

independent optical line systems (OLSs) that include the degrees of the ROADM

multiplexer/de-multiplexer, fibers, and amplifiers (booster, in-line and pre-amp).

These OLSs transport colored wavelength division multiplexing (WDM) optical

tributary signals from ROADM to ROADM upon transparent LPs, with each OLS

independently orchestrated using the SDN controller. To achieve this, a quality of

transmission estimator (QoT-E) is required to compute the generalized signal-to-

noise ratio (GSNR) of transparent LPs to assess network performance before, after

and during deployment. Operating under the assumption that LPs are additive white

Gaussian noise (AWGN) channels, the GSNR includes the accumulations of both the

amplified spontaneous emission (ASE) noise that arises from the amplifiers, and the

nonlinear interference (NLI) noise that is induced by the fiber propagation, with the

interaction between these two contributions being negligible in terrestrial networks.

This approach has been extensively validated and can be refined including system

margins that take into account additional impairments as the intrinsic transceiver
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SNR, the polarization mode dispersion, the polarization dependent loss (PDL) and

filtering penalties. By means of this assumption, any LP can be separated into the

OLSs and switching nodes that are traversed during signal propagation; crucially,

the total QoT may be calculated as the proper cumulative function of each QoT

contribution arising from these subdomains.

In this framework, the open-source library for design and lightpath computation

in real-world mesh optical networks, GNPy, has been implemented by the Physical

Simulation Environment (PSE) group, within the Telecom Infra Project, which in-

cludes the major operators and vendors in the optical networking field. As a matter

of fact, GNPy has gained an increasing interest for both academia and industry, rep-

resenting an accurate, vendor-agnostic QoT-E used for network design and standards

definition and for lightpath computation, paving the way towards a SDN planning

and controlling. This broad interest in GNPy is due to the rising request in optical

network communities of a reliable and efficient digital twin of the optical systems.

As a stand alone software, GNPy is a digital model where information exchange

with the real system is performed through structured input/output data in a manual

manner. By mean of further improvements, an advanced software framework based

on an enhanced digital model has been implemented, including a more precise and

efficient physical layer signal propagation model, along with a faster and more flexi-

ble structure, to enable the simulation of new transmission technologies, dynamic

application of automated AI, and heuristic methods for optimization and margin

management in SDN environments. This software framework, has been validated on

several experimental setups including cutting-edge transmission scenarios.

Additionally, the enhanced transmission modeling has been employed for investi-

gating wideband optical systems as future looking network innovation that provides

significant capacity gain on already installed network infrastructures, with limited

and cost-effective system upgrades.
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Chapter 1

Introduction

Optical networks are critical infrastructures for modern communications, enabling

the transmission of vast amounts of data over long distances with high speed and

reliability. These networks use optical fiber as the medium to carry information

through light pulses, and have revolutionized the way we communicate and access in-

formation. As internet traffic continues to grow due to the proliferation of connected

devices, the increasing popularity of data-intensive applications such as streaming

video, cloud computing, and the internet of things (IoT), and the upcoming wide

deployment of 5G networking [1], optical networks are expected to cope with this

ever-increasing demand for data traffic. In this perspective, both optical network

operators and vendors are in constant search of infrastructure improvement and

technology innovation for minimizing the capital expenditures (CAPEX) and main-

taining a limited operational expenditures (OPEX), essential requirements to achieve

an adequate level of revenues and avoid the so called "fiber capacity crunch". In

general, increasing capacity with minimal CAPEX corresponds to maximizing the

usage of already-deployed fiber, as new fiber deployment is typically a prohibitively

expensive procedure [2].

The development of fast digital-to-analog converter (DAC) and analog-to-digital

converter (ADC) and energy efficient electronic processors implementing digital

signal processing (DSP) based algorithms has enabled a significant improvement of

optical network capacity with the proliferation of coherent transceivers (TRXs) [3, 4],

currently the prevalent transmission technologies in long-haul and high-capacity

optical infrastructure. Unlike Intensity Modulated and Direct Detection (IMDD)
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transmission, which requires chromatic dispersion (CD) compensation after each

fiber span and is limited by accumulated polarization mode dispersion (PMD), coher-

ent transmission enables the compensation of such linear propagation impairments to

be performed at the receiver side [5±8]. This essential improvement, which involves

decoupling the optical terminals (OTs)s from the optical line systems (OLSs)s, has

ushered in a new era of flexibility and efficiency in optical networks and opera-

tors have gained unprecedented control and adaptability in managing their network

resources. In this perspective, coherent transmission has complemented the im-

plementation of reconfigurable optical add-drop multiplexers (ROADMs). These

devices allow for dynamic and remote-controlled deployment of lightpaths, adding

an extra layer of agility to the optical network [9]. With ROADMs, operators can

remotely control the routing and switching of wavelengths, enabling on-demand

provisioning and reconfiguration of optical connections. The ability to deploy dy-

namic and remote-controlled lightpaths brings several benefits to optical networks.

Firstly, it allows for efficient resource utilization by enabling the establishment of

temporary connections when and where needed. This flexibility is particularly valu-

able in scenarios where bandwidth demands fluctuate over time or in response to

specific events or applications. Moreover, the remote control capability offered by

ROADMs simplifies network management and maintenance. Operators can remotely

monitor and adjust the routing of wavelengths, eliminating the need for manual

interventions at physical network nodes. This not only reduces operational costs but

also minimizes service disruptions and downtime associated with traditional manual

reconfigurations.

1.1 Software-Defined, Open and Disaggregated Opti-

cal Networks

As optical networks are evolving to meet the increasing demands for capacity, flexi-

bility, and cost-efficiency, the concepts of software-defined, open and disaggregated

networking is gaining prominence [10±15]. Software-Defined networking (SDN)

involves separating the control plane from the data plane, enabling an independent

development, deployment, and management of each network layer and a hierarchical

architecture that provides abstraction, programmability and scalability of the network

infrastructure. Openness and disaggregation emphasizes interoperability, standard-
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Single-Vendor Orchestrator

OT OT

Fig. 1.1 Single-vendor fully aggregated network architecture controlled and managed with
proprietary software and functionalities.

ization, and collaboration among vendors and stakeholders, standing in contrast

to a fully aggregated network architecture, illustrated in Fig. 1.1, where a single

vendor deploys the entire infrastructure and managed it using proprietary software

and functionalities in a closed manner.

Leveraging the decoupling OTs from OLSs enabled by coherent transmission

and ROADMs deployment, a large scale implementation of partially disaggregated

architecture is the current objective of major network operators. As a matter of

fact, a fully disaggregated scenario, where the entire network can be composed of

a multi-vendor heterogeneous set of independently controlled components, is not

currently feasible or likely in the foreseeable future in large scale network infras-

tructures, primarily due to efficiency limitations in terms of performance and power

consumption. Nevertheless, an open and partially disaggregated software-defined

networking (SDN), represented in Fig. 1.2, has revolutionized the optical networking

landscape by providing operators with greater control, agility, and scalability en-

abling operators to deploy and integrate multi-domain network infrastructures with

OTs and OLSs from different vendors. This paradigm shift in network architecture

offers opportunities for advanced network orchestration, dynamic resource allocation,

and the development of new services that can meet the evolving demands of the

digital era. Moreover, it reduces vendor lock-in and promoting vendor diversity

leading to increased competition, innovation, and cost efficiency. Operators can

select the best possible hardware components and software solutions that suit their

specific requirements. In particular, open and partially disaggregated SDN has found
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Fig. 1.2 Multi-vendor, multi-domain partially disaggregated network architecture controlled
and managed with open APIs and NOS. Different colors represent distinct vendor domains
and dashed line boxed open interfaces.

practical applications in optical communication in the framework of network virtual-

ization, where operators can create virtual network slices with specific performance

characteristics to support different services and applications, as path computation and

failure recovery, along with an optimized network planning and design. Furthermore,

open and partially disaggregated SDN enables efficient resource sharing and the

provisioning of services tailored to specific customer requirements. Another use case

is traffic engineering, where the central network orchestrator can dynamically steer

traffic flows to optimize network utilization. Even more, progress towards a robust

and reliable open and partially disaggregated SDN solution in optical networks is an

ongoing process with constant advancements in technologies and industry collabora-

tions. Future developments include the integration of artificial intelligence (AI) and

machine learning (ML) techniques to enhance network automation, optimization,

and predictive maintenance.

While open and partially disaggregated SDN brings numerous benefits, it also

poses challenges in terms of control, deployment and management. Ensuring compat-

ibility and interoperability between different vendor solutions is a fundamental and

non trivial requirement for such a paradigm implementation. Additionally, security

considerations are paramount, as the use of open interfaces and software increases

the potential attack surface or they may require sensitive information sharing between

different vendors. Robust security mechanisms, such as authentication, encryption,
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and intrusion detection, must be implemented to protect network infrastructure and

data.

In this perspective, the industry is exploring the potential of open source software

and white-box hardware solutions to further drive vendor neutrality, interoperability,

and innovation [16, 14]. Several organizations and initiatives are committed to

advancing the development and adoption of open optical networking, such as Internet

Engineering Task Force (IETF) [17], Open Networking Foundation (ONF) [18],

Optical Internetworking Forum (OIF) [19], OpenROADM [20], OpenConfig [21],

and Telecom Infra Project (TIP) [22]. These organizations and working groups

play a crucial role in standardization defining common application programming

interfaces (APIs)s, network operating systems (NOSs)s and data models for seamless

integration, as well as in interoperability defining operational specifications and

communal use cases[23, 24].

1.2 Physical Layer Aware Networking

As optical networks become more interconnected and span multiple domains, a

federated and adaptable approach becomes essential. Efficient mechanisms for

orchestrating and managing resources across different administrative domains need

to be developed for inter-domain routing, resource discovery, and policy enforcement

mechanisms enabling seamless and secure interconnection between disparate optical

network domains. In this perspective, the notion of optical network digital twin

(DT) is increasingly gaining traction [25±27]. In general, in a DT concept involves

creating a digital model as a virtual replica of the physical system, including its

components, connections, and operational characteristics, and a mutual automatic

data flow mechanism between the two objects enabling continuous synchronization

and real-time updates. Such a framework allows network operators to gain deeper

insights into the optical infrastructure behavior, anticipate potential issues, perform

effective planning and design, and optimize transmission performance. Moreover,

optical network DT enables the implementation of advanced analytics and machine.

In this thesis work, Gaussian noise model in Python (GNPy) has been considered

as one of the most promising digital models of optical systems. GNPy is an open-

source library that facilitates the development of route planning and optimization

tools specifically designed for multi-vendor optical networks in real-world scenarios
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and is developed and maintained by the Physical Simulation Environment working

group, within the TIP Open Optical & Packet Transport project, as a collaborative

initiative involving esteemed partners like Orange, Microsoft, Telia Carrier, Cisco,

Juniper, Politecnico di Torino, and Meta [28]. Some of the analysis presented in

this manuscript represent GNPy validations and software improvements as results of

an intensive and prolific collaboration with other Physical Simulation Environment

(PSE) and , in general, TIP participating companies. Regarding the data exchange

between the digital and physical models, the current version of GNPy receive a static

snapshot of the network status through structured input/output data. In particular, the

input data structure of GNPy encompasses information such as the network topology

description, network element characterization and configurations, as well as the

desired design targets. Indeed, the accuracy of the digital model is significantly

influenced by the quality of information provided for the virtual representation of

the physical model. In order to implement a efficient, robust and reliable DT im-

plementation, the data pipeline defining the automatic flow mechanism has to be

implemented in the open and disaggregated SDN paradigm, leveraging the common

open API, standardized data structures and network information obtained through

diverse telemetry equipment. In the scope of this thesis, customized software frame-

work solutions have been devised to cater to specific use cases to provide an enhanced

implementation of GNPy with data of varying levels of accuracy.

In general, an optical network digital model must accurately and reliably es-

timate the Quality of Transmission (QoT) of a transparent lightpath connecting

source and destination nodes in a coherent wavelength division multiplexing (WDM)

transmission scenario [29±31]. In this transmission scenario, every lightpath can

be approximated as an additive white and Gaussian noise (AWGN) channel and the

generalized signal-to-noise ratio (GSNR) can be considered as QoT metric [32, 15],

including all the generalized signal-to-noise ratio (SNR) impairments due to the

signal transmission. The overall lightpath SNR of a given channel λ , SNRλ , can be

obtained considering the transmission GSNR, the transmitter signal-to-noise ratio

(SNR TX) and the receiver signal-to-noise ratio (SNR RX):

SNRλ =

(

1
SNRTX;λ

+
1

GSNRλ
+

1
SNRRX;λ

)−1

. (1.1)

This quantity provides an accurate evaluation of the expected pre-forward error cor-

rection (FEC) bit error rate (BER), which is crucial for assessing lightpath feasibility
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and serves as unique figure of merit of network control, planning and optimiza-

tion [33±35].

Additionally, by means of the AWGN assumption, the transmission GSNR can be

expressed by properly combining the SNR degradations induced by the propagation

through each independent OLS crossed by the lightpath [36]:

GSNRλ =

(

N

∑
n

1

GSNR(n)
λ

)−1

, (1.2)

where N is the total number of crossed OLSs, n = 1, · · · ,N, and GSNR(n)
λ

is the

GSNR degradation on the channel λ introduced by the transmission through the

n-th OLS. Consequently, the AWGN abstraction is perfectly aligned with the open

and partially disaggregated SDN paradigm and allows for a separate optimization

of each OLS within the network infrastructure. However, in realistic network

implementations the deterministic SNRλ value is not the unique factor contributing

to overall transmission performance. This is due to the statistical nature of certain

transmission phenomena like the polarization dependent loss (PDL), and device-

specific thresholds such as the accumulated PMD and CD limitations of the DSP

compensation. Therefore, a comprehensive the digital model must take into account

supplementary metrics in order to evaluate additional SNR penalties and transmission

limitation, ensuring a reliable reference including system margins [37].

Finally, the AWGN assumption implies a further decomposition of the single-

OLS GSNR degradation on the channel λ , encompassing both the optical signal-to-

ROADMTransceiver ROADM Transceiver

GainLoss ++𝑷𝐍𝐋𝐈,𝝀𝑷𝝀

G
S
N

R

Optical Line System

PDL/PDGCD, PMDPDL/PDG PDL/PDG

𝑷𝐀𝐒𝐄,𝝀

𝐒𝐍𝐑 𝐓𝐗 𝐒𝐍𝐑 𝐑𝐗

Fig. 1.3 Schematic of a comprehensive digital models able to evaluate the transmission
GSNR and additional SNR penalties.
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noise ratio (OSNR) and nonlinear signal-to-noise ratio (SNR NL):

GSNRλ =

(

1
OSNRλ

+
1

SNRNL;λ

)−1

=

(

PASE;λ

Pλ
+

PNLI;λ

Pλ

)−1

. (1.3)

Here, Pλ represents the channel power, whereas, PASE;λ and PNLI;λ represent the total

amounts of noise due to, respectively, the amplified spontaneous emission (ASE)

generated by the optical amplifiers, and the nonlinear interference (NLI) due to the

fiber Kerr effect [38]. A schematic of the comprehensive digital model considered in

the scope of this thesis work is shown in Fig. 1.3.

1.3 Outline of the Remainder of this Thesis

This thesis work includes novel and effective analytical models and AI solutions for

open and partially disaggregated SDN.

Chapter 2 presents an extensive physical layer modeling formulation for each

network element. An efficient and precise approximation of the generalized Gaussian

noise (GGN) model as a fast solution for multi-band transmission scenarios is

proposed. Moreover, a perturbative solution of the stimulated Raman scattering

(SRS) that offers an explicit formulation of higher order terms in the SRS-induced

power transfer is defined. The chapter also discusses in details the PDL effect with a

statistical approach.

Chapter 3 demonstrates the enhanced implementation of GNPy, based on the

proposed transmission models, which is experimentally validated in a 20-span testbed

installed at Orange Labs. GNPy shows significant accuracy on a flex-grid, flex-rate

transmission scenario up to 800 Gbps, including Nyquist multi-subcarrier TRX. In

the chapter a validation of the disaggregated implementation of GNPy is presented,

along with validations of a statistical approach to the PDL effect.

In Chapter 4, the proposed digital model is validated using extensive simulation

campaigns based on the split-step Fourier method (SSFM) and the numerical solution

of the SRS. In this chapter a model-driven approach is proposed for the optimization

of multi-band transmission problems, achieving highly satisfactory results through a

fast and descriptive extension of the local-optimization global-optimization (LOGO).
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Finally, in Chapter. 5, two ML solutions are proposed and experimentally vali-

dated for a variable spectral load transmission scenario, where a deep neural network

(DNN) implementation provides very accurate prediction of signal and ASE noise

power fluctuations induced by the erbium-doped fiber amplifier (EDFA) behavior in

partially loaded transmission scenarios.



Chapter 2

Physical Layer Model

This chapter offers a comprehensive and in-depth depiction of the physical layer

characteristics for every optical network element. The focus is on exploring analyti-

cal, numerical, and statistical methodologies with the goal of achieving efficient and

accurate modeling of the optical transmission. The aim is to provide detailed insights

into the intricate nature of the physical layer, enabling a thorough understanding of

the optical network behavior.

2.1 Optical Transceiver

Within this manuscript, each WDM spectrum is defined as a collection of multiplexed

channels that are transmitted or received by DSP-based coherent TRXs, employing

polarization multiplexed quadrature amplitude modulation (QAM) formats. Each

channel is characterized by a certain central frequency, fλ , power, Pλ , symbol rate,

Rs,λ , slot width, roll-off and modulation format.

As discussed in Sec. 1.2, SNRλ serves as an estimation of the pre-FEC BER

that has to be below a certain threshold to ensure an error-free digital stream after

the FEC. Fig. 2.1(a) illustrates three distinct SNR-to-BER conversion functions for

different modulation formats: quadrature phase-shift keying (QPSK), 8-QAM and

16-QAM. Establishing the lightpath feasibility results in a trade-off between the

achievable capacity and required SNRλ .
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Conversely, the BER-to-SNR conversion functions play a crucial role in ex-

perimental validations of SNR prediction methodologies, as shown in Fig. 2.1(b),

giving an accurate measurement of the total channel noise. Furthermore, a precise

BER-to-SNR conversion function results in a telemetry means leveraging BER mea-

surements that are readily accessible at the TRX side, and reducing the need for

additional specialized equipment or monitoring devices. Generally, the SNR-to-BER

conversion function can be obtain by means of the following expression [39, 40]:

BER = k1erfc
(

√

k2SNR
)

, (2.1)

where k1 and k2 are two modulation-format-dependent parameters,

QPSK ≡
{

k1 = k2 =
1
2

}

,

8−QAM ≡
{

k1 =
2
3
,k2 =

3
14

}

,

16−QAM ≡
{

k1 =
3
8
,k2 =

1
10

}

.

When SNR TX and SNR RX are unknown, their joint contribution to SNRλ can

be evaluated with a back-to-back (B2B) characterization [41±43], measuring the

BER variation induced by a controlled ASE noise loading. It is worth noting that

in order to obtain an accurate measurement that can be used in a WDM spectrum

transmission scenario, the B2B characterization must be performed transmitting

the channel under test (CUT) with the two neighboring channels, one for each

side. Fig.2.1(c) shows the results of the B2B characterization applied to several

commercial TRXs, including different values of Rs and modulation format, along

with the base SNR-to-BER evaluated curves obtained applying Eq. 2.1 to the bare

OSNR variation, ∆OSNR, induced by the controlled ASE noise loading:

BER = k1erfc
(

√

k2∆OSNR
)

. (2.2)

It can be deduced that the mismatch between the measured and evaluated SNR-to-

BER curves is exactly produced by the joint SNR TX and SNR RX contribution to

SNRλ , which can be evaluated fitting the measured B2B curve with Eq. 2.1 and
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(a)

(b)

(c)

Fig. 2.1 (a) SNR-to-BER conversion function for QPSK, 8-QAM and 16-QAM modulation
formats, respectively. (b) BER-to-SNR conversion for SNR prediction validations. (c)
Back-to-back curves measured with commercial transceivers. Explicit values on x and y axis
have been omitted because of non disclosure purposes.
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slightly modified version of Eq.1.1:

SNR =

(

1
SNRTX

+
1

∆OSNR
+

1
SNRRX

)−1

. (2.3)

Moreover, Fig.2.1(c) demonstrate that the SNR-to-BER curves depend only on the

modulation format, and slightly on the specific TRX instance, when the SNR is

expressed on the channel Rs. Even more, among the characterized TRXs, all the

16-QAM formats employ the probabilistic constellation shaping (PCS) being in

reality equivalent to 8-QAM formats and resulting in similar SNR-to-BER curves.

2.2 Optical Fibers

In order to provide a reference for the fiber parameters descriptions, Tab. 2.1 reports

the frequency bounds of the each band composing the entire multi-band scenario

considered in this work.

To ensure that the considered approach resembles a realistic use-case scenario,

the description of fiber parameters has been obtained in two ways; by jointly utilizing

experimental data retrieved by in-field measurements, and the use of theoretical

models that are enhanced by commercial data-sheet information.

Within the following subsections, the essential physical layer parameters which

must be considered to achieve an accurate wideband physical layer model are de-

scribed in detail. For further in-depth analysis of these parameters see [44].

Table 2.1 Definition of the frequency bounds and total bandwidth of the each band from U to
O.

BAND Lowest Central Highest Central Bandwidth [THz]

Frequency [THz] Frequency [THz]

U 178.981 184.488 5.507

L 184.488 191.561 7.073

C 191.561 195.943 4.382

S 195.943 205.337 9.394

E 205.337 220.436 15.099

O 220.436 237.930 17.494
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2.2.1 Physical Layer Fiber Parameters

Intrinsic Loss Coefficient

The fiber loss coefficient, α , takes into account the power loss when an optical signal

propagates through a fiber. The fiber attenuation depends on the propagating signal

wavelength [45], which is a result of the fiber composition and manufacturing process.

From a phenomenological point of view, the contributions involved in the wavelength

range between 1.2 to 1.7 µm are the Rayleigh scattering, the violet and infra-red

absorption, the OH-ion absorption peaks at approximately 1.25 and 1.39 µm, and

the absorption due to phosphorous within the fiber core. An effective parametric

model of the loss coefficient function with respect to each phenomenological factor

has been provided by [46]. With all terms in logarithmic units (dB/km), the loss

coefficient profile can be expressed with respect to the frequency, f :

α( f ) ≃ αS( f )+αUV( f )+αIR( f )+α13( f )+α12( f )+αPOH( f ) , (2.4)

where the right-hand side terms represent the Rayleigh scattering, ultraviolet, infrared,

OH− and (P)OH peak absorption contributions, respectively:

αS(λ ) = Aλ−4 +B ,

αUV(λ ) = KUVeCUV/λ ,

αIR(λ ) = KIRe−CIR/λ ,

α13(λ ) = A1

(

Aa

A1
e
−(λ−λa)2

2σ2
a +

1
A1

3

∑
i=1

Aie

−(λ−λi)
2

2σ2
i

)

,

α12(λ ) = A1

(

1
A1

5

∑
i=4

Aie

−(λ−λi)
2

2σ2
i

)

,

αPOH(λ ) = APOHe

−(λ−λPOH)2

2σ2
POH .

Focusing on a wideband scenario, the general model can be simplified by considering

the relevant factors in the C-, L-, and S-bands, allowing the contributions due to the

OH-ion absorption peaks at 1.25 µm and phosphorous to be neglected. Furthermore,

ultraviolet absorption presents constant broadband behaviour within the band of



2.2 Optical Fibers 15

interest. With these considerations a generic loss coefficient function may be created,

considering the impact of each phenomenological contribution through the definition

of four parameters; A, B, KIR and A1.

In this analysis, a loss coefficient function that has been retrieved from experi-

mental measurements upon a standard single-mode fiber (SSMF) is considered. The

full profile over the entire spectral region considered within this work is depicted

in Fig. 2.2. By using this parametric model it is possible to separate the different
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Fig. 2.2 The fiber intrinsic loss coefficients, α , evaluated over the U-to-O transmission bands.

contributions of each absorption phenomenon from a measured fiber intrinsic loss

coefficient profile; remarkably this procedure has previously been performed within

C-band experimental campaigns [42, 47]. For all the wideband investigations re-

ported in this thesis, the fiber intrinsic loss coefficient profile shown in Fig. 2.2 has

been considered. It is worth noting that the latest generation of deployed fiber does

not feature OH absorption peaks [48], and αPOH( f ) can be neglected in this case.

