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Abstract

A Single Frequency Network (SFN) refers to a network configuration in which
multiple transmitters simultaneously broadcast the same content using the same time
and frequency channel. In an SFN, the transmitters are geographically distributed,
often with overlapping coverage areas [1]. CP-OFDM or Cyclic Prefix-Orthogonal
Frequency Division Multiplexing is the cutting-edge method used to implement SFN
in the physical layer. It offers numerous benefits that render it highly suitable for SFN
broadcasting. CP-OFDM effectively handles multi-path propagation by incorporating
a cyclic prefix, which mitigates signal self-interference and distortion. This capability
significantly decreases errors in the received signal, making it particularly crucial in
SFN broadcasting scenarios where multiple transmitters’ signals may interfere with
one another.

5G-NR (5G New Radio) refers to the air interface standard utilized in 5G wireless
networks. It plays a vital role in enhancing performance and capabilities compared to
previous cellular network generations. Release 15 of 5G-NR, as defined by the 3GPP
(Third Generation Partnership Project) [2], primarily focuses on uni-cast transmission
and provides a wide range of services through its physical layer. However, the
numerologies employed in Release 15, which include a short cyclic prefix, are not
suitable for establishing a SFN broadcast network with large inter-site distances. In
response to the need for broadcasting and multi-casting capabilities, particularly
through LTE-based 5G broadcast, Release 17 was introduced [3]. Nonetheless, the
numerologies used in LTE-based 5G broadcast differ from those in 5G-NR, and only
a 15 kHz common numerology is available.

Consequently, it is currently not feasible to utilize the numerologies employed in
5G-NR for SFN broadcasting with significant inter-site distances using a traditional
receiver structure.
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This thesis presents an innovative approach to enable SFN broadcasting over
long distances using the 5G-NR. Instead of introducing new numerology options,
the thesis focuses on employing advanced receiver techniques.

The first receiver implementation involves the use of optimal channel shortening
techniques to equalize the OFDM symbols affected by strong inter-symbol interfer-
ence (ISI) and inter-carrier interference (ICI). By utilizing this method, SFN broad-
casting can be achieved over large inter-site distances, comparable to high-power,
high-tower transmission networks, while adhering to the standard 5G numerologies.
Through the investigation, it was discovered that a linear channel shortening filter,
specifically the 2D-MMSE (Minimum Mean Square Error), can provide near maxi-
mum mutual information, assuming a static channel that is known by the receiver.

The second receiver implementation introduces a novel approach to achieving
high performance in SFN Terrestrial Broadcasting using 5G-NR. This method utilizes
a Recurrent Neural Network (RNN)-based receiver, eliminating the assumption
of a static and well-known channel, which was made in the first receiver design.
Additionally, a technique of superimposing the pilot signal with the data signal is
employed, allocating 100% of the resources to data transmission, thereby enhancing
spectral efficiency. The receiver receives a sequence of demodulated OFDM symbols
and performs joint channel equalization, channel estimation, and log-likelihood ratio
(LLR) computation. The LLR output is then utilized by the channel Low-Density
Parity-Check (LDPC) decoder to recover the transmitted data. Simulation results
demonstrate that the proposed system can achieve performance similar to classical
systems specifically designed for rooftop reception and various mobility scenarios.

Furthermore, the proposed system exhibits high flexibility as it is trained under
fixed signal-to-noise ratio (SNR) and speed conditions, yet it demonstrates excellent
performance in unseen conditions according to the simulations. Although the RNN-
based receiver was initially designed for SFN terrestrial broadcasting systems with
mobility, the techniques employed in the design can be applied to any OFDM-based
system experiencing strong ISI and ICI. This proposed approach has the potential
to simplify the design and deployment of 5G-NR SFN broadcasting, reducing the
requirement for additional hardware or software modifications.

While the research yields promising results, there are still several areas that
warrant further investigation for future studies. One important aspect to consider
is the complexity of the proposed systems and other factors that can impact SFN
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networks, such as synchronization. Additionally, it is worth noting that the research
conducted was limited to link-level simulations, and further validation at the system
level is necessary to comprehensively evaluate the performance of the proposed
methods.
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Chapter 1

Introduction

1.1 Problem overview

Orthogonal Frequency Division Multiplexing (OFDM) is a modulation technique
widely used in terrestrial broadcasting to effectively address channel challenges,
particularly multi-path propagation. Unlike a single fast wide-band modulator,
OFDM employs multiple low-bandwidth modulators. A key feature of OFDM is the
insertion of a guard interval, known as the Cyclic Prefix, between symbols. This
guard interval plays a crucial role in eliminating inter-symbol interference (ISI) [11].

OFDM offers several advantages in receiver design. It simplifies the process by
using a single frequency-selective filter to receive the entire signal. After receiving
the signal, it can be separated into sub-carriers using fast Fourier transform (FFT).
However, despite its widespread usage, OFDM has limitations, especially when it
comes to mobility. One limitation is its susceptibility to carrier frequency offset
(CFO) and sampling frequency offset (SFO), which can result in inter-carrier inter-
ference (ICI). The presence of mobility-induced Doppler spread can exacerbate this
issue, introducing additional ICI and reducing the channel coherence time, thereby
further impacting OFDM’s performance.

In an OFDM system designed for time and frequency selective channels, two
critical design parameters are the length of the cyclic prefix (CP) and the sub-carrier
spacing. The cyclic prefix acts as a guard interval that is copied and appended to
the start of an OFDM symbol. Its purpose is to prevent ISI from previous symbols
and maintain the orthogonality of sub-carriers. It is important for the length of the
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cyclic prefix to be greater than the channel’s delay spread, which represents the time
difference between the arrival of the first and last significant multi-path components
of a signal.

To enable broadcasting over a SFN, OFDM systems must select a CP length that
can accommodate both the delay spread introduced by the scattering environment
and the long "artificial" delay spread introduced by the SFN infrastructure with
multiple transmitters. The distance between two transmitters in an SFN, known
as the Inter Site Distance (ISD), affects the delay spread of the channel and thus
influences the selection of CP length. To minimize system overhead, the OFDM
symbol duration, which is inversely proportional to the sub-carrier spacing, should
be significantly greater than the CP.

Designing OFDM systems for mobility scenarios introduces new challenges due
to the time selectivity of the channel. In such scenarios, sub-carrier orthogonality
can be lost if the channel changes during the transmission of an OFDM symbol.
Therefore, the channel coherence time must be much greater than the symbol duration
to preserve orthogonality. However, this constraint on the symbol duration puts a
limit on the system overhead, which can become significant in challenging SFN
scenarios with large ISD and mobility. In simpler terms, we can summarize the key
points as follows:

1. To achieve good performance in SFN setups, it is necessary to use a longer CP.

2. A longer duration for OFDM symbols is needed to reduce system overhead.

3. However, increasing the symbol duration negatively impacts the system’s
ability to handle Doppler effects, so the overall system must be optimized
accordingly.

5G NR (New Radio) is a new radio access technology (RAT) developed by 3GPP
for the 5G (fifth generation) mobile network [12]. It is designed to provide faster
data rates, lower latency, and increased capacity compared to its predecessor, 4G
LTE. 5G-NR operates on a wide range of frequency bands, including sub-6 GHz and
mmWave frequencies.

5G-NR incorporates several new technologies and features, such as massive
MIMO, beamforming, and advanced coding and modulation schemes. Additionally,
5G-NR supports various use cases, including enhanced mobile broadband (eMBB),
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ultra-reliable and low-latency communications (URLLC), and massive machine-type
communications (mMTC) [13].

5G-NR offers the flexibility to adapt to various deployment scenarios and use
cases by adjusting the sub-carrier spacing (SCS) associated with different "numerolo-
gies". The SCS is defined by a parameter µ that can take integer values from 0 to
4. The sub-carrier spacing is then given by ∆ f = 15× 2µ kHz, resulting in SCS
values ranging from 15 to 240 kHz. The choice of µ depends on several factors
such as bandwidth, latency, and mobility requirements. A larger µ value is typically
used in mobile environments to provide lower latency, but this requires more precise
synchronization and channel estimation. In addition, the choice of µ affects the
system’s resilience to delay spread since the CP length is a fixed fraction of the
symbol duration (approximately 1/14 with Normal CP). A lower SCS is typically
used for large delay spreads to ensure robustness to inter-symbol interference caused
by multi-path propagation.

The 5G-NR numerologies, optimized for cellular communication systems, may
not be optimal for SFN terrestrial broadcasting due to the the larger artificial delay
spread introduced by the infrastructure. In SFN broadcasting scenarios, the maximum
ISD sing 5G-NR can be calculated based on the CP length and the speed of light.
The equation is:

ISD ≤ Tcp · c =
c

14
· 1

15×103 ×2µ
, (1.1)

where Tcp is the CP length, and c is the speed of light. For instance, with µ = 0 and
a normal CP length of 4.7 µs, the maximum ISD is calculated to be 1.4 kilometers.
However, in typical high-power, high-tower (HPHT) broadcasting scenarios, the ISD
can be significantly larger, on the order of dozens of kilometers.

Figure 1.1 illustrates the 0.1% Block Error Rate (BLER) performance of broad-
casting over a SFN using a carrier spacing of 5G-NR (15 kHz, µ=0) with a normal
cyclic prefix. The graph presents the correlation between Signal-to-Noise Ratio
(SNR) values (in dB) on the x-axis and the corresponding block error rates on the
y-axis.

In the system setup, a 16QAM modulation scheme with a bandwidth of 5 MHz
is used. The carrier frequency is set at 700 MHz. The code rate employed is 0.48
(LDPC channel coding), and it is assumed that ideal channel estimation is in place.
To improve signal reception, the simulation includes the use of two receiver antennas.
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Fig. 1.1 Block Error Rate performance of broadcasting over a Single Frequency Network
with 15 kHz carrier spacing.

The channel model utilized is TDL-A. It should be noted that the receiver’s speed is
set to 30 km/h.

In addition, it is possible to scale the TDL channel model using the root mean
square delay spread, which allows us to obtain different single frequency networks.
Figure 1.1 illustrates this relationship. By scaling TDL-A with a delay spread of 20
µs, we can achieve a low-power, low-tower configuration. Conversely, scaling TDL-
A with a delay spread of 50 µs results in a high-power, high-tower setup. For further
details on the TDL channel model and SFN configuration, refer to section 2.3.3.

It becomes apparent that when utilizing the normal cyclic prefix with a 15
kHz carrier spacing, the system can effectively mitigate ISI caused by multi-path
propagation for delay spread values of 1µs and 5µs. However, when implementing
LPLT and HPHT SFNs with larger ISDs, the ISI extends beyond the cyclic prefix,
resulting in increased block error rates.
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Adapting the 5G-NR air interface to meet the requirements of terrestrial broad-
casting channels would require several modifications, including:

• Adjusting cyclic prefix length: The cyclic prefix length in 5G-NR is optimized
for the channel characteristics of cellular networks, but broadcasting channels
typically exhibit much larger artificial delay spread. To optimize classical
receiver performance, a longer cyclic prefix is required.

• Narrower sub-carrier spacing: To reduce the overhead associated with a longer
cyclic prefix, a narrower sub-carrier spacing is needed.

The previous design constraints on OFDM parameters, such as the cyclic prefix
length and symbol duration, are essential for classical reference OFDM symbol-
by-symbol receivers that require orthogonality of the received symbols to perform
effectively. However, in challenging SFN scenarios with large ISD and mobility
requirements, these constraints can lead to unacceptable system overhead. In such
cases, advanced receiver techniques can be employed, which include:

• Linear equalization techniques: This includes multidimensional (frequency
and time) MMSE (adaptive) equalization and channel shortening.

• Nonlinear equalization techniques: This includes interference cancellation and
Decision Feedback equalization.

• Maximum Likelihood Sequence Estimation techniques.

• Iterative receivers: When a powerful channel decoder is present, straight-
forward application of linear or nonlinear equalization may fail to provide
acceptable performance. The use of updated, more reliable information about
the transmitted symbols provided by the channel decoder can provide signifi-
cant gains. This more complex approach requires iteration between detector
and decoder.

• Neural networks: The use of neural networks has been considered as a substi-
tute for classical blocks in digital baseband receivers in recent years. Despite
their complexity, they can provide impressive performance gains and show
significant flexibility, especially when facing unknown and/or mismatched
channel scenarios.
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These advanced receiver techniques can help overcome the limitations of classical
OFDM symbol-by-symbol receivers in challenging SFN scenarios.

While these techniques have been widely investigated in the literature [14–19],
there is a surprising lack of research on their application specifically to the SFN
scenario. This is likely due to the fact that existing broadcasting standards, such
as DVB [7] and ATSC [8], are designed to ensure orthogonality at the receiver, at
least in the use scenarios they consider. However, the use of 5G-NR numerologies in
conjunction with existing SFN broadcasting infrastructure offers significant benefits
to broadcasters, as it allows them to deliver broadcasting services using widely
available 5G-NR. This also opens up the possibility of delivering broadcasting
services in the most challenging SFN use cases associated with large ISD and
user mobility, while potentially leveraging advanced receiver techniques to further
enhance system performance.

1.2 Thesis Objectives

The goal of this thesis is to examine the feasibility of implementing SFN Terrestrial
Broadcasting utilizing the existing 5G-NR numerology alongside advanced receiver
technologies. Two novel approaches will be developed and evaluated: a 2D-MMSE
equalizer and a receiver employing recurrent neural networks.

The objective of the 2D-MMSE equalizer is to address the challenge of strong
Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI) in SFN Terrestrial
Broadcasting with the existing 5G-NR numerology. This equalizer employs chan-
nel shortening techniques to equalize the frequency-domain demodulated OFDM
symbols affected by ISI and ICI, which may extend beyond a full OFDM symbol
duration.

The 2D-MMSE equalizer operates by estimating the transmitted symbols based
on the received symbols and the channel response. It takes into account both
the temporal (ISI) and frequency (ICI) interference components. By applying the
Minimum Mean Squared Error (MMSE) criterion, the equalizer minimizes the mean
squared error between the estimated symbols and the true transmitted symbols.

An interesting extension of the 2D-MMSE equalizer is the possibility of incorpo-
rating trellis structures. By introducing a parameter, denoted as ν , greater than zero,
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trellis structures can be employed within the equalizer. Trellis-based equalization
allows for capturing the temporal dependencies of the transmitted symbols and the
interference components, resulting in improved equalization performance.

The trellis structures within the 2D-MMSE equalizer facilitate the exploration
of different paths or sequences of transmitted symbols that are consistent with the
received symbols and the estimated channel response. By searching and evaluating
these paths using trellis algorithms, such as the Viterbi algorithm, the equalizer can
make more accurate symbol estimates, effectively reducing the impact of ISI and
ICI.

Through the evaluation and comparison of the 2D-MMSE equalizer with tradi-
tional equalization techniques, this research seeks to demonstrate the advantages
and disadvantages of employing advanced equalization methods, including trellis
structures, in SFN terrestrial broadcasting with 5G-NR numerology. The objective
is to explore the feasibility of utilizing the 2D-MMSE equalizer, with the potential
extension to trellis-based equalization, to enhance the performance of broadcasting
systems by mitigating the effects of ISI and ICI.

The objective of the receiver based on recurrent neural networks (RNN) is to
explore the feasibility of utilizing advanced receiver technologies for SFN Terrestrial
Broadcasting with the existing 5G-NR numerology. This receiver will provide
joint equalization and channel estimation while also generating soft decisions for
input into the channel decoder, without requiring prior knowledge of the channel
characteristics.

By employing RNN-based techniques, we aim to address the challenges posed by
dynamic channel conditions, such as mobility and channel estimation uncertainties,
which can significantly impact the performance of the receiver. The RNN will be
designed to capture and leverage the temporal dependencies of the received OFDM
symbols affected by ISI and ICI, enabling effective equalization and data detection.

The RNN-based receiver will utilize its recurrent structure, such as the bidirec-
tional long short-term memory (Bi-LSTM) neural network, to model and learn the
complex temporal relationships within the received OFDM symbol sequence. This
will enable the RNN to estimate the channel, perform equalization, and generate soft
decisions for subsequent decoding, all within a unified framework. The RNN will
learn to adapt to varying channel conditions, including scenarios with high mobility
and strong ISI, thus improving the robustness of broadcasting over SFN with 5G-NR.
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Furthermore, the RNN-based receiver can offer additional advantages beyond
traditional equalization methods. For example, the receiver can be trained using deep
learning techniques on a large dataset, allowing it to capture and exploit intricate
patterns in the received signals. Additionally, the RNN can operate without the need
for dedicated pilot signals by superimposing the data with the pilot signal, thereby
improving spectral efficiency and reducing overhead.

Through the evaluation and comparison of the RNN-based receiver with tradi-
tional equalization techniques, this research seeks to demonstrate the advantages and
disadvantages of employing advanced neural network approaches in SFN terrestrial
broadcasting with 5G-NR numerology. The objective is to explore the feasibility of
utilizing RNN-based receivers to overcome the limitations of traditional equaliza-
tion methods and enhance the performance of broadcasting systems in challenging
scenarios.

Through the evaluation of the proposed methods, this study seeks to demonstrate
the potential of 5G-NR for SFN terrestrial broadcasting without the need to modify
the existing standard numerologies. The outcome of this study will be instrumental
in advancing the development of more effective and robust broadcasting systems and
provide insights into the potential of 5G-NR for future terrestrial broadcasting.

1.3 Organisation of dissertation

This dissertation is divided into nine chapters, each focusing on different aspects of
the research topic.

In Chapter 2, we delve into the traditional transmitter and receiver blocks used in
SFN based on Orthogonal Frequency-Division Multiplexing (OFDM). We provide
a detailed description of the wireless channel model considered, particularly in the
context of SFN. We demonstrate how SFN can be modeled using the Tapped Delay
Line channel model. We also discuss the main parameters that should be considered
in OFDM receiver design to enable the traditional symbol-by-symbol scheme to
function effectively, even in the presence of mobility and long inter-site distances.

In Chapter 3, we review relevant SFN broadcasting standards, such as Digital
Video Broadcasting (DVB) and Advanced Television Systems Committee (ATSC).
In Chapter 4, we assess the suitability of broadcasting for 5G-NR by examining the
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5G New Radio (NR) physical layer. Chapter five is dedicated to exploring advanced
techniques for OFDM systems when the cyclic prefix length is insufficient.

Chapter 6 provides an introductory overview of the first paper enclosed in Ap-
pendix A, titled "Single Frequency Network Broadcasting with 5G-NR Numerology."
This paper, presented at the 2021 IEEE Latin-American Conference on Communi-
cations (LATINCOM), explores the feasibility of SFN broadcasting with 5G-NR
numerology. To enhance clarity, the paper is included in Appendix A, immediately
following Chapter 6.

In chapter seven, we discuss the potential of deep learning and various neural
networks for OFDM systems, as well as reviewing research papers that examine the
use of neural networks to handle insufficient cyclic prefix length and time-varying
channels.

Chapter 8 serves as an introduction to the second paper provided in Appendix B
titled "Single-Frequency Network Terrestrial Broadcasting with 5G-NR Numerology
Using Recurrent Neural Network." This paper, published in Electronics in 2022,
discusses the development of an advanced receiver based on recurrent neural net-
works for SFN terrestrial broadcasting with 5G-NR numerology. The paper itself is
included in Appendix B, following Chapter 8, eliminating the need to duplicate the
material in the introductory chapter.

Considering the fact that the technical content of our contribution is primarily
contained within the two annexed papers, which can be regarded as the most crucial
part of the thesis, Appendix A and Appendix B are positioned immediately following
Chapter 6 and Chapter 8, respectively, to emphasize their significance within the
overall thesis.

Chapter 9 concludes the dissertation, summarizing the key findings and contribu-
tions of the research. It also outlines future research directions.



Chapter 2

Background on SFN Terrestrial
Broadcasting

2.1 Single Frequency Network overview

Single Frequency Networks (SFNs) rely on the utilization Cyclic Prefix Orthogonal
Frequency Division Multiplexing (CP-OFDM) to mitigate interference. Figure 2.1
illustrates a SFN, which comprises four transmitter antennas and a mobile receiver
located within the overlapping coverage area. The signals transmitted by these
antennas reach the receiver at different times due to propagation delays.

Propagation delays can lead to inter-symbol interference (ISI), where adjacent
sub-carriers’ symbols overlap, degrading the received signal’s quality. The objective
of this configuration is to ensure uninterrupted reception, even in the presence of
scattered signals from nearby buildings. By employing OFDM, SFNs can effectively
minimize the interference caused by propagation delays. This enables the receiver
to accurately receive and decode signals from multiple transmitters, even in the
presence of scattered signals from nearby buildings or other obstacles.

The advantages of a SFN include:[1, 20, 21]

• Spectrum Efficiency: SFNs offer high spectrum efficiency compared to tra-
ditional multi-frequency networks (MFNs). They can accommodate a larger
number of programs or services using the same frequency spectrum, making
efficient use of limited or high-demand spectrum resources.



2.1 Single Frequency Network overview 11

Receiver (Rx)

Transmitter (Tx)

Inter Site Distance (ISD)

𝑉

𝑓!
Carrier frequency 𝑓!

𝑓!𝑓!

Fig. 2.1 Single Frequency Network, utilizing four transmitter antennas and a moving receiver
located within the overlapping coverage area.

• Coverage and Frequency Economy: SFNs provide better coverage and fre-
quency economy compared to MFNs. By utilizing a single frequency for all
transmitters within a coverage area, SFNs can achieve larger coverage areas
without the need for additional frequencies. This results in cost savings and
efficient resource utilization.

• Network Gain or Diversity Gain: SFNs provide network gain or diversity
gain by reducing signal variations or fluctuations at the receiver. The received
signal is a combination of signals from multiple transmitters, allowing for
reception even if one transmitter is shadowed or affected by interference. This
improves signal quality and increases the probability of reception.

• Homogeneous Field Strength Distribution: SFNs offer a more consistent
distribution of field strength across the service area. This means that the re-
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ceived signal strength is more uniform throughout the coverage area, reducing
variations in signal quality or coverage gaps.

• Gap-Filling Capability: SFNs allow for the easy setup of gap-filling transmit-
ters to improve reception quality in areas with poor signal quality, without
requiring additional frequencies. This flexibility enables broadcasters to ad-
dress specific regions where signal quality may be compromised.

• Robustness and Redundancy: SFNs provide increased robustness and redun-
dancy in the network. In dense SFNs, the failure of a single transmitter does
not result in a coverage outage for the entire network. This redundancy ensures
continuity of service and reduces the risk of complete signal loss.

While SFNs have several advantages, there are also a few disadvantages [21] to
consider:

• Network Splitting: SFNs do not support network splitting. In other words,
it is not possible to divide the network into separate sections or regions with
different content. All transmitters within an SFN broadcast the same digital
information simultaneously at the same frequency. This limitation can be a
drawback if there is a need for localized or region-specific content.

• Time Synchronization: SFNs require precise time synchronization among the
transmitters. The signal emissions from each transmitter must occur at the
same time or with precisely controlled delays.

• Frequency Synchronization: SFNs also require precise frequency synchro-
nization both at the transmitter and receiver. Any errors in frequency syn-
chronization can result in frequency orthogonality losses for the received
signals.

2.2 Transmitter Blocks in SFN broadcasting based on
OFDM

To ensure efficient data delivery in modern wireless systems, particularly in SFN, a
well-designed transmitter is essential. Figure 2.2 illustrates the transmitter blocks
found in a typical standard for SFN systems based on OFDM.



2.2 Transmitter Blocks in SFN broadcasting based on OFDM 13

Channel 
Encoder Interleaver Modulator CP-OFDM 

with Pilot Ins.
𝑏 𝑏!"# 𝑏$"% 𝑠 𝑥

𝑅! 𝑄"

Fig. 2.2 The blocks of a typical transmitter in an OFDM-based SFN system.

Starting from the left-hand side of the figure, the first block is the Channel
Encoder with rate Rc. It takes a Bit Sequence b as its input and outputs an Encoded
Bit Sequence benc. The channel encoder adds redundant information to the input
bit sequence, which helps protect the data against channel impairments. Next is the
Interleaver block. It takes the Encoded Bit Sequence benc as its input and outputs
an Interleaved Bit Sequence bint . The interleaver’s role is to rearrange the bits
in the encoded bit sequence to spread out bursts of errors that may occur during
transmission.

The modulator block takes the Interleaved Bit Sequence bint as input and gener-
ates a Modulated Symbol Sequence s as output. The modulator (or mapper in the
following) converts the interleaved bit sequence into a set of modulated symbols,
such as conventional Quadrature Amplitude Modulation (QAM) or more advanced
non-uniform constellation (NUC) sets.

Following the mapper block, pilot symbols are inserted into the modulated sym-
bol sequence s. These pilot symbols serve various important functions, including
channel estimation and other signal processing tasks at the receiver. By incorpo-
rating pilot symbols, the communication system can better estimate variations and
distortions introduced by the transmission channel, which helps to correctly estimate
the transmitted data.

Finally, the CP-OFDM Modulator takes the Modulated Symbol Sequence s as
its input and outputs an OFDM Symbol Sequence x. The CP-OFDM modulator
computes the transmitted discrete time waveform by inserting a CP and performing
the Inverse Fast Fourier Transform (IFFT). In the following sections, we will provide
more details on each block.

2.2.1 Channel encoder

A channel encoder is a crucial block in a modern digital communication system
that is responsible for adding redundancy to the transmitted data to protect against
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channel impairments. Channel impairments can be due to various factors such as
noise, interference, fading, and other distortions that may occur during transmission.
The addition of redundancy through a channel encoder enables the receiver to
detect and correct errors in the received data, improving the overall reliability of
the communication system. This process is commonly referred to as Forward Error
Correction (FEC).

Various types of channel encoders and FEC techniques have been adopted in
digital communication standards. The first adopted FEC coding approaches were
based on Convolutional Codes [22], Reed-Solomon Codes [23], Bose-Chaudhuri-
Hocquenghem (BCH) Codes [24], or concatenation of them. More recently, these
encoding schemes have been replaced by "capacity achieving" schemes like Turbo
Codes [25] and Low-Density Parity-Check (LDPC) Codes [26]. These classes of
codes require an iterative decoder at the receiver to provide the desired performance.
Furthermore, the input to the channel decoder must be "soft", typically in the form
of Log-Likelihood Ratios (LLR).

The presence and performance of a channel decoder cannot be neglected when
designing the inner detector, as it strongly affects the design and performance
measures that should be considered for optimizing it. As mentioned, modern channel
decoders are capacity-achieving and accept soft information (LLR). The front-end
blocks, including synchronization, equalization, and channel estimation, must be able
to provide accurate soft information to the following decoder. Performance measures
like BER or FER at the detector output are not particularly useful in this sense.
On the other hand, information-theoretic measures like cross-entropy or mutual
information of delivered soft messages are more useful. Also, the detector output
before outer decoding is typically affected by many errors, so classical decision
feedback schemes that do not exploit the outer decoder fail to provide satisfactory
performance.

2.2.2 Interleaver

Interleaving is a technique that rearranges the sequence of encoded data in a specific
order before transmission. Its purpose is to spread out errors that occur during
transmission over a large number of data symbols, so that bursts of errors do not
affect many consecutive bits belonging to the same codeword. Correlated errors
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can considerably reduce the effectiveness of the following channel decoder and
potentially nullify it.

Row-column permutation laws are very effective in reducing error correlation.
Block interleaving [27] involves dividing the input data into several frames and then
rearranging the symbols within each block. The blocks are then transmitted in a
different order, resulting in the interleaved output.

On the other hand, convolutional interleaving [28] involves writing the input
sequence in a memory in a given order and reading the output sequence from the
same memory in a different order. This process does not require segmentation of the
input sequence into blocks and requires smaller memory and latency for providing
the same spread performance. However, the absence of a block structure is not
desirable in discontinuous or multi-user transmissions as the information stream
cannot be packetized. For this reason, the convolutional interleaver is seldom adopted
in standards.

2.2.3 Modulator

The Modulator (or mapper) is responsible for mapping a block of input bits to a
block of complex symbols, which for OFDM are then modulated onto sub-carriers
in the frequency domain. The modulation efficiency m specifies the number of bits
used to label each complex symbol. The constellation used for mapping can be either
uniform or non-uniform.

In QAM [29] "uniform" constellations, all the points are equally spaced in both
In-phase and Quadrature dimensions. The QAM constellations are obtained as a
cartesian product of a uniform PAM constellation, which simplifies the transmitter
and, more importantly, the detector operations. The detector complexity, in fact,
grows with the square root of the modulation cardinality.

In Non-Uniform Constellations (NUC) [30], on the other hand, points are not
uniformly spaced in the two dimensions. A non-uniform constellation is more
complex to encode and decode, and the detector cannot process independently the
two dimensions to provide the output LLR. The detector complexity grows, in
this case, linearly with the modulation cardinality and thus exponentially with the
modulation efficiency m. The increased degree of freedom in their design, on the
other hand, can be used to provide several important advantages, such as increased
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mutual information, reduced PAPR, increased robustness to phase noise and other
channel impairments.

Commonly used constellations for SFN standard include uniform QAM constel-
lations with up to 256 points. More recently, ATSC standard also adopted some
specially designed NUC.

2.2.4 CP-OFDM Modulator with Pilot Insertion

Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) is a digi-
tal modulation technique widely used in modern wireless communication systems,
including SFN systems for TV broadcasting. Unlike traditional single-carrier modula-
tion techniques, OFDM divides the data into multiple parallel streams and modulates
each stream onto a separate (sub)carrier frequency. This makes OFDM more flexible
and provides several benefits such as resistance against multi-path and time-selective
fading. The core flexibility of CP-OFDM is providing a trade-off between symbol
duration and carrier spacing. This flexibility can be used to match the signal wave-
form to the type of selectivity (time or frequency) of the target channel scenario. The
available bandwidth (B) is partitioned into N sub-carriers with sub-carrier spacing
(SCS) ∆ f . The CP-OFDM modulator takes the modulated symbol sequence s as
input and generates the OFDM waveform x. The CP-OFDM modulator implements
two key operations: the inverse fast Fourier transform (IFFT) and the insertion of a
cyclic prefix (CP).

The IFFT operation can be expressed as:

xtmp(m) =
1√
N

N−1

∑
n=0

sne− j 2π

N mn, (2.1)

where xtmp is the temporary sequence obtained after IFFT, sn is the n-th element of
the modulated symbol sequence s, and m is the sub-carrier index.

The CP insertion operation can be expressed as:

x = [xtmp(N −L+1), ...,xtmp(N),xtmp(1), ...,xtmp(N −L)], (2.2)
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where x is the final OFDM symbol sequence, and L is the length of the cyclic prefix.
The CP is inserted by replicating L samples from the end of the IFFT output to the
beginning of the sequence.

Accurately estimating channel state information (CSI) is critical for successful
communication in CP-OFDM systems. Known symbols, called pilots, are embedded
into the CP-OFDM signal to enable efficient and accurate channel estimation [31].
There are different pilot insertion methods that can be used in CP-OFDM systems,
including block-type, comb-type, scattered-type, and hybrid-type pilots. Block-type
pilots are inserted in a block at the beginning or end of each OFDM symbol, while
comb-type pilots are inserted periodically along each OFDM symbol. Scattered-type
pilots are randomly inserted across the OFDM symbols, making them particularly
suitable for SFN systems.

2.3 Channel Modeling in SFN

Wireless communication systems are subject to limitations in their performance,
mainly due to the effects of the radio channel. This presents unique challenges
compared to fixed wired channels, as the channel on top of frequency selectivity,
is time-varying and unpredictable. The transmission and analysis of data become
more complex in this scenario. Obstacles, both natural and man-made, can obstruct
transmission paths, leading to multiple reflections of the transmitted signal, each with
possibly time varying propagation delays. These reflections interact with each other,
resulting in constructive or destructive interference, which leads to multi-path time
selective fading. In certain situations, such as in single frequency networks, where
multiple transmitters work in the same time-frequency, also artificial multi-path
fading can occur. Multi-path fading can cause significant and rapidly fluctuating
attenuation of the signal, as well as phase shifts, which can make reliable information
transfer difficult.

2.3.1 Doubly selective channel in mobile SFN scenarios

We have seen that in a static SFN scenario, in addition to the delay spread due to the
scattering environment, we must consider the additional artificial delay due to the
multiple transmitters from different locations, related to the infrastructure inter-site
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distance (ISD). This very large delay spread of SFN makes the equivalent channel
strongly frequency selective. The addition of mobility of the receiver adds time
variability to the channel impulse response, so SFN with mobility becomes one of
the most challenging conceivable channel scenarios.

Mathematically, a doubly selective discrete time channel is modeled with a time-
varying impulse response, hn[i] with M channel taps. The received signal, y[n], can
then be represented as:

y[n] = hn[n]∗ x(n)+ v(n) =
M−1

∑
i=0

hn[i] · x[n− i]+ v[n], (2.3)

where x[n] is the input sample, and v[n] is additive white Gaussian noise (AWGN).
Equivalently, in the frequency domain, we can provide the time-varying transfer
function as:

Hn( f ) = DT FT (hn(i)) = ∑
i

hn(i)exp(− j2π f i). (2.4)

The filter taps hn(i), i = 1, . . . ,M, are typically modeled by a set of independent
complex stationary Gaussian processes and characterized by their power spectral
density.

2.3.2 Delay Spread and Doppler spread

The maximum delay spread is the difference between the arrival times of the earliest
and latest multi-path components. However, this measure may not be very relevant
as the amount of interference also depends on the relative power level of different
paths.

The root mean square (RMS) delay spread is a more meaningful measure of the
time dispersion of a signal due to multi-path propagation. Mathematically, it is the
standard deviation of the power delay profile (PDP) P(τ), which is a measure of the
distribution of the signal power as a function of the delay:

τ̄ =
∫

∞

−∞

τP(τ)dτ, (2.5)

τ
2
rms =

∫
∞

−∞

(τ − τ̄)2P(τ)dτ. (2.6)
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A channel with a large RMS delay spread implies a higher degree of frequency-
selective fading, which can cause significant distortion and inter-symbol interference
in the received signal. A Doppler shift occurs when there is a change in the frequency
or wavelength of a wave due to the motion of the source, the receiver, or the scatterer
relative to the medium. The Doppler shift associated with a single path component
can be evaluated as:

fD,p = cos(θp) fc
|v|
c

= cos(θp) fD, (2.7)

where θp is the relative speed direction associated with the considered path, c
is the speed of light, fc is the carrier frequency, and fD = f0

|v|
c is the maximum

Doppler shift. When the number of paths contributing to a given discrete delay i
in hn(i) is sufficiently large and uniformly distributed in direction, the sum of all
path contributions of hn(i) can be modeled as a complex Gaussian process with the
classical Jake’s power spectral density on both I and Q components:

Sh( f ) ∝
1√

f 2
D − f 2

. (2.8)

Furthermore, under further assumptions, the processes modeling the different taps
hn(i) are also assumed to be independent. The presence of Line of Sight (LoS) propa-
gation paths for some particular delays is modeled in this context by simply assigning
a non-zero mean to the Gaussian processes associated with the corresponding taps,
leading to a more general Rician model of the first-order statistic.

2.3.3 Modeling a SFN with Tapped Delay Line

The Tapped Delay line (TDL) channel model (see Figure 2.3) is a widely adopted
mathematical representation of a discrete time communication channel that accounts
for the effects of a possibly time-varying multi-path propagation. It assumes that the
received discrete time sample is the sum of delayed and attenuated versions of the
transmitted signal, where each tap represents the contribution of all paths associated
to that particular discrete propagation delay through the channel.
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Fig. 2.3 Figure 2.3: Tapped delay line channel model for broadcasting. The model includes
M taps, with hn[i] representing the frequency and time-varying channel. The output is given
by y[n].

The model is fully described by providing the sampling period ∆t, the length of
the TDL M, and for each tap hn(i), the corresponding power, Doppler frequency,
Doppler spectrum, and the Rician factor.

In [32], a set of TDL channel models have been defined with distinct profile
models (TDL-A, TDL-B, TDL-C, TDL-D, and TDL-E) that capture different channel
profiles for both Non-Line-of-Sight (NLoS) and Line-of-Sight (LoS) environments.
It has also been verified that the same channel models can be utilized to reproduce
an SFN scenario by properly tuning the Root Mean Square (RMS) value of the delay
spread with the inclusion of the added artificial delay spread of SFN in accordance
with the considered Inter-Site Distance (ISD) [4]. By adjusting the delay spread, the
TDL channel model can effectively represent various ISDs, thereby enabling the
simulation of different SFN networks. Notably, altering the delay spread values in
the TDL-E (LoS) and TDL-A (NLoS) channel models can model four unique SFN
networks with varying ISDs, which we considered as a reference in our study (see
Table 2.1) [4, 5].

The Table 2.1 compares four different SFN networks in terms of their ISD,
transmitted power, and delay spread for the TDL-E and TDL-A channel models.
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Table 2.1 Variation in Delay Spread among SFN networks and its representation in TDL-E
(Line of Sight) and TDL-A (Non-Line of Sight) channel models. [4, 5]

Parameter LPLT MPMT HPH1 HPHT2

ISD [km] 15 50 125 173.2
Transmitted power [dBm] 46 60 70 70
TDL-E Delay Spread(RMS) (µs) 16 35 45 70
TDL-A Delay Spread(RMS) (µs) 20 40 50 75

The SFN networks are classified as Low Power Low Tower (LPLT), Medium Power
Medium Tower (MPMT), High Power High Tower 1 (HPHT1), and High Power
High Tower 2 (HPHT2), depending on their tower height and power level.

In order to capture the impact of mobility in a TDL channel model that utilizes a
typical carrier frequency of 700 MHz for an SFN, incorporating Doppler spread is
essential. By calculating the appropriate scale factor based on the relative velocity
between the transmitter and receiver, we can determine the maximum Doppler shift
in hertz, which can then be incorporated into the TDL channel model.

The choice of the TDL channel model depends on the reception scenario of
interest. For portable reception scenarios, where the receiver is moving within an
urban or suburban environment with many obstructions, the TDL-A (NLoS) model
is more suitable. For rooftop reception scenarios, where the receiver is fixed on a
high location with a clear line of sight to the transmitter, the TDL-E (LoS) model is
more appropriate.

2.4 The reference "Classical" OFDM receiver

The receiver in an OFDM system is responsible for demodulating the received signal
and recovering the original data. Figure 2.4 illustrates the main blocks of a classical
OFDM receiver in an SFN system. This receiver is considered as the reference
when designing the OFDM waveform in standards. In particular, one must ensure by
design that the sub-carrier spacing ∆ f is much smaller than the coherence bandwidth
of the channel, and at the same time, the symbol duration Tu = 1/∆ f is much smaller
than the coherence time of the channel. In the next sections we will provide details
on the operations performed by each block.
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Fig. 2.4 The main blocks of a classical OFDM receiver in an SFN system.

2.4.1 Synchronization and CP-OFDM demodulator

The demodulation process in an OFDM receiver involves multiple steps including
synchronization [33], cyclic prefix removal, and Fast Fourier Transform (FFT).
The first step is time synchronization, which is performed by cross-correlating two
samples of the received signal to detect the start of a new symbol period. The
cross-correlation is defined as:

r(τ) =
∫

∞

−∞

y(t)y(t − τ)dt. (2.9)

The receiver detects the start of a new symbol period when the cross-correlation
exceeds a threshold value. The second step is secondary synchronization, which is
used to determine the best position for the FFT window. Various synchronization
strategies can be used, such as synchronizing to the strongest signal or using a sliding
FFT window. During the PhD research activity, we assumed ideal synchronization.
After the timing synchronization, which is in charge of finding the optimal location
of the OFDM symbol, the receiver performs the cyclic prefix removal operation on
the received signal. After the cyclic prefix removal, the receiver performs the FFT
operation on the received signal to convert it from the time domain to the frequency
domain:

X [k] =
N−1

∑
n=0

y(n∆t)e− j2πkn/N , (2.10)

where k is the frequency index, N is the number of sub-carriers, and ∆t is the
sampling interval. The result of the FFT, X [k], is then demultiplexed into two parts:
ŝ, which is the information signal that should be equalized, and ŝpilot , which are pilot
signals for channel estimation.
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2.4.2 Channel estimation

In OFDM systems, frequency domain channel estimation is the process of deter-
mining the possibly time varying frequency response of the communication channel
between the transmitter and receiver. The accurate estimation of the channel response
is crucial for proper decoding of the transmitted data and to mitigate the impact of
echoes generated in SFN which can cause severe fading.

Pilot signals are used to estimate the channel in OFDM. They are inserted into
the transmitted signal at specific intervals in both frequency and time domains. The
distance between pilot signals in the frequency domain is referred to as d f and the
distance between pilot signals in the time domain is referred to as dt .

The selection of optimal values for d f and dt for correct channel estimation
should be done according to the Nyquist sampling theorem [9]. The two-dimensional
Nyquist sampling theorem sets the minimum interval of reference pilot signals in
both the frequency and time domains:

d f ≤ (4τmax∆ f )−1 and dt ≤ (4 fDTs)
−1, (2.11)

where fD is the Doppler shift, τmax is the maximum delay spread, ∆ f is the sub-carrier
spacing, and Ts = 1/∆ f +Tcp is the total symbol duration.

As an example, Figure 2.5 shows a 2-dimensional grid of reference pilot signals
in the frequency-time domain. The horizontal axis represents time, and the vertical
axis represents frequency. The reference pilot signals are spaced apart by dt = 2 in
the time domain and d f = 2 in the frequency domain.

The pilot overhead is defined as OHp ≜ (d f dt)
−1. To compute the pilot overhead

of an OFDM system in a given channel scenario, we can use Equation 2.11, which
provides the constraint on d f and dt based on the maximum delay spread (τmax),
carrier spacing (∆ f ), and CP length Tcp. Since we have Tcp ≥ τmax, we can write:

OHp ≥ Kτmax fD∆ f · (1/∆ f + τmax) (2.12)

≥ K(τmax fD + τ
2
max fD∆ f ). (2.13)

To determine τmax in Equation 2.12, we can use the proportionality between τmax

and the RMS delay spread provided in Table 2.1. To ensure a cautious estimate,
we should multiply the RMS delay spread by a factor of 5. Assuming a sub-carrier
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𝑑!
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Fig. 2.5 two-dimensional grid of reference pilot signals in the frequency-time domain, with
dt = 2 and d f = 2, spaced according to the Nyquist sampling theorem for proper channel
estimation in the presence of echoes and severe fading in SFN.
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spacing of ∆ f = 1.25 kHz and carrier spacing 700 MHz, we can then calculate the
minimum pilot overhead for various single frequency scenarios and speeds, as shown
in Figure 2.6. The pilot overhead and minimum pilot density requirement increase
as user speed increases, which may become impractical and infeasible for allocating
resources for pilot signals. Alternative advanced channel estimation and tracking
methods, such as superimposing [34], may need to be considered in such cases.

For example, in a low-power, low-tower scenario with a root mean square delay
spread of 20 µs and a speed of 200 kmph, assigning more than 20 percent of
the resources to pilot signals is necessary. However, in a high-power, high-tower
scenario with a root mean square delay spread of 75 µs, all available resources must
be allocated to pilot signals to comply with the Nyquist theorem for minimum pilot
density, as expressed in Equation 2.11.

Channel estimation algorithms

Least Square [35](LS) and Minimum Mean Squared Error [36] (MMSE) are two
common channel estimation algorithms used in OFDM systems to obtain the channel
frequency response for each pilot sub-carrier.

To estimate the channel response using LS (Least Squares) estimation, we uti-
lize both the received pilot signal, ŝpilot [k], and the transmitted pilot signal, xp[k].
The channel response is then determined as the ratio of the received signal to the
transmitted signal, which is given by the equation:

ĥLS[k] =
ŝpilot [k]

xp[k]
, (2.14)

where ĥLS[k] is the estimated channel response and k is the index of the pilot sub-
carrier.

For MMSE estimation, the estimated channel response is calculated as a weighted
average of the LS estimate and the prior information about the channel, such as the
expected power spectral density (PSD) of the channel. MMSE outperforms simpler
LS when the density of pilots is low. The MMSE estimate is given by the equation:

ĥMMSE [k] =
Np−1

∑
i=0

ŝpilot [i]
xp[i]

wi[k] =
Np−1

∑
i=0

ĥLS[i]wi[k], (2.15)
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where wi[k] is the weight associated with the i-th pilot sub-carrier, and k represents
the index of the pilot sub-carrier. The weights are chosen such that the MMSE
estimate is as close as possible to the actual channel response.

Interpolation

Interpolation is a method of estimating values between known data points. In the
context of channel estimation in OFDM systems, it refers to the process of extending
the channel response estimates obtained at pilot sub-carrier positions to the whole
frame and data sub-carriers.

The Wiener estimator assumes that the channel response is a stationary random
process, and it uses the autocorrelation and cross-correlation of the channel response
to estimate the channel at non-pilot sub-carriers. The autocorrelation and cross-
correlation are estimated based on the known pilot sub-carriers. The Wiener estimator
can be expressed as follows:

ĥ(k) = R(k)(−1) ·P(k), (2.16)

where ĥ(k) is the estimated channel response at non-pilot sub-carrier n, R(k) is the
autocorrelation matrix of the channel response, and P(k) is the cross-correlation
vector between the pilot sub-carriers and the non-pilot subcarrier k.

The Wiener estimator is computationally efficient and provides optimal linear
interpolation performance in OFDM systems. However, the Wiener estimator may
not always be used for channel interpolation, since it requires knowledge of the
statistical properties of the channel, which may not always be available.

The linear interpolation method is used to estimate the channel response at any
arbitrary sub-carrier k, based on the estimated channel response at the pilot sub-
carriers, ĥ[i] for i = 0,1,2, . . . ,Np −1. The estimation is obtained through the use of
interpolation coefficients ai[k], which determine the contribution of each pilot sub-
carrier to the estimated channel response at sub-carrier k. Specifically, the channel
response at sub-carrier k is given by the linear combination of the estimated channel
response at the pilot sub-carriers, as follows:
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ĥ[k] =
Np−1

∑
i=0

ai[k] · ĥ[i]. (2.17)

The interpolation coefficients ai[k] are selected to create a linear relationship
between the estimated channel response at the pilot sub-carriers and the estimated
channel response at the arbitrary sub-carrier k.

It should be noted that while the linear interpolation method is suitable for
smooth frequency variations, it may not provide accurate results for severe fading in
single-frequency networks. After obtaining the estimates of the pilot sub-carriers,
we can apply DFT-based interpolation [37] to estimate the channel impulse response.
To achieve this, we first calculate the IDFT of these estimates to obtain the impulse
response of the channel.

hp[k] =
1

Np

Np−1

∑
i=0

ĥ[i] · e j 2πik
Np , k = 0,1,2, . . . ,Np −1. (2.18)

Here, hp[k] is a vector that contains all the channel estimates on the Np pilot sub-
channels. Typically, the number of pilots, Np, is much larger than the channel delay
spread, Lds. For a wireless channel with a delay spread of Lds, the time-domain
channel impulse response, h, should have non-zero values only in the first Lds +1
samples. Therefore, a low-pass filter (LPF) is applied to hp to reduce estimation
noise:

hp = [hp[0],hp[1], · · · ,hp[Lds],0, · · · ,0]Np, (2.19)

where Lds is the length of the delay spread. The time-domain channel impulse
response estimate hp[k] is then converted into an N-sample vector by appending
zeros:

hpN = [hp[0],hp[1], · · · ,hp[Lds],0, · · · ,0]N , (2.20)

where N is the FFT size of the OFDM system. Next, the DFT of the impulse response
can be calculated to obtain the final interpolated channel estimate:

ĥ[k] =
Np−1

∑
n=0

hpN [n] · e− j 2πkn
N , k = 0,1,2, . . . ,N −1, (2.21)

where, N is the total number of sub-carriers in the system.
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2.4.3 "Single tap" Equalization

When the OFDM waveform satisfies the two conditions mentioned at the beginning
of this chapter, received symbols in the frequency-time resource do not interfere
with each other, and consequently, "equalization" is not really needed. However,
the observed samples on each resource still need to be rescaled by the channel gain
before entering the demodulator. This procedure is often referred to as "single-tap"
equalization.

In the Zero Forcing (ZF) method, the equalization filter is designed as the inverse
of the estimated channel, ĥ, such that:

ŝeq,ZF [n] =
ŝ[n]
ĥ[n]

=
ĥ∗[n]
|ĥ[n]|2

ŝ[n]. (2.22)

This method simply cancels the channel effects but does not take into account the
presence of noise in the channel estimate. In the more robust MMSE method,
the equalization filter is designed to minimize the mean square error between the
equalized signal and the transmitted signal. The equalized signal is given by:

ŝeq,MMSE [n] =
ĥ∗[n]

|ĥ[n]|2 +σ2
· ŝ[n], (2.23)

where σ2 is the noise variance.

2.4.4 Soft-Demodulator

In the reference receiver, the demodulator computes an estimation of the transmitted
coded bits based on the channel-compensated samples ŝeq. The demodulator’s output
can be used for either hard decision or soft decision decoding.

In hard decision decoding, the channel-compensated samples ŝeq are quantized to
the nearest point in the signal constellation, denoted as sML, and the corresponding
binary label is delivered as an estimate of the transmitted coded bit. Specifically,
the function bi(s) returns the i-th bit of the binary label of s, and b̂int [i] denotes the
estimate of the i-th bit based on the quantized sample sML. The quantization and
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decoding process can be expressed mathematically as:

sML = arg min
s∈S

||ŝeq − s||2 (2.24)

b̂int [i] = bi(sML); i ∈ [1,m], (2.25)

where S denotes the constellation set of possible symbols in the transmitted signal,
and the || · ||2 notation represents the squared Euclidean distance between two points
in the signal space. The goal is to find the symbol s in S that is closest to the
received sample ŝeq, in terms of Euclidean distance. Once the closest symbol sML

has been identified, the corresponding bit labels can be obtained using the function
bi(s) for each bit position.