Chromatic Dispersion

Chromatic dispersion is the dependence of the refractive index of the medium upon

the propagating optical frequency; in optical communications systems this property

determines the broadening of an optical pulse propagating through the fiber, due

to the different speeds of each spectral component. This phenomenon is modelled
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by the Taylor series expansion of the mode-propagation constant, β , with respect

to the central frequency of the pulse. Using this approach, β2 is defined as the

second derivative of β with respect to the optical frequency computed in the pulse

central frequency, and is the parameter that describes the pulse broadening. From an

application point of view, optical fiber producers report the dispersion parameter, D,

as a function of the optical pulse wavelength within fiber data sheets. Considering

SSMF fiber (e. g. Corning® SMF-28e®), a common expression of this parameter is:

D(λ )≈ S0

4

[

λ − λ 4
0

λ 3

]

, (2.5)

where S0 is the zero dispersion slope and λ0 is the zero dispersion wavelength. D is

related to β2 according to the following relation:

β2( f ) =− c

2π f 2 D( f ) , (2.6)

where c is the speed of light in a vacuum. Values within the common tolerance

ranges of commercial SSMF, S0= 0.089 ps/nm2/km and λ0= 1314 nm, have been

considered for all the wideband investigations reported in this thesis. A graphical

representation of D and the related β2 parameters is reported in Fig. 2.3.
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Fig. 2.3 The fiber chromatic dispersion coefficients, β2 and D, evaluated over the U-to-O
transmission bands.
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Nonlinear Coefficient

The fiber nonlinear contribution is mathematically weighted within the pulse propa-

gation equation by the nonlinear coefficient, γ . Formally, it is defined in terms of

optical power as:

γ( f ) =
2π f

c

n2

Ae f f ( f )
, (2.7)

where n2 is the nonlinear Kerr parameter and Ae f f is the effective mode area. When

the mode profile of the pulse is well approximated by a Gaussian function, the

effective area can be evaluated as Ae f f= π w2, where w is the mode radius, which

depends upon the central pulse wavelength and the fiber geometry. Specifically, the

mode radius can be expressed as w= a/
√

lnV , where a is the fiber core radius and

the parameter V is the normalized frequency. This may be written in case of a small

relative step index at the core-cladding interface, ∆n≈ (n1 −nc)/n1, as:

V (λ ) =
2π

λ
an1

√

2∆n , (2.8)

where n1 is the core refractive index and nc is the cladding refractive index.

Fig. 2.4 showcase the frequency-dependent nonlinear coefficient and effective

area profiles considered in this analysis, which have been obtained fixing the basic

manufacturing fiber parameters to common SSMF values of a= 4.2 µm and n2=

2.6 ·10−20 m2/W. Considering a step index fiber, the refractive indexes are computed

assuming a cladding refractive index of 1.45 and a refractive index difference with

respect to the core of 0.31%.

Raman Gain Coefficient

A significant broadband nonlinear phenomenon that takes place in WDM comb

optical fiber propagation is the SRS [49]. The SRS involves the interaction between

the propagating electromagnetic field and the dielectric medium of the fiber. In

optical fiber communications, the SRS due to propagation of a WDM comb is also

known as the Raman cross-talk, as the interaction in this case is only due to the

different channels within the spectrum. The fundamental parameter that describes

the regulation of the power transfer between channels during fiber propagation is

the Raman gain coefficient, gR, quantifying the coupling between a specific pair of
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Fig. 2.4 The effective area, Ae f f , and nonlinear coefficient, γ , evaluated over the U-to-O
transmission bands.

channels with a frequency shift of ∆ f = fp − fs, where p and s represent the index

of the channel at higher (pump) and lower (Stokes wave) frequencies, respectively.

This coefficient depends on several features of the fiber and the propagating channel

modes: the type and the concentration of dopants in the fiber core, the reciprocal

polarization state, and the mode overlap between the pump and the Stokes wave and

the absolute frequency of the pump. For a specific fiber, it is possible to measure the

Raman gain coefficient profile using a reference pump at a frequency fre f [50]. The

resulting curve can be expressed in terms of optical power as:

g0(∆ f , fre f ) =
γR(∆ f , fre f )

Ae f f (∆ f , fre f )
, (2.9)

where γR is the Raman gain coefficient in terms of mode intensity (expressed in

m/W) and Ae f f (∆ f , fre f ) is the effective area considering the overlap between the

pump and the Stokes wave. The effective area can be estimated by taking the average

of the effective areas at the single pump and Stokes wave frequencies, assuming a

Gaussian mode intensity distribution [51].

In order to comprehensively simulate optical fiber propagation and include SRS

effects, the complete Raman gain coefficient can be modelled by means of the
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following expression:

gR(∆ f , fp) = k
ps
pol g0(∆ f , fre f )

fp

fre f

Ae f f (∆ f , fre f )

Ae f f (∆ f , fp)
, (2.10)

where k
ps
pol takes into account the reciprocal polarization state between the pump and

the Stokes wave, and the ratios between the frequencies and effective areas account

for the scaling of the pump and effective area.

Focusing on germano-silicate fibers, in particular on SSMF, the germanium

concentration within the core fiber is extremely low, producing a refractive index

difference of a fraction of a percentage point. In Fig. 2.5, it is shown an experimental

Raman gain coefficient curve that corresponds to that of the fused silica reported in

with respect the reference frequency 206.185 THz, characterized by the double peak

at approximately 15 THz frequency distance between the probe and the pump. In the

simulation model, all propagating channels within the WDM comb are assumed to

be depolarized, introducing a unitary polarization coefficient, kpol .

In the following, for a matter of simplicity, the notation of the Raman gain

coefficient is:

gR(∆ f , fre f ) = gR( f , f ′) (2.11)

where f is the frequency of the channel under investigation and f ′ is the interfering

channel.

2.2.2 Stimulated Raman Scattering

The first order differential equation describing the SRS is defined on the power

spectral density, G (z, f ), as follows:

d
dz

G (z, f ) =

[

−α( f )+
∫

d f ′gR( f , f ′)G (z, f ′)

]

G (z, f ) . (2.12)

The general solution of Eq. 2.12 can be decomposed as the product of the solution of

the linear operator, L (z, f ), and a nonlinear term, N (z, f ):

G (z, f ) = L (z, f )N (z, f ) , (2.13)
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Fig. 2.5 Experimental Raman gain coefficient curve for fused silica.

given the boundary conditions:

G (z, f )|z=0 = G0( f )⇒ N (z, f )|z=0 = 0 . (2.14)

In particular, the solution of the linear operator is defined by the following expression:

(

d
dz

+α( f )

)

L (z, f ) = 0

⇒ L (z, f ) = G (z = 0, f )e−α( f )z

= G0( f )e−α( f )z = G0( f )
d
dz

Λ(z, f ) , (2.15)

where the effective length, Λ(z, f ), is defined as the integral along z of the intrinsic

fiber loss:

Λ(z, f ) =
1− e−α( f )z

α( f )
(2.16)

On the other hand, the nonlinear term must satisfy Eq. 2.17:

dN (z, f )

dz
= N (z, f )

∫

d f ′gR( f , f ′)L (z, f ′)N (z, f ′) . (2.17)
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A well-known exact solution of Eq. 2.17, see [52, 53] for the details, can be derived

considering a flat intrinsic loss coefficient, α( f ) = α ⇒Λ(z, f ) = Λ(z), and a linear

Raman gain coefficient, gR( f , f ′) =−( f − f ′)KR. By means of these simplifications,

the solution of Eq. 2.17 is:

N (z, f ) =
Pe− f KRPΛ(z)

∫

d f ′G0( f ′)e− f ′ KRPΛ(z)
, (2.18)

where P =
∫

d f G0( f ) is the total launch power.

In general, as shown in Fig. 2.2 and Fig. 2.5, both the assumptions, a flat loss

coefficient and a linear Raman gain coefficient, are increasingly inaccurate when

the total bandwidth exceeds roughly 15 THz. In [54], a correction of Eq. 2.18 is

proposed considering the triangular approximation of the Raman coefficient profile

[55] and an interpolation of the intrinsic fiber loss coefficient.

In this work, a perturbative approach is defined, validated and analysed. The

advantage of this approach is that, when the numerical series defined by the pertur-

bative expansion converges, a truncated solution can be defined with an arbitrary

level of accuracy, depending on the order of the truncation. Moreover, the solution of

the perturbative expansion provides a straightforward expression of the correlation

between the system parameters and the final result.

First, by means of the substitution Γ(z, f ) = ln(N (z, f )), Eq. 2.17 can be written

as follows:

dΓ(z, f )

dz
=

∫

d f ′gR( f , f ′)L (z, f ′)eΓ(z, f ′) (2.19)

⇒ Γ(z, f ) =
∫ z

0
dz′
∫

d f ′gR( f , f ′)L (z′, f ′)eΓ(z′, f ′) . (2.20)

Considering the Raman gain coefficient maximum value as a perturbative param-

eter, Γ(z, f ) can be formally defined as an infinite sum in terms of a perturbative

expansion:

Γ(z, f ) =
∞

∑
k=1

Γ(k)(z, f ) = Γ(1)(z, f )+Γ(2)(z, f )+Γ(3)(z, f )+ · · · , (2.21)
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where the k-th order term Γk(z, f ) is proportional to the k-th power of the perturbative

parameter, max [gR( f , f ′)]. By mean of this expansion, Eq.2.20 becomes:

Γ(z, f ) =
∫ z

0
dz′
∫

d f ′gR( f , f ′)L (z′, f ′)
∞

∏
k=1

eΓ(k)(z, f )

=
∫ z

0
dz′
∫

d f ′gR( f , f ′)L0(z
′, f ′)

∞

∏
k=1

∞

∑
n=0

1
n!

(

Γ(k)(z′, f ′)
)n

, (2.22)

and the k-th can be expressed as follows:

Γ(k)(z, f ) =
∫ z

0
dz′
∫

d f ′gR( f , f ′)L (z′, f ′)

∑
{n j}

k−1

∏
j=1

1
n j!

(

Γ(k j)(z′, f ′)
)n j

, (2.23)

∀{n j} such that
k−1

∑
j=1

k j n j = k−1 .

Given Eq. 2.23, successive orders can be evaluated knowing previous orders.

In particular, the first four orders are:

Γ(1)(z, f ) =
∫ z

0
dz′
∫

d f ′gR( f , f ′)L (z′, f ′)

=
∫

d f ′gR( f , f ′)P0( f ′)Λ(z, f ′) , (2.24)

Γ(2)(z, f ) =
∫ z

0
dz′
∫

d f ′gR( f , f ′)L (z′, f ′)
[

Γ(1)(z′, f ′)
]

, (2.25)

Γ(3)(z, f ) =
∫ z

0
dz′
∫

d f ′gR( f , f ′)L (z′, f ′)
[

Γ(2)(z′, f ′)+
1
2

(

Γ(1)(z′, f ′)
)2
]

, (2.26)

Γ(4)(z, f ) =
∫ z

0
dz′
∫

d f ′gR( f , f ′)L (z′, f ′)

[

Γ(3)(z′, f ′)

+Γ(1)(z′, f ′)Γ(2)(z′, f ′)+
1
3!

(

Γ(1)(z′, f ′)
)3
]

. (2.27)

Beyond the first order, the integration in z′ can be analytically solved for any

other orders, obtaining an expression that depends only on the system parameters
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and input. As an example, the integrated solution for the second order:

Γ(2)(z, f ) =
∫

d f ′gR( f , f ′)P0( f ′)
∫

d f ′′gR( f ′, f ′′)P0( f ′′)

1
2

[

Λ(z, f ′)Λ(z, f ′′)+

(

α( f ′)−α( f ′′)
α( f ′)α( f ′′)

)

1− e−[α( f ′)+α( f ′′)]z

α( f ′)+α( f ′′)

]

.(2.28)

It is worth to underline that, depending on the system characteristics and the spe-

cific software implementation, it may be convenient, in terms of computational cost,

to perform the analytical integration in or, instead, perform a numerical integration,

maintaining an explicit expression of the previous order. As a matter of fact, looking

at Eq.2.28 it can be observed that the analytical integration removes the dependency

of the solution on multiple distances, required for a numerical integration, but it

implies additional integrals in the frequency space.

In conclusion, considering the perturbative expansion Eq. 2.21 up to the k-th

order, the truncated solution of Eq. 2.13 is:

G
(k)(z, f ) = L (z, f )exp

[

k

∑
j=1

Γ( j)(z, f )

]

. (2.29)

Considering a total number of channels, Nch, combined in a WDM spectrum propa-

gating through a single fiber span, Eq. 2.29 can be used to evaluate the corresponding

k-th order power profile truncated solution:

P
(k)
λ

(z) =
∫

Bλ

d f G
(k)(z, f ) = Pλ e−αchz exp

[

k

∑
j=1

Γ
( j)
λ
(z)

]

, (2.30)

where λ ∈ [1, · · · ,Nch] and Bλ the λ -th channel bandwidth. αλ and Γ
( j)
λ
(z) are

evaluated at the channel central frequency and considered flat within Bλ , and Pλ=
∫

Bch
d f G0( f ) is the λ -th channel launch power.

In order to quantify the accuracy of the proposed methodology, the k-th order

relative error can be defined in logarithmic units as follows:

E
(k)
λ

(z) = 10log10

(

Pλ (z)

P
(k)
λ

(z)

)

=
10

ln(10)

∞

∑
j=k

Γ
( j)
λ
(z) . (2.31)
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Eq. 2.31 provides an explicit expression of the accuracy achieved with different

orders considered in the perturbative expansion, as the estimation error is defined as

the remainder left out the truncated solution of Eq. 2.12.

2.2.3 Kerr Effect

Regarding the NLI noise, a significant level of complexity remains in modeling

and simulation, even when the fiber physical parameters described in Sec. 2.2.1

are accurately known. Valuable models have been proposed in order to estimate

the NLI noise generation including the SRS [56±58, 54]. These models have been

accurately validated in different scenarios, both with simulations and experiments.

Nevertheless, a satisfactory level of accuracy is not guaranteed, and likely compro-

mised in a wideband scenario. The objective of this analysis is to obtain a wideband

extended model that includes the frequency-dependent variations of all physical

layer parameters described in Sec. 2.2.1, that also maximally enables spectral dis-

aggregation (a fully disaggregated model is prevented by the nonlinear nature of

the investigated phenomena). As described in Sec. 1.1, the disaggregated approach

enables the most dynamic, flexible and efficient system optimization and operation.

Moreover, as per the span-by-span accumulation, spectral disaggregation allows

the distinct, simultaneous effects that contribute to the NLI noise generation to be

separated.

Consequently, a spectrally disaggregated version of the GGN NLI power spectral

density presented in Eq. 2 in [56] is considered. This model has been chosen as the

solution of the SRS equations is not approximated, which enables further investiga-

tions into larger bandwidths. Additionally, a spectrally separated implementation of

the GGN is already present in GNPy, and has been validated in several experimental

test-beds, both in laboratories and brown-field infrastructures [59, 41, 43]. However,

this spectrally separated GGN implementation is not explicitly disaggregated and

does not take into account the frequency-dependent variations of the fiber physical

parameters.

In order to obtain a disaggregated model where all frequency-dependent varia-

tions are properly considered, first the dual-polarization (DP) Manakov equation [60]
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is considered:

∂zA⃗(z, t) =
[

−α̂(z)+ ιβ̂
]

A⃗(z, t)− ι
8
9

γ̂
[

A⃗(z, t) · A⃗∗(z, t)
]

A⃗(z, t) , (2.32)

where A⃗(z, t) is the DP modal amplitude at the position z at the time t; α̂(z), β̂

and γ̂ are the gain/loss, chromatic dispersion and nonlinear coefficient operators,

respectively; ι represents the imaginary unit, and the operator · is the standard

product in the bi-dimensional polarization space. As Eq. 2.32 is expressed in time-

domain representation, the gain/loss, dispersion and nonlinear coefficient are defined

as operators. In particular, β̂ is a convolution in the time-domain representation

that can be expressed as a frequency-dependent multiplicative factor considering

a basis in the frequency-domain representation space. Whereas, α̂(z) accounts for

the power variation along the position induced by both the intrinsic fiber loss and

the SRS. In this analysis, the Kerr effect is considered as a perturbative nonlinear

effect generated by the DP modal amplitude solution of the SRS equation described

in Sec.2.2.2, therefore, α̂(z) can be defined as a linear operator and can be expressed

as a frequency- and position-dependent multiplicative factor considering a basis in

the frequency-domain representation space.

The Manakov equation significantly simplifies NLI estimation by neglecting

the PMD introduced by the fiber propagation. A more general approach can be

obtained considering the dual-polarization coupled nonlinear Schrodinger equation

(DP-CNLSE) [60], which takes into account the stochastic birefringence realization

inducing the PMD. Nevertheless, the focus of this study is a solution in a disaggre-

gated network framework, where the signal transmitted through a specific OLS can be

considered as fully Gaussian and depolarized, for each span. Under these conditions,

it has been shown that the effect of PMD on the NLI generation is negligible [61],

and that the small differences between the solutions of the Manakov equation and the

DP-CNLSE do not vary significantly when enlarging the investigated bandwidth up

to 4 THz. In this analysis the solutions of the Manakov equation and the DP-CNLSE

are assumed to be not significantly different when a wideband transmission scenario

is considered, as their differences do not depend on the overall bandwidth.

The formal solution of Eq. 2.32 is a combination of a linear, L (z), and a

nonlinear, N (z), operators applied to the modal amplitude at the fiber input, A⃗(z =
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0, t) = A⃗(t):

A⃗(z, t) = L (z)N (z)A⃗(t) , (2.33)

given the following properties:

∂zL (z)L −1(z) =
(

−α̂(z)+ ιβ̂
)

, (2.34)

L (z)∂zN (z)N −1(z)L −1(z) = −ι
8
9

γ̂
[

A⃗(z, t) · A⃗∗(z, t)
]

. (2.35)

In standard fiber-optic transmission the nonlinear term in Eq. 2.32 can be consid-

ered as a perturbation source of the NLI noise amplitude, A⃗NL(z, t), of the linear

propagation of the signal, A⃗L(z, t) = L (z)A⃗(t):

A⃗(z, t)≈ A⃗L(z, t)+L (z)A⃗NL(z, t) , (2.36)

where A⃗NL(z, t) includes the perturbative expansion of N (z) up to a certain γ order,

and Eq. 2.36 is an identity only when all perturbation orders are summed to obtain

A⃗NL(z, t). In optical communications scenarios, an accurate estimation of the NLI

can be obtained by considering the N (z) first order perturbation in γ , and the noise

amplitude can be calculated as the solution of the following differential equation:

L (z)∂zA⃗NL(z, t) =−ι
8
9

γ̂
[

A⃗L(z, t) · A⃗∗
L(z, t)

]

A⃗L(z, t) . (2.37)

In general, A⃗(z, t) is the superposition of Nch uncorrelated signals and can be written

as follows:

A⃗(z, t) =
Nch

∑
i=1

A⃗λi
(z, t) =

Nch

∑
i=1

∫ ∞

−∞
d f A⃗λi

(z, f )eι2π f t , (2.38)

where A⃗λi
(z, fi) is the Fourier transformation of A⃗λi

(z, t). In the frequency domain,

the L (z) is diagonal and has the following solution for the ith channel:

A⃗L,λ (z, f ) =

√

Pλ

2Rsλ

ρλ (z) e−ιβ ( f )z ϕ⃗λ ( f ) , (2.39)

where Pλ is the total channel power over the two polarization states, Rs,λ is the

channel symbol rate, ρλ (z) is the channel power gain/loss profile along z, and ϕ⃗λ ( f )

is the channel transmitted modulated signal, in the frequency domain, normalized
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with respect to both the average channel power for each polarization and the channel

symbol rate. In particular, ρλ (z) can be found for each channel by solving the coupled

SRS equations [51]. This set of coupled equations can be solved numerically by

evaluating the power profile for all channels incrementally by position [62], or

considering the perturbative SRS solution presented in Sec.2.2.2.

In general, the metric PNLI;λ used in Eq. 1.3 can be defined as the variance of

the noise amplitude, A⃗NL, evaluated for a specific received channel. In further detail,

in order to estimate PNLI;λ , the channel signals are supposed to be received after

propagation through the fiber span with an ideal receiver that applies the matched

filter for the channel, compensates for all accumulated CD and PMD, and equalizes

the channel signal by compensating for the entire fiber gain/loss profile. By means

of these transformations, the channel signal reduces to ϕ⃗λ ( f )+ A⃗NL,λ ( f ), where Ls

is the span length and A⃗NL,λ ( f ) = A⃗NL,λ (z = Ls, f ) is the solution of Eq. 2.37 in

the frequency domain. At this point, the ideal receiver can sample the signal and

the PNLI;λ can be defined as the variance of the A⃗NL,λ ( f ) power over all symbol

sequences in the realization space:

PNLI;λ =
∫ ∞

−∞
d f

∫ ∞

−∞
d f ′ Cov

[

A⃗NL,λ

]

, (2.40)

Cov
[

A⃗NL,λ

]

=
〈

A⃗∗
NL,λ ( f ′)·A⃗NL,λ ( f )

〉

−
〈

A⃗∗
NL,λ ( f ′)

〉

·
〈

A⃗NL,λ ( f )
〉

,

where ⟨· · · ⟩ represents the expectation value operator over the symbol ensemble. As

each normalized transmitted channel signal, ϕ⃗λ ( f ), can be considered as Gaussian

distributed (in the symbol sequence realization space), with a unitary power on

each polarization, and statistically independent with respect to other channels, the

expectation value operator verifies the following property:

〈

N

∏
i, j

ϕ⃗∗
λi
( fi) · ϕ⃗λ j

( f j)

〉

= ∑
p∈P

N

∏
i, j

〈

ϕ⃗∗
λi
( fi) · ϕ⃗λ j

( f j)
〉

= ∑
p∈P

N

∏
i, j

2δ λi

λ j
δ ( fi − f j), (2.41)

where P is the space of all i, j permutations that results in a nonzero expectation

value,δ λi

λ j
and δ ( fi − f j) are the Kronecker and Dirac deltas, respectively.
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With a few steps of algebra, as in [56], the solution of Eq.2.37 can be evaluated

in Eq. 2.40 and, separating the self-channel, PSC,λ , and cross-channel PXC,λ NLI

noise powers:

PSC,λ = ηλ ,λ P3
λ = γ2

λ WSCI
λ

λ (Ls)
P3

λ

Rsλ
3 , (2.42)

PXC,λ ,κ = ηλ ,κPλ P2
κ = γ2

λ WXCI
λ

κ (Ls)
Pλ

Rsλ

(

Pκ

Rsκ

)2

, (2.43)

where λ and κ represent the CUT and the interfering channel, respectively. Addi-

tionally:

WSC = (1+C∞)

(

8
9

)2 6
23 = (1+C∞)

16
27

,

WXC = 2
16
27

,

are the single-channel (SC) and cross-channel (XC) weights coming from the statis-

tics and the polarization, whereas

I
λ

κ (Ls) =
∫ ∞

−∞
d f

∫ ∞

−∞
d f ′

∫ ∞

−∞
d f ′′Iκ( f ′)Iκ( f ′− f ′′)

· Iλ ( f − f ′′)Iλ ( f )
∣

∣Ψκ

(

Ls; f ′, f ′′, f
)∣

∣

2
, (2.44)

where:

Iλ (x) =







1 if x ∈ Iλ ≡
[

fλ − Rsλ
2 , fλ +

Rsλ
2

]

0 otherwise
,

Ψκ

(

Ls; f ′, f ′′, f
)

=
∫ Ls

0
dz ρ2

κ(z
′)eι2π2∆β λ

κ ( f ′, f ′′, f )z , (2.45)

∆β λ
κ ( f ′, f ′′, f ) = β ( f ′)−β ( f ′− f ′′)+β ( f − f ′′)−β ( f )

≈ (2π)2

2
f ′′( f ′− f )

[

β2( f ′)+β2( f )
]

.
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In general, further analytical simplifications of Eq.2.44 may be possible, but Eq. 2.45

cannot be analytically integrated, as ρ2
κ(z) is evaluated numerically and its exact

value depends on the signal launch power. As a disaggregated version of the GGN

has been obtained, allowing a more accurate depiction of the multi-band scenario,

the next objective is finding a numerical approximation to Eq. 2.44 that allows a fast

and accurate simulation of the investigated wideband transmission scenario.

The GGN implementation in GNPy evaluates Eq. 2.44 by numerical integration

with a less precise expression of the frequency-dependent fiber parameters. This

solution is time consuming, does not scale properly with the number of the interfering

channels, and it is prone to numerical errors due to artificial resonances, especially

when the interference channel is spectrally distant from the CUT. In this work, a

numerical solution to Eq. 2.44 is obtained through an approximation: first dividing

the fiber length in N uniform steps, {z0 = 0, ...,zm = m∆z, ...,zN = Ls}, such that

within each step ρ2
κ,m(z) = ρ2

κ,m(zm)e
−α̃m(z−zm). By means of this decomposition,

Eq. 2.45 can be solved incrementally by applying an analogous methodology to the

one reported in [63], providing the following approximate solution on the m-th step:

Ψκ

(

zm; f ′, f ′′, f
)

≈ Λ(zm)
[

1− ι
∆β λ

κ ( f ′, f ′′, f )
α̃m

] . (2.46)

where the effective length evaluated at the m-th step, Λ(zm), is defined as follows:

Λ(zm) = [ρ2
κ,m(zm)−ρ2

κ,m(zm+1)]/α̃m. (2.47)

Finally, by substituting this approximated solution into Eq. 2.44:

I
λ

κ (Ls)≈ ∑
m,n

√

|α̃mα̃n|Λ(zm)Λ(zn)Rsλ
Rsκ

4π
∣

∣

∣

(βκ+βλ )
2 ( fκ − fλ )

∣

∣

∣

. (2.48)

Eq. 2.48 is based on an approximation that is verified and has been validated in this

work for all the XC terms and all the CUTs. In order to extend the approximation

to the SC term, κ = λ , further analysis are required and in this study SC estimator

equivalent to the GGN implementation is used.