The soft demodulator computes the likelihood ratio for each bit of the transmitted
signal, enabling soft decision decoding. The LLR output for the i-th bit can be
computed mathematically as:

bint,soft[i] =
∗

max
s∈S :bi(s)=1

(
−||ŝeq − s||2

2σ2

)
− ∗

max
s∈S :bi(s)=0

(
−||ŝeq − s||2

2σ2

)
i ∈ [1,m]

(2.26)
where S denotes the set of possible symbols in the transmitted signal, bi(s) returns
the i-th bit of the binary label of symbol s, and σ2 represents the noise variance. The
∗

max operator is the logarithmic-sum-exp operator, which is used to compute the
maximum value over a set of real numbers while avoiding numerical overflow or
underflow issues.

It is important to note that while the LLR values are real numbers, in practical
implementations, they are computed using fixed-point representation with a limited
number of bits. This is done to reduce computational complexity and memory
requirements.

2.4.5 Deinterleaver and decoder

The role of the de-interleaver is to apply the inverse permutation of the time axis
introduced by the interleaving process. By doing so, it reduces the burstiness of the
error sequence introduced by the channel and makes the following decoder more
effective.
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The purpose of a channel decoder is to make use of the redundancy introduced
by channel coding in order to correct errors that may be present in the received data.
To achieve this goal, the decoder takes as input the received data b̂enc and leverages
the known code structure and an algorithm to identify and correct transmission errors
that may have occurred during the transmission over a noisy channel. The output of
this process is an estimated version of the original data.

In the context of LDPC decoding [38], the decoder uses soft decisions as soft
information to perform iterative message-passing decoding. This process involves
exchanging messages between variable nodes and check nodes in the code graph,
where the messages convey the probability that each bit in the codeword is a 1 or a 0.
These probabilities are determined based on the quality of the received signal and
the messages received from neighboring nodes in the graph.

At each iteration of decoding, the soft information is used to update the messages
exchanged between the nodes. The soft information can guide the decoding process
by providing a measure of the reliability of each bit and can help resolve ambiguities
in the received signal.

2.5 Limits of the classical receiver approach

As previously mentioned, the classical OFDM receiver performs optimally only when
the transmitted waveform is such that the resources at the receiver are orthogonal and
do not interfere with each other. This is achieved by setting a CP length that is larger
than the delay spread, and at the same time making the symbol duration much shorter
than the channel coherence time. However, this approach has the limitation that the
OFDM parameters, such as the CP length and symbol duration, must be adaptive
and matched to the channel scenario. This is the main motivation for introducing
tunable numerologies in the 5G-NR standard.

Assuming a carrier frequency of 700 MHz, Mathematically, coherence time can
be defined as:

Tc =
1
fD

(2.27)

where fD is the maximum Doppler shift in Hz. By plugging in the values of Doppler
shift of 2 Hz (v= 3 km/h) and 104 Hz (v= 160 km/h) into Equation 2.27, we can
calculate the coherence times to be 500 ms and 8.77 ms, respectively. When using a
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15 kHz carrier spacing and normal cyclic prefix length, the duration of an OFDM
symbol in 5G-NR is approximately 71 µs. This symbol duration is significantly
shorter than the coherence time of the channel, indicating that multiple OFDM
symbols will experience the same channel characteristics.

Mathematically, coherence bandwidth can be defined as:

Bc ≈ (1/5) · τrms (2.28)

where τrms is the root mean square (RMS) delay spread of the channel. By substitut-
ing the values of RMS delay spread of 20, 40, 50, and 75 µs into Equation 2.28, we
can calculate the coherence bandwidths to be 10 kHz, 5 kHz, 4 kHz, and 2.67 kHz,
respectively. The sub-carrier spacing of an 5G-NR OFDM system, which is 15 kHz
at a minimum, different sub-carriers may experience distinct fading characteristics,
leading to inter-carrier interference (ICI) and reduced system performance.

2.5.1 Minimum system overhead

We now see that under particularly challenging channel scenarios, such as those
associated with SFN with mobility, the introduced overhead may be very large. We
define the system overhead as the ratio between the CP length and the useful symbol
duration:

OH = Tcp/Tu = Tcp∆ f . (2.29)

We can then consider the two channel-related constraints, where Tcp must be larger
than τrms and Tu must be smaller than the channel coherence time Tc ∝ 1/ fD, and
plug them into the equations:

Tcp = τrms/k1 (2.30)

Tu = k2/ fD (2.31)

where both constants k1 and k2 must be positive and smaller than one. The overhead
can be expressed as follows:

OH =
τmax fD

k1k2
=

τmax fc|v|
ck1k2

. (2.32)
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The equation above demonstrates that the system overhead grows as the product of the
channel delay spread and user velocity, which is consistent with our expectations. To
obtain the maximum delay spread, we can multiply the root mean square (RMS) delay
spread by a factor of 5. As an example, we can consider four different scenarios for
a signal frequency network, as summarized in Table 2.1. These scenarios correspond
to various RMS delay spreads, ranging from 20 to 75 µs, and are based on a carrier
frequency of fc = 700 MHz.

To illustrate the impact of speed on overhead, Figure 2.7 shows how the minimum
overhead varies with different speeds for a pair of reasonable values of k1=0.1 and
k2=0.1 and different signal frequency networks. The results demonstrate that as
the speed increases, the minimum overhead value eventually becomes impractically
high.

At very low speeds, the minimum overhead is reasonable. However, as the speed
increases, the overhead also increases rapidly. For instance, in a high-power high-
tower scenario with a 175 km inter-site distance and a speed of 100 km/h, we need to
allocate all our resources to the cyclic prefix. In contrast, in a scenario where the inter-
site distance is smaller, say 15 km, we can allocate fewer resources, approximately
60% of the total, to the cyclic prefix. This is because the time dispersion due to
multi-path propagation is less pronounced, and the delay spread is shorter. However,
both of these results are impractical when it comes to assigning a cyclic prefix in an
OFDM system.

2.6 Conclusion

In this chapter, we have provided an overview of the key characteristics of modern
OFDM-based standards that support SFN broadcasting, with further details presented
in chapter 3. We have discussed the reference symbol-by-symbol receiver, which
is assumed in designing the TX waveform. This receiver has a simple structure
and performs optimally when the TX waveform is properly matched to the channel
constraints, so that both ISI and ICI are nullified at the receiver by design.

However, this approach may lead to unacceptable overhead in challenging scenar-
ios such as SFN with a large delay spread and mobility with a large Doppler spread.
Furthermore, it may not perform well when the channel conditions for a specific user
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Fig. 2.7 The minimum overhead with k1=0.1 and k2=0.1

do not align with the TX waveform constraint. These two limitations, combined with
the requirement of using SFN infrastructure with 5G-NR technology, necessitate the
exploration of advanced receiver techniques for SFN that can eliminate the need for
both ISI and ICI nullification at the receiver.



Chapter 3

Standards for SFN

This chapter presents a review of the physical layer of several well-established
broadcasting standards, including DVB, ATSC, and MBMS. The essential topics
covered in this review include FFT, cyclic prefix, channel coding, modulations, and
interleaving. Understanding the similarities and differences between these standards
is crucial in identifying their strengths and weaknesses. This knowledge can also be
applied to propose solutions and optimizations for future broadcasting systems.

3.1 Digital Video broadcasting-Terrestrial

DVB-T [39] and DVB-T2 [6] are two important standards for digital terrestrial
television broadcasting. DVB-T stands for Digital Video Broadcasting - Terrestrial,
while DVB-T2 stands for Digital Video Broadcasting - Second Generation Terrestrial.
DVB-T has been widely used since its introduction in the late 1990s for standard
definition and high definition television services in many countries. It employs
OFDM modulation with concatenated channel coding and interleaving to transmit
compressed digital audio, video and other data in multiplexes. Additionally, DVB-T
offers various transmission modes, modulation schemes, cyclic prefixes, and code
rates to adapt to different channel conditions and network topologies.

DVB-T2, developed in the late 2000s, is an extension of DVB-T and offers
significant benefits in terms of capacity, spectral efficiency, and robustness. DVB-T2
uses many new techniques not previously used in the DVB family of standards, such
as physical layer pipes (PLPs), rotated constellations, extended interleaving, multiple
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input single output (MISO) transmission, time-frequency slicing (TFS), and future
extension frames (FEFs). It is the most up-to-date type of digital signal for terrestrial
television and is increasingly being adopted in many countries around the world.
DVB-T2 is designed to be backward compatible with DVB-T, which means that DVB-
T2 receivers can receive and decode DVB-T transmissions. DVB-T2 also supports
SFNs and multiple frequency networks (MFNs), as well as statistical multiplexing.
It can carry standard definition, high definition, and ultra-high definition television
services, as well as radio and data services.

Compared to DVB-T, DVB-T2 has higher spectral efficiency due to the use of
more advanced modulation techniques such as higher-order modulation schemes. It
also has significantly lower overhead and improved error-correction coding, allowing
for up to nearly 50% increase in capacity for MFN operation and even higher for SFN
operation. The extended range of Coded OFDM (COFDM) parameters in DVB-T2
allows for a significant increase in capacity compared to DVB-T, making it more
efficient in terms of spectral efficiency and allowing for more data to be transmitted
with the same amount of bandwidth.

DVB-T2 also uses more efficient Low-Density Parity-Check (LDPC) and Bose-
Chaudhuri-Hocquenghem (BCH) codes for error correction, supports higher code
rates, a higher-order 256QAM constellation for higher data throughput, more cyclic
prefixes for more efficient use of bandwidth, a wider range of FFT sizes for more
flexible use of bandwidth, a smaller percentage of scattered pilots for more efficient
use of bandwidth, and a lower percentage of continual pilots for improved signal
tracking. Additionally, DVB-T2 provides a higher maximum bandwidth for higher
data throughput compared to DVB-T.

3.1.1 Input Processing and physical layer pipes

The diagram in Figure 3.1 illustrates the main processing blocks of the DVB-T2
transmission chain. The DVB-T2 standard supports several input formats, including
Transport Stream (TS), which is a stream with constant packet length similar to
DVB-T. The standard also allows for the use of Generic Encapsulated Stream (GSE),
which supports constant or variable length packets and is intended for broadcasting
IP content without the use of TS-MPE (Multi-Protocol Encapsulation). Another
format supported by DVB-T2 is the Generic Continuous Stream (GCS), which uses
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variable length packets, and where the modulator does not know the actual length.
Finally, the Generic Fixed-length Packetized Stream (GFPS) format is included for
compatibility with DVB-S2. DVB-T2 introduces Physical Layer Pipes (PLPs) that
allow for the configuration of various protection levels, including channel coding
parameters, constellation orders, and interleaving depths. A single DVB-T2 signal
can support one or more PLPs, enabling the system to be customized for different
purposes. However, parameters related to the OFDM symbol configuration, such as
FFT size and cyclic prefix, are common to all PLPs.

3.1.2 Coding, Interleaving, Modulation

The BICM process, as depicted in Figure 3.1, involves interleaving, coding, and
modulation steps for each BBframe of a given PLP. This process begins by coding the
input BBframes of a PLP using both an outer encoder (BCH) and an inner encoder
(LDPC), following the BICM approach. The use of LDPC [40] is a standard feature
of the DVB second-generation standard family (including DVB-S2, DVB-T2, and
DVB-C2), and contributes to the increased robustness compared to other systems
such as DVB-T. The outer BCH encoder aims to reduce the error floor of the LDPC.
There are six defined code rates (CR) or protection levels available, ranging from
more to less protected (1/2, 3/5, 2/3, 3/4, 4/5, and 5/6), and two sizes for the LDPC
FEC frames (16K and 64K). Short FEC frames, although slightly less robust (by
about 0.2 dB [41]), facilitate scheduling, especially for low data rates.

DVB-T2 provides improved encoding compared to the Convolutional and Reed
Solomon codes utilized in DVB-T, which is why it introduces the higher-order
constellation 256-QAM. This new constellation enhances both spectral efficiency
and bit rate. The size of the BBframe, which serves as the input to the FEC frames,
is determined by the FEC frame sizes and coding rate in this structure. The DVB-T2
Lite specific profile introduces new code rates of 1/3 and 2/5, removes the existing
ones of 4/5 and 5/6, and only allows for short FEC frames.

After encoding, bit interleaving occurs for the FEC frames before they are
mapped to constellations, except in cases where the QPSK constellation is used. In
the DVB-T2 standard, the term "cell" refers to the constellation points.

DVB-T2 utilizes a technique called rotated constellations, also known as signal
space diversity (SSD), to improve receiver performance in channels with severe
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Fig. 3.1 The architecture of the DVB-T2 system.

fading. Rotated constellations introduce redundancy in the coded modulation’s
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information bits, resulting in additional diversity. In this technique, cells are rotated
by a particular angle, which varies based on the constellation used.

The use of rotated constellations in DVB-T2 aims to enhance the receiver’s
performance, especially in scenarios where deep fading or erasures occur. Simulation
results [42] suggest that this technique can provide a gain ranging from 0.2 dB to
several dBs compared to conventional QAM constellations, depending on factors
such as the constellation order, channel model, and CR. Although there is no capacity
penalty associated with this technique, it does increase the complexity of the receiver,
particularly for high order constellations.

After performing constellation mapping, the cells within each FEC block undergo
a new interleaving process. This process uses a unique sequence for each FEC block,
which makes up the time interleaving frame. The penultimate interleaving step is
the time interleaving process, which combines cells from different FEC blocks to
enhance robustness against low Doppler varying channels. However, it also increases
the zapping time. Time interleaving is a compulsory step, and both transmitters and
receivers must have sufficient memory, regardless of whether it is employed in the
configuration.

Time interleaving is performed at the PLP level, allowing each PLP to have a
distinct interleaving sequence and varying final interleaving time. For example, a PLP
designed for HD services for rooftop antennas does not require lengthy interleaving
times. However, a PLP intended for portable devices requires more protection, and
its interleaving time should be extended as much as possible, considering the tradeoff
with zapping time. The standard offers three different time interleaving options,
depending on the relationship between FEC blocks, TI-blocks, interleaving frames,
and T2-frames. The interleaving time depends on the length of the TI-blocks, but it
can be increased by dividing TI blocks and assigning them to several consecutive or
non-consecutive T2-frames.

3.1.3 Frame Builder

The unit is responsible for assigning cells to data carriers and allocating signaling
information within the structure of a T2 frame, which consists of a P1 symbol for
synchronization and signaling, followed by P2 symbols and data symbols. PLPs are
divided into three types and allocated in a certain order, with common PLPs carrying
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shared information and Type 1 PLPs allowing receivers to save battery by only
receiving certain slices. Type 2 PLPs are sent in a fixed sequence and spread along
the data symbols, increasing time diversity but consuming more battery. Decoding
L1 signaling is required to receive any PLP. T2 super-frames consist of FEFs and
T2 frames, with FEFs being able to transmit any signal that DVB-T2 receivers can
ignore. This system allows for flexibility and new developments.

3.1.4 OFDM generation

The final step in the DVB-T2 transmission process involves generating OFDM
symbols, which offers a range of options for customization. There are six FFT sizes
available (1K, 2K, 4K, 8K, 16K, and 32K), six channel bandwidths (ranging from
1.7 MHz to 10 MHz), and seven cyclic prefix fractions (ranging from 1/128 to 1/4).
For FFT sizes of 8K, 16K, and 32K, an extended carrier mode is available, which
allows for greater carrier use per symbol and increases data capacity. However, this
mode may not be suitable for mobile reception due to limited tolerance for Doppler
frequency.

Normal data symbols use pilot cells, data cells, and dummy cells, with scattered
pilots used for channel estimation. Less dense pilot patterns result in lower overhead,
while denser ones lead to more accurate channel estimation. A special pilot pattern
(PP8) is available for use with the CD3 channel estimation algorithm [43], but it
should not be combined with time interleaving or multiple PLPs.

To reduce the peak-to-average power ratio (PAPR), the DVB-T2 standard offers
two methods: Active Constellation Extension (ACE) and Tone Reservation (TR).
However, the use of these methods can result in a reduction in system capacity of
approximately 1%.

The Active Constellation Extension (ACE) method is used to reduce the peak
power in the OFDM signal by modifying the value of cells using the outermost points
of the constellation. However, ACE cannot be used when rotated constellations are
present. Unlike Tone Reservation (TR), the use of ACE does not result in a capacity
penalty. Lower order constellations provide greater benefits with the ACE method,
while higher order constellations provide greater benefits with the TR technique. It
is essential to note that the configuration of the OFDM symbol selected will affect
all PLPs. Therefore, if different types of services are to be broadcast, a trade-off
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must be made to select a configuration that is suitable for all services. An alternative
is to use both T2 and T2-Lite in the same RF channel using the FEF feature, which
allows for almost completely different configurations.

3.1.5 Signaling

DVB-T2 employs two layers of signaling information, namely L1 and L2. L1 is
concerned with the physical parameters of the signal and how the information is
arranged, while L2 pertains to the data streams. L1 signaling is subdivided into
L1-pre and L1-post, and it is transmitted using two special symbols called P1 and P2.
The P1 symbol serves as a preamble and enables robust symbol detection and coarse
time synchronization. On the other hand, the P2 symbol transmits the remaining L1
signaling and any leftover data. The modulation and coding of L1 in P2 symbols are
different from the rest of the system, and this limits the time interleaving possibilities
of the L1 signaling, which is considered a weakness for mobile reception. To increase
the robustness of L1-post signaling, later versions of the DVB-T2 standard have
introduced modifications.

3.1.6 Scattered pilot patterns

DVB-T2 offers more flexibility in allocating scattered pilots compared to DVB-T,
with options for 1%, 2%, 4%, and 8% of the total cells (carriers). This added
flexibility results in less overhead and increased data efficiency. There are 8 different
pilot patterns (PP) in DVB-T2, which are used for specific combinations of DFT
and cyclic prefix. PP1 provides the highest spectral efficiency but is the least robust,
while PP8 provides the highest robustness but the lowest spectral efficiency. In
general, the use of Pilot Patterns with a higher number (e.g., PP7, PP8) results in
better robustness against fading and interference, while the use of Pilot Patterns with
a lower number (e.g., PP1, PP2) results in higher spectral efficiency.

Figure 3.2 shows the PP3 pilot pattern in DVB-T2. It highlights the presence of
edge pilots, scattered pilots, and data cells in the signal. Edge pilots are fixed and are
used to aid in synchronization and channel estimation at the receiver.

Table 3.1 provides a comparison of different pilot patterns based on their density
in time and frequency [6]. The separation of pilot-bearing carriers in time and
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Fig. 3.2 PP3 Pilot Pattern in DVB-T2

frequency is represented by dt and d f , respectively. The overhead introduced by
each pattern is shown in the 1/dtd f column.

Table 3.1 Comparison of Scattered Pilot Patterns, results from [6]

Pilot Pattern d f dt 1/dtd f

PP1 3 4 8.33%
PP2 6 2 8.33%
PP3 6 4 4.17%
PP4 12 2 4.17%
PP5 12 4 2.08%
PP6 24 2 2.08%
PP7 24 4 1.04%
PP8 6 16 1.04%

Here are some recommended pilot patterns for typical scenarios [44]:

• Rooftop Reception: When using a directional outdoor antenna system on a
rooftop, low Doppler environment is often experienced with few reflections.
To maximize capacity, it is recommended to use pilot pattern PP7, which has
low overhead but is less robust to Doppler.

• Mobile Reception: In a fast-changing mobile channel, more pilots are needed
for better channel estimation. Temporal resolution is more critical than fre-



42 Standards for SFN

quency resolution, so pilot patterns PP2, then PP4, and then PP6 would be the
options.

• Portable Reception: In a portable reception with slower-changing channel
characteristics, fewer (reduced overhead) but stronger pilots are preferred,
such as PP3 or PP4.

• Large Area SFNs: In networks where large area SFNs are required, a longer
cyclic prefix, such as 1/8 or greater, would be necessary. In these cases, only
pilot patterns 1, 2, or 3 are available. Pilot pattern 2 may provide the best
balance between Doppler performance and cyclic prefix size.

3.1.7 Configuration Options

Table 3.2 provides a summary of the available configuration options in DVB-T2
to adjust the system to meet transmission and reception requirements. The DVB-
T2 system’s capacity is determined by various configuration parameters, and the
achievable data rates can range from 3.90 Mbps to 50.32 Mbps for an 8 MHz channel
(see Table 3.3), depending on the modulation and coding scheme used. However,
certain combinations of FFT size, cyclic prefix, and pilot pattern are restricted. For
digital radio transmission with a 1.7 MHz bandwidth, the minimum data rate that
can be achieved is 765.77 kbps.

3.2 Advanced Television System Committee

The Advanced Television Systems Committee (ATSC) standards are a set of Ameri-
can standards for digital television transmission over terrestrial, cable, and satellite
networks. They are mainly used in the United States, Mexico, Canada, and South
Korea, and they replace the analog NTSC standard. The ATSC standards have
three primary versions: V1.0, V2.0, and V3.0. V1.0 and V2.0 use a single carrier
modulation called 8VSB (8-level vestigial side-band), which is patented and requires
licensing for devices that use it. ATSC V1.0 supports only MPEG-2/H.262 video
coding and Dolby AC3 audio, while ATSC V2.0 allows for MPEG-4/H.264 video
coding and additional new features. ATSC V3.0 is the latest version of the standards,
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Table 3.2 DVB-T2 physical layer parameters

Parameter Value

Bandwidth (MHz) 1.7,5,6,7,8,10
FFT size 1k1, 2k, 4k, 8k, 16k, 32k1

cyclic prefix 1/128, 1/32, 1/16, 19/256, 1/8, 19/128, 1/4
Pilot patterns PP1, PP2, PP3, PP4, PP5, PP6, PP7, PP81

Constellations QPSK, 16-QAM, 64-QAM, 256-AM
Rotation Yes2/No

L1 modulation BPSK,QPSK,16-QAM,64-QAM
FEC size 16k,64k1

Code rate 1/33, 2/53, 1/2, 3/5, 2/32, 3/42, 4/51, 5/61

Input mode A (Single PLP), B (Multiple PLP)
Input format TS, GSE, GCS, GFPS

1-Not allowed in T2-lite mode
2-Not allowed for 256-QAM in T2-Lite
3-Only allowed in T2-Lite

Table 3.3 Capacity Example, results from [7]

Configuration Data rate

1.7 MHz,4k FFT, 1/8 CP, PP2
764.7 kbps

L1 BPSK, L1 repetition, QPSK 1/3
8 MHz,4k FFT, 1/8 CP, PP2

3.90 Mbps
L1 BPSK, L1 repetition, QPSK 1/3

1.7 MHz,4k FFT, 1/8 CP, PP2
50.32 Mbps

L1 64-QAM, L1 repetition, 256-QAM 5/6

which introduces a new physical layer protocol, a dedicated return channel, an in-
teractive content framework, and enhanced security and service protection features.
ATSC V3.0 also supports multiple video and audio codecs, such as HEVC, AC-4,
and MPEG-H. ATSC can carry multiple channels of information on a single stream,
and it can produce high-definition video formats up to 1920×1080 pixels in size.

The physical layer protocol of ATSC 3.0 provides broadcasters with a range of
tools to choose the operating modes that best fit their needs and targeted devices.
The protocol is built on OFDM modulation with a suite of LDPC FEC codes and
offers a choice of 12 code rates and 3 basic modes of multiplexing. There are also 3
transmission modes of SISO, MISO, and MIMO, and signal protection is provided
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by 12 selectable cyclic prefix lengths, 16 scattered pilot patterns, and 3 FFT sizes
[45].

3.2.1 Input Formatting

ATSC 3.0 uses the Internet Protocol (IP) to deliver various types of data packets.
One of the components of ATSC 3.0 is the ATSC Link-Layer Protocol (ALP), which
is responsible for encapsulating different input data packets into ALP packets. The
ALP packets are then scheduled by a system management function and assigned to
physical layer resources. The baseband formatting block performs several operations
on the ALP packets, such as constructing baseband packets, adding baseband packet
headers, and scrambling the baseband packets. The baseband packet header consists
of three parts: a common header, a type-dependent header, and an optional extension
header. The baseband packet scrambler ensures proper constellation mapping by
randomizing the baseband packet bits before forward error correction encoding. The
baseband formatting block can also create multiple Physical Layer Pipes (PLPs) if
needed, which are logical channels that can have different transmission parameters
and error protection levels.