This solution enables accurate and fast NLI computation, and scales properly with

the number of CUTs and interfering channels, providing a result for the investigated
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wideband transmission scenario in a computational time adequate for streaming

operations.

2.3 Optical Amplifier

Optical amplifiers are devices that amplify optical signals without converting them

to electrical signals, thus allowing for all-optical long-distance transmission. There

are several types of optical amplifiers, including doped fiber amplifiers, Raman

amplifiers, and semiconductor optical amplifiers (SOAs). EDFAs are the most

commonly used type of optical amplifier, and they work by introducing erbium ions

into the fiber core, which can be excited by a pump laser to amplify the signal. The

efficient amplification bandwidth of erbium is limited to the C and L band, therefore,

in wideband transmission scenarios, other rare-earth ions are used for manufacturing

doped fiber amplifiers. Moreover, in a multi-band transmission scenario, each band

is amplified by a distinct device. Raman amplifiers use stimulated SRS to amplify

the signal, and SOAs use the injection of a current to create a population inversion in

the semiconductor material, allowing for amplification. Within this thesis work, only

doped fiber amplifiers have been considered, but all the results can be extended to

different types of optical amplifications.

In order to adequately model optical amplifiers and their effects on the signal

transmission, both the amplification and generated noise profiles must be taken into

account. In general, the target of optical amplifiers is an amplification profile applied

to the input signal, which is characterized by a gain offset, G, recovering the overall

fiber loss, and a linear tilt, T , compensating for the SRS induced power transfer.

Additionally, the gain profile has fluctuations/ripples [64] due to specific device

manufacturing. Without any loss of generality, the frequency-dependent gain profile

can be expressed as follows:

G( f ) = G+T
( f − f0)

BA

+ rT ( f ) , (2.49)

where f0 and BA are the central frequency and the total amplification bandwidth,

respectively, and rT is a ripple profile of the specific device; the latter depends on the

target tilt and on the specific device implementation [65].
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The ASE noise generated by the optical amplifiers can be analytically estimated

for each channel using the well-known ASE noise power formula:

PASE( f ) = h f NF( f )[G( f )−1]Bn (2.50)

where, h and BN are the Planck constant and the considered noise bandwidth, respec-

tively, and NF is the EDFA noise figure.

The described modeling and characterization are verified when a full spectral

load transmission is considered. As a matter of fact, when the amplified spectral

load occupies portions of the entire amplification bandwidth, additional fluctuations

are observed. These variations undermine the accuracy of Eq. 2.49 and Eq. 2.50

and must be taken into account in partially loaded spectrum transmission scenarios.

Remarkably, the spectral load induced fluctuations cannot be described by analytical

models and represent the perfect ground for ML applications as shown in Ch. 5.

2.4 Optical Switch

ROADMs are a type of optical switch that allows network operators to add or drop

optical channels at different points in the network, enabling a dynamic and flexible

routing of the traffic in meshed network infrastructures. State-of-the-art ROADMs

are based on wavelength selective switches (WSSs), exploiting liquid-crystal on

silicon (LCoS) spatial light modulator (SLM) technologies [66], which may introduce

substantial PDL.

2.4.1 Polarization-Dependent Loss

The PDL impact has been extensively analyzed for propagation of polarized intensity-

modulated channels [67], while the impact on DP coherent technologies has not yet

been entirely clarified in order to be used within the physical layer model of optical

networks [15].

Every ROADM degree is composed of a pair of WSSs that serve as multiplexer

(MUX) and de-multiplexer (DEMUX) of the relative WDM spectrum, enabling

the add and drop of specific channels and the routing of the crossing spectrum

through multiple input/output ports. Additionally, each WSS component apply a
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Fig. 2.6 Experimental setup for PDL measurement.

certain attenuation to each channel, enabling a selective equalization of the WDM

spectrum. Due to specific manufacturing imperfections, each channel experiences

a different polarization-dependent loss for each input/output port routing. As the

propagation through the fiber span induces a frequency-dependent and random

polarization rotation on each channel polarization state, the PDL effect on each

channel as a stochastic nature. The statistic of the PDL effect has been experimentally

characterized and investigated in [68, 69]. In this section, an analytical description of

the PDL effect on the signal transmission is presented, drawing upon experimental

observations.

PDL Characterization

The measurement setup utilized for the characterization of PDL in [68] is depicted

in Fig. 2.6. At the transmitter side, a tunable C-band external cavity laser (ECL)

ranging from 191.3 to 196 THz is used as optical source. The optical signal passes

through an optical polarization scrambler (PS), which is able to explore all the states

of polarization of the Poincaré sphere in about 1 minute, and then is fed to a 1x16

ROADM WSS DEMUX. Each port of the WSS can be programmed setting the filter

bandwidth (50 GHz), the central frequency (matched to the ECL frequencies) and the

attenuation (0-15 dB). The received signal is measured using a conventional power

meter sampling the instant power at the sampling rate of 3 KSamples/s for a time

lapse of 85 s.
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Fig. 2.7 (a) Single-port PDL measurement repeated 10 times. (b) Overall distribution of the
PDL experimental measurements for all VOA attenuation values.

The PDL for a specific port and specified ECL frequency and attenuation is

evaluated using its definition:

PDL
∆
= 10 log10

(

PMAX

Pmin

)

, (2.51)

where PMAX and Pmin are the maximum and minimum power values recorded during

the whole time of a single measurement for a fixed frequency and WSS port, while

the ECL orientation span the polarization space due to the PS.

The robustness of the experimental setup has been tested verifying the repeata-

bility of the measurement process. Selecting a single port of the WSS, the PDL

measurement has been repeated for 10 times for a set of 9 frequencies and 4 atten-

uation values. The result of this test is shown in Fig. 2.7(a), where the repeated

measurements are plotted with different markers according to the attenuation. In

general, each set of PDL values, obtained setting a specific value of attenuation,

presents similar estimations despite of measurement uncertainty along the whole

C-band range, proving that the PDL measurement is repeatable and deterministic.

After this preliminary phase, the PDL measurement has been performed for all

the ports of the WSS, setting the same ranges of frequencies and attenuation values,

for a total of 576 PDL measurements (36 per port). The complete distribution of

PDL measurements is represented in Fig. 2.7(b).

The device under test presents an average PDL of 0.26 dB with a standard

deviation of 0.14 dB. Since the port attenuation is a key factor for optical switching
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operations, it becomes crucial to understand how the PDL changes with respect

to this quantity. Grouping all the PDL estimations according to the attenuation, 5

distributions are obtained showing both increasing average and standard deviation.

The statistics are summarized in Tab. 2.2.

Attenuation [dB] µ [dB] σ [dB]
0 0.20 0.11
5 0.22 0.11

10 0.29 0.11
15 0.32 0.11

Table 2.2 Mean and standard deviation of the PDL experimental distribution for each value
of VOA attenuation.

PDL Effect

Depending both on frequency and ports, the PDL introduced by each WSS must

be treated as a random variable in the vast majority of use cases where a full

characterization of all the WSS is not available and not feasible. In this scenario, a

worst-case value of PDL can be considered for evaluating a conservative SNR penalty.

Remarkably, this value is commonly provided in WSS datasheets, sometimes even

varying with the attenuation. Therefore, in the scope of this thesis, worst-case

value of PDL for each WSS is considered as a deterministic values with a certain

polarization orientation. Even so, the PDL effect maintain a stochastic nature due

to the fiber birifringence, whose effect is a random polarization rotation of the

propagating signal. Thus, the total effect of the PDL along a lightpath including

multiple WSSs varies in time as the fiber birifringence effect. Even more, the noise

generated at distinct point of the lightpath experiences a different PDL effect with

respect to the signal. This result in a complex and statistical final SNR impairment

induced by the PDL

PDL Penalty

The PDL distribution of each WSS may be used in a Monte Carlo analysis to estimate

the impact of the PDL on the system performance, allowing a realistic investigation

of the phenomenon according to the attenuation value. Nevertheless, Monte Carlo
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simulations are time consuming and unfeasible for a dynamic and flexible digital

model. Therefore, a simplified approach is required for estimating the PDL penalty

in a fast and disaggregated manner.

As shown in [69], the PDL-induced SNR penalties can be quantified by means of

a certain margin that guaranties a threshold tolerance of out-of-service, τ . In particu-

lar, the channel SNR at the receiver, on one polarization state, is a stochastic variable

characterized by a Gaussian distribution (in linear units). For a given transmission

scenario, the SNR distribution for one polarization state can be identified by two

essential features: the distribution standard deviation, σ , and the difference between

the maximum and minimum received SNR, χ . Given these two characteristic quan-

tities, the PDL-induced SNR penalty can be evaluated by means of the probability

equivalent to the integral of the truncated Gaussian distribution. The objective of this

study is the definition of analytical expressions of both σ and χ .

First, it is important to notice that the statistical characterization of the PDL

on the power of a single- and DP signal as been investigated and described in a

large set of previous works in the literature [70±77]. In particular, the probability

density function of the PDL effect on a DP signal power is given in [77] for a

generic optical link composed of an arbitrary number, n, of elements introducing

PDL that can be described as the stochastic power transfer matrix T
²
(1→n)

T(1→n),

where T(1→n) = Tn · · ·Ti · · ·T1 is the composition of the field transfer functions of

each i-th PDL section, and T
²
(1→n)

is its adjoint matrix.

In order to evaluate the PDL-induced SNR penalty, it is essential to define an

adequate abstraction of the optical link and the receiver framework. Each general

optical link can be divided in PDL subsystems, each consisting of an element

introducing a certain PDL, corresponding to Ti, on both the transmitted signal and

the accumulated noise fields, and a set of concatenated fiber and EDFA introducing

a given amount of DP noise field, N⃗i. In this framework, the transmitted DP signal

field, S⃗RX, experiences the entire link PDL, whereas, the noise field generated in a

specific PDL subsystem experiences only the PDL of the successive PDL subsystems.

Therefore, the received DP signal field, S⃗RX, and noise field, N⃗RX, at the optical link
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termination can be written as follows:

S⃗RX = T(1→n)S⃗TX , (2.52)

N⃗RX =
n

∑
i=1

T(i+1→n)N⃗i . (2.53)

In this thesis, it is assumed that the receiver is able to recover completely the

field transfer function of S⃗RX in order to maintain the relationship between the

transmission SNR and the BER described in 2.1 and to obtain a PDL-induced SNR

penalty that is independent of the specific DSP implementation. In light of this

consideration, Eq. 2.52 and Eq. 2.53 become:

S⃗RX = T−1
(1→n)T(1→n)S⃗TX = S⃗TX , (2.54)

N⃗RX = T−1
(1→n)

n

∑
i=1

T(i+1→n)N⃗i =
n

∑
i=1

T−1
(1→i)N⃗i . (2.55)

Consequently, the SNRRX,x probability distribution of a single-polarization state,

x, can be derived considering the deterministic signal x-projection power, SRX,x =

|⃗SRX · x̂|2, and the stochastic noise x-projection power, NRX,x = |N⃗RX · x̂|2, obtained

from equation Eq. 2.55. Additionally, as the PDL of successively crossed PDL

subsystems has the same effect on both the signal and the noise fields, the SNRRX,x

can be expressed in a disaggregated manner as the proper sum of the separate

contribution of SNR degradation generated in each distinct PDL subsystem:

SNRRX,x =
(

SNR−1
1,x + · · ·+SNR−1

n,x

)−1
=

SRX,x

N1,x + · · ·+Nn,x

=
SRX,x

∣

∣

∣

(

T−1
1 N⃗1

)

· x̂
∣

∣

∣

2
+ · · ·+

∣

∣

∣

(

T−1
(1→n)

N⃗n

)

· x̂
∣

∣

∣

2 . (2.56)

Eq. 2.56 implies that both σ and χ can be expressed knowing the nominal and

average values of the SNR degradation of each PDL subsystem, and the stochastic

characterization of the noise power distributions. In particular, the probability density

function of the PDL effect on the noise power given in [77] can be used to evaluate

the average, µNi,x , the standard deviation, σNi,x , and the difference between the

maximum and minimum, χNi,x , of the i-th PDL subsystem noise power contribution,
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Ni,x = |(T−1
(1→i)

N⃗i) · x̂|2. Consequently, σ and χ can be analytically evaluated by

means of the following expressions:

σ =

√

n

∑
i, j=1

(

∂SNRRX,x

∂Ni,x

∂SNRRX,x

∂N j,x
σNi,xσN j,x

)

= µ

√

√

√

√

n

∑
i, j=1

(

σNi,xσN j,x

S2
RX,x

)

, (2.57)

where µ is the average SNRRX,x which is equal to the nominal SNRRX,x obtained

considering no PDL in the system, and

χ =

(

∑
i

µNi,x −
χNi,x

2

SRX,x

)−1

−
(

∑
i

µNi,x +
χNi,x

2

SRX,x

)−1

. (2.58)

In particular, Eq. 2.57 has been obtained from the well-known covariance formula

for the error propagation and it is not an exact solution, in general. Nevertheless, it

provides a very accurate and conservative prediction of σ and it is expressed in a

disaggregated manner, as Eq.2.58, such that the statistical characterization of the

PDL effect on the channel SNR at a certain span can be easily evaluated considering

only the previous and the current span.

In general, further analysis on the PDL statistics may provide a more accurate

approach providing a more accurate estimation of the PDL-induced SNR degradation.



Chapter 3

Physical Layer Model Validations

In this chapter, experimental validations of the physical layer model presented in

Sec. 2 are reported and discussed. Moreover, a Monte Carlo analysis of the PDL-

induced GSNR penalty is included.

3.1 GNPy Validations

In this section, experimental validation and accuracy assessments of GNPy initially

introduced in [78, 43, 79, 59], are documented. These experimental campaigns have

been carried out in laboratory testbed at Orange Labs in Lannion, France, using

commercial transmission and OLS equipment.

Experimental Setup

Fig. 3.1 and Fig. 3.2 illustrate a detailed description and a schematic of the exper-

imental setup assembled at Orange Labs, which has been employed to measure

various QoT transmission metrics in a flex-grid flex-rate scenario. The OLS under

consideration is composed of 20×80 km spans of ITU.T G.652 fiber with an aver-

age loss of 16.6 dB, dispersion values of 16.7 ps / (nm·km) and effective areas of

80 µm2, both evaluated at a reference wavelength of 1550 nm. After each fiber span,

a JDSU WRA 200 EDFA is placed and operated in a constant gain mode in order

to fully recover the fiber loss. In order to compensate for SRS effects, each EDFA

gain tilt has been set so that 1 dB of tilt over the spectrum bandwidth is recovered
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Fig. 3.2 Schematic of the experimental set up.

for each span. After the 6-th and 13-th spans two dynamic gain equalizers (DGEs)

are used to equalize the spectrum, compensating for ripples due to the amplification

process and for residual tilt caused by the SRS.

3.1.1 Multi-Vendor, Flex-grid and Flex-rate Transmission Sce-

nario

In this analysis, the analysis performed in [78] is extended by considering 8 multi-

vendor TRXs, with symbol rates ranging from 33 to 69 Gbaud, TRX constellations

of QPSK, 8-QAM and PCS-16-QAM, for data rates ranging from 100 Gbit/s up to

300 Gbit/s, along with a flex-grid WDM configurations with channel spacing of 50

and 75 GHz. This experimental transmission has been performed upon a bandwidth

of 3 THz in the C-band, with the remaining spectrum aside from these TRXs fully
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loaded with standard 100 Gbps channels. The experimental results are presented

along with those corresponding to the GNPy model, including estimations for the

interval of confidence, showing that the QoT prediction given by GNPy has an

average error value that does not exceed 0.5 dB for every considered TRX. Besides

confirming the reliability of GNPy as a vendor-neutral software model for WDM

optical transport, it is shown that the optimal management of flex-grid flex-rate

OLSs is enabled by managing Power Spectral Density (PSD) instead of power per

channel, Pλ , as is used in fixed-grid management. This approach has been previously

suggested and investigated for flex-grid transmission scenarios in [80, 81].
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Regarding transmission, two different spectra have been propagated and anal-

ysed, for a total bandwidth that occupies a portion of the C-band located between

192.55 THz (1556.96 nm) and 195.45 THz (1533.86 nm). In both cases, a total of 55

channels organized in a flexible WDM grid with a minimum division of 12.5 GHz is

considered. The overall bandwidth, along with the distinct propagated channels, can

be schematically divided in two sub-regions:

• A 50 Hz fixed-grid loading comb composed of 47 QPSK-modulated 100 Gbit/s

channels with symbol rates of 28 and 33 Gbaud;

• A sub-region of interest located between 192.95 THz (1553.73 nm) and 193.45 THz

(1549.48 nm) that includes a total of 8 CUTs:

± two QPSK 100 Gbit/s channels with symbol rates of 33 Gbaud;

± three 16-QAM 200 Gbit/s channels with symbol rates of 39 Gbaud;

± one 8-QAM 200 Gbit/s channel with a symbol rate of 44 Gbaud;

± one 16-QAM 300 Gbit/s channel with a symbol rate of 62 Gbaud;

± one QPSK 200 Gbit/s channel with a symbol rate of 69 Gbaud.

For this experimental investigation, the loading comb and two distinct TRX spectral

combinations have been multiplexed using a WSS to create two distinct spectral

configurations.

The two spectra are referred as the adjacent and far apart spectral configurations,

described in detail in Tab. 3.1. The main difference between the two analysed spectra

is that the two CUTs with the larger symbol rates, 62 and 69 Gbaud, are placed

next to each other or with other CUTs between them; Fig. 3.3 includes a visual

representation of these two configurations. Two configurations have been chosen in

order to observe any variation upon the GSNRs within the spectral region of interest

when the channels with the largest symbol rates change spectral occupations. If

GSNR variations are present, they must be taken into account by the OLS controller

when optimizing the configuration of the channels with respect to their symbol rates.

Both spectra have been transmitted at various launch powers and, at the OLS

termination, the CUTs have been demultiplexed with a Finisar WaveShaper 4000S

and then received, allowing QoT analysis. In particular, the launch powers for each

channel have been set such that an approximately uniform PSD is attained over the
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Fig. 3.3 Visualization of the (a) adjacent and (b) far apart spectral configurations, as fully
described in Tab. 3.1.

entire bandwidth; this is performed by maintaining the ratio between the launch

powers of any couple of distinct channels equal to the ratio between their symbol

rates, which is also visible in Fig. 3.3. In order to observe the GSNR variation as

the optimal power level is approached, this uniform PSD condition is retained and

power sweep power sweep performed, varying the equivalent power per channel, Pλ ,

between -2 and 2 dBm in 0.5ḋB increments, where Pλ is defined as the total signal

power divided by the total number of channels.

In this framework, for each transmitted signal, the BER is measured at the receiver

and the OSNR at the OLS termination for each TRX. In particular, the OSNR values

are obtained from two distinct signal power measurements and the ASE noise after

the last EDFA. The ASE noise power has been measured by switching off each TRX

in turn and then evaluating the noise floor within the relative bandwidth. Both of

these power measurements have been performed using a MS9740A Anritsu optical

spectrum analyzer (OSA) in Fig. 3.4 an example of the transmitted signal power is

shown.

In order to compare the performance of the CUTs to the predictions given by

GNPy, the measured BERs have to be converted to GSNR values. This conversion

also has the benefit of decorrelating the measurements to the specific characteristics

of each distinct TRX. Furthermore, it enables a direct analysis of the relation between

the QoT and the physical layer features of the investigated system and is crucial in

enabling the network orchestrator to perform an optimal symbol rate and modulation

format setting.
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Fig. 3.4 Optical spectrum at the OLS input; the spectral region of interest where the CUTs
are located is highlighted in red.

The first required step to convert from BER to GSNR is the B2B characteriza-

tion of every TRX, as shown in Sec. 2.1. These B2B characterizations have been

performed by measuring the BER and the OSNR (which, in this case, is equal to the

GSNR) with an increasing level of ASE noise loading. In Fig. 3.5, the theoretical ex-

pectations for the different modulation formats are compared with the measured B2B

characterizations. As anticipated in Sec.1.2, the detachment between the theoretical

and measured curves is due to additional implementation-specific degradations that

are not related to the lightpath QoT. As in Sec. 2.1, it can be observed that the B2B

characterizations of the 16-QAM-PCS-modulated channels behave the same as the

8-QAM-modulated channel, as their constellation is reshaped into an equivalent

8-QAM modulation format. It is wort noting that the GSNR is expressed by con-

sidering the entire channel bandwidths as noise reference bandwidths, rather than a

0.1 nm bandwidth.

At this stage, as the pre-FEC BER is a parameter provided by the TRXs, which

are commercial devices with limited access to the internal DSP unit, it has not

been possible to properly estimate the error on the BER measurements and the



3.1 GNPy Validations 45

6 8 10 12 14 16 18
SNR [dB]

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

lo
g 1

0(
BE

R)

M = QPSK
M = 8-QAM
M = 16-QAM

Rs = 33
Rs = 33
Rs = 44
Rs = 62
Rs = 69
Rs = 39
Rs = 39
Rs = 39

Rs = 33
Rs = 33
Rs = 44
Rs = 62
Rs = 69
Rs = 39
Rs = 39
Rs = 39

Fig. 3.5 Back-to-back characterization for each distinct channel within this experimental
campaign; continuous and dashed lines represent the theoretical and measured back-to-back
curves, respectively. The channel symbol rates, Rs, are given in Gbaud
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consequent confidence interval in GSNR conversions. Properly estimating this

quantity would allow a more precise analysis of the QoT investigation with a more

accurate description of the system margin and will be the focus of further studies.

In order to reasonably quantify the inaccuracies related to the indirect measurement

of the GSNR, it is assumed an error corresponding to a rigid shift in the OSNR

measurements up to a maximum ±0.2 dB, providing a confidence interval, ε , of the

derived GSNR values.

Following this B2B characterization for each TRX, the BER measurements can

be directly converted to GSNR values and compared to the predictions provided

by GNPy. Furthermore, the OSNR measurements obtained by the ASE provide an

indirect evaluation of the SNR NL degradation, as a subtraction estimate:

SNRNL =

(

1
GSNR

− 1
OSNR

)−1

,

providing a deeper insight in the QoT estimation analysis. A schematic of this

procedure applied to a specific TRX is shown in Fig. 3.6
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Fig. 3.6 Schematic of the GSNR and SNRNL evaluation procedure using the values for
back-to-back characterization, measured BER and OSNR for the 69 Gbaud CUT.
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At the time of this experiment, GNPy has been modified in order to allow variable

WDM grid spacings and variable channel settings, such as channel-dependent input

powers and symbol rates; these changes are now integrated in the lates version of

GNPy. Moreover, leveraging the spectrally disaggregated structure of GNPy, the

NLI estimator have been improved including a variable accumulation coefficient

of the self-phase modulation component of the NLI, taking into account the span-

by-span coherency dependence upon fiber variety and spectral characteristics [82].

These improvements allow the GNPy engine to adequately simulate the investigated

experimental testbed that includes the propagation of flex-grid flex-rate spectral

configurations. In general, the generalized GGN model implemented in GNPy
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Fig. 3.7 The dots and the continuous lines represent, respectively, the measured and predicted
GSNRs, OSNRs and SNRNLs for 4 selected CUTs in the adjacent spectral configuration
case, for every explored Pλ value. The shaded areas include the confidence interval obtained
with the upper and lower simulations involving the extreme values of the input connector
loss.

provides accurate results when a precise evaluation of the physical layer parameters

is available, as it has been extensively shown in previous fixed-grid experiments [83±

85]. For the experimental setup under investigation some physical parameters involve

a certain level of uncertainty, or are completely unknown. Among these variables,
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the EDFA NF and the fiber input connector losses, lc, for each span are fundamental

for an accurate system simulation to be achieved. In particular, the former quantity

is necessary for an adequate prediction of the OSNR, whereas the input connector

loss crucially affects the actual amount of power that is propagated through the

fiber; both the SRS power tilt and the generated NLI noise strongly depend on the

input power [85]. The EDFA NF for each span has been estimated from a single

measurement of the OSNR at the OLS termination, with the total launch power set

such that Pλ = 2 dBm. These measurements can be converted to an equivalent NF

that has been equally redistributed for each span and also partially includes effects

due to EDFA ripple. Regarding lc, it is not possible to directly measure or estimate

this value from an overall system metric in the same way as performed for the NF .

Therefore, to accommodate uncertainty due to these unknown input connector loss

values, a confidence interval of 0.25 ± 0.25 dB is considered for each span for the

SNR NL and GSNR predictions. The GNPy simulations are then repeated with 0 and

0.5 dB connector loss values, and addressed as lower and upper extreme simulation

cases, respectively.

The results obtained using these estimations are compared to the measured pre-

FEC BER converted to the GSNR, along with the measured OSNR and the SNR NL

obtained by subtraction of the inverse GSNR and OSNR. These results are shown in

Fig. 3.7 for a subset of the CUTs: the best and the worst case scenario CUTs in terms

of average GSNR prediction accuracy, and the CUTs with symbol rates of 44 and

69 Gbaud are included. In general, the GNPy engine provides very accurate predic-

tions of the OSNR for all CUTs and launch powers explored in the power sweep. As

expected, the generalized GN model implemented in GNPy provides conservative

SNR NL predictions for almost all CUTs and Pλ values. Remarkably, by increasing

Pλ , the predicted and measured SNR NL values for all cases monotonically decrease

and reach the same asymptotic slope, which demonstrates that the model under

investigation provides a good representation of the underlying physical phenomena.

On the other hand, the SNR NL measurements follow this trend less consistently

at low Pλ values. Nevertheless, these deviations from the trend can be justified

bearing in mind that the SNR NL measurements have been obtained by means of

Eq. 1.3. As a consequence, the measured SNR NL includes also all the additional

SNR degradations that are not included in the system abstraction. Therefore, this

deviation can be explained by a constant additional degradation that is more evident

at large SNR NL values and becomes negligible as the NLI increases. Furthermore,
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it can be observed that the the SNR NL predictions for the TRX with the highest

symbol rate, 69 Gbaud, are slightly optimistic for all Pλ values. This is due to this

particular TRX having a received power that is below the optimal TRX power range.

To summarize, GNPy provides a conservative prediction with a satisfactory level

of accuracy of the total GSNR for every CUT, for all Pλ values explored in the power

sweep, with the exception of the 69 Gbaud channel, which suffers from additional

impairments due to an insufficient received power. A quantitative estimation of the

prediction accuracy can be obtained by inspecting the mean, µ , and root mean square

(RMS), σ , of the errors in the GSNR simulations, ∆GSNR, defined explicitly in the

following expressions:

∆GSNR = GSNRmeas − GSNRpred
∣

∣

∣

lc=0.25
;

∆GSNRlower = GSNRmeas − GSNRpred
∣

∣

∣

lc=0
;

∆GSNRupper = GSNRmeas − GSNRpred
∣

∣

∣

lc=0.5
.

Both µ and σ are evaluated separately on the adjacent and far apart spectral config-

urations as:

µ = ⟨∆GSNR⟩ , (3.1)

µlower = ⟨∆GSNRlower⟩ ,
µupper =

〈

∆GSNRupper

〉

;

σ =

√

〈

(∆GSNR)2
〉

, (3.2)

σlower =

√

〈

(∆GSNRlower)
2
〉

,

σupper =

√

〈

(

∆GSNRupper
)2
〉

;

where the operator ⟨· · · ⟩ represents the average over the entire set of measure-

ments/predictions. These results are reported in Tab. 3.2, along with the minimum

∆GSNR, which represent the worst-case scenario; here, GNPy provides a non con-

servative prediction, which also provides a rough estimation of the required QoT

margin. Moreover, the uncertainties, ε , reported in Tab. 3.2 have been calculated as
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Table 3.2 Overall GNPy accuracy defined by means of µ , σ and the minimum value of the
GSNR error, ∆GSNR. These results include both spectral configurations and the simulation
extremes with respect to input connector losses. Uncertainties, ±ε , are provided for all
values.

adjacent far apart

µ 0.2 ± 0.2 dB 0.1 ± 0.2 dB
σ 0.4 ± 0.1 dB 0.3 ± 0.1 dB

min(∆GSNR) -0.6 ± 0.9 dB -0.8 ± 0.9 dB
µlower 0.4 ± 0.2 dB 0.3 ± 0.2 dB
σlower 0.6 ± 0.1 dB 0.5 ± 0.1 dB

min(∆GSNRlower) -0.3 ± 0.9 dB -0.5 ± 0.9 dB
µupper 0.1 ± 0.2 dB -0.1 ± 0.2 dB
σupper 0.3 ± 0.1 dB 0.3 ± 0.1 dB

min(∆GSNRupper) -0.9 ± 0.9 dB -1.1 ± 0.9 dB

follows:

εmin = εmin(GSNRmeas) ;

εµ =

√

〈

(εGSNRmeas)2
〉

,

εσ =
1
σ

√

1
N

〈

(∆GSNRmeas · εGSNRmeas)2
〉

,

where N is the total number of measurements/predictions.

In general, GNPy provides very accurate (low value of σ ) and unbiased (low value

of µ) predictions, with the upper simulation providing the most precise estimations.

On the other hand, the lower simulation provides a more reliable estimation, as the

GSNR error on the worst-case scenario is more than halved with respect to the other

simulations. These two simulations represent scenarios where either a more accurate

or more reliable model may be chosen, depending upon the requirements of the

network operator.

These results can be further analyzed from an application standpoint by investi-

gating the optimal launch power and GSNR feasibility when higher-cardinality mod-

ulation formats are used. In general, the optimal launch power is an implementation-

dependent quantity and can be described with different definitions. However, a

per-channel power optimization is not straightforward due to the nonlinear effects

(both the SRS and NLI) that are generated during fiber propagation. Managing the
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NLI impairment can be simplified by considering the following heuristic idea: the

NLI noise generated by the signal power contained in an infinitesimal bandwidth of

an interfering channel does not depend upon the channel itself. E.g., the NLI gener-

ated by two interfering channels with symbol rates of 33 Gbaud is not significantly

different from the NLI generated by one interfering channel with a 66 Gbaud symbol

rate, if each of these channels occupy the same frequency slot width.

In a realistic use case, the optimal launch power can therefore be defined glob-

ally, where an optimization algorithm varies the offset and tilt of a uniform PSD

configuration over the entire transmitted spectrum. This constant PSD configuration

can then be tilted in order to recover the residual tilt due to uncompensated SRS.

Defining a global optimal launch power using this uniform PSD leads to a uniform

GSNR distribution for all channels; this reduces management complexity and allows

system margins to be kept under control. It is worth underling that the optimization

procedure used within this work does not require any additional equipment, as the

optimal launch power configuration can be obtained by varying the EDFA gains (or

output power) and tilts, which are parameters that are readily accessible in currently

deployed infrastructures.

Additionally, it is worth underling that a more elaborate PSD distribution which

takes into account all symbol rate variances within the spectrum can provide a better

optimization, however in this analysis the priority is maintaining a lower level of

complexity for ease of optimization management in a realistic use case.

In this work an analysis on the optimal launch power can only partially be

performed, as the CUTs occupy a limited portion of the entire spectrum bandwidth.

To define the optimal launch power, first it has to be considered that Pλ is defined as

the total signal power divided by the total number of channels. Secondly, distinct

Pλ values represent different power sweep measurements, and a uniform PSD over

the entire bandwidth has been retained for all of these measurements. Bearing these

details in mind, the optimal value of Pλ within the investigated range is defined as the

optimal launch power. The definition of the optimal Pλ value is not straightforward,

as distinct CUTs reach their maximum measured GSNR at different Pλ values (the

same is true considering predicted GSNRs). Considering these individual optimal Pλ

values for each CUT, the minimum to be the overall optimal Pλ is selected, ensuring

that all channels do not exceed their own optimal values. Given this definition, the

optimal launch power for both spectral configurations is Pλ = -0.5 dBm and Pλ =
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Fig. 3.8 The dots and the continuous lines represent, respectively, the measured and predicted
GSNR, OSNR and SNRNL for all CUTs. The top and the bottom report the results for the (a)
adjacent and (b) far apart spectral configurations, at the optimal measured working point
Pλ =−0.5 dBm. The shaded horizontal areas include the confidence interval obtained with
the upper and lower simulations involving the extreme values of the input connector loss.
The largest symbol rate CUTs, 62 and 69 Gbaud, are highlighted with the vertical yellow
shades on the left- and right-hand sides respectively.

-1 dBm, considering the set of measured and predicted GSNRs, respectively. From

an application standpoint, GNPy provides a sub-optimal launch power that results

in a limited reduction in the achieved GSNR ± this can be quantified as the RMS

deviation between the measured GSNR at Pλ = -1 dBm and the maximum measured

GSNR for each channel; for both investigated spectral configurations this metric is

equal to 0.3±0.1 dB.

Lastly, the comparison of the measured and predicted values of GSNR, OSNR

and SNR NL for all CUTs is shown in Fig. 3.8 for Pλ = -0.5 dBm. It is visible that the

flat GSNR assumption is verified in this case, as the GSNR standard deviation for all

channels is 0.2 ± 0.1 dB for both spectral configurations. As previously mentioned,

the CUT with the highest symbol rate, highlighted in yellow on the the right-hand

in Fig. 3.8, appears to experience an additional penalty that is not included in the
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simulation abstraction; for all other CUTs, GNPy provides a conservative estimation

of the SNR NL, which leads to an accurate GSNR prediction.

Moreover, the GSNR values do not vary significantly, with a RMS deviation

of 0.1± 0.1 dB, when the CUT with symbol rate of 62 Gbaud is moved from the

center to the edge of the sub-region of interest. This result is very important from

an application standpoint as it suggests that the relative position of the large and

narrow CUTs in a flex-rate framework is not significant when a constant PSD is

implemented; consequently, system management and the optimization performed by

the optical line controller is further simplified. It is worth noting that this observation

can be combined with the results of [86] to consider an optimal system working

point which provides a flat and uniform GSNR distribution over the entire C-band.

3.1.2 Nyquist Subcarriers Flexible Transmission up to 800 G

For the first time, GNPy predictions for Nyquist subcarrier transponders are ex-

perimentally validated at bit rate, Rb, up to 800 Gbit/s and symbol rate, Rs, up to

96 Gbaud, operated at full flex-grid WDM spectral load on the C-band. Results show

an excellent accuracy of GNPy computation, both in predicting performance and

optimal power per channel, confirming its reliability in abstracting the optical trans-

port also in flex-grid mixed-technologies scenarios up to 800 Gbit/s per wavelength.

Additionally, GNPy provides a reliable estimation of the maximum reach for the

different bit rates under investigation. In this study, all the results are expressed by

means of SNR variations, ∆SNR, with respect to an unrevealed reference in order to

avoid any disclosure issues.

A total of 42 channels have been considered within this experimental framework.

These channels have been organized in a flexible WDM grid with a minimum

division of 6.25 GHz located between 192.55 THz and 194.9 THz within the C-band;

a detailed description of the spectrum is reported in Table 3.3. The TRX, centred

at 193.125 THz, has been transmitted with Rb from 400 up to 800 Gbit/s, with

step of 100 Gbit/s. The TRX consist of 8 Nyquist subcarriers multiplexed (SCM),

each working at 64-QAM PCS and data baud rate up to 12 Gbaud. This yields an

equivalent total channel bandwidth, Bλ , up to 96 GHz. An example of the transmitted

signal measured by a MS9740B Anritsu ASE is shown in Fig. 3.9.
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Fig. 3.9 800 Gbit/s - 96 Gbaud spectrum of the channel under test.
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Fig. 3.10 Power sweeps for two selected bit rates. The shaded area surrounding the solid
lines represents the variation of the GSNR and SNRNL predictions varying the connector
loss within a 0.5 dB range.
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Fig. 3.11 Measured and simulated GSNR at different receiving distances for all the investi-
gated bit rates. The FEC thresholds of the Rb lower than 700 Gbit are not shown in the figure
as they are not significant being lower than the minimum GSNR reached after 20 spans of
transmission.

This extensive experimental campaign encompassed the measurement of GSNRs

and OSNRs, evaluated over the entire Bc, of the TRX operated at 400 up to 800 Gbit/s.

In particular, the transmitted signal has been received at different distances along the

entire OLS, depending on the Rb, between 6 and 20 crossed spans, which correspond

to 480 up to 1600 km. For each Rb and receiving distance, the launch power at the

input of the OLS has been varied in order to obtain an estimation of the optimal

power.

In this investigation, the Nyquist subcarrier TRX has been simulated in GNPy

as a single carrier with a symbol rate equivalent to the total TRX Bλ . Furthermore,

the input connector loss at each fiber span has been set equal to a reference value

of 0.25 dB, and all the simulations have been repeated varying this value between
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0.00 and 0.50 dB in order to obtain an estimation of the interval of confidence of the

GNPy predictions.

In Fig. 3.10, measurements and GNPy predictions are compared for the 400 and

800 Gbit/s transmission, at the 20−th and 8−th span, respectively. It can be observed

that GNPy functions as a reliable QoT estimator for the investigated system for all

the Pch values, providing an adequate prediction of the GSNR and, in particular, of

both its components, the OSNR and the SNR NL, allowing an accurate prediction

of the optimal power. The larger error obtained in the 800 Gbit case is due to a

non-negligible difference between the actual and nominal TRX power at the specific

span. It is worth to highlight that this discrepancy is not generated by an inaccuracy

of the simulation but it rather provides an estimation of the system QoT fluctuations

due to spectrum variations occurring in distinct measurements, mainly due to the

equalization procedures. This behaviour can be further observed in Fig. 3.11, where

the GSNR predictions and measurements are compared for all the considered Rs and

receiving spans, for a fixed value of Pch =−0.5 dBm. Theoretically, all the GSNR

measurements should lie on the same curve, span-by-span, as this quantity does

not depend on the symbol rate nor the modulation format. On the contrary, these

measurements vary in a range of 1 dB depending on the Rb and the receiving span;

this range is completely compatible with the error observed in GNPy predictions.

In general, Fig. 3.11 shows an excellent accuracy and reliability of GNPy in sim-

ulating the QoT along the entire OLS and for all the investigated Rb, also providing

a precise prediction of the maximum reach for the distinct Rb.

3.1.3 An Experimental Observation of the Disaggregated Nonlin-

ear Interference Noise Generation

Employing an investigation similar to [87], the spectrally disaggregated approach to

the NLI evaluation implemented in GNPy is experimentally validated by measuring

the cross-channel NLI contributions. Within a flex-grid, flex-rate spectrum including

commercial multi-vendor channels at Rs from 33 up to 90 Gbaud propagating over a

multi-span amplified line, the BER performance variations of a TRX are measured

when selectively side-channels are switched off. Finally, GSNR values are derived

from the BERs using the B2B TRX characterization and results are compared to
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the GNPy prediction, showing an excellent accuracy in the GNPy disaggregated

computation of the cross-channel NLI components.

Regarding transmission, the spectrum used for carrying out the experiments

is made of various industrial transponders from different vendors, and of padding

channels made from an ASE noise source and shaped by a wavelength selective

switch, Tab. 3.3. The transmitted spectrum is located in the C-band, and ranges from

192.1750 to 195.0250 THz. A total of 17 transponders and 24 ASE-based padding

channels is considered and organized in a flexible WDM grid with a minimum

division of 12.5 GHz, for a total of Nch =41 transmitted channels. The launch power

has been set such that an approximately uniform power spectral density is attained

over the entire bandwidth. At the receiver side, the TRX at 192.7625 THz is de-

multiplexed with a 1×9 Lumentum WaveShaper. Both the launched and received

power per channel measurements have been performed using a MS9740B Anritsu

optical spectrum analyzer.

In this investigation, the aim is to observe the NLI-related GSNR variations

obtained turning off each interfering channels, in turns. The transmission GSNR at a

certain span, n, can be written as follows:

GSNR(n) =





P
(n)
ASE,λ +P

(n)
NLI,λ

P
(n)
λ





−1

, (3.3)

and the NLI power can be disaggregated by means of the following expression:

P
(n)
NLI,λ =

Nch

∑
i

η
(n)
λ ,i Pλ P2

i , (3.4)

where η
(n)
λ ,i represents the NLI efficiency, λ is the TRX index and Pi for i ∈ [1,Nch]

are the interfering channel powers. Given Eq.3.3 and 3.4, it is clear that in order to

observe an NLI-induced GSNR variation when an interfering channel, i= j, is turned

off, i.e. Pi= j = 0, both P
(n)
ASE and the remainder Pi̸= j must remain stable. Bearing this

consideration in mind, the spectrum is received after 13 spans and at an equivalent

launch power per channel of 2 dBm, i.e. defined as total power over the number of

channels, as a trade-off between having high NLI contributions (high values of n and

Pi) and maintaining a limited amount of fluctuations (low values of n and Pi).
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In this framework, after the B2B characterization of the TRX, the TRX BER

values have been measured for 41 distinct transmitted spectrum configurations: the

full spectral load case and the 40 configurations obtained switching off, in turn,

each interfering channel. Additionally, the transmitted and received power of each

channel have been measured in order to obtain a rough estimation of the power

transfer matrix which allows to evaluate an approximated NLI accumulation factor,

assuming that all the fiber spans are identical.
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Fig. 3.12 (a) TRX measured GSNR values for all the propagated configurations, each
frequency represents the channel that was turned off. At the TRX frequency, the red dot
indicates the GSNR of the TRX measured at the full spectrum load. (b) Measured and
simulated values of the distinct η

(13)
λ ,i terms of each interfering channel with the TRX, in red

dots and blue dotted line respectively.
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Fig. 3.13 Relative, considering separately each single interfering channel, and cumulative
GNPy estimation error of the NLI contributions of the TRX neighboring interfering channels.

The estimated GSNR values derived from the TRX BER measurements for all

the configurations of the propagated spectrum are shown in Fig. 3.12(a). In particular,



60 Physical Layer Model Validations

at each frequency correspond the TRX GSNR value evaluated when the interfering

channel centered in that specific frequency is turned off in the propagated spectrum,

GSNRi. Indeed, when the TRX itself is turned off, the GSNR measurement is

meaningless and at the TRX central frequency in Fig. 3.12(a) it has been placed the

TRX GSNR value evaluated when the full spectral load configuration is propagated,

GSNR f ull . As mentioned in the previous section, the entire experimental campaign

has been performed such that the main variations observed in TRX GSNR mea-

surements for distinct propagated spectrum configurations can be attributed to the

variations of the NLI contributions to the overall TRX impairment. As expected, it

can be observed that the full spectrum configuration results in the worst TRX GSNR

measurement, as all the interfering channel are contributing to the overall NLI noise

in this scenario. Moreover, the TRX GSNR increases when the interfering channel

are switched off, in turn, with a GSNR increment that decays as the frequency

distance between the TRX and the switched off interfering channel progressively

increases. It is worth to notice that when the channels beyond the frequency gap at

194.0 THz are switched off, the measured TRX GSNR experiences an unexpected

behaviour. In fact, increasing the frequency distance the contribution to the NLI

impairment of an interfering channel continues to abate reaching a negligible value,

roughly approached by the extreme channels before the frequency gap, with respect

to the NLI contributions of the TRX neighboring interfering channels. Therefore, the

TRX GSNR should continue to decrease approaching GSNR f ull . In light of these

considerations, it can be deduced that the TRX GSNR variations measured when the

channels beyond the frequency gap are turned off are related with EDFAs-induces Pi

and PASE;λ fluctuations. This hypothesis can be corroborated highlighting that these

channels lays in the spectral hole burning frequency neighborhood.

In order to quantify the TRX GSNR variations in terms of NLI contributions,

assuming the TRX PASE;λ and Pi ̸= j are constants, from Eq.3.3 and Eq. 3.4 the

following expression is obtained:

η
(13)
λ ,i =

GSNR−1
f ull −GSNR−1

i

P2
i

K(13) , (3.5)

where K(13) is an accumulation factor calculated assuming that the NLI impairment

introduced by each fiber is constant. Fig.3.12(b) reports both the evaluated η
(13)
λ ,i

from the measured GSNRi, by means of Eq.3.5, and the η
(13)
λ ,i obtained using the
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open-source library GNPy[28, 41], which includes a disaggregated implementation

of the GN model, where the SC and XC components of the NLI noise are calculated

separately. It can be observed that the disaggregated simulation provides very

accurate prediction when the GSNR variations are strictly related to NLI variations

induced by the spectral load modifications.

In order to quantify this accuracy, the interfering channels before the frequency

gap at 194.0 THz are considered at first. As shown in Fig. 3.13, the GNPy estima-

tion error absolute values of the separate NLI contributions increase approaching a

frequency difference, ∆ f , of 1 THz between the TRX and the specific interfering

channel; dashed green lines in Fig. 3.13. Nevertheless, the cumulative GNPy error,

considering an increasing number of neighboring interfering channels with an in-

creasing ∆ f , remains roughly constant around -0.65 and -0.25 dB considering the

left-hand and right-hand sides, respectively, with regard to the TRX; continuous-

circled red lines in Fig. 3.13. These metrics increase when considering interfering

channels with an higher ∆ f ; i.e. beyond the frequency gap at 194.0 THz. These

variations do not contribute significantly to the overall NLI noise evaluation and the

total simulated TRX XC-NLI noise, calculated as the sum of the NLI contributions

of all the interfering channels, provides an accurate prediction with an error lower

than 1 dB.

3.2 PDL Experimental Validation and Monte Carlo

Analysis

PDL-induced polarization power fluctuations along the transmission have been

statistically characterized for a limited or arbitrary number elements introducing

PDL [76, 77], the effect of the PDL on the transmission performance has been

reduced to an overall GSNR penalty that has to be included as an additional mar-

gin [88]. The interplay of the PDL and the transmission impairments produces a

complex effect on the GSNR which may depend significantly on the optical system

under consideration [89, 90]. In light of this consideration, a more accurate model

of the PDL effect on the propagated spectrum can be investigated in order to obtain

a case-specific evaluation of the PDL-induced quality of transmission penalty that

can be included in a physical layer digital twin of the specific optical network. In
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order to further motivate the need of a more precise PDL model, in this section, an

extensive simulation campaign is investigated observing the effect of the interaction

between the PDL and the ASE noise in a specific use-case, showing that the accumu-

lated PDL effect on the propagated signal is not enough to properly characterize the

PDL-induced GSNR penalty. Recently, in a similar work, the effect of PDL on the

SNR has been investigated on a sub-sea scenario using a numerical approach [91].

3.2.1 Metro Regional Scenario

Transceiver 5 Long Haul spansROADM TransceiverROADM ROADM4 Short Reach spans

Fig. 3.14 Schematic of the investigated transmission scenario.

Fig. 3.15 Simulation results considering (a) the transmission in the rural-to-metro direction
and (b) vice versa.

The specific transmission scenario investigated in this section consists of a

network domain composed of two different subsystems, shown in Fig. 3.14:

• Regional subsystem: it is characterized by long distance fiber connections, a

total length of 500 km, that result in a large amount of ASE noise due to the

high loss, 20 dB per fiber span; on the contrary, the PDL generated in this

section is relatively limited.



3.2 PDL Experimental Validation and Monte Carlo Analysis 63

• Metro subsystem: in this network section a large number of ROADM, each

one including two WSS, increases significantly the PDL computation while

the ASE noise generation is limited by the low value of the interconnection

fiber losses, 8 dB per fiber span.

In order to obtain a realistic simulation of the considered scenarios, a distinct

value of NF for each EDFA type is set. In particular, the pre-amplifier and the in-line

amplifiers in the rural area are set at 5 dB while the booster has a NF of 6.5 dB.

Whereas, in the metro area NFs is 8.5 and 6.5 dB on the pre-amplifiers and booster,

respectively. Finally, also the WSS PDL has been considered in a distinct manner

in the two network sections; in the regional subsystem, where the signal ripple is

expected to be significant, a WSS PDL distribution centered on an higher attenuation

is considered, 10 dB with respect to the measurements presented in the previous

section. On the contrary, in the metro area, the WSS PDL distribution is centered at

5 dB of attenuation.

In this framework, it has been carried out a Monte Carlo analysis of the trans-

mission of a single channel in both directions, rural-to-metro and vice versa, with

10000 distinct simulations each. At each repetition of the propagation simulation, the

PDL values of each element are extracted using the measured distribution. During

the propagation, random polarization scramble matrices are applied to the signal

between each element and the loss/gain balance is assumed to be unitary.

Fig. 3.15 illustrates the simulation results obtained for the transmission in both

directions over all the simulated cases. The simulated OSNR have been evaluated

with two distinct approach: In Simulation 1, the PDL is properly applied to both the

signal and the ASE noise; in Simulation 2, the PDL has been applied only at the

signal, whereas, the accumulated noise is used only at the end of the transmission in

order to evaluate the OSNR. This distinction has been made in order to underline

that the PDL and noise interplay required a complex model that takes into account

the interaction of the two quantities along the entire transmission. It can be observed

that, while in the metro-to-rural propagation, the two simulation methodologies

provides similar results, Fig. 3.15(b), on the opposite direction the predicted OSNR

fluctuations are significantly different with a standard deviation of 0.2 and 0.6 dB,

respectively for Simulation 1 and 2. It is worth to notice that Simulation 2 produces

identical results in both transmission directions, proving that this approach is not

adequate for a physical layer model of the optical system under investigation.
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3.2.2 Experimental Validation of the PDL Simulations

In this investigation, the effect of the accumulated PDL as an OSNR penalty is

experimentally observed on a 100G QPSK commercial TRX crossing 4 WSSs and

exploring a large number of polarization rotation realizations by means of 3 PS and

different noise injection configurations: the ASE noise has been loaded either purely

at the transmitter side (Scenario TX), at the receiver side (Scenario RX), or in a

uniformly distributed manner by using all the 4 ASE noise sources (Scenario DIST).

The experimental results clearly show the complex interplay of the PDL and noise

source distribution. Following this, a numerical Monte Carlo PDL/OSNR simulator

is verified over the experimental results and extended to OLSs with uniform PDL

and ASE distributions, in order to provide a quantitative OSNR penalty analysis

in reference use cases. The experimental setup used for the direct observation of

the PDL-induced OSNR degradation is schematized in Fig. 3.16. An optical source

consisting of a commercial card generates a 100 Gbaud, QPSK channel with 25%

roll-off at 194.3 THz. The signal is propagated through a cascade of 4 1x17 WSSs,

replicating a characteristic OLS in a metro transmission scenario. Each port of the

WSS is programmed by setting the filter bandwidth at 50 GHz, centred at the channel

frequency without any extra attenuation; the latter condition assures fixed PDL values

for each device maintained, for all the measurements. In particular, the first WSS

is used as a multiplexer which introduces the channel in the OLS (add operation).