3.2.2 Coding, interleaving and modulation

FEC consists of an inner code and an optional outer code. The input to the FEC
block is a baseband packet, and the output is a FEC frame, whose size depends on
the LDPC code length. The inner code is an LDPC code with 12 available code rates
ranging from 2/15 to 13/15. There are two available code lengths, 16200 and 64800
bits, that are used to ensure proper reception of the transmitted baseband packets.

The outer code has three options: the Bose, Ray-Chaudhuri and Hocquenghem
(BCH) code, the Cyclic Redundancy Check (CRC), and no outer code. The BCH
code provides error detection and correction, which can correct up to 12 bit errors,
while the CRC only provides error detection. The length of the parity data per FEC
frame is 32 bits for CRC and 168 bits and 192 bits for BCH for 16200 and 64800
bits LDPC, respectively. If no outer code is used, no additional error correction or
detection is provided.
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The bit interleaver block includes a group-wise interleaver, a parity interleaver,
and a block interleaver. It is optimized for channel efficiency performance for each
LDPC code rate and constellation order. The modulation scheme used is based
on six different modulation orders, including uniform QPSK modulation and five
non-uniform constellation (NUC) sizes: 16-NUC, 64-NUC, 256-NUC, 1024-NUC,
and 4096-NUC. The 16, 64, and 256 NUC constellations are 2-dimensional, while
the 1024 and 4096 constellations are derived from non-uniform 1-dimensional PAM
constellations for both in-phase (I) and quadrature (Q) components. Each combi-
nation of NUC modulation order and LDPC code rate has a different constellation,
except for QPSK, where the same constellation is used for all code rates. However,
the constellation does not vary with the LDPC code length.

3.2.3 Layered Division Multiplexing

Layered Division Multiplexing (LDM) is a technology that combines two indepen-
dent data streams with different modulation and coding configurations in one RF
channel, with the core layer being more robust than the enhanced layer. LDM offers
Unequal Error Protection (UEP) and can provide simultaneous provision of mobile
and fixed services in the same RF channel. Compared to traditional TDM or FDM,
LDM can potentially offer performance gains. LDM offers 2.7 Mbps capacity for
the core layer and 20.5 Mbps capacity for the enhanced layer, while TDM requires
different capacity allocations to achieve similar performance levels. [8].

3.2.4 Interleaver and Framing

The module responsible for framing and interleaving consists of three components:
time interleaving, framing, and frequency interleaving. The framing block out-
puts OFDM symbols arranged in physical layer frames, and the input to the time
interleaving and framing blocks can include multiple PLPs.

When using a single PLP (S-PLP) with LDM or multiple PLPs (M-PLPs) with
constant cell rate transmission, a convolutional interleaver (CI) is used to double the
time interleaving depth. However, for M-PLPs with variable cell rate transmission, a
hybrid interleaver is used, which comprises a cell interleaver, a block interleaver, and
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a convolutional interleaver. The hybrid TI operates on a per PLP basis, and different
parameters may be applied to each PLP.

The CI offers advantages over a sheer block interleaver, such as doubling the
interleaving depth with the same memory size and reducing the average zapping
time for the same interleaving depth by approximately 33%. However, these benefits
only apply to inter-frame and inter-subframe interleaving when the CI is used.

The time interleaving (TI) module in this system has a memory size of 219 units,
which is shared among PLPs in the same group for M-PLP. QPSK modulation allows
for an extended interleaving mode that doubles the interleaving depth or service data
rate using cell-to-memory-unit mapping and demapping blocks.

PLP multiplexing in ATSC 3.0 can be done using TDM, FDM, and LDM, with
LDM offering benefits. A frame in ATSC 3.0 comprises a bootstrap, preamble,
and one or more sub-frames, each with fixed FFT size, CP length, scattered pilot
pattern, and NoC. Different sub-frames may have different parameters. Frequency
interleaving is used on a per OFDM symbol basis throughout the channel bandwidth
to separate burst errors, and is always used for preamble symbols but is selectable
for sub-frame data symbols in L1 signaling.

3.2.5 Waveform generation

The Waveform Generation module in ATSC 3.0 comprises various blocks, including
the pilot insertion, MISO pre-distortion, IFFT, optional peak-to-average-power reduc-
tion, and cyclic prefix insertion. The frame begins with the prefixed bootstrap signal,
and scattered, continual, edge, preamble, and frame closing pilots are employed
in ATSC 3.0. These pilots are modulated with reference information, and their
transmitted value is known to the receiver. Pilots can be used for various purposes,
such as frame synchronization, frequency synchronization, time synchronization,
channel estimation, and transmission mode identification, and they can also track
phase noise.

Table 3.4 illustrates the sixteen scattered pilot (SP) schemes defined by ATSC 3.0.
SPab terminology is used, where a = d f represents the separation of pilot bearing
carriers in the frequency direction, and b = dt denotes the number of symbols forming
one scattered pilot sequence in the time direction. The overhead of these schemes
varies from 0.78% to 16.6%.
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Table 3.4 Scattered pilot and overhead in ASTC 3.0

Pilot Patter d f dt overhead(%) 1/d f dt

SP3,2 3 2 16.6
SP3,4 3 4 8.33
SP4,2 4 2 12.5
SP4,4 4 4 6.25
SP6,2 6 2 8.33
SP6,4 6 4 4.16
SP8,2 8 2 6.25
SP8,4 8 4 3.12
SP12,2 12 2 4.16
SP12,2 12 4 2.08
SP16,2 16 2 3.12
SP16,4 16 4 1.56
SP24,2 24 2 2.08
SP24,4 24 4 1.04
SP32,2 32 2 1.56
SP32,4 32 4 0.78

Multiple-Input Single Output

ATSC 3.0 uses a Transmit Diversity Code Filter Set (TDCFS) technique to minimize
destructive interference caused by multiple multi-path echoes received outside the
configured cyclic prefix (CP) duration. TDCFS artificially decorrelates signals
from multiple transmitters in a SFN by implementing linear frequency domain filters
before the IFFT, which allows for compensation in the receiver as part of the equalizer
process. The filter design is based on creating all-pass filters with minimized cross-
correlation over all filter pairs under the constraints of the number of transmitters and
the time domain span of the filters. The effective cyclic prefix length is decreased by
the filter time domain span, which should be taken into consideration when choosing
a filter set for a particular network topology. TDCFS does not require doubling the
pilot density, unlike the Alamouti-based MISO scheme of DVB-T2.

IFFT

ATSC 3.0 defines different FFT sizes and bandwidths to support various capacity
needs and RF environment changes. The system’s bandwidth and elementary period
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are determined by the bootstrap, which sets the maximum capacity for each FFT size
and bandwidth. The bandwidths of 6, 7, and 8 MHz have corresponding elementary
periods of 7/48 µs, 1/8 µs, and 7/64 µs, respectively. To adjust to different RF
environment conditions and masks, ATSC 3.0 provides an adjustable NoC. Each
FFT size has five NoC values to choose from, separated by equal steps. A reduction
coefficient is used to signal the chosen NoC value in L1, based on the maximum
NoC value. This ensures maximum capacity is supported under various masks and
RF environment changes.

Peak-to-Average Power Ratio (PAPR)

ATSC 3.0 has two PAPR reduction methods: Tone Reservation (TR) and Active
Constellation Extension (ACE). TR involves using certain OFDM carriers to insert
cells that aim to reduce overall PAPR of the output waveform, while ACE decreases
PAPR by altering the transmitted constellation points. The ACE algorithm should
not be used with pilot carriers or reserved tones and is not compatible with LDM,
MISO, and MIMO. When using ACE, the constellation dimension and the LDPC
code rate must also be taken into account. TR cells contain no payload data or
signaling information and make up approximately 1% of symbol carriers.

Cyclic prefix

According to Table 3.5, ATSC 3.0 provides a wide range of twelve options for
cyclic prefixes with varying durations expressed in both samples and microseconds
for different FFT sizes. The available cyclic prefixes are dependent on the FFT
size, which is indicated by an ’✓’ in the respective columns of the table. For a
bandwidth of 6 MHz, the cyclic prefix ranges from 28 µs to over 700 µs, with the
maximum naturally occurring echo (non-SFN) being around 104 µs. Despite this,
broadcasters may opt to select any FFT size beyond this range to safeguard their
signals in challenging terrains with many hills and SFN networks.

ATSC 3.0 also offers a time-aligned mode that allows for the insertion of ad-
ditional samples to make the frame length a multiple of ms, which are distributed
to the CPs of the non-preamble OFDM symbols within the frame. In addition, a
conventional symbol-aligned mode is also available.
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Table 3.5 Cylic prefix in ATSC 3.0

CP 6 MHz dt
FFT

#Samples
8k 16k 32k

#1 22.78µs 4 ✓ ✓ ✓ 192
#2 55.56µs 4 ✓ ✓ ✓ 384
#3 74.07µs 3 ✓ ✓ ✓ 512
#4 111.11µs 4 ✓ ✓ ✓ 768
#5 148.15µs 3 ✓ ✓ ✓ 1024
#6 222.22µs 4 ✓ ✓ ✓ 1536
#7 296.30µs 3 ✓ ✓ ✓ 2048
#8 351.85µs 3 - ✓ ✓ 2432
#9 444.4µs 4 - ✓ ✓ 3072

#10 527.78µs 4 - ✓ ✓ 3648
#11 592.59µs 3 - ✓ ✓ 4096
#12 703.70µs 3 - - ✓ 4864

3.2.6 Bootstrap

The bootstrap in ATSC 3.0 provides a priori information about incoming signals to
digital communication receiver devices. It consists of a series of OFDM symbols
that are highly robust and can be received even in difficult channel conditions. The
bootstrap contains basic information that must be received by all devices and is made
up of four symbols. The first symbol is used for synchronization, while the following
symbols carry additional information. The first signaled information is the version of
the ATSC 3.0 standard, and subsequent symbols carry information about emergency
alerts, system bandwidth options, time to the next frame, sampling rate indications,
and preamble structure. The bootstrap symbols have a sampling frequency of 6.144
Msymbols/s and an effective bandwidth of 4.5 MHz, and their total length is 2 ms
[8].

3.2.7 Preamble

The preamble in ATSC 3.0 occurs once per frame, after the bootstrap and before
the payload, and is used to convey the L1 signaling necessary to access the payload.
The signaling information is divided into L1-Basic and L1-Detail, with L1-Basic
carrying a fixed number of signaling bits, and L1-Detail carrying more bits that vary
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between 400 and 6312. The signaling components are encoded by LDPC codes
that are mapped to constellations ranging from QPSK to 256-NUC, with seven
modes available for each component. To mitigate fading and burst errors, a zig-zag
interleaver is applied to OFDM data cells corresponding to L1-Detail, and frequency
interleaving is applied to all preamble OFDM symbols. The waveform parameters of
the preamble OFDM symbols have seventeen available modes for CP/FFT/SP, with
denser pilots for robust and speedy channel estimation.

3.2.8 Channel bonding and MIMO

One of the features of the ATSC 3.0 standard is the ability to bond two RF channels
together to transmit data from a single Physical Layer Pipe (PLP), enabling data
rates beyond the capacity of a single RF channel. The channel bonding feature can
also take advantage of frequency diversity between the two RF channels. At the
receiver end, the output stream of the channel bonding process is identical to the
input stream on the transmitter side. This is achieved by passing all PLP data packets
through a common input formatting block where baseband headers are inserted. To
ensure proper packet reordering at the receiver side, a baseband header extension
counter is used, even in the presence of varying delays on each RF channel. There
are two operation modes for channel bonding: plain channel bonding and SNR
averaging. In plain channel bonding, the two transmitter chains operate without any
interaction after joint input formatting and stream partitioning. In SNR averaging,
every second cell of every Binary Phase Shift Keying (BPSK) with Incremental
Redundancy (BICM) encoder is sent to the other transmitter signal to provide SNR
averaging across the two RF channels. Channel bonding is not compatible with
MIMO, but other features such as LDM, MISO, and PAPR are. The MIMO antenna
system in ATSC 3.0 is based on a 2x2 antenna system, requiring two antenna aerials
at both the transmitter and receiver sides. The MIMO transmission chain reuses
many blocks from SISO, such as FEC codes, bit interleavers, time interleavers,
frequency interleavers, and constellations. The MIMO precoder is based on Spatial
Multiplexing and has three steps: stream combining, IQ polarization interleaving,
and phase hopping.
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3.2.9 DVB-T2 and ATSC 3.0 in a 6 MHz Channel

The technical parameters of two digital broadcasting systems, DVB-T2 and ATSC
3.0, in a 6 MHz channel are compared in a Table 3.6. The table highlights some key
differences between the two systems [8]. The differences include the outer code used,
with DVB-T2 utilizing BCH outer code and ATSC 3.0 using a combination of BCH,
CRC, and none. Additionally, both systems support various LDPC code rates, but
DVB-T2 supports a more limited range compared to ATSC 3.0. DVB-T2 employs
a uniform constellation for modulation schemes like 16-QAM, whereas ATSC 3.0
utilizes non-uniform constellations for some of its modulation schemes. DVB-T2
optionally uses a rotated constellation, while ATSC 3.0 does not. Both systems
use time interleaving, but the type of interleaving employed by ATSC 3.0 differs
from DVB-T2. The maximum frame size of ATSC 3.0 is much larger compared to
DVB-T2. Moreover, the pilot patterns used by the two systems differ in terms of
the number of patterns and overhead. DVB-T2 supports a wider range of FFT sizes
compared to ATSC 3.0. ATSC 3.0 supports more CP options compared to DVB-T2,
and also allows multiple PLPs per service, while DVB-T2 does not. Finally, the data
rate supported by ATSC 3.0 is wider compared to DVB-T2.

3.3 Multimedia Broadcast Multi-cast System

Multimedia Broadcast Multi-cast Service (MBMS) is a point-to-multi-point interface
specification for existing and upcoming 3GPP cellular networks, which is designed
to provide efficient delivery of broadcast and multi-cast services, both within a cell as
well as within the core network [46]. Cellular communication was initially designed
for point-to-point data transmission, but with the introduction of MBMS in 3GPP
release 8, it became possible to broadcast data to multiple devices simultaneously. In
2014, 3GPP release 9 defined MBSFN (Multimedia Broadcast SFN), enabling a CP
of up to 16.7 µs (5km), which limits the establishment of larger Single-Frequency
Networks.
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Table 3.6 Comparing ATSC 3.0 and DVB-T2 in a 6 MHz Channel, results from [8]

Parameters DVB-T2 ATSC 3.0

Outer code BCH BCH, CRC, none

LDPC code rate 1/2,3/5,2/3,3/4,4/5,5/6
[2, 3, 4, 5, 6, 7, 8, 9
10, 11, 12, 13]/15

Modulation

QPSK,2D-16-NUC, 2D-
QPSK, 16-QAM, 64-NUC, 2D-256-NUC,

64-QAM, 256-QAM 1D-1024-NUC,
1D-4098-NUC

Rotated constellation Yes(Optional) No
Time Block CI(S-PLP)

interleaver interleaver Hybrid BI+CI(M-PLP)
TI size (cells) 219 +215 219, QPSK(220)

Maximum frame size 250 ms 5 s
Pilot PP1-PP8 (x8) SP32-SP322 (x16)

Patterns 1.04%-8.33% overhead 0.78%-16.6% overhead

FFT size
1k, 2k, 4k, 8k,

8k, 16k, 32k
16k, 32k

CP ratio

3/512, 3/256, 1/64, 3/128,
1/32, 3/64, 1/16, 19/256,

1/128, 1/32, 1/16, 19/256, 3/32, 57/512, 3/16, 1/8
19/128, 1/4 (symbol and

time-aligned frame)
Multiple PLPs

(No 1 common PLP) Yes (up to 4)
per service
Min-Max

5.6 Mbps, 38 Mbps 1 Mbps, 57 MbpsData Rate
6 MHz

3.3.1 eMBMS-enhancement

To improve the transmission performance of MBMS, in Release 14, 3GPP approved
the enhancement of eMBMS (enhancement of eMBMS) [47]. This involved extend-
ing the SFN cyclic prefix length to 200µs, which allowed for a wider SFN range.
The enhancement of eMBMS also introduced a cell acquisition subframe (CAS)
with a larger interval to reduce synchronization overhead and increase broadcast
service capacity. A new sub-frame was designed with almost 100% eMBMS carrier
allocation and no unicast control region. Table 3.7 summarizes the frame structure
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Table 3.7 Numerologies in release 14 (enhancement of eMBMS)

CP mode ∆f Sym. per SF SCSs pre RB TCP (µs) Tu ISD

Extended
15 12 12 16.7 66,7 5
7.5 6 24 33.3 133.3 10

1.25 1 144 200 800 60

parameters for enhancement of eMBMS sub-frames with different carrier spacing
∆ f values, as specified in Rel-14.

The maximum supported inter site distances (ISDs) for the two short CPs are 5
km and 10 km, which are only applicable in low-power-low-tower (LPLT) scenario.
The use of new CP extends the ISD up to 60 km which can be used in high-power-
high-tower (HPHT) deployments. The structure of enhancement of eMBMS frames
is influenced by the selected OFDM parameters, and the enhancement of eMBMS
modes have a set of reference signal patterns.

3.3.2 LTE-based 5G Terrestrial Broadcast

In Release 14, the frame structure and Cell Acquisition Sub-frames (CAS) structure
are not sufficient for meeting the the requirements for broadcasting with of 5G Radio
Access Technology, particularly for serving high-mobility users and covering large
geographic areas. Release 16 introduces two new CP lengths, 100µs and 300µs,
for car-mounted and rooftop reception, respectively, to provide wider coverage and
stronger robustness in high-mobility scenarios [48, 4]. The newly investigated CP
length of 100µs can support transmission with a maximum speed of 250km/h in
car-mounted reception of LPLT scenario. Numerology with CP duration of 300µs is
adopted by medium power medium tower (MPMT) and HPHT scenarios to support
100 km coverage for rooftop reception. The frame structures corresponding to the
new numerologies are presented in Table 3.8. In Release 16, significant extensions
were made to the expected ISDs for rooftop and car-mounted receptions in all
scenarios.

As a result of the increased CP length, the legacy sub-frame duration has now
been extended to 3ms (∆f=0.37 kHz). The carrier that is solely dedicated to multime-
dia broadcast and multi-cast services (MBMS), the common control signaling (CAS)
is transmitted every 40ms, while the MBMS single-frequency network (MBSFN)
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Table 3.8 New numerologies in release 16

CP mode ∆ f Sym. per SF SCSs pre RB Tcp (µs) Tu ISD

Extended
2.5 2 72 100 400 30

0.37 1 486 300 2700 100

sub-frames take up the remaining 39ms. Hence, the CAS is broadcasted ahead of 13
MBSFN sub-frames.

The performance of LTE-based 5G Terrestrial Broadcast

The performance of new numerologies and CAS enhancement schemes are evalu-
ated using system-level simulations (SLSs) and link-level simulations (LLSs) [9].
Figure 3.3 shows that a simulation platform is built to conduct SLSs and LLSs for
different scenarios. The SLS process involves generating the network topology, UE

Fig. 3.3 LTE based 5G broadcasting simulation platform

distributions, and channel coefficients, as well as calculating the SINR and CDF of
each UE. The SINR threshold given by SLS determines the TBS and MCS for LLS
[9]. LLS involves encoding and modulation, reference signal insertion and OFDM
generation, channel estimation and equalization, demodulation and decoding, and
calculating the BER.

The simulation parameters and assumptions used in [9] are detailed in Table 3.9.
The channel model selected is TDL-B, with a Delay Spread of 20µs, 35µs, and
45µs for LPLT, MPMT, and HPHT-1, respectively. For channel estimation, the UE
performs independent one-dimensional linear interpolation in the time and frequency
domains, following the recommendation in [49].

For car-mounted reception, the appropriate combination of dt and d f for the
design of RS pattern depends on RS overhead and system performance. From LLS
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Table 3.9 Parameters for link-level simulation

Parameter Value

System Bandwidth 10 Mhz
Carrier Frequency 700 Mhz

Sub-carrier Spacing 2.5 kHz/0.37 kHz
Channel model TDL-B

Delay Spread
LPLT: 20µs

MPMT: 35µs
HPHT-1: 45µs

N. of RX antennas at the UE 2
Turbo Decoding algorithm Max-Log-MAP/8 iterations

results, the RS pattern with d f = 2 and dt = 2 provides the best BER performance.
Table 3.10 gives the 95%-tile SINR thresholds and spectral efficiencies in terms of
different RS patterns in LPLT scenario, and it can be seen that d f = 2 has a larger
spectral efficiency compared with d f = 3. Thus, the RS pattern of d f = 2 and dt = 2
is specified for the new numerology of Tcp = 100 µs/Tu = 400 µs to support mobility
of up to 250km/h in Rel-16.

Table 3.10 Spectral Efficiency of Different RS Tone Combinations for LPLT scenario, results
from [9]

d f , dt Overhead 95%tile SINR (dB) SE @ 150/250 km/h (bps/Hz)

2,2 25% 9 1.11/0.97
2,4 12,5% 9 0.97/0.78
3,2 16,7% 7.6 0.96/0.85
3,4 8.3% 7.6 0.85/0.68
4,2 12,5% 6.9 0.85/0.85
4,4 6,25% 6.9 0.78/0.68

For MPMT and HPHT-1 scenarios, staggered RS pattern proposed by Qualcomm
[50] and rhombic RS patterns proposed by Huawei [51] and Shanghai Jiao Tong
University [30] are introduced and analyzed to support larger coverage in rooftop
reception. The staggered RS pattern with d f = 3 and dt = 4 [52], where the RSs from
4 consecutive symbols are coalesced together, and the rhombic RS pattern with d f =
3 and dt = 4 are shown in Figure 3.4.
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Fig. 3.4 Staggered RS pattern with d f =3 and dt=4.

Table 3.11 RS Tone Separation and Spectral Efficiency for Different Combinations- Rooftop
Reception, results from [9]

Network Topology Pattern d f ,dt 95%-tile SINR (dB) SE (bps/Hz)

HPHT-1 Rhombic 3,2 10.9 1.65
HPHT-1 Staggered 3,4 9.4 1.52
MPMT Rhombic 3,2 18.4 2.75
MPMT Staggered 3,4 14.9 2.47

Table 3.11 presents a summary of the 95%-tile SINR thresholds and spectral
efficiency values for rooftop reception using the rhombic RS pattern and the staggered
RS pattern.

The table shows that the rhombic RS pattern with dt = 2 outperforms the staggered
RS pattern in terms of spectral efficiency for both HPHT-1 and MPMT rooftop
scenarios. Moreover, simulations conducted in [50] demonstrate that for large
transport block size (TBS) values of 71112 bits, the staggered RS pattern with dt =
4 outperforms those with dt = 1/2/3. However, for small TBS values of 45352, the
performance difference between the staggered RS pattern with different dt values is
negligible. Hence, both the staggered RS pattern with d f = 3 and dt = 4 and rhombic



3.4 Comparison of different standard 57

RS pattern with d f = 3 and dt = 2 are supported in the case of rooftop reception,
given a TCP value of 100µs/Tu = 400µs.

The PMCH (Physical Multi-cast Channel) throughput for 5G LTE-based terres-
trial broadcast was evaluated in a link-level simulation study by [10]. The study
considered the PMCH channel with a 10 MHz channel bandwidth and Modulation
and Coding Scheme settings were based on [4], and the results were obtained with a
Transport Block Error Rate (BLER) of 0.1%.

Table 3.12 shows the PMCH throughput for 5G Broadcast using a 2.5 kHz sub-
carrier spacing, 100 µs CP duration, and TDL-A channel model (mobile/handheld)
with 20 µs Delay Spread, and two-antenna receivers. The table displays the values
of Qm, Code Rate, and Min SNR for each modulation scheme, which represent the
modulation order, effective code-rate, and required minimum SNR (in dB) to achieve
a Transport Block Error Rate (BLER) of 0.1%. Non-decodable results are indicated
by ”− ”.

Table 3.13 presents the results for 5G Broadcast PMCH throughput for a 10 MHz
channel bandwidth and 0.37 kHz sub-carrier spacing. The results were obtained
using the TDL-E channel model for roof-top reception with a maximum Doppler
shift of 1 Hz (1.5 km/h), a delay spread of 45 µs, and a single receiver antenna.
Non-decodable values are also denoted by ”− ”.

To enable comparison, we also include the results obtained using the TDL-A
channel model, which represents mobile/handheld reception conditions using two
receiver antennas. In the TDL-A model, the maximum Doppler shift is 2 Hz (3 km/h)
with a delay spread of 50 µs. Non-decodable values are denoted by ”− ”.

3.4 Comparison of different standard

DVB-T2, ATSC 3.0, and LTE-Advanced Pro enhancement of eMBMS are tech-
nologies that enable digital broadcasting of audio, video, and data services, with
differences in features, capabilities, and areas of application.