Next, a de-multiplexer and a multiplexer are coupled, constituting the equivalent of a

crossed ROADM, and lastly a de-multiplexer is used to filter out the channel (drop

operation). Finally, 3 optical PSs are used in place of fiber connections between

the OLS components mentioned above, each modifying the polarization state of the

input signal, exploring the entire Poincaré sphere, and replicating in roughly 1 minute

the long-time variations of the polarization rotation induced by the fiber spans in

real systems. For the specific port and frequency, the PDL introduced by each

component has been separately characterized before the setup installation along with

Fig. 3.16 Sketch of the experimental setup.
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Fig. 3.17 Experimental distributions of the PDL-induced OSNR variation, ∆OSNR, for the
three scenarios: RX, DIST and TX.

the resulting PDL of the entire OLS. PDL values of 0.2, 0.8 and 0.4 dB are obtained

for the first multiplexer WSS, the ROADM equivalent coupled WSSs and the last

de-multiplexer WSS, respectively; as the PS rotates the propagated signal along the

entire Poincaré sphere, the measured total PDL roughly equals the PDL sum of the

three components at 1.4 dB. Four distinct ASE noise sources are distributed along the

OLS enabling a tunable distributed noise loading. For all three investigated scenarios,

the amount of ASE noise injected has been precisely calibrated in order to provide

a fixed overall OSNR value of 7.4 dB. After the propagation, the signal has been

received and the OSNRs relative to the two distinct polarization directions have been

separately obtained by converting the BERX and BERY, respectively, evaluated by

the commercial card. As the OSNR measurements on the two polarization directions

provide equivalent results, in the following only one of the two metrics is considered

and addressed simply as OSNR.

The measured distributions of the PDL-induced OSNR variations, ∆OSNR, with

respect to the reference 7.4 dB value are shown in Fig. 3.17 for the three different

scenarios. As quantitative metrics characterizing ∆ASE are reported in Tab. 3.4,

showing; the difference between the maximum and minimum measured ∆OSNR in

dB, χm
OSNR, and the standard deviation of the ASE variations, σm

OSNR, expressed in dB

as σm
OSNR,dB = 10 log10(1+σm

OSNR, lin). As expected, ∆OSNR is strictly correlated

to the noise distribution along the OLS. In particular, in Scenario RX, the PDL effect
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Scenario TX DIST RX

σm
OSNR [dB] 0.0 0.1 0.2

χm
OSNR [dB] 0.3 0.6 1.4

σ s
OSNR [dB] 0.0 0.2 0.3

χs
OSNR [dB] 0.0 0.7 1.4

Table 3.4 Summary of σOSNR and χOSNR obtained from the experiments, m, and the simula-
tions, s, for each scenario.

has the largest contribution and the ∆OSNR distribution coincides with the signal

variation distribution, as the ASE noise introduced at the end terminal is constant.

Moving the amount of added ASE noise towards the transmitter side, the ∆OSNR

distribution shrinks reaching the minimum variation for Scenario TX. In this case,

both the signal and the ASE noise undergo the same amount of PDL, therefore, the

ASE is conserved along the entire OLS; in principle, the observed ∆OSNR should

be equal to zero in this case. The residual PDL effect observed in Scenario TX can

be attributed to the PDL experienced by the loaded ASE noise, which is filtered over

the channel bandwidth using a separate WSS before being injected in the OLS.

In order to extend the PDL-induced degradation of the final ASE to various

reference use cases, a Monte Carlo algorithm has been developed by replicating the

propagation of the channel through the OLS, including the ASE noise injection, the

local PDL effect, and the random polarization rotation of the channel induced by

the fiber span. First, the measured ∆OSNR metrics with the simulated equivalents,

χs
OSNR and σ s

OSNR, are compared. In Tab. 3.4, it can be observed that the simulations

provide compatible results in terms of the chosen metrics and, in particular, preserve

the behaviours highlighted in the description of the measurements. In addition, the

Monte Carlo analysis has been extended to different reference use cases characterized

by a uniform distribution of both PDL, summing up to a fixed value of 10 dB, and

ASE noise generation, giving a final ASE of 20 dB, which is 3 dB above the reference

pre-FEC threshold for the 400G transmission standard. In this work, the ASE is

expressed by considering the entire channel symbol rate as the noise bandwidth. The

simulation is iterated by propagating the channel through different OLSs, including,

in turn, an incremental number of WSSs and ASE noise sources while maintaining

the same amount of final total PDL, ΣPDL, and ASE. In Fig. 3.18, the distributions

of the simulated scenarios show that increasing the number of WSSs reduces the

ASE variation for a given fixed total ΣPDL value, suggesting that the realization
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Fig. 3.18 Simulated ∆OSNR distributions for a growing number of WSSs introducing a fixed
total PDL, ΣPDL = 10 dB.

probabilities of the worst case scenarios decrease sharply as the number of WSSs

introducing the same total amount of PDL increases. Finally, the PDL-induced

ASE penalty is quantified by fixing an arbitrary out-of-service τ equal to 0.1 %. By

approximating the simulated ASE distributions expressed in linear units with the

equivalent truncated Gaussian distributions, it is possible to evaluate the minimum

ASE margin that guaranties the fixed out-of-service probability, defined as PDL-

induced ASE penalty. In Fig. 3.19, the evaluated ASE and PDL-induced penalties are

shown for all simulated scenarios, along with the reference pre-FEC threshold given

by the 400G transmission standard. It can be observed that, depending on the number

of WSSs in the OLS, transmission scenarios involving the same amount of ΣPDL

may be affected by an overly large ASE penalty, preventing lightpath deployment.

In any case, in most realistic scenarios, where the high value of accumulated PDL is

given by a large number of WSSs that each introducing a reasonable PDL, the ASE

penalty remains limited.

3.2.3 PDL Penalty Analytical Approach

In order to validate Eq.2.57 and Eq. 2.58, the Monte Carlo software framework re-

producing the PDL effect has been leveraged to obtain an extensive simulated dataset

in 5 distinct scenarios (5x105 samples each). For all the simulated optical systems, 9
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Fig. 3.19 OSNR and PDL-induced penalty vs. ΣPDL for a growing number of WSSs.

PDL subsystems have been considered, composed of as many ROADMs and OLSs,

and a single propagating channel. In particular, each PDL subsystem consists of a

ROADM, which introduces a certain value of PDL on both the propagated signal and

the accumulated noise, and an equivalent OLS which injects a given amount of noise.

In this analysis, only the ASE noise generated by optical amplifiers within the OLSs

has been considered. Additionally, the optical amplifier PDL has been neglected in

order to simplify the system structure. Also, the channel launch power has been set

to 0 dBm and no losses/gains induced by any fibers nor optical amplifiers have been

considered. All the presented results can be seamlessly extended to a more realistic

scenario. First, a uniform scenario is considered where each ROADM and each

OLS introduce exactly 1.2 dB and 30 dB of PDL and OSNR degradation for each

span. Then, maintaining a constant total PDL, ΣPDL = 1.2 ·9 = 10.8 dB, and final

OSNR, roughly 20.35 dB, other four systems have been simulated, considering an

increasing/decreasing PDL keeping an uniform OSNR degradation per span and vice

versa. The entire set of PDL and OSNR degradation values per span are reported in

Tab. 3.5.
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Fig. 3.20 OSNR PDL-induced σ simulated and evaluated with the proposed methodology
for all the investigated transmission scenarios.

It is worth noting that high values of PDL have been considered in order to

exacerbate its impact on the OSNR, therefore, the final obtained PDL penalty may

differ significantly from a real-case scenario. Nevertheless, the scope of this study is

the validation of the proposed methodology in such extremes conditions.

Fig. 3.20 and Fig. 3.21 demonstrate that Eq. 2.56 is verified and, for all the

investigated scenarios, the reference Monte Carlo simulation, replicating the exact

PDL effect abstraction, and the disaggregated Monte Carlo simulation, considering

separately the PDL effect on distinct subsystems, produce equivalent OSNR distri-

butions having negligible differences in terms of estimated σ and χ . Additionally,

the proposed evaluation expressions of σ and χ , Eq. 2.57 and Eq. 2.58, provide an

accurate and conservative estimation of the stochastic characterization of the PDL

effect on the OSNR. Finally, in order to provide some estimation results from an

operative standpoint, the PDL penalty has been evaluated for all the investigated

scenarios, Fig. 3.22, with a fixed τ= 0.01, demonstrating the different magnitude

of the PDL effect on the OSNR depending on the relative distribution of PDL and

injected noise, as shown in [68, 69].
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Fig. 3.21 OSNR PDL-induced χ simulated and evaluated with the proposed methodology
for all the investigated transmission scenarios.
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Fig. 3.22 PDL-induced penalty evaluated with the proposed methodology for all the investi-
gated transmission scenarios.



Chapter 4

Simulation and Power Optimization

in Multi-Band Transmission Scenario

In this chapter, the proposed methodologies introduced in Ch. 2 for the physical

layer modeling are validated in multi-band transmission (MBT) scenarios using

extensive simulation campaigns based on the SSFM and the numerical solution of

the SRS. Aiming for a realistic testing scenario, first the multi-band optimization

problem is defined and optimized transmission scenarios are considered in all the

validations. Moreover, a model-driven approach is proposed for the optimization of

MBT problems, achieving highly satisfactory results through a fast and descriptive

extension of the LOGO.

4.1 MBT Optical Network Architecture and System

Optimization

Without any loss of generality, the MBT optimization problem is defined on a multi-

band C+L+S1 transmission scenario for a given OLS, as illustrated in Fig. 4.1. In

a comprehensive SDN framework, each OLS controller manages the operational

optimization by setting the booster, pre-amplifier and in-line amplifier working points

such that the optimal GSNR configuration [86] is found. In a MBT scenario, an

appropriate definition of the optimal GSNR configuration is indispensable, as SRS

effects may cause channel powers to differ significantly even within the same band.
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Control

S-band Amp. 
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Fig. 4.1 The multi-band optical network architecture considered within this work. An
independent OLS is considered, consisting of a series of fiber spans, each followed by
amplifiers providing amplification for each band, controlled by an OLC. QoT is estimated
using a GNPy-based model implementation.

Consequently, an approach that optimizes each individual channel power is required,

going beyond a LOGO definition [92]. Bearing the disaggregated framework, it

is necessary that spectral efficiency is maximized, while the spectral distribution

across the entire available bandwidth is the most uniform possible [93, 94]. The

latter requirement, when implemented on all OLSs, minimizes spectrum allocation

complexity, enabling efficient, flexible, and dynamic lightpath deployment by the

optical network orchestrator. It is worth noting that, in general, this implementation

does not coincide with a maximum capacity solution on every OLS due to wave-

length continuity constraints. In light of these considerations, the optimal GSNR

configuration for each band is defined as the highest GSNR average value that can be

reached while maintaining a certain level of flatness on the entire band. In general,

finding this optimal solution is a complex task, as the trade-off between spectral

flatness and maximum GSNR must be found in a large space of realizations, and

several works tackling this problem have been proposed. In [95] a heuristics, which

performs a power sweep per band to the point where no QoT gain is obtained, is

evaluated and experimentally validated for C+L+S MBT scenario. Several works

target the tilt and power settings of optical amplifiers for MBT scenarios using

brute-force [96] or evolutionary algorithms, such as GA [97, 98] or particle swarm

optimization [99, 100].

As shown in Fig. 4.1, in a multi-band scenario each set of channels within a

spectral band is amplified by a distinct device. In a realistic scenario, two EDFAs

amplify the C- and L-bands, whereas, S1-band amplification is performed by a
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Fig. 4.2 The noise figures, NF, of the model EDFAs (C- and L-bands) and TDFA (S1-band)
used within this work as a function of frequency, along with the spectral regions representing
the C-, L- and S1-bands, and the 0.5 THz guard bands between them.

thulium-doped fiber amplifier (TDFA) [101]. The usage of different amplifiers for

each set of channels comes from the fact that EDFAs, despite being a more mature

technology than TDFAs, do not perform well for spectral regions outside of the C-

and L-bands. Moreover, output power limitations of current amplifiers do not permit

usage of an unlimited number of channels, which requires the L- and C-bands being

amplified by distinct EDFAs, with two TDFAs also predicted to be required for full

S-band amplification; here half of the entire S-band is considered and addressed as

S1-band. An alternative possibility is the usage of Raman amplification applied to

MBT, which can provide an ultra-wide gain profile [102] and the potential to also

control the mean gain and tilt [103].

In this analysis, ideal amplifiers that can recover the optimal launch power

profile are considered. In general, amplifier NF varies with the amplifier gain

values, and this phenomenon can be incorporated to the input power optimization

procedure. Nevertheless, a constant frequency-dependent NF profiles shown in

Fig. 4.2 is considered, except where explicitly indicated, which have been measured

on commercial amplifier at a fixed gain level. Within the scope of this thesis,
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Fig. 4.3 EDFA/TDFA output power offset and tilt optimization.

for every transmission scenario, the launch power profile has been obtained by

jointly optimizing the expected mean value and tilt of the GSNR by separately

varying the average output power offset and tilt values of the EDFA/TDFA, for each

band, as illustrated in Fig. 4.3. These optimizations are performed, maximizing

the average GSNR value and flatness for all CUTs over the entire band under

investigation. Remarkably, finer tuning strategies of the input power have been

presented in literature and, in general, provide a better optimization, i.e. by using

a per-channel equalization [104]. Nevertheless, shaping the launch power on a

per-channel basis is not always possible, as DGEs that are able to perform this may

not be available at all amplification sites. On the contrary, the adopted optimization

procedure does not require any additional equipment, as the optimal input power

obtained can be implemented by varying the EDFA/TDFA gains (or output power)

and tilts, and these parameters are commonly available to be tuned in currently

deployed infrastructures. When the EDFA parameters are known and the spectral

load is constant, the single span ASE noise can be calculated by means of Eq. 2.50

using Rs,λ as noise bandwidth. Vice versa, when EDFA parameters are unknown

or inaccurate, and/or the spectral load is not constant, additional information is

required in order to properly model and simulate the ASE noise power profile. In

these scenarios, telemetry and monitoring data can be used to overcome the lack

of information, e.g. with machine learning frameworks [105, 42], or with a model

based characterization as in [47].
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4.2 Multi-Band GGN approximation Validation

The single-OLS GSNR expressed in Eq. 1.3 can be further disaggregated on a span-

by-span basis. Considering a periodical OLS, the OSNRλ and SNRNL;λ , respectively,

can be expressed as follows:

OSNRλ =





Ns

∑
s=1

P
(s)
ASE;λ

P
(s)
λ





−1

=
1
Ns

Pλ

PASE;λ
, (4.1)

SNRNL;λ ≤





Ns

∑
s=1

P
(s)
NLI,λ

P
(s)
λ





−1

=
1
Ns

Pλ

PNLI;λ
, (4.2)

where P
(s)
λ

, P
(s)
ASE;λ and P

(s)
NLI;λ are, respectively, the signal, ASE noise and NLI noise

powers at the s-th span termination for a given λ . In this investigation, a periodic OLS

is considered, as the disaggregation paradigm allows a straightforward generalization

of this scenario. Consequently, the right-hand side expressions are obtained in both

Eq. 4.1 and Eq. 4.2, defining Pλ = P
(s)
λ

, PASE;λ = P
(s)
ASE;λ , PNLI;λ = P

(s)
NLI;λ ∀s∈ [1,Ns].

Eq. 4.1 is verified with a high level of accuracy for a wide set of realistic optical

systems, whereas the equality in Eq. 4.2 is verified only when there is no correlation

between the NLI noise generated in each distinct fiber span. The latter condition

is not fulfilled in a real transmission scenario and, as shown in [106, 107], this is

due to the SC component of the NLI noise that accumulates coherently span-by-

span. In general, Eq. 4.2 provides a non conservative estimation of the accumulated

NLI noise, which can lead to a reduction of the expected margin or, in the worst

case, an out of service scenario. As proposed in [82], this effect can be managed

effectively by separating the NLI noise generated in each fiber span into its SC,

PSC;λ , and XC, PXC;λ , contributions and including an asymptotic coefficient, C∞, that

takes into account the coherent SC accumulation. As observed in [106, 107], the

four-wave-mixing (FWM) contribution to the NLI noise can be neglected without

any significant loss in model accuracy for standard optical system transmissions.

Even if the number of FWM contributions increase exponentially with the number of

interfering channels, the overall FWM contribution to the NLI noise can be neglected

also in a MBT scenario, as the entire inter-band NLI effect is negligible as shown in

[93] for a C+L transmission scenario, roughly 10 THz of spectrum bandwidth. By

means of the asymptotic overestimation, a conservative estimation of the NLI noise



4.2 Multi-Band GGN approximation Validation 77

power, PNLI;λ , can be substituted in Eq. 4.2 obtaining the following expression:

SNRNL;λ ,n >
1
Ns

Pλ
[

(1+C∞)PSC;λ +PXC;λ
] . (4.3)

Given this span-by-span disaggregation, the analysis of the signal degradations

introduced by each OLS can be reduced to the investigation of the single span

effects.

4.2.1 SSFM Detailed Description

To validate the proposed methodology an SSFM simulation campaign has been

performed using an internal simulation software environment, developed starting

from [108]. The SSFM provides a numerical solution to Eq. 2.32, simulating the

propagation of a WDM signal time series through successive position steps, dz.

The WDM signal at the fiber termination can be calculated by dividing the fiber

length into consecutive segments, zm, separated by a variable step, dzm, as depicted

in Fig. 4.4. If the step lengths are sufficiently small, the linear and nonlinear operator

in Eq. 4.4 can be applied separately, with negligible inaccuracy [109, 44], obtaining

the following the operator notation:

A⃗(zm +dzm, t)≈ eL dzmeN dzmA⃗(zm, t) , (4.4)

where the linear operator L can be efficiently applied in the frequency domain by

means of the fast Fourier transform (FFT) algorithm.

…

𝑧 = 0 𝑧 = 𝐿𝑠𝑑𝑧1 𝑑𝑧2 𝑑𝑧3 𝑑𝑧𝑛𝑠𝑑𝑧4
𝑑𝑧4

Linear

Operator

Non-Linear

Operator 𝒩 ℒ
Fig. 4.4 Scheme of the split-step Fourier method. The linear, L , and non-linear, N ,
operators are applied separately in each dz step.
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Fig. 4.5 Gain-Loss profile depending on SRS and frequency-dependent fiber loss.

Moreover, the step lengths can be optimized in order to find a trade-off between

simulation accuracy and computational cost, as shorter steps implies more accuracy,

but also more Fourier transform evaluations, which are the most computationally

expensive steps in the SSFM algorithm. In this work, FWM-CLE step length

optimization algorithm [109] is adopt, ensuring that the simulation error remains

constant as the simulation bandwidth is enlarged (the accuracy parameter ΦFWM is

set to 0.01 radian for single channel simulations and to 1 radian otherwise). Starting

from z0 = 0, for each step the SSFM algorithm first applies the nonlinear operator in

the time domain, expressed as follows:

A⃗N(zm +dzm, t) = F
−1 [⃗A(zm, f )] · e−ι 8

9 γ̂|A⃗(zm,t)|2dzm , (4.5)

where F stands for the Fourier transform applied using the FFT. The linear step

is then applied to A⃗N(zm +dzm, t), obtaining the following evaluation of the WDM

signal at the end of the m-th fiber step, in the frequency domain:

A⃗(zm +dzm, f ) = F [⃗AN(zm +dzm, t)] e
−ιβ ( f )dzm

ρ (zm +dzm, f )

ρ (zm, f )
, (4.6)

where the exponential accounts for the dispersion accumulated along the length dzm;

the dispersion coefficient values for each frequency, β ( f ), are interpolated along
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single-channel configuration, are propagated through the given line description and passed to
the coherent DSP stage, along with additional pumps that lie 1 and 2 THz away from the
CUT.

the simulated signal bandwidth using the measured curves of Fig. 2.3, and ρ(z, f ) is

obtained by interpolating the solution of Eq. 2.12 for every considered frequency and

position, as shown in Fig. 4.5. In particular, the solution of Eq. 2.12 has been obtain

with a fast SRS solver implementation available in GNPy considering an optimized

launch power profile. This launch power profile has been obtained optimizing the

GSNR average and flatness.

4.2.2 SSFM Simulation Campaign

In this work, a C+L+S1 400 Gbps transmission scenario over a periodic 10-span

OLS has been investigated. Each band is populated with 64 square root-raised cosine

shaped channels with roll-off values of 0.15 at Rs= 64 Gbaud in a 75 GHz fixed

grid, for a total of 192 channels. A modulation format of polarization multiplexed

16-QAM is considered for all the CUTs, delivering 400 Gbit/s per channel, according

to the 400G-ZR+ standard. A guard-band of 500 GHz has been placed between

the bands in order to avoid band-splitting filter penalties, which is required to

perform separate amplification, as depicted in the simulation setup of Fig. 4.6. The

channel central frequencies range between 186.0 and 201.3 THz, respectively, for a

total spectral occupancy of 15.3 THz. The channel launch power profile has been
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optimized using a exhaustive search algorithm [110], and it is shown in Fig. 4.7. It is

worth noticing that, qualitatively, the launch power profile is flat in the S1-band as a

combined result of the propagation effects, resulting in a clockwise tilt observable in

the L- and C-bands, and the counter-clockwise tilted NF profile in the S1-band itself.
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Fig. 4.7 Launch power profile with average of -1.72, -2.07 and 0.84 dBm and tilts of 0.75,
0.50 and 0.0 dB/THz for L-, C- and S1-bands, respectively.

Concerning the OLS, 10 amplified fiber spans composed of ITU-T G.652D

standard SSMF have been considered. All fiber spans are 75 km long and are

characterized by the frequency-dependent physical layer parameters described in

Sec. 2.2.1. In order to isolate the nonlinear term of Eq.1.3, the WDM signal is

propagated assuming noiseless amplifiers during the SSFM simulation. At the OLS

termination, the WDM signal enters the DSP-based coherent receiver. An ideal

DAC/ADC is considered, and as such filter out the four quadratures/polarization

components of each CUT by re-sampling the WDM signal at 2 samples per symbol.

Then, an deal dispersion compensation is applied, exactly recovering the amount of

dispersion accumulated by each CUT. The signal is then fed to the adaptive equalizer

stage, which converges to the matched filter. The equalizer stage is based on a least

mean square (LMS) algorithm with 42 taps and an adaptation coefficient of 10−4.

This large tap size is set to maximize equalizer performance and to allow detection

of even small amounts of nonlinear noise in the very first span of the OLS.
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Next, a carrier phase estimation (CPE) block recovers the nonlinear phase noise,

neglecting transmitter laser phase noise. The phase recovery algorithm uses the

knowledge of the transmitted symbols to recover the carrier phase by dynamically

setting the CPE memory. The optimal memory value maximizes the circularity of

the noise clouds around the transmitted symbol scattering diagram. It should be

noted that the optimal CPE memory, obtained by considering only the NLI noise,

may not coincide with the optimum of a real systems, where the presence of ASE

noise, which is the dominant impairment, produce a further trade off. However, the

CPE optimization is outside the scope of this work and the chosen optimal CPE

memory ensures the most accurate simulation of the NLI noise introduced by the

fiber propagation.

The SNR is then calculated upon the decision signal at 1 sample per symbol after

the CPE stage. Considering noiseless amplifiers, the estimated signal-to-noise ratio

coincides with the SNRNL;λ . Moreover, assuming an ideal receiver, the transmitted

symbol series can be subtracted from the decision signal and PNLI;λ can be evaluated

as the variance of the residual signal.

4.2.3 Disaggregated SSFM using Single-Channel and Pump-and-

Probe Configurations

Simulating the reference full spectral load scenario is practically unfeasible due to

the enormous computational costs associated to the simulation of a WDM signal that

occupies ≥ 15 THz. Furthermore, this approach would not allow the investigation

of NLI generation in a spectrally disaggregated fashion. Therefore, for each band

7 equally spaced CUTs have been selected and two sets of simulations have been

carried out in order to isolate the NLI contributors (the SC and XC) for each, as

outlined in Fig.4.6:

• Single-Channel Configuration: simulation of the propagation of solely the

CUT, λ , with the estimation after the DSP consequently accounting only for

the SC NLI component.

• Pump-and-Probe Configuration: simulation of the propagation of the CUT

(the probe), λ , and a single interfering channel (the pump), κ , with an incre-

mental frequency distance, ∆ f , from the probe. In this case, the estimation
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after the DSP accounts only for the XC NLI component; the SC NLI compo-

nent is kept negligible by setting the probe power to a sufficiently low value

(-20 dBm; the obtained result is then re-scaled to the required CUT power).

For practical reasons, a subset of pump and probe scenarios is simulated, as outlined

in the bottom of Fig.4.6; for each CUT, all pumps up to ∆ f =±500 GHz have been

evaluated, along with four pumps located at ∆ f =±1 THz and ∆ f =±2 THz. The

CUTs are kept as 16-QAM modulated, whereas the pumps are modulated using

a Gaussian distributed symbol sequence, which provides an upper bound to the

NLI intensity generation [111]. Additionally, channels propagating through an OLS

can be considered as Gaussian distributed if a sufficient amount of dispersion has

been accumulated [63, 112]. The entire set of single-channel and pump-and-probe

simulations are performed using the fiber gain/loss profile of the overall C+L+S1

transmission scenario, including the Raman effect, shown in Fig.4.5.