DVB-T2 provides higher spectral efficiency than its predecessor, DVB-T, allow-
ing for more TV channels and higher-quality video services. It supports HEVC
for Ultra High Definition (UHD) content delivery and DRM for content protection.
ATSC 3.0 uses OFDM modulation and provides new features, such as UHD video,
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Table 3.12 5G Broadcast PMCH Capacity with 2.5 kHz Sub-carrier Spacing, results from
[10]

MCS Qm CR Thr. SNR SNR
(Mbps) 3 km/h 160 km/h

4 2 0.34 3.5 3.6 3.8
5 2 0.41 4.3 4.6 4.6
6 2 0.48 5.0 5.6 5.8
7 2 0.58 6.0 7.0 7.2
8 2 0.65 6.8 7.8 8.2
9 2 0.75 7.8 9.2 9.6
10 4 0.37 7.8 8.2 8.6
11 4 0.41 8.5 9.0 9.4
12 4 0.46 9.7 10.0 10.4
13 4 0.53 11.2 11.2 11.4
14 4 0.60 12.6 12.4 12.8
15 4 0.66 13.8 13.2 13.8
16 4 0.71 14.9 14.2 14.8
17 6 0.47 14.9 14.4 15.0
18 6 0.51 16.0 15.0 15.6
19 6 0.57 17.9 16.4 17.0
20 6 0.62 19.4 17.4 18.6
21 6 0.66 20.8 18.4 19.8
22 6 0.71 22.3 19.6 21.2
23 6 0.79 24.8 21.6 25.0
24 6 0.85 26.7 26.4 -
25 6 0.88 27.6 28.0 -
26 6 0.95 29.8 - -
27 6 0.98 30.9 - -

immersive audio, and interactive services. It supports IP-based content delivery for
greater flexibility and interactivity in multimedia service delivery. enhancement
of eMBMS enables the broadcast/multicast delivery of multimedia content over
LTE networks, complementing uni-cast delivery by efficiently distributing popular
multimedia content to multiple users. enhancement of eMBMS is designed for LTE
networks and is used for efficient distribution of multimedia content to multiple users
simultaneously.

DVB and ATSC are widely used broadcasting standards that use CP-OFDM,
with DVB used mainly in Europe, Asia, and Africa, while ATSC is used primarily in



3.4 Comparison of different standard 59

Table 3.13 5G Broadcast PMCH Capacity with 0.370 kHz Subcarrier Spacing, results from
[10]

MCS Qm CR Thr. SNR SNR
(Mbps) 1.5 km/h 3 km/h

4 2 0.34 5.0 3.6 4
7 2 0.41 6.0 4.6 4.8
8 2 0.47 6.7 5.2 5.6
9 2 0.53 7.7 6 6.4
10 2 0.60 8.6 6.8 7.2
13 4 0.38 11.1 8.6 8.8
14 4 0.44 12.8 9.8 9.8
15 4 0.48 13.8 10.2 10.6
16 4 0.51 14.7 10.8 11
17 4 0.55 15.9 11.6 11.8
18 4 0.62 17.9 12.8 13
19 4 0.67 19.3 13.6 13.6
20 4 0.72 20.7 14.6 14.8
21 6 0.48 20.7 15 14.8
22 6 0.52 22.4 15.8 15.6
23 6 0.57 24.8 17.2 16.8
24 6 0.61 26.4 18.2 17.8
25 6 0.64 27.5 19 18.2
26 6 0.68 29.5 20.6 19.4
27 6 0.70 30.5 21.4 19.8

North America. These standards provide high-quality digital video and audio with
efficient use of the available spectrum.

MBMS is another broadcasting technology that uses CP-OFDM but has not been
widely adopted due to challenges with limited availability of spectrum and lack of
widespread adoption. MBMS is designed to deliver multimedia content to mobile
devices using a broadcast network. The latest release of this technology is MBMS
Rel-17, which is LTE-based 5G Broadcast.
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Table 3.14 Comparison of Physical Layer Specifications for DVB-T2, ATSC 3.0, and
enhancement of eMBMS

Pa
ra

m
et

er
s

D
V

B
-T

2
A

T
SC

3.
0

en
ha

nc
em

en
to

fe
M

B
M

S

B
an

dw
id

th
(M

H
z)

1.
7,

5
,6

,7
,8

,1
0

6,
7,

8
1.

4,
3,

5,
10

,2
0

C
od

e
ra

te
1/

2,
3/

5,
2/

3,
3/

4,
4/

5,
5/

6
2/

15
,·
··

,1
3/

15
1/

3
FE

C
B

C
H

,L
D

PC
B

C
H

,C
R

C
,n

on
e,

L
D

PC
,

C
R

C
,T

ur
bo

co
de

M
IS

O
2
×

1
w

ith
A

la
m

ou
ti

T
D

C
FS

no
td

efi
ne

d
FE

C
fr

am
e

(b
it)

16
20

0,
64

80
0

16
20

0,
64

80
0

61
44

Tr
an

sm
is

si
on

fr
am

e
du

ra
tio

n
(m

s)
25

0
50

00
10

M
od

ul
at

or

Q
PS

K
,2

D
-1

6N
U

C
,

Q
PS

K
,1

6Q
A

M
,

2D
-6

4N
U

C
,2

D
-2

56
N

U
C

,
Q

PS
K

,1
6Q

A
M

64
Q

A
M

,2
56

Q
A

M
1D

-1
02

4N
U

C
,

64
-Q

A
M

,2
56

-Q
A

M
1D

-4
09

6N
U

C
FF

T
1k

,2
k,

4k
,8

k,
16

k,
32

k
8k

,1
6k

,3
2k

12
8,

25
6,

51
2,

10
24

,2
04

8
C

ar
ri

er
sp

ac
in

g
(H

z)
27

9-
89

29
28

1,
5-

11
25

12
50

,7
50

0,
15

00
0

Sy
m

bo
lP

er
io

d
(µ

s)
11

9-
41

16
90

9-
40

84
71

-1
00

0
C

yc
lic

pr
efi

x(
µ

s)
7-

53
2

20
.8

33
-5

27
.7

78
4-

20
0

Pi
lo

tP
at

te
rn

s
O

ve
rh

ea
d

(1
.0

4%
-8

.3
3%

)
(0

.7
8%

-1
6.

6%
)

(1
2.

5%
,2

0%
)

m
ax

im
um

IS
D

(k
m

)
16

0
15

9
60

M
ax

.T
im

e
In

te
rl

ea
vi

ng
m

em
or

y
219

+
215

,2
19

220
,2

18
-

N
et

D
at

a
R

at
e

(M
bi

t/s
)

5.
35

-5
0.

4
(8

M
H

z)
1.

24
-7

7.
2

(8
M

H
z)

3.
5-

30
.9

(1
0

M
H

z)



Chapter 4

5G New Radio

The physical layer of 5G-NR (New Radio) handles wireless transmission and recep-
tion of data over the air interface. This includes modulation, coding, and frequency
assignments necessary for signals between user equipment (UE) and the base station,
also known as the gNodeB (gNB).

While the physical layer in Release 15 of 5G-NR primarily focused on uni-cast
communication, multi-cast and broadcast modes were needed to facilitate group
communication and content delivery. To enable this, two approaches were considered:
designing a mixed uni-cast/multi-cast/broadcast mode for 5G-NR, or creating a
dedicated Terrestrial Broadcast (TB) mode based on LTE technology, which was
discussed in a previous chapter.

The mixed mode approach requires modifying the existing 5G-NR physical layer
to support multi-cast/broadcast transmission, including new modulation schemes,
coding techniques, and resource allocation schemes.

This chapter examines the physical layer and frame structure of 5G-NR, including
its limitations for SFN terrestrial broadcasting. It also explores potential solutions
for broadcasting with 5G-NR.

4.1 Frame structure

The physical channels for both the down-link and up-link in NR are organized into
frames, each lasting 10 ms. Each frame is then subdivided into 10 sub-frames, each
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Fig. 4.1 The framing structure of NR, for numerologies µ=0 and µ = 1

with a fixed duration of 1 ms. The number of OFDM symbols in a sub-frame is
determined by the carrier spacing in the frequency domain, which is defined by
the numerology parameter µ and the type of cyclic prefix used. There are multiple
options for numerology, with each defined by a positive integer factor. Slots are used
to group the OFDM symbols, and each slot contains 14 OFDM symbols when using
normal cyclic prefix. When using extended cyclic prefix, which is only available
with numerology µ=2, each slot contains 12 OFDM symbols. Figure 4.1 shows an
example of the framing structure for numerology µ = 0 and µ = 1. In a 15 kHz
bandwidth with µ = 0, one slot occupies 1 ms, while in a 30 kHz bandwidth with
µ = 1, one slot occupies 0.5 ms. The 5G-NR system uses OFDM symbols, each
consisting of a specific number of sub-carriers in the frequency domain. The number
of sub-carriers depends on the selected numerology and the available bandwidth.
OFDM symbols can be allocated for either down-link or up-link transmission based
on the Slot Format Indicator (SFI), providing flexible resource allocation for both
Time Division Duplex (TDD) and Frequency Division Duplex (FDD) modes of
operation.

In 5G-NR Release 15, a Resource Element (RE) refers to a single sub-carrier
within an OFDM symbol, while a Resource Block (RB) is a set of 12 contiguous REs
in the frequency domain. The sub-carrier spacing (SCS) between REs is calculated
using the equation:

SCS = 2µ ×15 kHz, (4.1)

where µ can take values of 0, 1, 2, 3, or 4. 5G-NR can operate in two frequency
ranges: FR1 (Sub-6 GHz) and FR2 (millimeter wave range, 24.25 to 52.6 GHz), each
with different available bandwidths. FR1, which ranges from 450 MHz to 6 GHz,
supports bandwidths from 5 MHz up to 100 MHz, while FR2 offers bandwidths
from 50 MHz up to 400 MHz. The sub-carrier spacing for sub-6 GHz 5G-NR is
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15/30/60 kHz, while mmWave bands support 120/240 kHz. Additionally, sub-6 GHz
supports a maximum bandwidth of 100 MHz, while mmWave ranges support up
to 400 MHz. This represents a significant increase compared to LTE, which only
supports a maximum bandwidth of 20 MHz. Table 4.1 provides information on the

Table 4.1 5G numerology for FR1 and FR2 frequency ranges

Sub-carrier Spacing (kHz) 15 30 60 120 240

Symbol Duration (µs) 66.7 33.3 16.7 8.33 4.17
Cyclic Prefix Duration (µs) 4.7 2.3 1.2, 4.13 0.59 0.29

Max. BW (MHz) 50 100 100, 200 400 400
FFT Max 4096 4096 4096 4096 4096

Symbols per Slot 14 14 14 , 12 14 14
Slots per Sub-Frame 1 2 4 8 16

Slots per Frame 10 20 40 80 160

symbol duration, cyclic prefix duration, maximum bandwidth, and FFT max for
each sub-carrier spacing. It also includes the number of symbols per slot, slots per
sub-frame, and slots per frame for each sub-carrier spacing.

Significant changes have been made to reference signals in 5G-NR compared
to LTE. For instance, there is no longer a Cell Specific Reference Signal (CS-
RS), and a new Reference Signal PTRS has been introduced for time/frequency
tracking. The Demodulation Reference Signals (DMRS) are now used for channel
estimation. In addition, a new channel coding technique based on the channel
polarization concept is used for coding control channels. Low-Density Parity Check
(LDPC) codes are adopted for user plane data. Channel polarization enables the
construction of capacity-achieving codes for binary input symmetric memoryless
channels, which outperform the Tail-Biting Convolutional Codes (TBCC) used in
LTE control channels.

The maximum inter-site distance (ISD) allowed between transmitters in 5G-NR
SFN scenarios is limited by the cyclic prefix length, which is determined by the
numerology being used. Table 4.2 shows that if the numerologies from 5G-NR
uni-cast are used for SFN broadcasting, only ISDs of up to 1.4 km can be achieved.
While this is sufficient for certain scenarios like stadiums, campuses or malls, larger
scenarios such as urban and rural areas require higher ISD values that are not
supported by 5G-NR numerologies. To address this, various enhancements can be
introduced to increase the range in SFN operations.
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Table 4.2 Maximum inter side distance with 5G-NR numerology

µ SCS (kHz) Type CP CP (µs) ISD(km)

0 15 Normal 4.69 1.41
1 30 Normal 2.34 0.70
2 60 Normal 1.17 0.35
2 60 Extended 4.16 1.25
3 120 Normal 0.59 0.18
4 240 Normal 0.29 0.09

4.2 Possible Extension for Terrestrial Broadcast

In [47], the authors propose a development framework for a terrestrial broadcast
system based on NR. The framework includes new transmission modes that allow for
flexible deployment scenarios and considers design principles such as minimizing the
footprint for uni-cast transmission and scheduling processes, providing numerology
options for diverse scenarios, leveraging 5G-NR bandwidth configuration and spec-
trum utilization efficiency, and efficiently multiplexing local, regional, and national
services for both mobile and fixed reception.

The importance of offering diverse numerologies for terrestrial broadcast oper-
ation to accommodate various types of transmission networks is discussed in [53].
Table 4.3 presents a range of numerologies with varying sub-carrier spacing (SCS),
overhead, and cyclic prefix (CP) duration. The reference numerology with µ=0 (A) is

Table 4.3 Negative numerology

µ ∆f(Hz) Tu(µs) CP fraction TCPµs Ts(ms) SCRB ISD(km)

A 0 15000 66.67 7% 4.7/5.1 0.07 12 1.4
B 0 15000 66.67 20% 16.67 0.08 12 5
C -1 7500 133.33 20% 33.33 0.17 24 10
D -2 3750 266.67 20% 0.33 0.33 48 20
E - 2500 400 20% 66.67 0.33 72 30
F -3 1875 533.33 20% 133.3 0.67 96 40
G - 1250 533.33 20% 200 1.0 144 60

appropriate for single-cell or MFN Terrestrial Broadcast operation, particularly from
LPLT networks. Various numerologies can be derived for SFN operation, including
those using the concept of NR-MBMS with extended CP by utilizing a negative µ
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factor in Equation 4.1. However, it is impractical to derive numerologies for SFN
deployments with large-ISD (e.g., HPHT) that require longer OFDM symbol dura-
tions, which may complicate implementation due to leading to non-integer multiples
of current NR sub-frames. Moreover, the options are limited to a few modes with
20% CP overhead, following the same principle as in LTE, i.e., targeting mobile
reception.

The use of negative numerologies poses a challenge in framing. The 5G standard
defines a fixed duration for each sub-frame, with a fixed number of OFDM symbols
per slot, and the number and duration of slots are impacted by the numerology. When
negative numerologies are employed, the slot duration increases, and slots span over
more than one sub-frame in the time domain. This slot expansion requires changes
in the framing structure to support negative integer numerologies. As a possible
solution to enable the use of negative numerologies, a mini-slot structure has been
proposed in [54]. Mini-slots are a small framing unit comprising a group of 2, 4, or 7
OFDM symbols (as opposed to the 14 symbols in a regular frame). They offer greater
granularity and flexibility, as well as lower latencies that could be advantageous for
specific 5G scenarios [55].

Figure 4.2 illustrates how mini-slots can be integrated into the 5G negative
numerology framing, providing a compatible solution. When using numerology
µ=-1 and extended CP, each mini-slot covers two OFDM symbols. Six mini-slots
are required to fill the entire slot length. On the other hand, if using µ=-2, mini-slots
can group up to four OFDM symbols, and three mini-slots are necessary to fill each
slot. These options may be helpful in deriving appropriate extended numerologies
for LPLT deployments, but options for SFN deployments with large-ISD are limited.
Considering larger numerology values would lead to a non-integer number of mini-
slots required to fill the slot structure, thereby limiting the feasibility of using negative
numerologies to the value of -2. Only numerologies with values of µ = 0, µ = -1,
and µ = -2 are deemed compatible with the mini-slot frame structure.

According to Gimenez et al. [47], it is possible to derive different numerologies
by redefining the number of sub-carriers per resource block (RB) using:

SCRB = 12 ·15kHz ·Ts · (1−CP). (4.2)

This method, originally proposed for LTE, can also be applied to 5G-NR, where the
standard numerology is 15 kHz and 25 RBs per 5 MHz carrier (4.5 MHz effective
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0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5

0 1 2

Slot with 12 OFDM symbols (Extended CP)

Mini-slot with 2 OFDM symbols(for 𝜇 = −1)

Mini-slot with 2 OFDM symbols(for 𝜇 = −2)

Fig. 4.2 Integration of mini-slots into 5G negative numerology framing.

bandwidth). By selecting an appropriate CP fraction, which makes the number of
sub-carriers per RB an integer, multiple combinations of transmission time interval
(TTI) and CP duration can be derived.

The selection of numerologies depends on deployment scenarios and receiving
environments, taking into account factors such as sub-carrier spacing, cyclic prefix,
receiver complexity, and FFT size. Numerology E can be useful for LPLT SFNs,
while numerology G corresponds to release 14. The choice of reference signals
depends on the deployment type, with uni-cast transmissions using DMRS without
modification, while SFN deployments may require new RS and a shared DMRS
scrambling sequence. Practical receiver design considerations, such as the impact of
increasing FFT size on complexity, must also be taken into account.

These attempts have focused on designing and assigning the appropriate length
for cyclic prefix to prevent inter-symbol interference (ISI) and inter-carrier inter-
ference (ICI). However, due to the 1 ms limit of sub-frame structure in 5G-NR,
achieving this goal has been challenging. In this thesis, we aim to evaluate an
alternative approach where we don’t need to set the cyclic and OFDM symbol length
precisely. Instead, we will use advanced techniques at the receiver side to overcome
these challenges. The primary benefit of this approach is that it follows the legacy
frame structure of 5G-NR, making it compatible with the current 5G standard. In the
next chapter, we will review advanced techniques for OFDM systems to deal with
ISI in the absence of sufficient cyclic prefix.



Chapter 5

Advanced Receiver for OFDM system

One of the main advantages of orthogonal frequency division multiplexing (OFDM)
is its robustness against multi-path fading and inter-symbol interference (ISI). How-
ever, this property relies on the assumption that the cyclic prefix (CP) length is longer
than the maximum delay spread of the channel. If the CP length is insufficient,
then the orthogonality among the sub-carriers is destroyed and ISI and inter-carrier
interference (ICI) are introduced. This degrades the performance of the OFDM
system and increases the complexity of the receiver.

The challenge for the OFDM receiver in the presence of mobility is even more
severe, as the channel becomes time-varying. The Doppler spread caused by the
mobility induces additional ICI and also affects the channel estimation and syn-
chronization. Indeed, to preserve orthogonality, the length of the OFDM symbol
must be kept much smaller than the channel coherence time, and thus overhead may
become large, as we discussed in Chapter 2. To keep a low system overhead in these
scenarios, an "advanced" OFDM receiver capable of coping with both ISI and ICI is
necessary.

This chapter aims to address these challenges by exploring advanced techniques
that can improve the quality and reliability of OFDM transmissions in scenarios
where the CP length is insufficient and/or where there is mobility. The two key re-
ceiver parts discussed are "channel estimation" and "equalization and data detection".
These blocks play a critical role in enhancing the performance of OFDM systems in
such scenarios.
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In addition, we also investigate iterative reception techniques that can further
improve the robustness of OFDM systems. These iterative techniques refine the
estimates of the channel and other parameters, thereby improving the performance
of the OFDM receiver.

By employing these advanced techniques, it is possible to overcome the chal-
lenges associated with insufficient CP length and mobility, leading to high-quality
and reliable OFDM transmissions, even in an SFN scenario.

5.1 Channel estimation with insufficient CP length

OFDM systems use pilot signals to estimate channels, especially in scenarios where
the cyclic prefix is insufficient to accurately estimate the channel while minimizing
inter-symbol interference. These pilots consist of a number of OFDM symbols and
are referred to as pilot OFDM symbols. The pilot symbols occupy all sub-carriers,
and there are various methods for estimating channels using them. These methods
have been extensively researched, as cited in [56–65].

With insufficient CP length, there are two approaches to performing channel
estimation through the use of pilots. The first method entails creating a pair of
pilot OFDM symbols that are consecutive in order to eliminate any inter-symbol
or inter-channel interference present in the second symbol. This technique allows
channel estimation to be carried out during the second pilot OFDM symbol, as
mentioned in [58, 59]. The second method for channel estimation involves using
a single symmetric pilot OFDM symbol. There are many references available that
discuss this approach, such as [56, 60–62, 66].

To further enhance the accuracy of channel estimation, interference needs to be
reduced. One way to achieve this is by using a time-domain symmetric sequence
(SS) as a pilot. This approach helps to absorb interference in the first half of the SS,
leaving the second half free from interference. By using only the second half, the
channel estimate can be calculated more accurately.

In the iterative joint estimation procedure (IJEP) algorithm [66], the interference
from the first half of the SS is reduced after the first iteration. This enables the
whole SS to be used to enhance the channel estimate from the second iteration
onwards. Figure 5.1 illustrates the estimation process of the IJEP algorithm, which



5.1 Channel estimation with insufficient CP length 69

demonstrates how the algorithm utilizes the SS to improve the accuracy of the
channel estimation.

The use of a single symmetric pilot OFDM symbol, along with the time-domain
symmetric sequence (SS) and the iterative joint estimation procedure (IJEP) al-
gorithm, can significantly improve the accuracy of channel estimation in wireless
communication systems.

Cp discard Estimate TD channel
from 2nd half SS

ISI and ICI
mitigation

Estimate TD channel
from full SS

Received
signal

Fig. 5.1 iterative joint estimation procedure algorithm

The SS is obtained with the transmission of the pilot sequence on the even
sub-carriers, whereas zeros are used on the odd sub-carriers [56, 61]. This means
that a whole OFDM symbol would be used for the pilot. In [57, 63–65], channel
estimation algorithms are proposed for a non-symmetric pilot OFDM symbol, while
the method proposed in [67] utilizes pilot OFDM symbols with variable CP length
to avoid corruption from insufficient CP interference.

While these methods can provide accurate channel estimation, there are practical
limitations in mobile systems. This is because major mobile OFDM systems like
LTE do not support pilot OFDM symbols. Instead, LTE pilot sub-carriers are mixed
with data sub-carriers, making channel estimation significantly more challenging
[68]. In addition, due to mobility, the channel needs frequent estimation, requiring
frequent pilot transmission. However, since a pilot OFDM symbol consumes a large
amount of bandwidth, a significant part of the system bandwidth would be spent
on pilots, leading to bandwidth inefficiency, which contradicts the purpose of using
insufficient CP to improve bandwidth efficiency.
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A blind channel estimation technique for insufficient CP OFDM systems is
presented in [69–72], aiming to reduce the bandwidth consumption of pilot signals.
This method exploits the redundancy introduced by the CP or unused/virtual sub-
carriers to identify the channel. However, this technique is not suitable for mobile
systems as it assumes channel invariance over a large number of OFDM symbols.
Another method proposed in [73] utilizes scattered pilot sub-carriers and recursive
least squares (RLS) channel estimation for insufficient CP single input multiple
output (SIMO) OFDM systems. This approach requires a high number of iterations
(6 iterations) to achieve a good channel estimate.

There are various channel estimation techniques that employ pilot sub-carriers to
estimate the channel affected by Doppler induced ICI, as demonstrated in [74–80].
However, in mobile systems such as LTE, Doppler induced ICI is negligible [78]
compared to the significant interference caused by insufficient CP. These techniques
do not account for the interference resulting from insufficient CP, which is consider-
able for high delay spread channels. As of now, there is no high-performing channel
estimation technique for OFDM systems with insufficient CP and a limited number
of pilot sub-carriers.

5.2 Data Detection and Equalization

Numerous methods are available in literature for reducing the impact of insufficient
cyclic prefix (CP) induced interference. One equalization approach involves shorten-
ing the channel response before demodulation by realizing that interference is caused
by the channel delay exceeding the CP length. To achieve this, a finite impulse
response (FIR) filter in the form of a shortened impulse response filter (SIRF) is
designed as a time-domain equalizer. This ensures that the effective channel, which
results from convolving transmit filters, the physical channel, receive filters, and
the SIRF, is shorter than or equal to the CP length. A frequency-domain equivalent
design of SIRF can be found in references [81, 82]. Despite best efforts, it is not pos-
sible to perfectly shorten the channel, and the effective response will still have some
energy outside the CP length. Additionally, equalization techniques that use chan-
nel shortening are sensitive to parameters like the length of the channel-shortening
equalizer and the channel delay, which can change over time for mobile channels as
demonstrated in [83].
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Channel shortening has been well developed for ADSL (asymmetric digital
subscriber line) scenario, which is a wired system that uses twisted-pair copper wires
to provide high-speed internet access over telephone lines. ADSL channels typically
have long impulse responses due to the multi-path propagation and frequency-
selective fading of the wires. Channel shortening can improve the performance and
reliability of ADSL systems by reducing the ISI and enhancing the signal-to-noise
ratio (SNR).