4.2.4 GGN Approximation Accuracy

The results of 10-span 400 Gbis transmission through a C+L+S1 OLS using the SSFM

are compered with the simulation of the GGN-based GNPy current implementation

and the approximated GGN model presented in Sec. 2.2.3 The separate contributions

to the total P
(s)
NLI;λ at the s-th span is considered at first. As a periodic OLS is

considered, P
(s)
NLI;λ can be normalized with respect to the launch power, obtaining:

η
(s)
λ ,κ =

P
(s)
NLI;λ

Pλ P2
κ

, (4.7)

which represents the NLI efficiency when a single fiber span is considered, providing

a direct metric for the frequency-dependent fiber parameter effects, and the separate

NLI contributions of each interfering channel, κ . Fig. 4.8 illustrates η
(n)
λ ,κ evaluated

at the OLS termination for the C-, L-, and S1-band central channels, respectively. For

all investigated CUTs, the GGN and proposed approximation provide a conservative

estimation with respect to the interfering channel contribution given by the SSFM

implementation. Furthermore, close to the CUT the SC and XC contributions of

interfering channels are highly accurate for both methodologies, with inaccuracies

increasing proportional to the frequency difference between the CUT and the in-

terfering channel. In order to quantify the accuracy of the simulations in terms of
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Fig. 4.8 Normalized NLI contribution for distinct pump and probe configurations at the OLS
termination.
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overall QoT for each CUT, as a reference, the extrapolated η
(n)
λ ,κ for all pump and

probe configurations that have not been simulated using the SSFM is presented for

each CUT; these extrapolations are shown with dashed lines in Fig. 4.8, and has

been obtained applying the interpolation function defined in SciPy, a well-known

open-source Python library, to the available η
(n)
λ ,κ simulations expressed in linear

units. The SNR NL can now be evaluated by summing all distinct NLI contribu-

tions. The SNR NL comparisons between the extrapolated SSFM results, used as a

reference in this analysis, the GGN-based GNPy implementation and the proposed

approximation are shown in Fig.4.9(a) for all the CUTs. The GGN-based GNPy

implementation and the proposed approximation provide an SNR NL prediction with

average errors of 1.3 and 1.2 dB, respectively, and an equal maximum error of 1.7 dB.

These inaccuracies are reduced by combining the simulated SNR NL values with the

evaluated OSNR, as shown in Fig. 4.9(b), to find the GSNR for all implementations,

shown in Fig. 4.9(c). With this QoT metric the two methodologies provide estima-

tions with average errors of 0.3 and 0.2 dB, and maximum errors of 0.5 and 0.3,

respectively. Considering these error margins, the proposed approximation provides

a conservative, satisfactorily accurate and computationally fast result for all CUTs,

and may reasonably be extended to larger bandwidths, given sufficient hardware and

physical layer information.

In order to provide a reference value for the GSNR metrics, the results in

Fig. 4.9(c) can be compared with the required minimum SNR threshold expressed in

the OpenROADM 400G 16-QAM transceiver specifications included in the GNPy

equipment library. Such a device required a minimum SNR of 24 dB that is equiv-

alent to a GSNR of 17 dB evaluated over the channel symbol rate, as the GSNR

results presented in this work. Considering this threshold, both the GNPy GGN

implementation and the proposed approximation provide an accurate prediction of

the lightpath feasibility considering the SSFM extrapolation as the real scenario

reference. In particular, both methodologies confirm the GSNR availability for the

400G 16-QAM transmission over both the C- and L-band, whereas they predict that

this transmission technology is unfeasible on the S1-band, as it can be observed

in Fig. 4.9(c). As a matter of fact, this analysis would be more complicated on a

real scenario where additional penalties and inaccuracies of parameter values can

affect the accuracy of the presented prediction. Nevertheless, QoT estimators as

the GNPy GGN implementation have shown significant improvements in network
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planning, margin design and lightpath computation, gathering the interest of vendors

and operators.

4.3 Multi-Band Perturbative SRS Validation

In this section, the truncated solution of the perturbative expansion is verified at the

optimum launch power profile for each considered MBT scenario.

For the purpose of this investigation, a periodic multi-band OLS of 10 spans is

considered. The assumed values of noise figure, NF, for each optical amplifier type

are reported in Tab. 4.1 according to the corresponding band [113]. The fiber spans

are 70 km long and are characterized by the realistic wideband parameter description

reported in Sec. 2.2.1. The transmitted signal is implemented according to the 400G

standard: Each channel carries a Polarization Multiplexed (PM)-16-QAM signal

with a Rs of 64 Gbaud and a slot width of 75 GHz.

In this framework, a cutting-edge C+L+S-band transmission scenario is consid-

ered along with a more future looking U-to-E-band transmission scenario in order to

perform a solid validation of the proposed methodology. In both cases, the optimal

launch power has been evaluated.

Additionally, an ideal flat loss coefficient profile at 0.2 dB/km is considered in

order to separately analyze the effect of the SRS effect on the power profile along

the fiber. In this case, a flat launch power of -1 dBm per channel is considered. The

impact of the real and ideal fiber loss coefficient profiles in terms of total attenuation

along a single fiber span is shown in Fig. 4.10 and 4.11.

In these figures, also the effect of the effective area scaling is shown; its con-

tribution produces variation within each transmission band in a range of 0.5 dB,

suggesting that it is necessary to consider this phenomenon mainly for the OSNR

estimation especially after the propagation of a WDM comb through a considerable

number of sections. Even if this effect turns out to be of secondary importance, in a

Table 4.1 Optical amplifier noise figure values used in the considered wideband scenario.

U L C S E

NF [dB] 6.0 6.0 5.5 7.0 7.0
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Fig. 4.9 SNRNL, OSNR and GSNR comparison between the SSFM extrapolation, GGN-
based GNPy implementation and the proposed approximation, for all CUTs.
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Fig. 4.10 Realistic fiber loss coefficient in a wideband transmission scenario.
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Fig. 4.11 Ideal fiber loss coefficient in a wideband transmission scenario.
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wideband context its accumulation across the various spans can generate a significant

effect.

First, for all the transmission scenarios, the solution of Eq. 2.12 has been solved

using the numerical integration defined in [62], which provides an accurate ref-

erence if the position increments are small enough; for the validation purpose, a

constant step of 0.8 m has been chosen, providing an accuracy of the evaluated

power profile along the fiber of 0.001 dB, for all the frequencies of the transmitted

spectra. Then, the reference is compared with a truncated solution of the perturba-

tive expansion presented in Sec. 2.2.2. Given the optimal launch powers of all the

considered transmission scenarios, the perturbative expansion Eq. 2.21 is convergent.

In particular, the successive orders are monotonously decreasing and, moreover,

considering the k-th order truncated solution, the infinite sum of the remainder orders

converges. Therefore, an arbitrarily small relative error, E
(k)
λ

(z), for all the channels

of the propagated spectrum can be achieved considering the proper k-th order of the

solution.

In Fig. 4.12(b), the 4-th truncated solution of Eq. 2.30 is compared with the

reference evaluation in the case flat fiber loss profile and Pλ , shown in Fig. 4.12(a), at

the fiber termination, Ls. In Fig. 4.12(c), it is shown that increasing the order of the

solution, an increasing accuracy is obtained, until the arbitrary tolerance of 0.1 dB is

achieved. Finally, in Fig. 4.12(d), the normalized error E
(k)
λ

(Ls)/max
(

|E (k)
λ

(Ls)|
)

up to the 4-th order is shown. As expected, it can be observed that the k-th relative

error has exactly the symmetry in frequency of the k+1-th order, which it is its most

significant term. Therefore, odd orders have an even error function in frequency and

vice versa, demonstrating that the proposed perturbative expansion is exact at every

order.

Further analysis on the formal expansion Eq. 2.21 are out of the scope of this

study and will be investigated in future publications. A heuristic effective and

conservative estimation of the proper order required to achieved at least a given

tolerance, τ , has been validated for a set of increasing U-to-E transmission bandwidth

and an increasing flat launch power per channel, Pλ∈ [−4,2] dBm, resulting in a

total power at the fiber input for the full U-to-E scenario of 23.1 and 29.1 dBm,

respectively; this evaluation provides the correct order or at most the successive,

guaranteeing the required accuracy. Due to the complex spectral shape of the Raman

coefficient profile, distinct orders have different interactions with the power profile
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Fig. 4.12 Ideal flat fiber loss profile simulations. In particular, (a) Flat launch power at -1 dBm
per channel. (b) Comparison of the numerical reference and the 4-th order perturbative
solution. (c) Relative error up to the 4-th order. (d) Normalized relative error up to the 4-th
order.
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Fig. 4.13 Realistic fiber parameters simulations, C+L+S-band transmission scenario. In
particular, (a) Optimal launch power. (b) Comparison of the numerical reference and the
2-nd order perturbative solution. (c) Relative error up to the 2-nd order.

along the fiber, therefore, the proposed estimation procedure has to be perform after

the calculation of each order and it is expressed by the following inequality:

∣

∣

∣
E
(k)
λ

(z)
∣

∣

∣
≤ 10

ln(10)






exp
(

θ (k)
)

−
k

∑
j=0

(

θ (k)
) j

j!






≤ τ , (4.8)

with

θ (k) = k

√

k! max
(∣

∣Γk
λ
(z)
∣

∣

)

. (4.9)

Using Eq. 4.8, with a defined tolerance of 0.1 dB, the truncated solution at

the proper order of Eq 2.30 has been evaluated for all the investigated realistic

transmission scenarios; for both cases the required tolerance is achieved at the exact

order evaluated by means of Eq. 4.8. In Fig. 4.13 and Fig. 4.14, the launch power

profile, the reference and evaluated power profile at the fiber termination and the

relative error are reported for the C+L+S-band and U-to-E transmission scenarios,

respectively.

Finally, the proposed methodology enables a faster implementation of the SRS

solver for all the transmission scenarios with respect to the numerical integration

method, given a certain tolerance value. As an example, the integral solution of
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Fig. 4.14 Realistic fiber parameters simulations, U-to-E-band transmission scenario. In
particular, (a) Optimal launch power. (b) Comparison of the numerical reference and the 3-rd
order perturbative solution. (c) Relative error up to the 3-rd order.

each order, as Eq. 2.24- 2.27, can be integrated numerically in order to obtain the

perturbative solution without evaluating an explicit form, as Eq. 2.28, for each

perturbative order. Remarkably, the position increment required to achieved a given

accuracy spatially integrating the perturbative orders, roughly tens of km if τ= 0.1 dB,

is significantly larger then the position increment required by the numerical solution

to achieve the very same accuracy, roughly 0.1-1 km. Therefore, the perturbative

solution required a significantly lower computational effort to achieve the same

result of the numerical solution. Regarding the explicit expression of each order, as

anticipated in Sec. 2.2.2, it is not always convenient in terms of computational cost.

This is due to the high number of channels involved in a wideband scenario and can

be overcome considering a lower number of equivalent macro channels in place of

the real propagated channels, assuming that the variations of the intrinsic fiber loss,

the Raman coefficient profile and the power spectral density are negligible within the

macro channel bandwidths. Further consideration on this aspects will be addressed

in a future publication.

In this study, an increasing total transmission bandwidth is considered from 2.5 to

40 THz starting from the first portion of the U-band to the last portion of the E-band,

with a step of 2.5 THz. For all this spectra, a fixed power per channel of -1 dBm has

been set and the proper order and position increment for the spacial integration has
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Fig. 4.15 Computational time of the perturbative and numerical solution, respectively, eval-
uated for an increasing total bandwidth of the transmitted spectrum with a flat power of
-1 dBm per channel.

been evaluated for both the perturbative and numerical solution in order to obtain a

fixed 0.1 dB tolerance. The resulting computational times are reported in Fig. 4.15,

where it can be observed that the perturbative solution perform at least one order of

magnitude better than the numerical solution.

4.4 Leading Inter-Band Intra-Channel Nonlinear ef-

fects in C+L-Band Transmission Systems

The complexity of the MBT optimization problem arises from the two nonlinear

effects due to the fiber propagation, the SRS and the NLI, both depending upon the

input signal power profile. As a matter of fact, the nonlinear nature of these two quan-

tities prevents separate optimization from being performed for each λ . In this section,

an investigation of these nonlinear effect is presented aiming to a simplification of

the MBT optimization problem through an analysis of the inter-band inter-channel

(IB-IC) SRS and NLI effects, in order to enable the OLS abstraction to be disag-
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gregated on a per-band basis. It is possible to approximate the shape of the SRS

function, which enables the creation of fast, closed-form expressions for aggregated

NLI generation [57, 58], providing excellent accuracy in the C-band. Simplifying

the effects of SRS as a tilt is not applicable when the transmission bandwidth ex-

ceeds the peak of the SRS spectral efficiency, which is reached at approximately

15 THz of spectral distance between the pump and the probe. Furthermore, alongside

MBT network upgrades, current trends in optical network architectures are towards

disaggregated infrastructures, where the amplified lines connecting the nodes within

the network may be open ROADMs, including OLSs that may be wholly indepen-

dent. In this framework, it is crucial to tackling NLI generation in a spectrally and

spatially disaggregated manner to incorporate the possibility of alien wavelengths

and unknown physical layer information within the NLI model in use [107, 82].

Approaching modelling from this perspective allows the IB-IC effects of the SRS

and NLI to be considered separately, enabling efficient optimization when additional

bands are included in a C-band system upgrade. A more precise description of the

NLI effects can be provided considering the coherent behavior of the SC-NLI accu-

mulation, which can be taken into account by introducing an asymptotic coefficient

that depends on the chromatic dispersion, symbol rate and WDM grid, as shown

in [82]. Separating the components of the inter- and intra-band cross channel (XC)

-NLI, the total NLI noise can be modeled as in the following expression for a given

CUT expressed in the following expression:

PNLI = PNLI,Intra +PNLI,Inter = C∞PSC +PXC,Intra +PXC,Inter (4.10)

where C∞ is the asymptotic accumulation coefficient, PSC and PXC are the NLI

contributions given by the SC and XC interference, respectively. The effects of

all four-wave mixing effects that do not correspond to the SC-NLI and XC-NLI

contributions to the NLI can be neglected in the scenario under investigation; PXC,Intra

is the intra-band contribution from interfering channels within the same band of

the CUT, whereas PXC,Inter is the inter-band contribution from interfering channels

within the other bands, corresponding to the IB-IC NLI.

The work presented in [93] demonstrated that the PXC,Inter term in Eq. 4.10 is

negligible. This allows further considerations from an optimization perspective as

the remainder MBT complexity resides exclusively in the IB-IC SRS-induced power

transfer. For completeness, the investigation presented in [93] is here integrated and
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extended, describing in detail the operational consequences from an optimization

standpoint considering a C+L-band transmission scenario.

To investigate the performance of a C+L implementation and, correspondingly,

the contributions of IB-IC SRS and NLI to the final GSNR degradation, four distinct

SSFM simulations, encompassing three different scenarios have been performed.

• Scenario 1: the C and L bands are transmitted independently, with separate

SSFM simulations performed for each band. In these two simulations, both

the intra-band SRS and the intra-band NLI have been considered. The input

power profiles of each band are optimized independently.

• Scenario 2: the C and L bands are transmitted simultaneously. However,

the IB-IC NLI is completely neglected, with the only observable inter-band

interaction being the IB-IC SRS. The entire input power profile is optimized

as in Scenario 3.

• Scenario 3: the C and L bands are transmitted simultaneously, considering

both the IB-IC SRS and NLI. This simulation contains no artifacts and is

the reference for the real-case C+L transmission scenario. The entire input

power profile is obtained by simultaneously optimizing the GSNR average and

flatness on both bands.

The first three scenarios have been simulated in order to separately quantify the

effect of the IB-IC SRS and NLI, additionally, a fourth scenario has been simulated

in order to compare two distinct implementations of the C+L transmission:

• Scenario 4: the C and L bands are transmitted simultaneously, considering

both the IB-IC SRS and NLI. With respect to Scenario 3, the input power

profile of the C band is kept fixed to the optimum found for the C band only

(Scenario 1), so that only the input power profile of the L band is optimized.

This scenario is considered as a naive implementation of a C- to C+L-band upgrade

for an existing OLS, as it resembles a case where the L-band is turned on without

touching the existing C-band power configuration. Starting from an optimized C-

band only transmission, the L-band is loaded and optimized so that a maximum

degradation of 0.5 dB in the C-band GSNR offset is permitted. The comparison

between Scenario 3 and 4 allows quantification of the performance gain that can be
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achieved with an overall MBT optimization, and provides an interesting use case

where the analysis of the inter-band effects can be effectively exploited. For each

optimized input power profile, a power evolution profile is evaluated as the solution

of the combined effect of the SRS and the fiber loss for all frequencies along the

entire fiber length. This power evolution profile is then used within the implemented

software framework to perform the SSFM simulations, which are carried out as

described in detail in Sec. 4.2.2.

The optimal input power profiles for all investigated scenarios are described in

Tab. 4.2 for each band in terms of spectral tilt and offset with respect to the separately

evaluated LOGO values of uniform -0.46 and -0.62 dBm per channel for the L- and

C-band, respectively. The average values of GSNR, OSNR and SNR NL values

obtained from the SSFM simulation campaign evaluated over the considered CUTs

at the OLS termination for each band are reported in Tab. 4.3.



96 Simulation and Power Optimization in Multi-Band Transmission Scenario

Ta
bl

e
4.

2
E

D
FA

ou
tp

ut
po

w
er

of
fs

et
an

d
ti

lt
va

lu
e

op
ti

m
iz

at
io

n
re

su
lt

s.

O
ff

se
t[

dB
]

T
il

t[
dB

/T
H

z]
B

an
d

L
C

L
C

S
ce

na
ri

o
1

0.
0

0.
0

0.
3

0.
3

S
ce

na
ri

o
2

&
3

-0
.5

0.
5

0.
4

0.
4

S
ce

na
ri

o
4

-0
.5

0.
0

0.
4

0.
3

Ta
bl

e
4.

3
S

im
ul

at
io

n
re

su
lt

s
gi

ve
n

se
pa

ra
te

ly
as

G
S

N
R

,O
S

N
R

an
d

S
N

R
N

L
fo

r
ea

ch
ba

nd
.

S
ce

na
ri

o
1

2
3

4
B

an
d

G
S

N
R

[d
B

]
20

.4
1

20
.7

0
20

.6
5

20
.5

9
L

G
S

N
R

[d
B

]
20

.7
5

20
.5

0
20

.4
6

20
.2

2
C

O
S

N
R

[d
B

]
21

.3
6

21
.5

9
21

.5
9

21
.5

1
L

O
S

N
R

[d
B

]
21

.7
2

21
.5

3
21

.5
3

21
.0

3
C

S
N

R
N

L
[d

B
]

27
.6

3
28

.0
3

27
.8

9
27

.9
7

L
S

N
R

N
L

[d
B

]
27

.8
4

27
.3

6
27

.1
8

27
.9

4
C



4.4 Leading Inter-Band Intra-Channel Nonlinear effects in C+L-Band Transmission
Systems 97

Remarkably, all simulations within this work are performed on a specific OLS

for a 400G transmission scenario; however, these results may be generalized to

different OLS and transmission configurations, as the GSNR variations that are

induced by different input power optimizations are analyzed. Fig. 4.16 reports the

GSNR, OSNR, and SNR NL values obtained from the SSFM simulation campaign

at the OLS termination for every CUT, in the first three scenarios. A first clear

observation from Fig. 4.16(c) is that an adequate level of flatness is achieved for all

the scenarios under investigation, with the final GSNR profile within an interval of

0.2 dB.

Fig. 4.16(c) provide an insight into the leading inter-band interactions: first,

introducing the IB-IC SRS (passing from Scenario 1 to Scenario 2) causes the main

GSNR variation for every CUT, similar to the OSNR variation that is introduced

by the IB-IC SRS, visible in Fig. 4.16(a). On the contrary, when the IB-IC NLI

is introduced (passing from Scenario 2 to Scenario 3) the impact upon the GSNR

variation is significantly reduced. This variation is essentially negligible for all CUTs

except those that are in proximity to the other band, which is still minimal, as can be

observed in Fig. 4.16(b). These observations demonstrate that the IB-IC SRS is the

greatest contributor to the GSNR variation in a C+L band scenario, with the effects

of the IB-IC NLI able to be neglected.

From an optimization perspective, this conclusion leads to the following approxi-

mate expression of the GSNR offset for each band:

GSNRC ≈ PC −∆SRSP

PASEC +PNLIC (PC)
, (4.11)

GSNRL ≈ PL +∆SRSP

PASEL +PNLIL (PL)
, (4.12)

where PC,L, PASEC,L and PNLIC,L are, respectively, the input signal, the ASE and intra-

band NLI power offsets for each band central frequency. ∆SRSP represents the power

transfer at the band central frequency due to IB-IC SRS being the only considered

inter-band effect; this quantity depends on the OLS characteristics and can be found

as a solution to the SRS equations, given both PC and PL. By means of Eq. 4.11 and

Eq. 4.12, the GSNR offset shift shown in Fig. 4.16(c) for each band passing from

Scenario 1 to 3, can be heuristically predicted when ∆SRSP has been evaluated.
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Fig. 4.16 (a) OSNR evaluated for every CUT. For all plots, the red circle, blue diamond and
green triangle markers and dashed lines represent the simulation results in Scenario 1, 2
and 3, respectively. (b) SNRNL evaluated for every CUT. For all plots, the red circle, blue
diamond and green triangle markers and dashed lines represent the simulation results in
Scenario 1, 2 and 3, respectively. (c) GSNR evaluated for every CUT. For all plots, the red
circle, blue diamond and green triangle markers and dashed lines represent the simulation
results in Scenario 1, 2 and 3, respectively.
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Fig. 4.17 (a) OSNR evaluated for every CUT. For all plots, the red circle, green diamond
and purple triangle markers represent the simulation results for all the CUTs in Scenario 1, 3
and 4, respectively. (b) SNRNL evaluated for every CUT. For all plots, the red circle, green
diamond and purple triangle markers represent the simulation results for all the CUTs in
Scenario 1, 3 and 4, respectively. (c) GSNR evaluated for every CUT. For all plots, the red
circle, green diamond and purple triangle markers represent the simulation results for all the
CUTs in Scenario 1, 3 and 4, respectively.
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To investigate a realistic use case, the system update from C- to C+L-band

transmission is considered. In a first considered scenario the system is upgraded

from a standalone C-band scenario (Scenario 1) by beginning transmission in the L-

band and keeping the C-band working points unchanged (from Scenario 1 to Scenario

4). As the current traffic on the C-band must be conserved to avoid out-of-service, an

available GSNR margin of roughly 0.5 dB is considered. With this requirement, the

input power of the L-band cannot be set as the optimum configuration for the L-band,

as this would produce an unacceptable high level of degradation of GSNR on the

C-band, as quantified by Eq. 4.11. Therefore, the L-band input power profile is set

to a sub-optimum solution to maintain the C-band GSNR offset within the given

margin; the result of this procedure has been simulated in Scenario 4 and is shown in

Fig. 4.17(c). It is worth highlighting that the degradation of GSNR in the C-band

that can be observed when adding the L-band upgrade is completely compatible with

the OSNR degradation observed in the C-band in Fig. 4.17(a). From an optimization

perspective, Eq. 4.11 and Eq. 4.12 provide a deeper insight into the inter-band GSNR

correlation. The effect of the IB-IC SRS is that the optimal input power is moved to

higher/lower values for the C- and L-bands, respectively; this can be quantitatively

observed by comparing the optimal input power offsets of the two bands in Scenario

1 and Scenario 3 in Tab. 4.3. Therefore, it can be deduced that the C- and L-band

stand-alone optimum input power offsets correspond to the lower and upper bounds

for the MBT optimization. Focusing on the considered use case, PC can be increased

up to the optimal value found in Scenario 3. Performing this change incrementally

moves GSNRC towards its optimum and simultaneously changes GSNRL due to the

corresponding change in ∆SRSP. The increment of PC is limited both by the C- and

L-band stand-alone optimum modified by the ∆SRSP. Furthermore, it is worth noting

that as the IB-IC NLI is negligible, there is not any additional SNR NL degradation

on the L-band when increasing the offset of the input power of the C-band, as shown

in Fig. 4.17(b).

4.4.1 LOGO MBT Extension Results and Validation

The literature contributions regarding the MBT optimization problem and reported

in 4.1 demonstrate that heuristic and meta-heuristics can be leveraged in order to

accelerate the optimum search task, maintaining the accuracy equal to the QoT esti-

mator precision that has been chosen for the system predictions. Even if significant
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improvements in terms of computational time have been shown, this may be not

practical in several use cases; e.g. when considering large-scale network systems

or when an instantaneous system response is required in order to minimize service

interruption after a network fault.

In this section, an optimization algorithm is based on multi-band extension of

LOGO calculation is proposed. In particular, it is demonstrated that by means

of a negligible loss of the MBT model precision, an explicit expression of the

optimized launch power can be derived, exploiting the intrinsic nature of the major

inter-band mutual interactions. While heuristics and meta-heuristics provide the

optimized launch power without a direct insight into the multi-band system features,

the proposed explicit expression of the optimization problem solution can be used

for instant and efficient estimations and analysis for the network planning, design,

and control. Additionally, it is worth noting that, when a more accurate evaluation is

required, the proposed solution can be effectively considered as initial condition of a

heuristic or meta-heuristic optimization algorithm.

The rough heuristic expressed by Eq. 4.11 and 4.12, can be precisely defined

considering the final optimized launch power offset, P̃B, for each band, B, as a

perturbation of the optimized launch power offset, P
(s)
B , obtained in a single-band

transmission scenario, respectively. By means of this assumption, the first-order

SRS solution in terms of the gR can be considered to define approximate corrections

of both the OSNR and the SNR NL as functions of the optimal single-band launch

powers. Bearing in mind the optimization perspective, the targets of this approach are

two values for each band: the launch power offset, P̃B, and the launch power tilt, T̃B.

In this analysis, an explicit expression of P̃B is provided for each band as an extension

of the LOGO formula based on the Gaussian noise (GGN) model on the separate

single-band transmission scenario, obtaining a solution that depends only on P
(s)
B and

SRS-induced power transfer. However, an explicit expression of T̃B required a more

complex approach as on the boundaries channels of each band the IB-IC NLI cannot

be neglected due to the proximity of the neighboring bands; this can be observed in

Fig. 4.16(b). Indeed, this problem can be overcome considering the IB-IC NLI of

the neighboring bands for the boundary channels of each band, but this is out of the

scope of this study, as the target of this investigation is a simple expression based

on the LOGO optimization of the single-band transmission scenario. Nevertheless,

a procedure that provides the T̃B values with a single transmission simulation is

proposed.
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First, focusing on the P̃B definition, the following expressions for the central

channel of the k-th band can be written:

P̃ASE,k = h fkNFkRs,keα̃kL , (4.13)

P̃NLI,k = η̃kP̃3
k , (4.14)

where, with respect to Eq. 2.50 and considering a transparent transmission scenario,

G is substituted with the product of the fiber length, L, and eα̃kL that represent the first-

order SRS correction of the gain/loss power profile along the fiber length. Whereas,

η̃k, j is a first-order SRS correction of the ηNLI which is defined by the GN model,

where any IB-IC NLI contribution is neglected, and only the interference between

the central channel and the j-th channel within the very same band is considered.

More precisely, α̃k and ηk can be written for the central channel of the k-th band as

follows:

α̃k = αk − ∑
B,iB

P
(s)
B Ck,iB

αiBL

(

1− e−αiB
L
)

, (4.15)

η̃k =
8γ2

k

(

1− e−α̃kL
)2

27π
∣

∣β2,k
∣

∣ α̃kR2
s,k

arcsinh

(

π2
∣

∣β2,k
∣

∣R2
s,kN

2∆k

ch,k

2α̃k

)

, (4.16)

where αk, β2,k, γk, Nch,k and ∆k = Rs,k/∆ fk are, respectively, the intrinsic fiber loss,

the dispersion coefficient, the nonlinear coefficient and the ratio between the symbol

rate and the slot width of the central channel of the k-th band. B the index of the

interfering bands, iB the index of each channel within the interfering band B, Ck,iB is

the value of the SRS coefficient evaluated between the k- and iB-th channels and P
(s)
B

is the B-th single-band optimized launch power. Eq. 4.15 and Eq. 4.16 can be further

simplified by considering equivalent flat values of αiB and Ck,iB for all channels in

the interference band B.

Given these explicit expressions, Eq. 4.13 and Eq. 4.14 can be leveraged to

find the solution of the optimization problem for any MBT scenario, applying

the optimization constraints on a per-band basis. In particular, by enforcing the

optimization strategy described in Sec. 4.1, the optimal launch power offset of each
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band B can be set such that:

P̃B =
3

√

P̃ASE,B

2η̃B

∀B. (4.17)

Remarkably, using Eq.4.17, the solution of the optimization problem for each band

depends only on the physical parameter evaluated in the specific band, and on the

single-band optimized powers, P
(s)
B , of all the bands, which are known values that

can be evaluated a priori using, as an example, a simple expression of the LOGO

optimization algorithm for the single-band transmission scenario.

In order to evaluate the generalization of our proposed method, this analysis

investigates the single-, two- and three-band transmission scenarios upon a specific

OLS. In order to perform a solid validation, the transmitted spectrum is diversified

varying the symbol rates and slot widths, 32/64 GBaud and 50/75 GHz, respectively,

of each band, obtaining 26 distinct combinations such that these quantities are the

same for all the channels within the same band, but they vary from one band to the

other.

Exceeding the 10 THz of total transmission bandwidth, it is complicated to

manage the complexity of SSFM simulations, which can provide inaccurate estimates

of transmission impairments. Moreover, the available SSFM implementation requires

a large computational cost resulting in an unfeasible computational time. Therefore,

as a transmission simulation environment, the approximate GGN implementation

documented in Sec. 2.2.3.
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In Tab. 4.4, the results of the GA optimization method in all transmission scenar-

ios investigated are reported. As mentioned in Sec. 4.1, this algorithm, in general, is

extremely accurate compared to the proposed methodology and, therefore, serves as

a reference ground truth for the validation.

First, it is worth noting that the difference between the optimized solutions with

32/64 GBaud symbol rates is due to the different spectral power densities of the

transmitted spectra. In general, these differences are expected to be negligible when

the PSD of each band is preserved, allowing flexible management of the spectrum

allocation when a flat GSNR is in place.
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Fig. 4.18 Input power profile for C+L+S scenario using 64 GBaud and 75 THz of symbol
rate and WDM grid, respectively, comparing the power optimization using the GA and the
proposed method without and with applied tilt.

Regarding the validation of the proposed optimization procedure, first the optimal

flat launch powers for each band is evaluated. In Fig. 4.18 and Fig. 4.19, the results

of the multi-band extended LOGO are compared with the optimized launch powers

and simulated GSNR obtained with the GA optimization. It can be observed that this

approach already provides a promising optimized solution in terms of average GSNR.

Nevertheless, a clear intra-band GSNR tilt is present that results in GSNR differences

of up to 2 dB between channels within the same band. The GSNR flatness is an
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Fig. 4.19 GSNR profile for C+L+S scenario using 64 GBaud and 75 THz of symbol rate and
WDM grid, respectively, comparing the power optimization using the GA and the proposed
method without and with applied tilt.

essential requirement of the defined optimization strategy, therefore, a second step

in the optimization procedure is proposed. Given the flat launch powers evaluated,

P̃B, a single simulation can be performed to find the residual intra-band GSNR tilts

induced by SRS power transfer, whose results are shown in Fig. 4.19. In order to

compensate for these residual intra-band GSNR tilts, an adequate power tilt can

be applied at the launch power P̃B of each band. In particular, given an intra-band

GSNR tilt, TGSNR,B defined as the GSNR difference in dB between the lowest and

highest frequency channels within the band B, the following expression of the launch

power tilt, T̃B is defined:

T̃B =
3
2

TGSNR,B , (4.18)

where the 3 factor is due to the cubic root in Eq. 4.17, whereas, the 2 factor derives

from a system rule of thumb applied when trying to compensate for the SRS effect

in single-band transmission scenario. Additionally, as the performance of the worst-

case-scenario channel (considering only the lowest and highest frequency channels

within the band) depends on the powers of a neighboring band, instead of applying
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the tilt with respect to the band central channel, the tilt has to be applied to the

worst-case-scenario channel itself, as shown in Fig. 4.18.

Finally, the result of the entire proposed optimization procedure is shown in

Fig. 4.19, where the obtained GSNR is very similar to the result of the GA opti-

mization. The proposed methodology is employed in all investigated transmission

scenarios, obtaining highly satisfactory results in terms of both GSNR offset, ∆GSNR,

and flatness, ∆GSNR max/min. The differences between the GA optimization and

the proposed methodology are reported in Tab. 4.5. It can be observed that these

differences are always below 1 dB and in several cases the proposed methodology

provides better results (negative values in Tab. 4.5) than the optimization results of

the reference GA optimization.
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Chapter 5

Machine-Learning Aided Physical

Layer Model

In this chapter, two examples of ML aided physical layer model presented in [105, 42]

are documented. The aim of this project is to introduce and validate ML methods

capable of accurately forecasting fluctuations in OLS OSNR induced by varying spec-

tral load transmission. As anticipated in Sec. 2.3, EDFAs are designed considering a

full spectral load configuration and their gain and NF profiles may vary significantly

when only portions of the entire amplification bandwidth are loaded. Remarkably,

no analytical expression has been established to describe the fluctuations that impact

the overall degradation of OLS OSNR for each transmitted channel. Therefore, in

this scenario, a data-driven approach based on ML algorithms is particularly advan-

tageous as it provides accurate predictions of the overall OLS OSNR degradation for

each transmitted channel with any spectral load configuration.

The proposed methodology has been validated through two experimental cam-

paigns conducted at the Links Foundation in Turin, Italy.

5.1 ML predictions of Variable Spectral Load EDFA

Fluctuations

To reduce the system margins [37], it is mandatory to rely on a quality of transmission

estimator (QoT-E) that is able to reliably predict lightpath performance before its
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actual deployment, i.e., the generalized GSNR. The interaction between ASE noise

and NLI [114, 115] occurs in the case of very low operational GSNR, namely for

extremely long OLSs, which require several amplification points. These conditions

are verified in submarine point-to-point networks, but have negligible effects within

terrestrial networks. This investigation focuses on terrestrial regional and national

backbone networks for which transparent propagation is over much smaller distances,

meaning that considerable ASE-NLI interactions are not produced. Among the ASE

noise and NLI contributions, the former is the most dominant, because it is twice the

NLI when the system operates at optimal power [116, 117]. Remarkably, it is also

the most challenging to estimate. In fact, the ASE noise magnitude depends on the

working point of EDFAs [118], which in turn depends on the spectral load [119]. On

the contrary, the NLI can be accurately predicted when the ASE noise accumulation

is well characterized [120].

Therefore, the reduction of uncertainty in the OSNR prediction is crucial for

accurate QoT estimation and, consequently, to enable the network controller to

reliably deploy the lightpath at the minimum margin. As worst case margin scenario,

a completely agnostic approach is assumed, by relying only on data coming from

the optical channel monitor (OCM) available at the end of the OLS. In case of

varying spectral load, EDFA frequency-dependent fluctuations induced by a mixed

effect of physical phenomena [119] and implementation issues, meaning that an

analytic approach is almost impossible to achieve in an open environment. In this

scenario, ML techniques are very promising enabling a data-driven approach able to

counteract uncontrolled fluctuations, as already effectively tested when managing

optical networks; see [121±124] for performance monitoring applications, [125, 126]

for prediction estimation of the ML approach and [127] for both. Overall survey of

ML applied in optical networks can be found in [128, 129].

Focusing specifically on the quantification of EDFA uncertainties for margin

reduction purposes, ML has previously been utilized to model EDFA gain [130, 131],

noise figures [132, 133] and power excursions [121, 134], with [134] further demon-

strating wavelength assignment using an algorithm that was able to recommend

channel provisioning based upon the ML model results. Correction for EDFA gain

ripple has also been targeted in [135, 136], with [136] further using monitoring

information to significantly reduce the margin of a network planning tool based upon

the GN model.
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5.1.1 Approaches for QoT Estimation

In Fig. 5.1, three possible datasets, each representing a different level of knowledge of

the OLS behavior, with each allowing a different reduction of the GSNR uncertainty.

Typically (option (1)), some data is available from the static characterization of

Fig. 5.1 General scheme for a QoT-E module predicting the GSNR( f ). The three available
datasets are shown: static data from device characterization (1), data from current-state
telemetry (2) and stored data from historical telemetry that feeds a ML module (3).

devices (e.g., calculating amplifier gain and noise figure in the frequency domain,

connector loss, etc.) and is very significant for closed systems. By using this data

and characterizing the OLS components, an accurate QoT-E can be implemented in

vendor-specific systems. In particular, if all of the physical characteristics of the OLS

are known, the OSNR may be calculated using Eq. 2.50. Nevertheless, this static

data may be incomplete or inaccurate; even in a best-case scenario, the components

experience degeneration due to aging, leading to an progressively unreliable QoT-E

over time.

A second possibility is that telemetry data concerning only the current network

status is available (option (2)). Assuming an agnostic operation of the OLS (as is

required in an open OLS) means that the OLS controller must mainly rely upon
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telemetry data originating from the OCM and the EDFAs. This approach does not

require the knowledge of the device parameters and avoids the deterioration of the

QoT-E accuracy due to aging discussed in option (1). In this case it is possible to use

the telemetry data to estimate the OSNR response of the system by relying on the

current parameter values. The problem of this approach is that the OSNR response

is highly dependent upon the spectral load configuration, requiring a large margin,

as can be seen from the analysis of the experimental dataset in Sec. 5.1.3.

Lastly, option (3) considers a dataset that collects the QoT responses to random

spectral loads. This data can be generated before the in-service operation of the OLS,

supposing the availability of a device which is able to supply the OLS with various

spectral load configurations and measure the OLS response in terms of OSNR. As

OLSs are typically bidirectional, it is conceivable that a two-port portable device

operating as an ASE-shaped generator at the output port and an accurate OCM at

the input port can be used to retrieve this data. Moreover, a future implementation

considers the possibility of these devices being built into the ROADM nodes, which

allows the data to be collected with periodical updates via streaming. Utilizing

this dataset enables a QoT-E based on the OSNR response to specific spectral load

configurations, increasing the accuracy of OSNR predictions with respect to option

(2), where only telemetry data is considered. Additionally, this approach does not

require the knowledge of the physical parameters of the OLS. This case provides an

ideal scenario to apply ML, where the OLS is treated as a black box. In fact, a ML

method using a training dataset composed of past spectral load realizations can yield

an accurate prediction for every newly generated spectral load realization.

The focus of this work is option (3) and consider a realistic use case. Namely, a

scenario where the OLS controller wishes to allocate a new lightpath over the CUT,

given an existing spectral load. In particular, the level of OSNR associated with this

new lightpath is investigated.

5.1.2 Experimental Setup

To obtain an experimental dataset, it has been design and implement the experimental

setup depicted in Fig. 5.2, based on commercial EDFAs [137] used as black boxes.

Span losses are obtained by variable optical attenuator (VOA) in order to focus only

the OSNR and to avoid any NLI generation. The channel combs which provide
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Fig. 5.2 Experimental setup: Here, the OLS under investigation is composed of an initial
booster amplifier and a cascade of 11 spans, each containing a VOA and an EDFA. The input
and output spectral power measurements obtained using an optical spectrum analyzer are
shown in blue and red, respectively.

the OLS spectral load have been obtained by shaping ASE noise. This approach

does not limit the generality of the results because of the large time constant that

characterizes the physical effects within EDFAs. The output of the ASE noise source

is shaped by means of a programmable optical WaveShaper© (1000S from Finisar)

to generate a 100 GHz-spaced, 35-channel WDM comb centered at 193.5 THz,

amplified by a booster amplifier (EDFA0 in Fig. 5.2). The choice of the 100 GHz

spacing was forced by the hardware availability, as well as the overall frequency

domain under investigation, which was limited to 3.5 THz (35 channels, each with

100 GHz spacing). These restrictions do not limit the generality of the results, as

the OSNR values do not change appreciably within each channel bandwidth and

all criticalities concerning the EDFA amplification process are properly captured.

The optical line is composed of 11 spans, each made of a VOA, with the optical

span attenuation set to 10 dB, each followed by an EDFA that operates at a constant

output power of -1 dBm per channel. For the EDFAs, MATLAB® control software

has been developed to enable black box control. The OCM at the end of the OLS

is mimicked by an OSA. OCMs that are currently present in ROADM nodes are

not able to capture the noise floor due to their lack of sensitivity. As mentioned

in the option (3) within the previous section, for a real application scenario it has

been supposed the presence of a specific device that is able to measure both the

channel powers and the noise floor, or, to update the current OCM presence on
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the ROADM nodes. Regarding the technical aspects of the data collection within

this project, the experimental campaign lasted several days due to the OSA usage,

which takes significantly longer than an OCM. Within a real application scenario the

data collection process is expected to last the duration of a single night before the

in-service operation of the OLS, producing the required amount of data needed for

training the ML.

For every spectral load, input and output spectrum are measured in order to

generate the final dataset. Specifically, the total power over each channel spectral

bandwidth is measured, i.e., the noise floor if the channel is off, or the channel power

if the channel is on. As a matter of fact, since the channel bandwidth (32 GHz) is

less than half of the channel spacing, the noise floor is measurable even for the on

channels, estimating their OSNR. An experimental dataset has been generated with

4435 cases representing different spectral load configurations. For clarity, let us

define Non as the number of channels in the on state in a distinct configuration. Given

this definition, the dataset is composed of: a scenario with all channels on (Non = 35),

the 35 cases where only one channel is on (Non = 1), and 140 configurations for each

Non = 2, ...,34. This final set of configurations includes pairs of spectral loads which

are identical, except for the CUT being either within the on or off state.

5.1.3 Statistical Analysis of Experimental Data

In this section, a statistical analysis of the OSNR fluctuations produced by different

spectral loads is presented in order to obtain a quantitative estimation of the total

OSNR uncertainty, given a static OLS (the OSNR values are calculated with a noise

bandwidth of 12.5 GHz). Moreover, the experimental dataset is used as outlined in

option (3) to acquire a prediction of the OSNR responses. To summarize the dataset

characteristics, there are 4435 measurements of distinct spectral load configurations,

which are a subset of the 235 possibilities, given 35 channels. To populate the

dataset, a sample of spectral load configurations which is uniform over the number

of channels in the on state is selected. Moreover, for the set of configurations with

the same Non, the channels that are in the on state are chosen randomly, except for

the CUT, which is equally divided between the on and off states. This specific

dataset selection method is enacted in order to validate the prediction method on

the CUT OSNR response. During the entire analysis, no uncertainties have been

taken into account in the measurements, as they are negligible with respect to
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Fig. 5.3 Overall OSNR measurements in the frequency domain. The blue dots are the mean
values over the entire sample for each channel; the error bars are equal to the standard
deviations. In red and green the maximum and the minimum for each channel are outlined,
respectively. The dashed red line indicates the overall OSNR minimum of 28.1 dB.

the characteristic variances of the system. A few basic considerations arise by

calculating the average of the OSNRs for each channel over the entire sample,

presented in Fig. 5.3. These OSNR averages sketch a characteristic figure of the

EDFA amplification process, which takes place between 29.5 and 30.9 dB, with

standard deviations from 0.14 to 0.40 dB. In order to learn more about the EDFA

cascade behaviour, it is necessary to consider each configuration separately. In fact,

the OSNR of each channel depends upon the state of every other channel within

the spectral load. For example, as a primitive analysis in this direction, the OSNR

distributions variation with regards to the number of on channels in the spectral load

is investigated. Fig. 5.4 and Fig. 5.5 present the distributions enclosed in Fig. 5.3

for a select subset of channels, plotted against the total number of on channels

in the configurations: here these figures show the means and standard deviations,

σ , of the channels, respectively. It must be noted that because the dataset was

further divided into chunks, the reliability of the averaged quantities is substantially

decreased. This causes the standard deviation (presented in Fig. 5.5) to be far less
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Fig. 5.4 The mean values of four channel OSNRs are plotted with respect to the configurations
for an increasing Non. The legend reports the central frequency of the channels considered.
The colored lines and shaded areas are qualitative visual expressions of the trend of measured
data.

uniform across all channels when only a small number of channels are in the on

state. Regardless, Fig. 5.4 shows that for the CUT ( f = 195.25 THz), there is an

unquestionable increase in the OSNR as the line approaches a full load configuration.

Moreover, for all channels σ decreases under the same conditions, meaning that the

system tends towards a stable state. To further characterise the OSNR response with

respect to a specific configuration, it is necessary to fully understand the intrinsic

behaviour of the amplification phenomenon.

5.1.4 Physical Considerations

Despite it being possible to obtain a precise physical description of the emission

phenomenon involved in the amplification process, without an accurate knowledge

of the OLS physical parameters it is not feasible to determine the evolution of the

spectral load through the EDFA cascade. In a general scenario, this obstacle would be

exacerbated by the embedded EDFA software controller, which, in order to maintain
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Fig. 5.5 The standard deviation values of the same configurations plotted in Fig. 5.4. As
expected, the channel centred at 195.25 THz maintains the highest variance out of all of the
configurations. The colored lines and shaded areas are qualitative visual expressions of the
trend of measured data.

specific requirements, changes the spectral powers at the output of the amplifiers

with an unknown algorithm. Properly addressing the cause of the OSNR fluctuations

requires splitting the OSNR into its constituents: the received signal power and

the ASE noise. An important point is that intensity of the signal amplification

and the ASE noise are strictly related. Essentially, these quantities coincide with

the stimulated and spontaneous emission of the amplifiers, respectively, and both

depend on the population inversions of the erbium within the EDFAs [119]. As

a rough summary, if no power is transmitted in a given frequency band, all the

relative population inversion is utilized by the ASE noise, allowing it to reach a

maximum value. In contrast, when the transmitted signal is amplified, a smaller

amount of population inversion is present, resulting in a lower maximum noise

value which may be attained. This effect is shown within Fig. 5.6, where two

spectral load configurations are considered. Here, a clear reduction in ASE noise is

observed by switching an extra channel on. This is the case for all channels, with

the minimum amount of ASE noise being achieved when all channels are in the



118 Machine-Learning Aided Physical Layer Model

Fig. 5.6 A qualitative visualization of the OSNR fluctuations which arise from turning on a
new channel, for both the ASE noise (shaded lines) and the power of the on channels (dots).
Here, the Non = 1 case is given in red, and the Non = 2 case is given in blue. In this figure,
all quantities are normalized in order to have a unitary mean value.

on state. Furthermore, it should be noted that among all possible configurations,

the example shown in Fig. 5.6 experiences the wildest change in noise figure. In

fact, the channel switched to the on state has a frequency bandwidth centered at

195.25 THz, with a frequency close to the peak of the well-known spectral hole

burning phenomenon [119]. Likewise, this behavior is also reflected by the large

OSNR variance of this channel. Revisiting the dataset, this feature is pictured in

Fig. 5.7, where the standard deviations of the overall OSNR measurements for each

channel are plotted. Furthermore, in Fig.5.6 it can be observed that even though

channels have a frequency spacing of 32 GHz in this experiment, changing a channel

to on can affect the power of the noise upon frequency bandwidths hundreds of GHz

away. Since the EDFA energy level population inversion quantifies the intensity of

both the amplification and of the noise, it can be concluded that the state of a single

channel impacts both the signal power and the ASE noise of channels within its

frequency neighborhood. This cross-dependency between the power of the channel

and the ASE noise, which depends on the state of the other channels, means that

calculating the OSNR of every channel is challenging; this is not an intrinsic value
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Fig. 5.7 The standard deviation trend over all of the channels, highlighting an increase as the
OSNR approaches the frequency where the peak of the spectral hole burning occurs, given
by the dashed red line in the figure.

of the channel, but of the entire spectral load. Due to the above considerations, it is

not possible to further characterize the OSNR response for a particular configuration

if the the parameters of the OLS are not accurately known.

Apart from the statistical description of the entire dataset and the heuristic

analysis on OSNR fluctuations, this dataset is used as grounds for a realistic use

case. In general, the required margin must be conservative and take into account the

OSNR fluctuations and depends upon the needs of the OLS operators; to be agnostic

with respect to these needs and to compare different prediction methods in a fair

manner, an estimation of the average margin is quantified by calculating the RMSE,

given by:

RMSE =

√

√

√

√

√

N

∑
i=0

(

OSNRr
i −OSNRp

i

)2

N
, (5.1)

where OSNRr
i and OSNRp

i are the measured and predicted values of the CUT OSNR

for the ith spectral load, respectively, and N is the dimension of the test dataset. If
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nothing is known about the OSNR dependency upon frequency, the same OSNR

threshold must be implemented for all channels with a magnitude lower than an

overall expected minimum. In this case, the OSNRp
i are set to the constant OSNR

threshold of 28.1 dB, producing an average margin of up to 2.28 dB over a set of

realizations equivalent to our sample.

Supposing the availability of stored data that describes the frequency-resolved

OSNR response (option (3)), one can reduce the margin by setting a minimum value

for each channel that must lie beneath the respective minimum measurement (the

continuous green line in Fig. 5.3). Although this solution is sub-optimal, it is the best

achievable result which is conservative and agnostic in regards to the specific spectral

load configuration. This solution produces a limited improvement, compared to the

initial value of 2.28 dB, as the average margin would lie between 1.72 dB and 0.46 dB,

depending upon the channel. This result can be further improved by characterizing

the OSNR fluctuation dependency upon the specific spectral load configuration; as

the user knows the number of on channels for a given spectral load, they can set the

threshold as the minimum value of the OSNR measurement for the given Non. The

result of this approach produces an RMSE which lies between 1.22 and 0.09 dB

for the CUT (worst case scenario), shown in Fig. 5.8. These improvements would

reduce the margin in an effective manner, however, being highly dependent upon the

sample features, their accuracy is limited by the statistical incidence of the sample

over all possible realizations of the system. This means that having a reliable value

for each channel may require considering a large number of instances. In light of

this, a ML approach appears to be an appropriate candidate to increase the accuracy

of OSNR predictions, if the dimensions of the sample are fixed.