However, most of these channel shortening techniques for multi-carrier systems
do not include mobility, which means they assume that the transmitter and receiver
are fixed and do not move relative to each other or to the environment. This as-
sumption may not hold for wireless systems, where mobility is an inherent feature.
Therefore, channel shortening techniques that are designed for ADSL scenario may
not be directly applicable or effective for wireless systems.

A decision feedback equalizer (DFE) is a technique that can be used to mitigate
the effects of ISI and ICI caused by insufficient cyclic prefix (CP) in OFDM systems
[16]. A DFE consists of two parts: a feedforward filter (FFF) and a feedback filter
(FBF). The FFF compensates for the channel distortion and reduces the noise power
at its output. The FBF cancels out the residual ISI by using previous decisions on
detected symbols.

Implementing a DFE in OFDM systems with mobility and insufficient cyclic
prefix poses several challenges. One challenge is how to estimate the channel state
information (CSI) accurately and efficiently, since the channel varies rapidly due
to mobility. Another challenge is how to design the feedback filter that does not
require knowledge of the channel impulse response or cause error propagation due
to incorrect decisions.

Despite these challenges, a DFE can be effectively applied in OFDM systems
with mobility and insufficient cyclic prefix in real-time communication systems if
some techniques are adopted. For example, one technique is to use pilot symbols
[84] or blind algorithms [85] to estimate the CSI adaptively. Another technique is to
use sparse linear equalizers or decision-directed algorithms to design the feedback
filter without requiring channel knowledge or causing error propagation [86]. A third
technique is to use frequency-domain oversampling or time-domain zero-padding to
avoid or reduce cyclic ISI [87].
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The residual ISI cancellation (RISIC) algorithm [56, 88–91] is a widely used
iterative detection technique for OFDM systems. It operates in the time domain (TD)
and consists of two steps: tail cancellation and cyclic reconstruction. These steps
aim to mitigate the inter-symbol interference (ISI) and inter-carrier interference (ICI)
caused by the channel impulse response. The performance of the RISIC algorithm
may be limited in accurately estimating data using a one-tap equalizer. This can
result in the iterative process failing to converge, particularly when the channel delay
spread is significantly longer than the CP length. To address this issue, a variant of
the RISIC algorithm has been proposed which includes error control decoding in
the iterative detection process [89–91]. However, this approach comes at the cost of
significantly increased receiver complexity.

Another significant category of equalization techniques available in the literature
are the maximum likelihood based schemes [92]. A maximum likelihood scheme is
a detection method that aims to find the most probable transmitted signal given the
received signal and the channel state information. In OFDM systems with insufficient
cyclic prefix (CP), the effects of ISI and ICI caused by multi-path fading channels
degrade the bit error rate (BER) performance significantly. A maximum likelihood
scheme can be used to address these effects by jointly detecting a subset of sub-
carriers that are most affected by ISI and ICI, while treating the rest of sub-carriers
as interference.

The advantages of using a maximum likelihood scheme compared to other equal-
ization techniques, such as single-tap frequency equalization (ST-FEQ), channel
shortening and decision feedback equalization (DFE), are that it can achieve bet-
ter BER performance and higher spectrum efficiency by exploiting the frequency
diversity gain from joint detection. The disadvantages are that it requires higher
computational complexity and more accurate channel state information than other
techniques.

Some reduced-state maximum likelihood (RSML) schemes have been proposed
in the literature [93, 94], which can reduce the complexity and improve the robustness
of ML detection for OFDM systems with insufficient CP and mobility. The basic
idea of RSML schemes is to divide all sub-carriers into several groups and perform
joint detection within each group while using pre-detection values for other groups.
By doing so, RSML schemes can exploit both time-domain and frequency-domain
diversity gains while avoiding exhaustive search over all sub-carriers.
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A maximum likelihood scheme can be used to improve the robustness and
reliability of OFDM systems in challenging wireless environments with insufficient
cyclic prefix and mobility by mitigating ISI and ICI more effectively than other
techniques. By finding the most probable transmitted signal given the received signal
and channel state information, a maximum likelihood scheme can recover OFDM
symbols with high accuracy even when they are severely distorted by dispersive
channels. This can enhance the quality of service (QoS) and user experience for
wireless communication applications such as 4G LTE, 5G-NR, HDTV broadcasting,
or satellite OFDM systems.

5.3 Iterative reception

Iterative reception is a highly effective strategy that performs interference mitigation,
channel estimation, and channel decoding iteratively to enhance overall receiver
performance. [56, 66, 95, 96]. This approach allows for channel estimation and
equalization to be carried out in either the time domain (TD) [96] or the frequency
domain (FD) [95]. Additionally, receiver operations can be switched between the
TD and FD to optimize performance [56, 66, 97]. This is due to the fact that channel
estimation is simpler in the TD, where there are fewer independent parameters.
For example, a single-tap channel in the TD requires only a single amplitude and
phase, whereas its FD equivalent involves N amplitudes and phases. Figure 5.2
illustrates a high-performance single input single output (SISO) receiver that was
proposed in [97]. The receiver has two parallel data processing stages. The main
decoder provides the final output, while the early decoder assists with interference
cancellation and channel estimation. Both decoders utilize maximal ratio combining
(MRC) to combine two adjacent OFDM symbols on a per-subcarrier basis, allowing
Viterbi detection on the combined signal. The MRC combiner in the main decoder
benefits from more recent and accurate channel estimates. Using the early decoder
outputs, FD interference mitigation is performed in the main decoder prior to Viterbi
detection.

It is not explicitly explained how interference cancellation is performed in [97],
but it is likely similar to the process described in [96]. The cancellation process
consists of two steps. Firstly, the interference from the previously detected OFDM
symbol and its corresponding channel estimate is estimated to obtain an approxima-
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Fig. 5.2 High-performance single input single output (SISO) receiver with parallel data
processing stages and maximal ratio combining (MRC) for interference cancellation and
channel estimation. The early decoder assists with channel estimation and FD interference
mitigation, while the main decoder utilizes more recent and accurate channel estimates for
Viterbi detection.

tion of ISI. This ISI cancellation is achieved by subtracting the ISI estimate, R̂isi,u(a),
from the received signal Ru(a), resulting in an intermediate signal R̆u(a):

R̆u(a) = Ru(a)− R̂isi,u(a). (5.1)

The ICI cancellation process is accomplished by subtracting the ICI estimate, from
the intermediate signal R̆u(a), resulting in the final signal denoted as Ẏ (a):

Ẏ (a) = R̆u(a)− R̂ici,u(a), (5.2)

where R̂ici,u(a) is the ICI estimate.

One of the benefits of this design is that it can achieve high detection accuracy
with a small number of pilot sub-carriers needed in an OFDM symbol for channel
estimation. The receiver processing is done on a per OFDM symbol basis, rather than
on a per frame basis, which reduces latency [97]. However, this receiver is tailored
for 802.11 OFDM systems, so it has several major drawbacks that make it unsuitable
for 5G-NR terrestrial broadcasting systems. First, the receiver depends on the 802.11
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preamble, which has a pilot OFDM symbol reserved for obtaining initial channel
estimates [98]. However, such preamble does not exist in 5G-NR systems, which
use distributed pilot sub-carriers mixed with data sub-carriers. Furthermore, due to
the absence of distributed pilot symbols, the channel predictor may not perform well
with high velocity channel conditions such as those encountered in 5G-NR systems.

Turbo equalization is a technique that combines iterative equalization and decod-
ing to mitigate the effects of ISI and ICI in OFDM systems with insufficient CP. The
basic idea is to use soft information from the decoder to improve the equalizer output,
and vice versa. The equalizer can be implemented using linear or nonlinear methods,
such as minimum mean square error (MMSE) [99], decision feedback equalization
(DFE) [14], or maximum likelihood sequence estimation (MLSE) [100]. The de-
coder can be based on convolutional codes [101], turbo codes [102], or low-density
parity-check (LDPC) codes [103].

The advantage of turbo equalization is that it can significantly improve the bit
error rate (BER) performance of OFDM systems with insufficient CP, especially in
highly dispersive channels. The disadvantage is that it requires high computational
complexity and latency due to the iterative process and the feedback loop.

5.4 Conclusion

Advanced receivers can employ techniques such as time-domain equalization (TEQ),
frequency-domain equalization (FEQ), or iterative methods for joint ICI and ISI
cancellation. These techniques aim to restore the orthogonality among sub-carriers
and reduce the error probability. TEQ operates on the received signal before FFT and
tries to shorten the effective channel impulse response within the CP length. FEQ
operates on the frequency-domain samples after FFT and tries to invert the channel
frequency response on each sub-carrier. Iterative methods exploit soft information
from the decoder and feedback it to the equalizer to improve the performance.

The choice of the best technique depends on several factors, such as the channel
characteristics, the system parameters, and the computational complexity. In general,
iterative methods can achieve better performance than TEQ or FEQ, but at a higher
complexity cost. Therefore, a trade-off between performance and complexity should
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be considered when designing OFDM systems with insufficient CP length over
time-varying channels.

Despite the significant progress made in the development of channel estimation
and equalization techniques and iterative techniques for OFDM systems with in-
sufficient cyclic prefix, there are still some challenges that remain unresolved. In
particular, the literature currently lacks research on scenarios where the RMS delay
spread is much larger than an OFDM symbol. Additionally, there is a lack of research
on the application of these techniques to single frequency network broadcasting with
short OFDM symbol length. These gaps in the literature call for further investigation
and development of novel techniques to address these challenges.



Chapter 6

5G-NR SFN broadcasting with
channel shortening

Enabling 5G-NR single frequency network terrestrial broadcasting involves consid-
ering two main options. The first option entails adopting a cyclic prefix of sufficient
length, while the second option involves designing an advanced receiver. The former
option, however, comes with a caveat as it necessitates introducing new numerologies
that may not be compatible with the standard 5G-NR new numerology.

Our strategy for enabling 5G-NR single frequency network terrestrial broadcast-
ing involved developing an advanced receiver, which we preferred over opting for a
sufficiently long cyclic prefix. This method ensured compatibility between the SFN
terrestrial broadcasting system and the existing 5G-NR and its standard numerology.

The current state of research on advanced receivers for OFDM systems has not
fully tackled the issue of inter-symbol interference across multiple OFDM symbols.
While some studies have attempted to mitigate the impact of ISI with an insufficient
cyclic prefix length, they often overlook the fact that ISI can extend beyond a single
OFDM symbol.

Furthermore, the existing equalization techniques that aim to address ISI within
a single OFDM symbol have limitations, and may not be applicable to multiple
symbols. Therefore, our approach represents a significant advancement in addressing
the challenges of ISI in 5G-NR terrestrial broadcasting systems, particularly in
challenging environments with ISI lasting multiple symbols and high levels of
interference.
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During the second year of our PhD research, we aimed to adapt channel shorten-
ing techniques to suit 5G-NR terrestrial broadcasting. Although these techniques
had been successful adopted in other wireless systems like ADSL, they required
modifications to be applicable to our scenario.

During our research, as described in [104], we developed a novel receiver design
that incorporated a bank of per-tone time/frequency 2D filters. The selection of
these filters was carefully considered to ensure that they were appropriate for the
5G-NR system and effectively mitigated any channel distortion that could potentially
degrade the transmission of broadcast signals. Our objective was to equalize the
ISI/ICI channel in order to achieve optimal performance. To accomplish this, we
utilized a 2D-MMSE filter designed specifically for per tone time/frequency filtering.
This approach is superior to a single tap equalizer, which can only be utilized with
sufficient CP overhead.

The optimal design for the 2D-MMSE filter was obtained using the procedure
outlined in [105], which is applicable for any linear channel. This procedure is based
on the channel shortening principle and enables the optimal design of a receiver
where a suitable filter precedes a trellis processor with bounded state complexity.
We also provided a general procedure for constructing the ISI/ICI channel matrix
corresponding to the equivalent channel that includes OFDM processing at both the
transmitter and receiver. This matrix was used within the framework of [105] to
derive the optimal receiver structure.

Our research revealed several important findings regarding the use of 2D-MMSE
filters with Gaussian inputs and 5G-NR numerologies. Firstly, we determined that a
carrier spacing of 15 kHz can achieve information rates that are close to the maximum
channel capacity, based on our theoretical analysis of the filter.

Furthermore, we conducted a comparison between single-carrier and multi-carrier
systems, where the former utilizes the entire bandwidth for a single carrier and an
advanced receiver is used. Our results revealed that the mutual information of the
multi-carrier system was higher compared to that of the single-carrier system. These
findings suggest that in certain scenarios, employing multi-carrier systems may be
more beneficial, and serve as a possible rationale for their adoption.

We also discovered that a low complexity receiver design, which does not require
an outer trellis processor, can provide higher throughput efficiency than single carrier
and other 5G-NR numerologies. Our theoretical predictions were validated by
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practical experiments, which showed that the pragmatic capacity associated with
practical modulation aligned with our findings.

In our study, we evaluated the performance of an advanced receiver and compared
it with that of a traditional receiver in different SFN scenarios, including LPLT,
MPMT, and HPHT. The traditional receiver used long OFDM symbols and sufficient
cyclic prefix length, with a cyclic prefix overhead of 1/9. In contrast, our advanced
receiver was designed to have a lower overhead of 1/15, which is in line with the
5G-NR standard. Our design is based on the 5G-NR standard numerology and
utilizes a normal cyclic prefix. However, it is important to note that our approach
can also be applied to scenarios where there is no cyclic prefix, such as in CP free
OFDM.

We also conducted simulations with an LDPC encoder to evaluate the practical
performance of both receivers in the end-to-end communication system. It is widely
known that a traditional receiver with sufficient cyclic prefix length can perform
similarly to an optimal receiver. However, our advanced receiver outperformed the
traditional receiver in all SFN scenarios, with either similar or better performance.

Although the presented results show promising, they are based on the strong
assumption of perfect channel knowledge at the receiver. In practical settings,
channel estimation is a critical function for achieving optimal receiver performance,
especially in mobile environments.

Future research on advanced but "classical receivers" may focus on developing a
low-complexity and adaptive 2D channel equalizer that can acquire and track the
ISI/ICI channel even in highly mobile environments. The number and positions of
the required active taps in both dimensions will be the crucial parameter considered
for complexity, as well as its trade-off with performance.

For more detailed information about the advanced receiver we developed for
enabling 5G-NR single frequency network terrestrial broadcasting, please refer to
Appendix A.

A radical alternative that researchers are recently investigating is that of employ-
ing neural networks to substitute parts or the entirety of the digital baseband receiver.
Neural networks have shown promising results in various communication systems,
including OFDM, and can potentially address the challenges of the considered SFN
scenario with high mobility.
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A first approach is to use a deep learning-based receiver that can learn the channel
characteristics and equalize the channel without requiring explicit channel estimation.
The use of deep learning can also enable the receiver to adapt to changing channel
conditions in real-time, making it suitable for mobile environments.

Another approach is to use neural networks for the separate tasks of channel
estimation and equalization. In this approach, the receiver can estimate the chan-
nel using a neural network and then use another neural network for equalization.
This approach can potentially reduce the overhead associated with explicit channel
estimation and improve the performance of the receiver.

In the next chapter, we will review the fundamentals of deep learning and how
they can be applied to various fields, including wireless communications where deep
learning has shown great promise in enhancing the performance of systems such as
Orthogonal Frequency Division Multiplexing (OFDM).



Appendix A

5G-NR terrestrial broadcasting with
channel shortening
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Abstract—This paper investigates the possibility of using 5G
New Radio (5GNR) OFDM numerology in the deployment of
efficient Single Frequency Networks (SFNs) for delivering TV
services to user devices. The straightforward approach in the
design of the physical layer for broadcasting application is based
on the adoption of OFDM signalling with very long OFDM
symbol and very low sub-carrier spacing (SCS). This design
choice allows to dimension the Cyclic Prefix length to eliminate
ISI and ICI induced by the large delay spread with a consequent
overhead reduction. The 5GNR numerology is designed for uni-
cast transmission and Cyclic Prefix lengths are not compatible
with those required for large SFN networks. In this paper we
consider a general receiver based on the channel shortening
principle, but in the frequency domain. The receiver consists in a
bank of per tone time/frequency 2D filters, possibly followed by
Maximum-Likelihood (ML) trellis processing on the shortened
channel. We provide promising information theoretic bound
showing that the extension of 5GNR numerology to SFN is
possible with very small performance loss. Even the simplest
detector architecture that does not employ trellis processing
provides throughput competitive with those that can be obtained
with smaller SCS. We provide end to end simulation results
with practical modulation and LDPC encoder confirming that
the results predicted by the bounds can be closely matched in
practice.

I. INTRODUCTION

In a Single Frequency Network (SFN), a signal is trans-
mitted simultaneously through multiple stations over the same
frequency channel. Several useful signals are available to the
receiver either from multi path echoes or from different trans-
mitters. The receiver in SFN must be able to overcome multi
path conditions and its performances are strongly affected by
the performance of channel equalizer.

In an Orthogonal Frequency Division Multiplexing (OFDM)
system by adding a Cyclic Prefix (CP) between the OFDM
symbols which is at least the size of the Channel Impulse
Response (CIR), the non-constructive combination of signals
in the receiver can be prevented and a simple receiver structure
can be obtained to equalize the channel with only one complex
multiplication for each carrier. The DVB-T2 (2nd Generation
Digital Video Broadcasting Terrestrial) [1] as well as the ATSC
3.0 (Advanced Television Systems Committee) [2] standards
allow for large inter-site distances covering up to hundreds of

kilometers (e.g. 60 km - CP duration of 200 µs - or 120 km
- CP duration of 400 µs).

The Third Generation Partnership Project (3GPP) intro-
duced 5G New Radio (5GNR) air interface from Release 15
[3] offering a more flexible and scalable design than LTE, in
order to satisfy a wider range of use cases requirements, fre-
quency bands and deployment options. However, 5GNR only
supports user-specific uni-cast transmissions. i.e. transmission
modes and core functionality not complying with broadcaster’s
requirements.

A multi-cast mode is currently under development in 3GPP
Rel-17 Multimedia Broadcast Service (MBS), but it is limited
to supporting general multi-cast and broadcast communication
services (e.g. transparent IPv4/IPv6 multi-cast delivery, IPTV,
IoT applications, V2X applications, public safety) relevant
for distribution over 5G mobile networks. Indeed, 5GNR air
interface standardized up to now, is not suitable for delivering
media services over stand-alone broadcast down-link network
only, employing large SFN areas in a Free-to-Air reception,
and receive-only device [4].

In parallel, the 3GPP Enhancements for Television Services
known as LTE-based 5G Terrestrial Broadcast was introduced
to support the SFN with 100 km cell size and mobile reception
up to 250 km/h. This solution is based on new carrier spacing
with long CP length and not compatible with original 5GNR
numerologies[5].

It is known that the addition of CP in OFDM broadcasting
systems reduces the throughput of the channel as it transports
unneeded data. The channel shortening is an alternative solu-
tion for OFDM receiver with long CP length to deal with multi
paths environment. Channel shortening was first proposed
in single carrier systems [6] to reduce complexity of trellis
detector in ML receiver. The channel shortening principle was
also used in multi carrier system mainly focused on Digital
Subscriber Line (DSL) system. In [7] have proposed a time
domain equalizer to make the equivalent channel response
length smaller that the CP thus allowing single tap equalization
in the frequency domain.

Ackerr et al. [8] suggested the usage of per tone equalizer
(PTEQ) for ADSL applications. They assigned a specific T-
Taps equalizer for each carrier separately to optimize the SNR
for each carrier. These technique were based on the minimiza-978-1-6654-4035-6/21/$31.00 ©2021 IEEE
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Figure 1. System Model. The complexity of trellis processor exponential with
ν.

tion of mean square error and this metric does not provide in
general the highest throughput. In [9] a general framework
for channel shortening for any arbitrary linear channel was
proposed. The framework is optimized for Gaussian inputs
and generalized mutual information. In this paper we start
from the framework developed in [9] to derive optimal receiver
structures with channel shortening satisfying broadcast trans-
mission requirements using 5GNR numerologies. We develop
a procedure to derive a linear channel which include OFDM
modulator with CP insertion, OFDM demodulator and ISI
channel. We implement a optimal 2D filter equalizer for a
OFDM receiver to equalize received signal in presence of
ISI/ICI.

The rest of this paper is organised as follows. In Section II,
the complete system model for broadcasting transmission
in an SFN network is introduced. In particular, the steps
describing the construction of equivalent channel matrix are
illustrated. In Section III the channel shortening method in [9]
is described and adapted to this scenario. Simulation results
are illustrated and discussed in Section IV. Conclusions follow
under Section V.

II. SYSTEM MODEL

The system model is represented in Figure 1. N parallel
inputs x are mapped from the frequency domain to the time
domain by means of an Inverse Fast Fourier Transform (IFFT)
and CP insertion of size P . The OFDM symbol, of length
N +P is transmitted over the physical channel, modeled as a
Tapped Delay Line (TDL) 5G channel model [10].

The TDL channel model can characterize a SFN, where all
the transmitters use the same frequency and signals copies can
reach user from different transmitters and possibly scatterers
at the same time. In this case the ISD characterizing the SFN
is modeled with a proper Delay Spread (DS) of the TDL
channel model. Two type of channels for TDL model are
defined, the TDL-A channel profile with Non Line of Sight
(NLOS) for handheld/mobile reception environments, and the
TDL-E channel profile with Line Of Sight (LOS) for rooftop
reception.

In Table I we report the model parameters of 4 SFN net-
works scenarios with different ISD and transmitted power. The

Parameter LPLT MPMT HPHT1 HPHT2

ISD [km] 15 50 125 173.2
Transmitted power [dBm] 46 60 70 70
LOS DS [µs] 16 35 45 70
NLOS DS [µs] 20 40 50 75

Table I
DIFFERENT SFN NETWORKS AND CORRESPONDENT DELAY SPREAD (DS)

IN LOS (TDL-E) AND NLOS (TDL-A) CHANNEL MODELS.

4 scenarios cover some possible configurations for terrestrial
networks: High Power High Tower (HPHT) and Medium
Power Medium Tower (MPMT) typically based on a limited
number of transmitters with large antenna heights and Effec-
tive Radiated Power (ERP) values in the range of some kW to
many tens of kW. Low Power Low Tower (LPLT) architecture
is characterized by a dense network of transmitters, with
rather low power levels and antenna heights. For each SFN
network we report the delay spread derived from system level
simulation to be used in the two TDL channel profiles [10].

We consider a TDL channel with channel impulse response
(h) with length L, which is known to the receiver. In our
setting the length of the impulse response of the channel L
can be much larger than an OFDM symbol. So we derive
a matrix representation of the system shown in Figure 1 as
follows.

First define the following matrices, representing the block
processing at TX and RX side:

• IFFT: Q∗
ij =

1√
N
ej2π

i·j
N ∀i, j ∈ [0, N − 1]

• CP prefix insertion: CI =

[
0N−P IP

IN

]
, where IN is

the identity matrix of size N , and 0N−P is a zero matrix
with P rows and N − P columns.

• CP removal: C
(o)
R = cshifto

[
IN 0P

]
, where

“cshifto” accounts for a possible circular shift of the
columns of the matrix, controlled the parameter o.

• FFT: Qij =
1√
N
e−j2π i·j

N .
We then and use the conventional infinite Toeplitz matrix,

H̃′ = Toep∞[hL−1, hL−2, h0],

to represent the effect of the channel linear convolution, and
introduce the following block diagonal infinite matrices

Q̃∗ ≜ Toep∞[CIQ
∗]

Q̃ ≜ Toep∞[QC
(o)
R ],

to represent TX and RX OFDM block processing. The notation
Toep∞(M1, . . . ,MN ) represents the infinite (block) Toeplitz
matrix with (block) diagonals M1, . . . ,MN . The output se-
quence y can now be written as

y =

H̃︷ ︸︸ ︷
Q̃H′Q̃∗ x+w′.

The OFDM processing then transforms the stationary channel
in the time domain into a cyclo-stationary channel in the Finite
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Fourier Transform domain. The structure of channel matrix H̃
becomes

H̃ = Toep∞(HJ−1, . . . ,H0)

where J = ⌈ L
N+P ⌉, and Hi are N ×N matrices, substituting

the original samples of the time domain impulse response hi

in H′. Notice that this representation depends on the choice
of the position of the CP removal offset o.

The introduced notation allows to represent OFDM systems
in the general case where the length of the impulse response
of the channel L take any value, even larger than P and N .
In the special case, where L < P , corresponding to the usual
setting for OFDM systems, the input-output relationship boils
down to

H̃ = Toep∞(D0),

where D0 is a diagonal matrix carrying the FFT of the channel
impulse response.

The derived input-output relationships can be now casted
in the general model introduced in [9] to derive the optimal
receiver based on channel shortening.

III. OPTIMAL CHANNEL SHORTENING

In an OFDM system, as described in the previous section,
the received signal can be represented as a complex-valued
discrete-time model as follows:

y = H̃x+w′, (1)

where y is the received signal, H̃ is ISI/ICI channel matrix of
dimension T × T which is perfectly known to receiver, x is
the input data which is circularly-symmetric complex Gaussian
distributed and w′ Additive Gaussian Noise with variance N0.
The channel matrix H̃ includes IFFT, TDL channel (h) and
FFT. The absolute limit of achievable rate (IR) over TDL
channel (h) with length L is

IR = log2

(
1 +

||h||2
N0

)
, (2)

where N0 is the noise power spectral density. The Equation (2)
assumes uniform power allocation over all carrier.

Based on the approach in [9], the optimal channel shorten-
ing receiver of Figure 1, for a fixed value of ν, is characterized
by an optimal H̃r filter given by:

H̃r =

[
H̃H̃

†
+N0I

]−1

H̃†(G̃r + I), (3)

which is a standard MMSE/Wiener filter compensated by
trellis processor represented by matrix G̃r. The G̃r is a
suitably designed matrix that satisfy the following property:

(Gr)mn = 0 if |m− n| > ν,

where (Gr)mn define elements of matrix G̃r and ν denotes
memory of reduced trellis memory.
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Figure 2. Throughput efficiency versus ν for 5GNR numerologies with fixed
SNR=5dB and SCS = 2µ×15kHz

According to [9], the optimal receiver maximizes, assuming
Gaussian inputs, the lower bound to the theoretical achievable
rate:

ILB(ν) = log

(
det
(
I+ G̃r

))

+Tr
{
[G̃r + I]H̃r[H̃H̃† +N0I]

−1H̃
}

− Tr
{
G̃r
}
,

, (4)

where ILB(ν) < IR.
The goal of the design is then to make the throughput

of the OFDM receiver ILB as close as possible to IR. The
complexity of system is controlled by the parameter ν. We
then define the following throughput efficiency metric as
performance metric of channel shortening receiver:

TE(ν) =
ILB(ν)

IR
× N

N + P
, (5)

with 0 < TE ≤ 1. Notice that we included in the definition
the correction coefficient N

N+P due to CP insertion.
In Figure 2 we report the TE(ν) versus ν for different

5GNR numerologies and HPHT1 NLOS channel scenario of
Table I. All plots show as expected performances increasing
with ν. In particular for µ = 0 (15 kHz) we notice that the
improvement obtained by increasing ν is actually marginal
and the system reach rapidly the ultimate limit corresponding
to CP overhead, that is 6% of 5GNR. So the solution with
ν = µ = 0, corresponding to absence of trellis processor is
very promising. This receiver can be constructed by simple
2D-MMSE equalizer without adding complexity of trellis
processor.

On the other hand a full complexity detector can be obtained
by setting ν = T−1 and the optimal theoretical achievable rate
becomes ILB(ν) = IR. As previously mentioned the design
of optimal delay offset is crucial for the final performance
as it affects the structure of H̃r. In all reported performance
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Figure 3. Throughput efficiency TE versus receiver complexity (ν) for 5GNR
numerologies: TDL-A DS=50µs (HPHT1, NLOS, 125km ISD)

this parameter was preliminary optimised by maximising the
energy of received signal after cyclic prefix removal.

IV. SIMULATION AND RESULTS

In this section, the performance of optimal H̃r filter is
presented. The TDL-A channel profile with delay spreads in
table I is used for evaluating SFNs networks. The bandwidth
used in all tests is 9.6 MHz. The velocity of receiver is equal
to zero. The channel is assumed to be known at the receiver.
The time synchronization and computation of optimal offset
is performed as described in the previous section.

A. Theoretical and Pragmatic achievable rate by channel
shortening

In Figure 3 we report the throughput efficiency (5) of
channel shortening receiver for ν = 0, 7 and Gaussian inputs
with 50µs delay spread. The standard 5GNR numerologies
with normal CPs length (1/15 of useful signal) is used. These
numerologies are given by:

SCS(µ) = 15× 2µ kHz µ = 0, . . . , 4,

For each of these numerologies and the DS=50µs, the maxi-
mum value for J is 7, 14, 28, 55 and 109 OFDM symbols,
respectively. The case µ = 0 shows the higher throughput
efficiency for any signal to noise ratio, while the throughput
efficiency decreases using larger 5GNR numerologies (e.g.
µ = 4). The cases with ν = 0 (no trellis processor) and
ν = 7 provide similar TE for small 5GNR numerologies
(µ = 0, 1, 2). On the other hand using trellis processing
(ν = 7) can provide significant gains for higher numerologies,
especially at high signal to noise ratio. In Figure 4 we fixed the
SNR to 5dB and reported the throughput efficiencies versus the
sub-carrier spacing for the five 5GNR numerologies, two non-
standard smaller carrier spacing (0.37, 2.5 kHz) and the single
carrier case (9600 kHz), with ν = 0, 7. The CP overhead of the
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Figure 4. Throughput efficiency versus the sub-carrier spacing for 5G
broadcasting, 5GNR numerologies and single carrier spacing with SNR=5dB;
TDL-A DS=50µs (HPHT1, NLOS, 125km ISD)

first two non-standard cases is the one specifically designed
to allow to deal with large delay spread and with a single tap
equalization. The CP overhead is 1

9 for 0.37 kHz and 1
4 for

2.5 kHz. On the other hand no CP overhead is associated to
the single carrier case.

For ν = 0 (blue line), the best solution is with 15 kHz
and provide almost 90% of TE . For 5GNR carrier spacing
around 6% of TE loss is due to insertion of CP overhead and
the remaining is associated to receiver loss. Smaller carrier
spacing (0.37,0.25 kHz) provide around 90% and 79% TE .
This loss is almost totally associated to the larger CP overhead
associated to them. Notice that with ν = 0 the 15 kHz also
outperforms the single carrier case. This can be a motivation
for using multi carrier OFDM system with 2D-MMSE H̃r

filter for broadcasting in a SFN network.
The single carrier on the other hand performs better by

increasing receiver complexity (ν = 7). In fact we can expect
that by increasing ν, the TE converge to the CP correction
term in Equation (5) (see Figure 3), which is 1 in this case.

Based on results in Figure 4, 5GNR numerology with 15
kHz with a properly designed 2D-MMSE equalizer (ν = 0)
can be a competitive alternative to the 0.37 kHz carrier spacing
(3000µs OFDM symbol length) and the need to use trellis
processor (ν > 0) is not required.

Previous bounds were obtained assuming an optimal Gaus-
sian input distribution. A more accurate prediction of the
system performance can be obtained by computing the mutual
information associated to the typical BICM receiver structure.
This performance metric, usually referred to as the “prag-
matic” capacity, includes the losses due the adoption of a
particular constellation and those due to the marginalization
to the bit LLR that is performed in the receiver before the
channel decoder.

The pragmatic capacities for the practical modulations
QPSK (nbits=2), 16QAM (nbits=4) and 64QAM (nbits=6) us-
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Figure 5. Pragmatic capacity of QPSK, 16QAM and 64QAM inputs for single
tap and 2D-MMSE equalizer

ing 15 kHz and 0.37 kHz carrier spacing are shown in Figure 5.
For 15 kHz, we considered both the 2D-MMSE (solid line)
and the single tap equalizer (dash-dotted line) receiver, for
0.37 kHz we considered only the single tap receiver (dashed
line). As a reference, we reported the theoretical information
lower bound (ILB) using 15 kHz carrier spacing with Gaussian
inputs.

The 2D-MMSE equalizer with 15 kHz carrier spacing and
single tap equalizer with 0.37 kHz carrier spacing, provide
similar pragmatic capacities, with the first slightly better.
Increasing the signal to noise ratio the pragmatic capacity of
2D-MMSE and single tap equalizer (0.37 kHz) converges as
expected to the modulation efficiency (2, 4 and 6 bits). In low
signal to noise ratio the pragmatic capacity provided by 2D-
MMSE is close to the theoretical limit with Gaussian inputs
(ILB). The single tap equalizer with 15 kHz carrier spacing
on the other hand can not compensate ISI/ICI interference and
increasing the signal to noise ratio can not improve achievable
information rate above one. Base on result in Figure 5 the
15 kHz with 2D-MMSE equalizer has similar or even better
performance w.r.t. single tap equalizer with long CP length
(0.37 kHz carrier spacing).

B. Performances of realistic system

In this section we present our results of practical full link
which comprises of a standard 5GNR LDPC encoder with
code rate 0.53, a Mapper to 4QAM, 16QAM or 64QAM
modulation, an OFDM modulator and the TDL-A channel.
The considered target spectral efficiencies are then 1.06, 2.12,
3.18 bit/s/Hz, respectively.

The Bit Error Rate (BER) for the three considered receiver
schemes is reported in Figure 6 with the same convention used

in Figure 5. The realistic link results confirm the pragmatic
capacity results in Figure 5. The performance of 2D-MMSE
equalizer with 15 kHz carrier spacing is similar to that of
single tap equalizer with 0.37 kHz carrier spacing and with
long CP length. On the other hand single tap equalizer with 15
kHz carrier spacing and short CP length (less than 5µs) can not
compensate channel effect. Since the achievable information
rate in this case is below one and target spectral efficiency
equal to 1.06 bit/s/Hz, increasing signal to noise ratio can not
improve BER.
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Figure 6. Simulated BER of the three considered realistic systems over TDL-
A DS=50µs (HPHT1, NLOS, 125km ISD)

The SNR thresholds at 1% Block Error Rate (BLER)
for LPLT, MPMT and HPHT SFNs networks are shown in
Figure 7 for the 2D-MMSE and single tap receiver system
with 15 and 0.37 kHz carrier spacing, respectively. In all
SFN network scenarios, the 2D-MMSE equalizer outperforms
single tap equalizer with long CP length (300µs). The 2D-
MMSE performance is uniform in the considered delay spread
range and doesn’t degrade significantly by increasing the delay
spread, so that it may be used also in more challenging
scenarios HPHT2 with 75µs delay spread. The 2D-MMSE
thus provides an attractive and simple single solution for all
SFN network using 5GNR numerologies.

V. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated the feasibility of using 5GNR
numerologies in the deployment of efficient SFN networks for
delivering TV broadcasting services.

In order to achieve this goal, We equalized the ISI/ICI
channel using a properly designed 2D-MMSE filter (per tone
time/frequency filter) instead of typical single tap equalizer
that can be used only with long CP overhead.

The design of the optimal 2D-MMSE filter has been ob-
tained along the procedure outlined in [9], which is valid for
any linear channel. The procedure is based on the channel
shortening principle and allows to optimally design, assuming
Gaussian inputs, a receiver where a suitable filter precedes a
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trellis processor with bounded state complexity. We provided
a general procedure for building the ISI/ICI channel matrix
correspondent to the equivalent channel that includes OFDM
processing at both TX and RX and use it in the framework of
[9] to derive the optimal receiver structure.

The theoretical result of 2D-MMSE filter with Gaussian
inputs showed that with 15 kHz carrier spacing the information
rate get close to maximum channel capacity even with the
simplest low complexity receiver that does not require the
adoption of an outer trellis processor. The low complexity
2D-MMSE with 15 kHz carrier spacing provided higher
throughput efficiency versus single carrier and the other 5GNR
numerologies. The pragmatic capacity associated to practical
modulation confirmed the theoretical results.

For the considered SFN network scenarios, single tap
equalization with 5GNR numerologies provides very poor
performances due to the unacceptable ISI/ICI conditions.
On the other hand the adoption of 2D-MMSE filter allows
to completely recover the performance losses and provides
performances even better than those that can be obtained with
OFDM parameters specifically designed for SFN networks
[10], requiring much lower carrier spacing and longer CP
length.

The presented result are promising but based on the very
strong assumption of perfect channel knowledge at the re-
ceiver. In practice is well known that channel estimation is a
very crucial function for the receiver performances, especially
in mobile environment.

Notice that the adoption of the shorter OFDM symbol
associated to 5GNR numerologies is also expected to be more
suitable in mobile scenario, where the coherence time of
channel may becomes too short wrt the OFDM symbol length.

Our future work will then be devoted to the design of a
low complexity and adaptive 2D channel equalizer which can
acquire and track the ISI/ICI channel also in highly mobile
environments. The crucial parameter that will be considered

for complexity will be the number and positions of the
required active taps in both dimensions and its trade off with
performance.
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Chapter 7

An introduction to Deep learning

Deep learning is a type of machine learning that is used to learn complex patterns
and representations from data. It is a powerful technique that has gained popularity
in recent years due to its ability to automatically learn features from data without the
need for human expertise. A neural network is a fundamental component of deep
learning and is inspired by the structure and function of the human brain.

A neural network is a computational model that consists of interconnected nodes
or neurons. Each neuron receives inputs, performs computations on those inputs, and
then produces an output. The output from one neuron can then be used as an input to
another neuron, allowing the network to learn complex functions and relationships
between input and output data.

The network learns by adjusting the weights of the connections between neurons
based on the input and output data. During training, the network is presented with a
set of input/output pairs and adjusts the weights to minimize the difference between
the predicted output and the true output according to some cost function. Once
trained, the network can be used to make predictions on new, unseen data.

In wireless communication, deep learning has shown promising results in vari-
ous applications such as channel estimation, modulation classification, and signal
detection. It is capable of handling large amounts of data and can adapt to changing
wireless environments, making it highly adaptable to various scenarios.
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In this chapter, we will introduce the fundamental aspects of deep learning,
including neural networks, convolutional neural networks, and recurrent neural
networks, and their use in wireless communication applications.

7.1 Neural network

A neural network, also known as an artificial neural network (ANN) or simulated
neural network (SNN), is a computational learning system that uses a network of
neurons to understand and translate a data input of one form into a desired output,
usually in another form. A neuron, also known as a node, is the basic building block
of a neural network. It takes in one or more inputs, performs a computation on these
inputs, and produces an output. A neuron in a neural network can be mathematically
represented by the equation:

y = f

(
n

∑
i=1

wixi +b

)
, (7.1)

where x1,x2, ...,xn are the inputs to the neuron, w1,w2, ...,wn are the corresponding
weights, b is the bias, and f is the activation function. The weighted sum of the
inputs and the bias is often referred to as the neuron’s activation. An illustration
of a neuron is provided in Figure 7.1. A feed-forward neural network is a type of
neural network consisting of multiple layers of interconnected neurons. The layers
are linked by synapses, and each neuron in a layer receives input from the previous
layer and produces output for the next layer. The input and output layers, which are
responsible for interacting with external data, are situated at the beginning and end
of the network, respectively. The layers in between are referred to as hidden layers
because they cannot be observed directly from outside. The number of neurons in
each layer may vary depending on the complexity of the problem being addressed.
An example of a feed-forward neural network with one hidden layer consisting of
three neurons is shown in Figure 7.2. The input layer contains two features, x1 and
x2, while the output layer has one output. The hidden layer performs computations
on the input data and passes the results to the output layer. In a feed-forward neural
network, data flows in one direction only, from the input to the output, and there are
no loops or cycles in the connections.
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Fig. 7.1 An illustration of a neuron, the basic building block of a neural network, which
receives input, applies a weighted sum, and outputs an activation signal.

In a feed-forward neural network with L layers, the weight matrix for the l-
th layer is represented by Wl , where Wl ∈ Rnl×nl−1 . The weight matrix defines the
weights between the l−1 and l layers. The bias vector for the l-th layer is represented
by bl , where bl ∈ Rnl . The bias vector defines the bias for layer l. The activation
function for the l-th layer is represented by fl(·). It is applied element-wise to the
output of the weighted sum. The output of the first hidden layer, denoted as z1, can
be calculated as follows:

z1 = f1(W1x+b1), (7.2)

where x is the input to the network. The output of the l-th layer, denoted as zl , can
be calculated as follows:

zl = fl(Wlzl−1 +bl), (7.3)

where zl−1 is the output of the (l−1)-th layer. The output of the output layer, denoted
as y, can be calculated as follows:

y = fL(WLzL−1 +bL), (7.4)

where zL−1 is the output of the final hidden layer. The computation carried out by a
feed-forward neural network is described by these equations.
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Fig. 7.2 An illustration of a Feed-forward neural network with one hidden layer consisting
of three neurons. The input layer receives the input data with two features, x1 and x2, and the
output layer produces a single output.

7.2 Activation functions

Activation functions are typically applied element-wise to the output of a neuron or
a layer, and they introduce non-linearities that allow the neural network to model
complex relationships between the input and output.

The sigmoid function is a mathematical function that is commonly used in binary
classification problems. The function takes any real input value and maps it to a
value between 0 and 1. This property of the sigmoid function is useful in binary
classification because it allows the output of a model to be interpreted as a probability.
The sigmoid function is defined as the formula:

σ(x) =
1

1+ e−x . (7.5)

The ReLU (Rectified Linear Unit) function is another popular activation function
used in neural networks. The ReLU function maps any negative input value to 0, and
leaves positive input values unchanged. This makes it a popular choice for neural
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networks as it can introduce non-linearity into the model while also speeding up
computation. The ReLU function is defined as:

ReLU(x) = max(0,x). (7.6)

The tanh function is similar to the sigmoid function in that it is used to introduce
non-linearity into a neural network. The difference is that the tanh function maps
input values to a range between -1 and 1. The tanh function is defined as:

tanh(x) =
ex − e−x

ex + e−x . (7.7)

The softargmax function is commonly used in the output layer of neural networks
for producing a probability distribution over possible classes. This function takes a
vector of real numbers as input and returns a vector of the same length, where each
value falls between 0 and 1 and the sum of all values equals 1. The equation for
softargmax function is given by:

softargmax(zi) =
ezi

∑
K
j=1 ez j

, for i = 1, . . . ,K, (7.8)

where K represents the number of possible classes, and zi denotes the output of
the i-th neuron in the output layer. Softargmax is particularly useful in multi-class
classification problems where the neural network needs to predict the probability of
each class.

The computational cost of each function is different, with the ReLU function
being the most computationally efficient due to its simple calculation of just returning
the input value if it is positive, while the sigmoid and tanh functions are more compu-
tationally expensive due to their exponential calculations. The softargmax function
can also be computationally expensive due to the calculation of the exponential
function in the denominator.

In summary, ReLU is a simple and efficient activation function that is often used
as a default. Tanh is a symmetric activation function that can work well for certain
types of problems. Softargmax is used in multi-class classification problems to
obtain a probability distribution over the classes. Sigmoid is widely used for binary
classification problems and can also be used in the hidden layers of neural networks.



7.3 Loss Functions 93

The choice of activation function often depends on the specific problem at hand and
can be tuned through experimentation.

7.3 Loss Functions

A loss function is a crucial part of machine learning models, as it measures the
difference between the predicted output of the NN and the desired output, which is
also known as the target value. The loss function is a mathematical function that
takes the predicted output of the model and the target value as input and produces a
scalar value as output. The scalar value represents the "loss" or "error" of the model
on a specific example.

The goal of training a machine learning model is to minimize the value of the
loss function over the entire training dataset. To achieve this, the weights and biases
of the model are iteratively adjusted during the training process to reduce the value
of the loss function.

There are two main types of machine learning problems: classification and
regression. In classification problems, the goal is to predict an element in discrete
category or class label for a given input. In regression problems, the goal is to predict
a continuous numerical value for a given input.

The choice of loss function depends on the type of problem being solved by
the machine learning model. For instance, in a binary classification problem, the
binary cross-entropy loss is a common choice. It measures the difference between
the predicted probability of the positive class and the target value. On the other hand,
in a regression problem, a common loss function is the mean squared error (MSE),
which measures the difference between the predicted and target values.

MSE measures the average squared difference between the predicted and output
values. The mathematical formula for MSE is:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (7.9)

where n is the number of samples, yi is the target output, and ŷi is the predicted
output.
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Binary cross-entropy, also known as log loss, is a loss function that measures
the difference between the predicted probabilities and the true labels in binary
classification problems. It is commonly used in machine learning and deep learning
algorithms to optimize the performance of the model. The binary cross-entropy loss
function for n samples is given by the formula:

L =−1
n

n

∑
i=1

[yi log(pi)+(1− yi) log(1− pi)] , (7.10)

where yi is the true label (0 or 1) for sample i, and pi is the predicted probability
(between 0 and 1) for sample i.

Categorical cross-entropy, also known as softmax loss, is a generalization of bi-
nary cross-entropy for multi-class classification problems. It measures the difference
between the predicted probabilities and the true labels in multi-class classification
problems. The categorical cross-entropy loss function for n samples can be mathe-
matically defined as:

L =−1
n

n

∑
i=1

m

∑
j=1

yi j log(pi j), (7.11)

where yi j is 1 if sample i belongs to class j and 0 otherwise, and pi j is the predicted
probability (between 0 and 1) for sample i to belong to class j.

7.4 Training Neural Network

Training a neural network refers to the process of iteratively adjusting the parameters
(weights and biases) of the network to minimize the difference between its predicted
output and the desired output. This is typically done using a dataset of labeled
examples, where the inputs and corresponding outputs are known.

During training, the neural network learns to recognize patterns and relationships
in the input data, and adjusts its parameters in order to improve its ability to make
accurate predictions on new, unseen data. This process involves feeding the input
data through the network, calculating the difference between the predicted output and
the target output (the loss or cost function), and then using an optimization algorithm
(such as stochastic gradient descent) to update the parameters of the network to
reduce the loss.



7.4 Training Neural Network 95

The training process typically involves repeating this process over many itera-
tions (epochs), with the network gradually improving its ability to make accurate
predictions as it learns from the training data. Once training is complete, the network
can be used to make predictions on new, unseen data.

Suppose we have a training dataset consisting of input vectors x1,x2, . . . ,xn and
corresponding binary labels y1,y2, . . . ,yn, where yi indicates the true label of xi

(either 0 or 1). Our objective is to train a feedforward neural network (FFNN) with
one hidden layer and one output layer to predict the binary label yi of a given input
vector xi.

The set of weights in the FFNN is denoted as w. To compute the output of the
FFNN, an input vector x is first multiplied by a weight matrix W , and the resulting
vector is passed through the sigmoid activation function σ(z) = 1

1+e−z . The activation
values of the hidden layer neurons are then obtained by applying the sigmoid function
to the product of the input vector and weight matrix W , which can be represented as
h = σ(Wx). To obtain the final output of the network for a given input vector x, the
activation values of the hidden layer are multiplied by another weight matrix V , and
the sigmoid function is applied again, resulting in ŷ = σ(V h).

To train the FFNN, we define the binary cross-entropy loss function. Our aim is
to minimize the average loss over the entire training set, which can be expressed as:

J(w) =
1
n

n

∑
i=1

L(yi, ŷi) (7.12)

Here, L(yi, ŷi) represents the binary cross-entropy loss between the true label yi and
the predicted output ŷi for input vector xi. We optimize the weights w of the FFNN
by minimizing this loss function.

To minimize the loss function J(w), we can use gradient descent optimization
algorithm. The goal of gradient descent is to iteratively update the weights w in the
direction of the negative gradient of the loss function with respect to the weights.
The update rule for the weights can be expressed as:

w(t+1) = w(t)−α
δJ(w)

δw

∣∣∣∣
w=w(t)

(7.13)
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Here, w(t) represents the weights at iteration t, α is the learning rate which

controls the step size of the weight update, and δJ(w)
δw

∣∣∣∣
w=w(t)

is the gradient of the

loss function with respect to the weights at the current iteration.

To compute the gradient of the loss function with respect to the weights, we
can use backpropagation algorithm. The backpropagation algorithm computes the
gradients of the loss function with respect to the weights in a layer-by-layer manner,
starting from the output layer and moving backwards towards the input layer.

To compute the gradient of the loss function with respect to the weights W
connecting the input layer to the hidden layer, we can use the chain rule:

δJ(w)
δW

=
δJ(w)

δ ŷ
δ ŷ
δh

δh
δW

(7.14)

where δJ(w)
δ ŷ and δ ŷ

δh can be obtained as:

δJ(w)
δ ŷ

=
1
n

n

∑
i=1

δL(yi, ŷi)

δ ŷi
=−1

n

n

∑
i=1

(
yi

ŷi
− 1− yi

1− ŷi

)
(7.15)

and
δ ŷ
δh

=V T diag(ŷ⊙ (1− ŷ)) (7.16)

where ⊙ denotes element-wise multiplication and diag(v) denotes a diagonal matrix
with the elements of vector v on the diagonal.

To compute the gradient of the loss function with respect to the weights W , we
need to compute the derivative of the sigmoid function σ(z) with respect to z as:

dσ(z)
dz

= σ(z)(1−σ(z)) (7.17)

Using this derivative, we can compute the derivative of the hidden layer activation
values with respect to the weights W as:

δh
δW

= XT diag(h⊙ (1−h)) (7.18)

where X is the input matrix with each row being an input vector. Finally, we can
update the weights W and V using the gradient descent update rule mentioned earlier.
We can repeat this process for multiple epochs until convergence.
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The "stochastic" in SGD refers to the fact that the gradient is computed on a
single sample at a time, as opposed to using the entire training set. This makes
the algorithm faster and more memory-efficient, but also more prone to noise and
fluctuations in the loss function. To mitigate these effects, mini-batch SGD can be
used, where the gradient is computed on a small batch of samples at a time.