5.1.5 Machine-Learning OSNR Prediction

The prediction of the OSNR based upon a specific spectral load configuration is

an ideal scenario for ML, especially within a case where the OLS is treated as a

black box, as ML can compensate for the lack of knowledge regarding the OLS

parameters. To gauge the effectiveness of the ML approach, a real case scenario is

taken into account. The aim of this project is to enhance the accuracy of predicting

OSNR through implementing ML techniques within the given scenario. First, it is

essential to partition the measurement dataset into training and testing subsets. The

former represents the stored dataset on which the OLS controller can base the OSNR
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Fig. 5.8 The RMSE for the worst-case scenario channel, with an increasing number of chan-
nels in the on state within the configuration, obtained considering the respective minimum
measured OSNR value used as a margin threshold.

predictions for a lightpath that will be allocated to the CUT. The latter represents

a set of real outcomes which can be used to validate the accuracy of a particular

prediction method. To estimate this accuracy the RMSE is used, considering OSNRr
i

and OSNRp
i as the measured and predicted values of the CUT OSNR, restricted to

the test subset of the dataset. Setting a constant OSNRp
i for all i as the minimum

measured value of the CUT OSNR yields a value of 1.63 dB RMSE over all the

configurations in the test dataset. Following this, the well-known TensorFlow©

platform [138] enable performing ML, adapting various high-level features from this

platform according to our requirements.

Before proceeding with implementing a ML technique to predict the OSNR of

an OLS, preliminary investigations are undertaken at first in order to probe whether

a neural network or a linear regression model provides superior performance ± as a

result the DNN implemented in TensorFlow© has been chosen; it is a feed-forward

multi-layer (deep) neural network, because it outperforms a linear regression model

in this scenario. Applying the DNN model to the collected dataset, various levels

of accuracy are obtained depending on the DNN parameters. This DNN model is
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characterized by a proximal Adagrad optimizer (again, implemented in TensorFlow©

[138]) with a fixed learning rate of 0.1 and a regularization strength of 0.001. Most

importantly, the number of hidden layers and nodes have been tuned in order to

achieve the best trade-off between precision and computational time. These two

parameters are linked to the complexity of the DNN, which in turn is tied to the

complexity of the problem to be solved. Although increasing the number of layers

and nodes improves the accuracy of the DNN, raising these values also has an adverse

effect on computational time. In the end, a DNN with 3 hidden layers have been

selected, containing 32 nodes each, taking approximately 8 minutes to train (using

a machine running with 32 GB of 2133 MHz RAM and an Intel® Core™ i7 6700

3.4 GHz CPU), as increasing DNN complexity does not further improve the accuracy

of the OSNR estimations. These quantities should be changed when considering

a system with a larger number of amplifiers, with the computation time increasing

accordingly. Once the model has been trained it can be validated and utilized for

any possible spectral load configuration, within the overall investigated bandwidth,

for the OLS under consideration. Considering a single CUT (with f = 195.25 THz),

30% of the dataset is designated as a testing subset. Due to the CUT being close to

the spectral hole burning peak, this is a worst-case scenario for OSNR fluctuations,

therefore, lower error predictions are expected for all other CUT selections. The

testing subset was created by randomly choosing instances from the dataset, with

the only requirement being that the uniformity of the distribution with respect to

the number of on channels in the configurations was preserved. This means that,

for each configuration subset with a given Non the 30% is selected to be in the test

dataset. DNN training and prediction processes require the definition of features and

labels, which indicate system inputs and outputs, respectively. As outlined in the

previous section, the uncertainty of the system can be divided along the variances of

the received signal power and the ASE noise. Therefore, these two quantities are

considered as independent inputs of the system and set them as the DNN features.

Correspondingly, the OSNR is the only system output under investigation and so

is set as the DNN label. In order to properly address the aforementioned realistic

scenario, the DNN features correspond to the quantities measured when the CUT

is off, whereas the labels correspond to the CUT OSNR when the CUT is in the on

state. As a consequence of this restriction, the final dataset composed of the training

and testing subsets is half the size of the original dataset.
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Fig. 5.9 illustrates the distributions of the measured OSNR for the CUT and the

predictions of the DNN over the test dataset. This figure highlights how the DNN

predictions closely resemble the measured OSNR values, having a similar mean, µ ,

range and standard deviation, σ . An average margin of 0.15 dB is obtained through

this DNN estimation of the CUT OSNR, which is a significant improvement with

respect to the previous solutions presented at the end of the previous section. To

properly frame these results in the realistic use case scenario, it must be underlined

that despite the DNN providing a high level of accuracy, it may make predictions

which are not conservative. For example, in this case 38% of the predictions are

greater than the real values, even if the majority are greater by a marginal amount.

This percentage of non-conservative predictions may be reduced by shifting the

Fig. 5.9 Comparison of the OSNR distributions of the DNN guesses and the measured values,
respectively.

OSNR estimations of the DNN by a fixed amount. For example, to reach a scenario

where less than 6% of the predictions are non-conservative, the DNN estimations

must be shifted by a factor of 0.2 dB, giving an RMSE of 0.27 dB, which still remains

a significant improvement over the initial average margin estimations. Furthermore,

it should be stressed that the dataset used in this work contains less configurations

where a small number of channels are on, visible in Fig. 5.10. The result is that

these scenarios are underrepresented in the training dataset, causing the accuracy
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Fig. 5.10 Comparison of the OSNR averages of the DNN guesses and the measured values,
respectively, presented in terms of the number of channels, Non. The RMSE is indicated with
the error bars.

of the DNN predictions to be lower when Non < 10; ensuring that these cases are

represented equally would reduce the overall RMSE. Additionally, Fig. 5.10 reveals

that all non-conservative cases in this investigation were given when N10 = 10 or

less, further stressing that the criticalities of the DNN prediction depends upon the

statistical incidence of the sample over all possible realizations. In light of these

results a ML approach exhibits promising accuracy, and it seems that with further,

more in-depth parameter selection and training that the DNN may eventually lead to

an OSNR margin estimation that approaches zero, at least for similar use cases.

5.2 ML Aided QoT-E Based on GNPy

The ML implementation within this study is performed in a similar way to the

previous work [105], described in Sec. 5.1. The objective is the creation and as-

sessment of an overall GSNR QoT-E built from two constituent models; with the

SNR NL contribution being modelled with GNPy, and the OSNR contribution being

predicted using two DNNs, estimating the Pλ and PASE;λ for each channel across an
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entire spectrum, no matter the spectral load configuration. This approach has been

validated through an experimental campaign, comparing the estimated end-of-line

GSNR degradations to real QoT measurements, demonstrating the enhancements

that result when combining an analytical QoT-E approach, in this case the GNPy,

with a ML algorithm that provides an accurate GSNR prediction. Additionally, the

approach taken within this investigation can be applied to next-generation SDN

network management scenarios, pursuing an ultimate goal of a fully automated

network without human input. As examples, an experimental implementation of an

observe-decide-act (ODA) loop utilizing a ML algorithm is performed in [139, 140],

a tutorial showing how similar ML implementations may contribute to an automated

network architecture in [141], along with a demonstration for a ML-based monitoring

system for a fully disaggregated ROADM implementation in [142].

5.2.1 Experimental Setup

Fig. 5.11 A schematic representation of the experimental setup described within this work.

The experimental setup depicted in Fig. 5.11 was created connecting 9 com-

mercial EDFAs and 8 fibers that are characterized by distinct physical parameters.

Starting from the transmitter, the OLS begins with a booster amplifier that is set to

produce a flat, constant power value of -1 dBm for each channel (regardless of the

spectral load configuration), followed by 8 fiber spans, each approximately 80 km

long, with a mixture of single mode fiber types, each followed by a commercial

EDFA [143] operating with distinct and constant gain and tilt values. To generate

the input spectral loads, an ASE noise source has been manipulated using a com-

mercial programmable WaveShaper© (1000S from Finisar) obtaining a 80 channel
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WDM comb, centered at 193.3 THz with a WDM grid spacing of 50 GHz within the

C-band, according to ITU-T specifications [144]. Two CUTs, centered at 191.65 and

194.95 THz, are considered and addressed as CUT 7 and CUT 73, respectively, given

their cardinal position in the WDM comb. For these CUTs, the signal transmission is

managed by a commercial AS7716-24SC Cassini device [145], along with a CFP2-

DCO coherent module from Lumentum, that is able to generate and detect either a

32 GBaud, QPSK modulated signal or a 43 GBaud, 8-QAM modulated signal.
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Fig. 5.12 The power measured using the end-of-line OSA for one of the 2520 spectral load
configurations. Channels which are turned on provide signal power measurements, whereas
channels which are turned off provide ASE noise power measurements.

An OSA has been placed at the end of the OLS to emulate the OCM at the

ROADM input and output. Within this experimental framework, 2520 different

spectral loads have been generated, iterating through various scenarios where a

different number of channels are turned on. In each scenario, permutations that

represent unique spectral load configurations are generated, between a minimum

of 2 channels turned on up to the maximum spectral load case of 80 channels. For

each of these configurations, the power levels of all 80 channels are measured,

obtaining the signal power if the channel is turned on and the ASE power if the

channel is turned off; an example spectrum power measurement performed using

the OSA is shown in Fig. 5.12. In this procedure, the FWM component of the NLI
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impairment is considered negligible for all the fiber varieties under investigation, as

verified in [106, 105]. Furthermore, for all spectral load configurations the BER in

transmission associated with the specific CUT is measured. From these quantities a

quantitative estimation of the GSNR is obtained by inverting the BER vs the OSNR

curve, obtained through a progressive B2B noise loading characterization [146].

5.2.2 Optical Line System Characterization

In general, a digital model requires a comprehensive description of the line physical

parameters for accurate QoT predictions. In particular, the physical parameters of

the fiber spans were unknown before initiating the experimental campaign. As a

preliminary analysis, an optical time domain reflectometer (OTDR) has been used to

probe the lengths and α values of the fiber spans within the link at the OTDR pulse

frequency, 193.414 THz. The power measurements at the fiber termination suggested

that the OTDR measurement of α for the probing frequency was not enough to

properly simulate the fiber loss as an unexpected power tilt was observed at the fiber

termination. This was due to characterization inaccuracies of both the spectral fiber

loss coefficient profile, initially considered flat in frequency, and the efficiency curve

of the SRS. To overcome this, given a model for both α and gR, an optimization

algorithm [47, 103] was implemented enabling the joint characterization of these

parameters that best matches the experimental signal profile of the full spectrum

scenario.

Regarding the SRS contribution, a fixed, normalized efficiency curve [49] mul-

tiplied by a fiber span-dependent Raman coefficient, CR, with the resulting SRS

efficiency curves shown in Fig. 5.13(a). Regarding the frequency-dependent α

profile, the model expressed in Sec. 2.2.1 has been utilized.

In Fig. 5.13(b), an example of the optimized α and its separate contributions

against wavelength, λ .

This approach allowed the fiber α and gR values to be estimated to a satisfactory

level of accuracy. Furthermore, the resulting gR allow the different fiber types to

be classified and enable distinct dispersion coefficients, D to be set. As nonlinear

coefficient value, a single value has been considered for all the fibers, γ= 1.27

W−1 km−1. The results of the described characterization procedure for all fibers

within the OLS are reported in Tab. 5.1.
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Table 5.1 Fiber configurations tested within this experimental campaign.

# Åα [dB/km] D [ps/(nm·km)] CR [(W·km)−1] L [km]
1 0.191 16.7 0.42 80.4
2 0.194 3.8 0.54 80.4
3 0.188 8.0 0.6 80.6
4 0.196 4.4 0.73 79.9
5 0.199 4.4 0.6 79.8
6 0.210 4.4 0.73 75.8
7 0.189 3.8 0.44 66.8
8 0.187 16.7 0.54 78.6

Table 5.2 EDFA configurations tested within this experimental campaign

# Gain [dB] Tilt [dB]
0 19.8 0.2
1 16.9 1.4
2 16.5 1.4
3 17.9 1.4
4 19.1 1.4
5 18.7 1.4
6 17.3 1.6
7 18.7 1.4
8 20.6 1.4
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5.2.3 ML and GNPy for QoT Estimation

As a follow-up of the approach presented in [105], an ML algorithm has been imple-

mented, enhancing QoT computation over the OLS under investigation by means of

a significant reduction of OSNR estimation inaccuracies. Firstly, it is worth underlin-

ing that, with the considered monitoring equipment, the application of ML must be

restricted to the OSNR contribution of the total GSNR, as the SNR NL can only be

measured if the channel transports a modulated signal; creating a training dataset

before traffic deployment is unfeasible within the considered network framework.

Moreover, various mathematical models, have been shown to provide a precise esti-

mation of NLI impairment due to fiber propagation, dependent upon certain physical

parameters being given with a required level of accuracy. In this framework a ML

approach provides the greatest benefit when used to reduce uncertainties that are of-

ten accounted for simply through use of a design margin. Such uncertainties include

the aging of optical components, a lack of device characterizations, inaccuracies due

to estimations made by proprietary software and fluctuations in the amplification

process which are unaccounted for by the current model in question. It is worth

noting that the ASE noise measurements, which are carried out when the channel

is turned off, is a biased estimator of the actual ASE noise that affects the channel

when it is turned on. Nevertheless, the bias in this prediction decreases significantly

as the number of channels contributing to the spectral load increases ± this value

is always an overestimation that results in a conservative QoT prediction. As the

spacing of the channels prevents measurement of the ASE noise within the channel

frequency neighborhood, the ASE noise may only be measured for a given channel

when the channel is turned off.

Considering the ML algorithm implemented within this work, the dataset is

normalized and divided into training, validation and testing subsets, making up

60%, 10% and 30% of the total dataset size, respectively. Using the open source

TensorFlow© library, a DNN model has been implemented consisting of 4 hidden

layers, each including 512 nodes; these values have been found to be optimal from

the validation process, providing a satisfactory trade-off between the accuracy of

the ML predictions and the overall training time. The computer used to run this

training procedure contained a quad-core Intel® Core™ i7-8565U CPU running at

1.80GHz, along with 8 GB of RAM, giving a total training time for each DNN of

approximately 6 hours.
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In order to estimate the OSNR, two distinct ML models have been trained,

predicting the signal and ASE noise power levels, respectively. As the spectral load

changes for every measurement within the dataset, it is important to choose a suitable

set of features that serve as DNN inputs, as well as suitable outputs. Considering first

the feature requirements, these must be fixed before the training process is started

and cannot be changed once they have been chosen. These features used for the

training stage must correspond to known system variables to obtain any individual

prediction of the DNN outputs. Therefore, by exclusion, the entire set of power

measurements can be used uniquely as DNN outputs, as they are not known for any

individual spectral load. The only information that is known before a prediction

is made are the channel statuses, which are either on or off. This information is

relatively limited with respect to the entire realization space of both the signal and

ASE power levels and leads to a low accuracy prediction.

In order to increase the DNN prediction performance the following methodology,

presented diagrammatically in Fig. 5.14, has been applied. Firstly, the ML models

are fed with the array of channel statuses, along with the signal and the ASE noise

predictions obtained using the GNPy ± this enriches the input information, providing

a partial insight of the OLS responses to specific spectral loads. Secondly, DNN

training process is performed over the entire spectral load, requesting information

over all channels, not only the CUTs. As the number of channels varies between

distinct spectral loads, the number of DNN outputs is set equal to the maximum

number of available channels within the system under investigation. As the node

weights are shared among the DNN outputs, specific channel predictions are tuned

by considering the entire spectrum; consequently, precise information provided by

the measurements is propagated through the entire DNN.

A straightforward issue is that when a channel is turned on, the signal power can

be measured, however, the power of the ASE noise cannot. On the contrary, when

a channel is turned off, by definition there is no signal power, but the ASE noise

power can be measured. A naive solution is to set the unmeasured channel power

quantities to zero during the training procedure. In the proposed implementation a

better solution is achieved leveraging the correlation between the spectral profiles of

the signal and ASE noise power levels at the OLS output. As a matter of fact, both of

these quantities are subject to the same gain and loss profiles during propagation and

can be combined, creating two unique, normalized and power arrays, with the proper

dimension, which maximize the information supplied to the DNN. These two arrays
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Lightpath QoT Computation
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Fig. 5.14 A description of the ML process used within this work; after the OLSi, j settings
are provided, the linear components (the signal and ASE noise powers) are supplied to
the ML agent, whereas the NLI component is estimated using the GNPy engine. A future
implementation scenario is also shown.
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of artificial quantities are used, respectively, for the prediction of the signal and ASE

noise powers. Considering the signal power inputs and outputs, the missing elements

in the array of signal powers, corresponding to the channels turned off, are filled

with the rescaled ASE noise powers. For the ASE noise power inputs and outputs,

vice versa, all missing elements are replaced with rescaled signal power values.

With this strategy, each DNN has a total of 160 inputs and 80 outputs; the inputs

are composed of 80 channel statuses, combined with 80 power level estimates of

ASE noise or signal power (depending upon the DNN model), whereas the outputs

represent 80 power level values. Enhancing the ML implementation in this way

enables accurate predictions of both the signal and ASE noise powers and hence a

precise OSNR estimation to be obtained.

5.2.4 Overall QoT Prediction

In this section, first the ML predictions are presented as results obtained for a testing

dataset containing 808 different spectral load configurations. As accuracy metrics,

alongside the RMSE definition in Eq. 5.1, also the difference between the measured

and predicted quantities is considered:

∆X = Xm −X p . (5.2)

As a first demonstration of the benefits in utilizing a ML approach, the DNN

accuracy is assessed, estimating the signal and ASE noise power levels over the

entire spectrum and compared with the corresponding results obtained using the

GNPy. Regarding the signal power predictions, RMSE values ranging between 0.2

and 1.5 dBm were found using the GNPy (depending upon the channel under investi-

gation). Using instead a ML approach, the RMSE values ranged between 0.2 and

0.3 dBm, demonstrating an increase in prediction accuracy. Similarly, considering

the ASE noise power predictions, the RMSE range prediction is reduced from 0.5

to 1.5 dBm to 0.3 to 0.4 dBm. A qualitative insight of this accuracy improvement

is shown in Fig. 5.15, where the signal and ASE noise results are reported for both

prediction methods, illustrating the error distribution as a vertical colored strip for

each channel, with brighter colors representing a higher distribution density, and vice

versa. This figure serves as a qualitative visualization ± the real error distributions

have been replaced by equivalent Gaussian distributions with the same mean and
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standard deviation values. Nevertheless, Fig. 5.15 presents some interesting con-

clusions: firstly, applying ML moves the error distributions into a dense region of

values concentrated around a zero mean, for both the signal and ASE noise power

predictions, representing the best feature for a generic estimator. It is also visible

that the higher RMSE values obtained using the GNPy are due to a biased estimation

rather than incorrect modelling, as the error distributions maintain a limited standard

deviation for every channel. This bias can be attributed to the fluctuations of the

ILA responses to different spectral loads, which cannot be modelled in advance and

consequently cannot be accounted for in the GNPy simulation. Moreover, the GNPy

power predictions feature an increasing uncertainty as the characteristic spectral hole

burning frequency (approximately 195 THz) is approached.

Regarding the overall GSNR, it has been measured only for the CUTs, as it

requires modulated signal to be estimated, and in what follows the analysis is

restricted to the two CUTs. As expected, through investigation of the dataset, the

OSNR and SNR NL covariance is non-trivial. Therefore, in order to have a fair

estimation of the enhancement provided by the ML approach, first the prediction

accuracy of the OSNR are discussed. Fig. 5.16 - 5.17 illustrate the error distributions

of the OSNR predictions obtained with and without the ML models, for both CUTs.

In this case, the ML methodology reduces the RMSE of the OSNR from 0.5 to 0.2 dB

for CUT 7 and from 0.7 to 0.2 dB for CUT 73.

Finally, the final GSNR prediction obtained by applying the proposed method-

ology described in Fig. 5.14 is investigated. Fig. 5.18 showcase the comparison

between both the measured GSNR and fully predicted GSNR, and the ∆GSNR

distributions for the two CUTs. The total RMSE value of the GSNR estimation is

0.3 dB for CUT 7 and 0.5 dB for CUT 73. Additionally, it can be observed in this

case that the ML-aided prediction does not contain a bias for either of these CUTs.

As the same behaviour is expected across the entire spectrum, it is possible to set a

margin that yields conservative results in most cases. However, this feature is not

guaranteed when using the GNPy due to the aforementioned estimation biases for

the signal and ASE noise power predictions ± this prevents a fixed margin, and hence

a conservative result from always being reached. In this study,a margin of 0.5 dB

is applied to the obtained predictions, shifting the error distributions as shown in

Fig. 5.18; the error is calculated using Eq.5.2, with positive values of this quantity

representing conservative GSNR estimations.
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Remarkably, a margin of this size does not significantly affect the accuracy of

the final predictions and is limited with respect to most currently employed design

margins [147]. This procedure provides a 90.5% and 94.6% conservative GSNR

prediction for CUTs 7 and 73, respectively. Moreover, such a margin may also be

defined to take into account additional SNR degradations, e.g. filtering penalties.

In conclusion, the separate estimation of these two quantities can be used to

optimize the OLS settings, further increasing the accuracy of the proposed QoT-E and

improving the SNR NL predictions, shown in Fig. 5.14 as a future implementation.

It is worth noticing that the proposed solution is completely agnostic with respect

to both the hardware and the control strategy, as it only requires ASE-shaped genera-

tors and measurements from the OCMs, both commonly available in ROADM input

and output, in order to create a ML training dataset. Consequently, the presented

methodology is demonstrated to be a feasible and non-intrusive method for lightpath

feasibility computation improvements, allowing a seamless increase in network

performance.
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Fig. 5.16 The error distribution for the OSNR predictions provided by the GNPy engine and
the ML algorithm, for CUT 7.
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Fig. 5.17 The error distribution for the OSNR predictions provided by the GNPy engine and
the ML algorithm, for CUT 73.
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Fig. 5.18 The measured and predicted GSNR power distributions for: (a) CUT 7 and (b) CUT
73, along with the corresponding ∆GSNR power distributions with and without a 0.5 dB
margin for: (c) CUT 7 and (d) CUT 73.



Chapter 6

Conclusions

In this thesis work, efficient and analytical models and ML solutions have been

proposed and validated in an open and partially disaggregated framework.

First, a general introduction regarding SDN and open and partially disaggregated

optical networks is given, describing the importance of an accurate and reliable

digital model for an optimal network planning and control.

Chapter 2 introduces a comprehensive formulation for physical layer modeling

of each network element. It presents an efficient and precise approximation of the

GGN model, which serves as a fast solution for multi-band transmission scenarios.

Additionally, a perturbative solution for SRS is proposed, providing explicit formu-

lations for higher-order terms in the SRS-induced power transfer. The chapter also

delves into the statistical approach for analyzing the PDL effect.

Chapter 3 focuses on demonstrating the improved implementation of GNPy,

utilizing the proposed transmission models. The experimental validation is car-

ried out in a 20-span testbed located at Orange Labs. GNPy exhibits significant

accuracy in flex-grid, flex-rate transmission scenarios up to 800 Gbit/s, including

Nyquist multi-subcarrier transceivers. Moreover, the chapter presents validations of

a statistical approach to model the PDL effect.

In Chapter 4, the proposed digital model is validated through extensive simulation

campaigns based on the SSFM and the numerical solution of SRS. The chapter

proposes a model-driven approach for optimizing multi-band transmission problems,
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achieving highly satisfactory results by extending the LOGO framework in a fast

and descriptive manner.

Finally, Chapter 5 introduces two ML solutions, which are experimentally vali-

dated for a variable spectral load transmission scenario. The implementation of DNN

enables accurate predictions of signal and ASE noise power fluctuations induced by

the behavior of EDFA in partially loaded transmission scenarios.

6.1 Future Work

As a matter of fact, GNPy has gained an increasing interest for both academia

and industry, representing an accurate, vendor-agnostic QoT estimator used for

network design and standards definition and for lightpath computation, paving

the way towards a SDN in open and disaggregated optical networks planning and

controlling. This broad interest in GNPy is due to the rising request in optical

network communities of a reliable and efficient digital twin of the optical systems.

In order to catch up on this request, future research activities will be focused

towards the development of an advanced software framework based on an improved

digital twin implementation, including a more precise and efficient physical-layer

signal propagation model, along with a faster and more flexible structure, to enable

the simulation of new transmission technologies, dynamic application of automated

AI, and heuristic methods for optimization and margin management in software-

defined networks. This software framework, integrating the QoT engine with AI and

heuristic methods, can be considered from two main perspectives, both of which are

particularly interesting and imply significant benefits for real network applications:

• Direct approach - the accuracy and reliability of QoT estimations are lever-

aged for lightpath computation and modulation format feasibility, along with

power optimization, soft-failure forecasting and physical-layer-based optimal

routing and wavelength assignment, enabled by heuristic and AI algorithms.

• Indirect approach - heuristic and AI algorithms leverage the accuracy of

the QoT engine to provide adequate system margins and/or to probe the

optical system by estimating unknown or inaccurate physical parameters; a

sort of QoT-based optical network tomography. In this scenario, an improved
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implementation of an advance orchestration utilizes information retrieved from

QoT, telemetry and sensing, combining and harmonizing in order to deliver an

innovative framework for both network performance analysis and forecasting,

and environmental observation and recognition.
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