To further optimize the update rule for SGD, other techniques like momentum
and adaptive learning rates can be used. Momentum introduces a "velocity" term
that helps to smooth out the updates and speed up convergence. Meanwhile, adaptive
learning rates adjust the learning rate on a per-parameter basis to improve conver-
gence. Using these techniques can improve the performance of SGD and speed up
the training of neural networks.

7.4.1 Optimization of gradient

SGD is a simple and effective optimization algorithm for neural networks, but
it has a few limitations. One is that it can get stuck in local minima, which are
not the global minimum of the loss function. To overcome this, more advanced
optimization algorithms such as Adagrad, RMSProp, Adam and their variations have
been developed . These algorithms use adaptive learning rates and momentum terms
to accelerate the convergence and avoid oscillations . They also require less tuning
of hyperparameters than SGD. Therefore, these algorithms are often preferred over
SGD for training complex neural networks with large datasets.

Momentum

A method that accelerates SGD by adding a fraction of the previous parameter update
to the current one, creating a momentum effect that helps escape local minima. The
momentum method [106] is a technique to improve the convergence of gradient
descent algorithms by using past updates as an additional term in the current update.
For each layer l, we can define two variables VδWl

and Vδbl
that represent the velocity

(or momentum) of the weight updates. These variables are initialized to zero and
updated at each iteration as follows:

VδWl
= βVδWl

+(1−β )δWl, (7.19)
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where Wl represents the weight matrix of the l-th layer in a neural network and β

is a hyperparameter that controls how much of the previous velocity is retained.
Typically, β is set to a value close to 1, such as 0.9 or 0.99. The weight and bias
parameters are then updated using these velocity terms instead of directly using the
gradients:

Wl =Wl −αVδWl
, (7.20)

The intuition behind this method is that it adds a smoothing effect to the gradient
descent updates, preventing oscillations and overshooting, and allowing faster con-
vergence The momentum term acts like a ball rolling down a hill, accumulating
speed and direction as it goes along.

Adagrad

A method that adapts the learning rate for each parameter based on how frequently it
has been updated, giving more weight to rare features. Adagrad [107] is a stochastic
optimization method that adapts the learning rate to the parameters. It performs
smaller updates for parameters associated with frequently occurring features, and
larger updates for parameters associated with infrequently occurring features . Math-
ematically, Adagrad updates the parameters Wl of layer l as follows:

Wl =Wl −α
δWl√
GWl + ε

, (7.21)

.

The term GWl is a sum of the squared gradients of δWl over time. The term ε is a
small constant added for numerical stability. The effect of this update rule is that
each parameter has its own effective learning rate that decreases over time as more
gradients are accumulated.

RMSprop

A method that divides the learning rate for each parameter by an exponentially
decaying average of its squared gradients, preventing it from becoming too small or
too large. RMSProp [108], which stands for Root Mean Square Propagation. The
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motivation behind RMSProp is to overcome the shortcomings of AdaGrad, which
decays the learning rate too quickly and prevents convergence .

Mathematically, RMSProp works as follows. Let SdWl and Sdbl be exponentially
weighted averages of squares of these gradients. Then RMSProp updates these
averages using a decay parameter β as follows:

SdWl = βSdWl +(1−β )δW 2
l , (7.22)

Then RMSProp updates the weights using a small constant ε to avoid division by
zero as follows:

Wl =Wl −α
δWl√

SδWl
+ ε

, (7.23)

The intuition behind RMSProp is that it adapts the learning rate for each parameter
by dividing it by an estimate of its recent magnitude. This way, parameters with
large gradients will have smaller effective learning rates, and parameters with small
gradients will have larger effective learning rates. This can help speed up convergence
and avoid oscillations or divergence .

Adam

A method that combines RMSprop and momentum by using both adaptive learning
rates and moving averages of past gradients. Adam [109] is a popular optimization
algorithm for deep learning models that adapts the learning rate for each parameter
based on estimates of the first and second moments of the gradient. Mathematically,
Adam can be described as follows:

• Initialize the first moment vector mt and the second moment vector vt to zero
vectors.

• For each iteration t, compute:

– The first moment estimate: mt = β1mt−1 +(1−β1)δWl

– The second moment estimate: vt = β2vt−1 +(1−β2)δW 2
l

– The bias-corrected first moment estimate: m̂t = mt/(1−β t
1)

– The bias-corrected second moment estimate: v̂t = vt/(1−β t
2)

– The updated parameter: Wl =Wl −αm̂t/(
√

v̂t + ε).
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In the Adam optimization algorithm, β1 and β2 are hyperparameters that control the
exponential decay rates of the first moment estimate (mt) and the second moment
estimate (vt), respectively. Specifically, they control the weight given to the previous
estimates of m and v relative to the current update. The terms β t

1 and β t
2 in the

bias-corrected estimates (m̂t and v̂t) correct the bias of the estimates towards zero,
especially during the initial iterations when the estimates are still very noisy. By
dividing the estimates by (1−β t

1) and (1−β t
2), respectively, the estimates are scaled

by a factor that increases over time, allowing them to converge towards unbiased
estimates. Both β t

1 and β t
2 increase over time, making the estimates less biased

towards zero as more iterations are performed. Additionally, ε is a small constant
to prevent division by zero. Adam has several advantages over other optimization
methods, such as being computationally efficient, having low memory requirements,
being invariant to diagonal rescaling of gradients, and being well suited for problems
with sparse gradients or noisy data. The same steps are applied to update bl using
δbl .

7.4.2 Preprocessing data and hyperparameters

Preprocessing data is an important step in preparing input data for neural networks to
ensure accurate predictions. It involves tasks such as data cleaning to correct errors
and inconsistencies, data normalization to scale input features to a similar range,
and data augmentation to create new training examples. Other techniques such as
feature selection, dimensionality reduction, and data encoding may also be used.
The specific preprocessing steps used depend on the data set and the requirements of
the neural network being trained.

When we train a model, we usually specify two parameters: batchs size, epochs.
These parameters control how the model updates its weights and how many times it
sees the whole dataset. Batch size is the number of samples that are processed by
the model in one iteration. A batch is a subset of the dataset that fits into memory
and can be fed to the model at once. The model computes the loss and gradients for
each batch and updates its weights accordingly. Number of Epochs is the number of
times that the model sees the entire dataset during training. One epoch consists of
multiple iterations, depending on how many batches are needed to cover all samples
in the dataset. The model learns from each epoch and improves its performance over
time. Steps per epoch is the number of batches that are performed in one epoch. This
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parameter can be calculated by dividing the total number of samples by the batch
size, or it can be specified manually. For example, if we have 1000 samples and a
batch size of 100, then we need 10 steps per epoch to complete one epoch. These
parameters can be adjusted according to our data size, memory capacity and training
objective. Generally speaking, smaller batches require more epochs to converge, but
they may also prevent overfitting and improve generalization. Larger batches may
speed up training but they may also cause gradient issues and reduce accuracy.

7.4.3 Regularisation techniques

Overfitting occurs when a neural network becomes too complex and starts to memo-
rize the training data rather than learning to generalize to new, unseen data. This can
result in the neural network performing very well on the training data but poorly on
the test data. Overfitting can be caused by having too many neurons or layers in the
network, or by training for too many epochs.

Underfitting, on the other hand, occurs when a neural network is not complex
enough to capture the underlying patterns in the data. This can result in the neural
network performing poorly on both the training and test data. Underfitting can be
caused by having too few neurons or layers in the network, or by not training for
long enough.

Regularization techniques are methods that can prevent overfitting in deep learn-
ing models and improve their generalization performance on new data. Regulariza-
tion techniques aim to reduce the variance of the model without increasing the bias
too much.

Some of the common regularization techniques in deep learning are:

• L1 regularization: This technique adds a penalty term to the loss function that
is proportional to the absolute value of the weights. This encourages the model
to learn sparse weights and perform feature selection.

• L2 regularization: This technique adds a penalty term to the loss function that
is proportional to the square of the weights. This encourages the model to
learn small weights and reduce their influence on the output.
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• Dropout: This technique randomly drops out some units and their connections
during training, creating a thinned network. This reduces co-adaptation of
features and forces the model to learn more robust representations.

• Batch normalization: This technique normalizes the inputs of each layer by
subtracting the mean and dividing by the standard deviation of each mini-batch.
This reduces internal covariate shift and allows for faster training and higher
learning rates.

• Early stopping: This technique stops training when a validation metric stops
improving for a certain number of epochs. This prevents overfitting by avoiding
training for too long.

7.5 Environment and Hardware for Neural Network
Training

There are several popular environments for neural network training, including Ten-
sorFlow, PyTorch, and Keras. TensorFlow, an open-source platform developed by
Google, is popular for deep learning tasks and provides good support for distributed
training across multiple GPUs. However, it can be complex to use, particularly for
beginners, and debugging and error handling can be challenging. PyTorch, an open-
source machine learning library developed by Facebook, is known for its flexibility
and ease of use, particularly in the research community. It provides good support for
dynamic computational graphs but distributed training can be challenging. Keras, an
open-source neural network library written in Python, provides a high-level API that
is easy to use but may not be suitable for complex models.

When it comes to hardware, the choice will depend on the model’s size and
complexity, as well as the budget. GPUs are well-suited for training deep neural
networks, as they can perform many calculations in parallel, significantly speeding
up training time compared to using a CPU. However, GPUs can be expensive and
may require additional setup and configuration. TPUs are Google’s custom-built
hardware for accelerating machine learning workloads and are particularly well-
suited for training large neural networks. They can provide significant speedups
but may not be as widely available as GPUs and may require additional setup and
configuration compared to CPUs.
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7.6 Convolutional Neural Network

A convolutional neural network (CNN) is a type of neural network that is designed
to process pixel data such as images, speech or signals. A CNN differs from a
traditional neural network by using a mathematical operation called convolution
instead of general matrix multiplication in at least one of its layers. Convolution
allows a CNN to learn local features from small regions of the input data, which
can then be combined to form higher-level features. As shown in the figure 7.3, a
typical CNN is composed of three main types of layers: convolutional layers, pooling
(subsampling) layers, and fully-connected layers. The convolutional layer uses a set
of filters or kernels to extract features from the input data, resulting in a set of feature
maps that capture different aspects of the data. The pooling layer then applies a
downsampling operation, such as max-pooling or average-pooling, to reduce the size
and complexity of the feature maps. Finally, the fully-connected layer connects all
nodes from the previous layer to every node in the next layer, allowing the network
to perform classification or regression tasks.

A convolutional layer operates by sliding filters across the input data, computing
element-wise products between them, and summing up the results to generate a
single value for each position on the feature map. Filters can be visualized as small
windows that extract local information from the input data. By being shared across
all positions on the feature map, filters reduce the number of parameters and enable
translation-invariant learning.

In a convolutional neural network, a kernel or filter is a matrix of weights that
moves over the input data, performs element-wise multiplication, and sums up the
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results to generate an output value. The kernel acts as a feature detector that extracts
pertinent information from the input data. A convolutional layer can have multiple
kernels that produce different output values for the same input region.

The kernel/filter size determines the output of a convolutional layer by controlling
the number of input values involved in generating a single output value. A larger
kernel captures more global features but reduces spatial resolution. In contrast, a
smaller kernel captures more local features but increases computational cost and the
risk of overfitting.

Stride is a parameter that controls how much the kernel/filter moves across the
input data in each step. A larger stride means that the kernel/filter skips some input
regions, which can reduce the output size and speed up computation but also lose
some information and features. A smaller stride means that the kernel/filter covers
more input regions, which can increase the output size and accuracy but also slow
down computation and increase memory usage. Padding is a technique of adding
extra pixels around the input data before applying a convolutional layer. The purpose
of padding is to preserve the original size of an image when applying a convolutional
filter and enable the filter to perform full convolutions on the edge pixels . Padding
can also help avoid information loss and improve performance by allowing more
flexibility in choosing the kernel/filter size and stride.

A subsampling layer works by dividing each feature map into non-overlapping
regions and applying an aggregation function such as max or average to each region.
This reduces the spatial dimensions and noise level of the feature maps, while
preserving their most important information. Pooling also introduces some degree of
invariance to small translations, rotations or scalings in the input data.

The CNN in the Figure 7.3 includes a convolutional layer that generates feature
maps and a subsampling layer that reduces the dimensionality of the output. Addi-
tionally, there is a fully connected layer that connects every node from the previous
layer to every node in the next layer, forming a standard neural network layer that
performs classification or regression tasks.

The output of the CNN depends on the specific application, but it typically
provides predictions or classifications based on the input data. The architecture
of the CNN can be adapted to different data types and applications by modifying
the number and type of layers, the kernel/filter size, and the stride. CNNs can also
be trained using SGD, as they are also differentiable with respect to their weights.
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However, SGD may not be optimal for CNNs, as they have many more parameters
than FFNNs and may suffer from slow convergence or local minima. Therefore,
other variants of SGD or other optimization algorithms may be preferred for CNNs,
such as momentum, adaptive gradient algorithm, RMSProp, Adam, etc.

7.7 Recurrent Neural Network

Recurrent neural networks (RNNs) are specialized neural networks that are designed
to handle sequential data such as time-series data, natural language text, and speech
or audio signals. Unlike feedforward neural networks, RNNs contain loops that allow
information to be retained and passed on from one step of the sequence to the next,
making them ideal for processing data with temporal dependencies. Recurrent neural
networks (RNNs) address this issue by incorporating a hidden state or memory that
holds the essence of what has been seen so far. The value of the hidden state at any
point in time t is a function of the value of the hidden state at the previous time step
t −1, and the value of the input at the current time step xt :

ht = φ(ht−1,xt). (7.24)

Here, ht and ht−1 are the values of the hidden states at time t and t −1, respectively,
and xt is the value of the input at time t. This equation is recursive, which means
ht−1 can be represented in terms of ht−2 and xt−1, and so on, until the beginning of
the sequence. This is how RNNs encode and incorporate information from arbitrarily
long sequences. Figure 7.4 shows a graphical representation of an RNN cell.

At time t, the cell has an input xt and output yt . Part of the output yt (represented
by the hidden state ht) is fed back into the cell for use at a later time step t +1.

Just as in a feed-forward neural network, where the learned parameters are stored
as weight matrices, the RNN’s parameters are defined by the three weight matrices
U , V , and W , corresponding to the weights of the input, output, and hidden states,
respectively. Figure 7.5 shows the same RNN in an "unrolled view". Unrolling
means that we draw the network out for the complete sequence. The network shown
here has three time steps, suitable for processing three-element sequences. Note that
the weight matrices U , V , and W are shared between each of the time steps because
we are applying the same operation to different inputs at each time step. Sharing
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Fig. 7.4 Graphical representation of an RNN cell.

these weights across all the time steps greatly reduces the number of parameters that
the RNN needs to learn.

𝑥(1)

ℎ(0)

𝑦(1)

𝑥(3)

ℎ(2)

𝑦(3)

ℎ(3)

𝑥(2)

ℎ(1)

𝑦(2)

Time

Fig. 7.5 Unrolled view of the same RNN. The weight matrices U , V , and W are shared across
all time steps.

7.7.1 Tranining RNN and vanishing gradient problem

To train an RNN, we typically use backpropagation through time (BPTT), which is a
variant of backpropagation that takes into account the recursive nature of the RNN.
Specifically, BPTT involves computing the gradients of the loss with respect to the
RNN’s parameters at each time step, and then accumulating those gradients over the
entire sequence before updating the parameters. Mathematically, we can express this
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as follows: Let Lt be the loss at time t, W l and bl be the weight and bias parameters
of layer l, and ht be the hidden state at time t. Then, we can compute the gradients
of the loss with respect to the RNN’s parameters as:

δLt

δW l =
t

∑
k=1

δLt

δht

δht

δhk

δhk

δW l , (7.25)

δLt

δbl =
t

∑
k=1

δLt

δht

δht

δhk

δhk

δbl , (7.26)

where the partial derivatives are computed using the chain rule. These equations
show that the gradients at time t depend on the gradients at all previous times,
which is a consequence of the recursive nature of the RNN. The vanishing gradient
problem arises when the gradients computed during BPTT become very small as
they are propagated through time, making it difficult for the RNN to learn long-term
dependencies. Mathematically, this can be seen by analyzing the partial derivatives
in Equations 7.25 and 7.26. Specifically, if the partial derivative δht

δhk
is less than 1

for all k < t, then the gradients at time t will be multiplied by this term t − k times
as they are backpropagated through time. This can cause the gradients to shrink
exponentially as t increases, leading to the vanishing gradient problem.

One common solution to the vanishing gradient problem is to use a variant of
the RNN called a long short-term memory (LSTM) network, which uses specialized
memory cells and gating mechanisms to control the flow of information through the
network. Another solution is to use a variant called a gated recurrent unit (GRU),
which also uses gating mechanisms but with fewer parameters than an LSTM.

7.7.2 Long Short-Term Memory

LSTM stands for Long Short-Term Memory, which is a type of recurrent neural
network (RNN) architecture. It was designed to address the limitations of traditional
RNNs, which tend to struggle with capturing long-term dependencies in sequential
data [110].

LSTMs introduce a more complex computational unit called a "memory cell".
The memory cell allows the network to selectively "remember" or "forget" informa-
tion from previous time steps, which makes it better suited for capturing long-term
dependencies. The LSTM cell has three gates, namely, the input gate, forget gate,
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Fig. 7.6 A diagram of the Long Short-Term Memory (LSTM) cell.

and output gate, which control the flow of information (Figure 7.6). The input gate
regulates how much of the current input to allow into the memory cell, the forget
gate controls how much of the previous memory to discard, and the output gate
controls how much of the current memory to output.

Furthermore, LSTMs have a set of learned parameters that allow them to adapt
to the specific task at hand. During training, these parameters are updated using
backpropagation through time, which enables the network to learn to selectively re-
member or forget information from previous time steps to optimize the loss function.
Figure 7.6 illustrates the diagram of the Long Short-Term Memory (LSTM) cell.
The set of equations representing an LSTM are shown as follows:

i = σ(Wixt +Uiht−1 +bi), (7.27)

f = σ(Wf xt +U f ht−1 +b f ), (7.28)

o = σ(Woxt +Uoht−1 +bo), (7.29)

g = tanh(Wgxt +Ught−1 +bg), (7.30)

ct = ( f · ct−1)+(g · i), (7.31)

ht = tanh(ct) ·o. (7.32)

The input, forget, and output gates, denoted as i, f , and o respectively, are computed
using the same equations but with different parameter matrices Wi, Ui, Wf , U f , Wo,
and Uo. The sigmoid function (σ ) modulates the output of these gates between 0 and
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1, allowing the output vectors produced to be multiplied element-wise with another
vector to determine how much of the second vector can pass through the first one.
The forget gate determines how much of the previous state ht−1 should be allowed to
pass through, while the input gate determines how much of the newly computed state
for the current input xt should be let through. Similarly, the output gate determines
how much of the internal state should be exposed to the next layer. The internal
hidden state g is computed based on the current input xt and the previous hidden
state ht−1.

Using the values of input gate (i), forget gate ( f ), output gate (o), and internal
hidden state (g), the cell state ct at time t can be computed. This is achieved by
multiplying the previous memory stored in the cell state ct−1 by the forget gate value
f , and adding the internal hidden state g multiplied by the input gate value i. This
operation combines the information from the previous memory with the new input,
where setting the forget gate to 0 ignores the old memory and setting the input gate
to 0 ignores the newly computed state.

7.7.3 Bi-directional Long Short Term Mermory

Bi-LSTM is a type of recurrent neural network (RNN) that can process sequential
data in both forward and backward directions. Bi-LSTM consists of two LSTM
layers: one that takes the input from left to right (forward LSTM), and one that takes
the input from right to left (backward LSTM). The outputs of both LSTM layers are
then concatenated or summed to form the final output. Bi-LSTM can capture both
past and future contexts of a sequence, which can improve the performance of tasks
such as natural language processing, speech recognition, and signal classification.

The main benefit of using a bidirectional LSTM (BiLSTM) is that it allows the
model to capture both past and future context information in a time series problem,
which can be helpful for making accurate predictions. In a standard unidirectional
LSTM, the model processes the input sequence only in one direction, either past
or future. However, a BiLSTM processes the input sequence in both directions
simultaneously, using two separate hidden states. This enables the model to capture
both past and future context information and make more accurate predictions for
future time steps.
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However, using Bi-LSTM for signal processing also poses some challenges. The
bidirectional nature of Bi-LSTM makes it difficult to process signals in real time,
as it requires the entire sequence to be available before generating outputs. This
may limit its applicability for online or streaming scenarios. The performance of
Bi-LSTM depends on various hyperparameters such as the number of hidden units,
layers, dropout rate, learning rate, etc. These hyperparameters need to be carefully
tuned to optimize the model for different signal processing tasks and datasets. The
complexity and computational cost of Bi-LSTM may be high compared to other
simpler or more efficient models such as convolutional neural networks (CNNs)
or transformers. This may affect its scalability and feasibility for large-scale or
resource-constrained applications.

To enable real-time processing with Bi-LSTM, some techniques such as teacher
forcing [111], scheduled sampling [112], beam search [113], etc. can be used to
generate outputs without waiting for the entire sequence. To optimize the hyperpa-
rameters of Bi-LSTM automatically or efficiently, some methods such as grid search
[114], random search [115], Bayesian optimization [116], etc. can be applied to
explore the parameter space intelligently. To reduce the complexity and computa-
tional cost of Bi-LSTM without compromising its performance significantly, some
strategies such as pruning [117], distillation [118], etc. can be employed to compress
or simplify the model structure or parameters.

There are some similarities between Bi-LSTM and communication algorithms
like BCJR. BCJR (Bahl, Cocke, Jelinek, and Raviv) algorithm is a classic algorithm
used in communication systems for decoding error-correcting codes. It is a maximum
likelihood decoder that uses the Viterbi algorithm to find the most likely sequence of
transmitted symbols given the received symbols.

The similarity between Bi-LSTM and BCJR lies in the fact that both use the
concept of forward and backward propagation. In Bi-LSTM, the forward and
backward LSTMs process the input sequence in opposite directions to capture past
and future dependencies, while in BCJR, the forward and backward passes are used
to compute the posterior probabilities of the transmitted symbols given the received
symbols.

Additionally, both Bi-LSTM and BCJR involve some form of probability calcu-
lations. Bi-LSTM uses a softmax layer to predict the probability distribution over
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possible output classes, while BCJR uses a metric called the log-likelihood ratio to
compute the posterior probabilities of the transmitted symbols.

7.8 Neural Networks improves OFDM systems

Neural Networks has been successfully applied to various domains, such as computer
vision, natural language processing and speech recognition. Recently, there has been
a growing interest in applying deep learning to the physical layer of wireless net-
works, especially OFDM systems. However, most of the existing works focus on the
upper layers of wireless networks, such as routing, resource allocation and security.
In this section, we want to provide a comprehensive survey of the deep learning
techniques that have been proposed for the physical layer of OFDM systems. We
will classify them into different categories based on their objectives and architectures,
and compare their advantages and disadvantages. We will also discuss some open
challenges and future directions for this emerging research area.

OFDM dem.

Ch. Est.

Ch. Eq. deMod. decoder
bits

End to End OFDM receiver

Fig. 7.7 An illustration of an end-to-end deep learning receiver for an OFDM system. The
received OFDM signal is directly fed into a neural network that performs all the functions
of the OFDM receiver, including demodulation, channel estimation, channel equalization,
demodulation providing soft information, and channel decoding, resulting in bits.

One possible way to substitute the receiver block with a neural network is to use
an end-to-end [119] deep learning approach (Figure 7.7). This approach involves
designing a single neural network that takes in the received OFDM signal and directly
outputs the bits without explicitly performing the individual steps of the OFDM
receiver. The neural network is trained on a large data-set of OFDM signals with
known payloads and their corresponding bits. The advantage of this approach is
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that it can potentially improve its performance since the neural network can learn
to compensate for the channel effects and other impairments in the OFDM signal.
However, this approach requires a large amount of training data and significant
computational resources to train and run the neural network.

Another possible option is to use a neural network to replace specific blocks in the
OFDM receiver, such as channel estimation [120–123], signal detection [124–128],
and interference mitigation [129].

Neural networks can offer several potential benefits for OFDM systems compared
to traditional techniques. For example, neural networks can adapt to different channel
conditions and modulation schemes without requiring explicit knowledge of the
channel model or the cyclic prefix length [130]. Furthermore, neural networks
can improve the performance of OFDM systems in terms of bit error rate (BER)
[123, 131], spectral efficiency [122, 132] and energy efficiency [133] by exploiting
deep features of the received signals and optimizing the system parameters.

The best practices for implementing neural networks in OFDM systems de-
pend on several factors, such as the available computational resources, the amount
and quality of training data, and the desired performance metrics. Some general
guidelines are:

• Choose an appropriate type and architecture of neural network for each stage
of an OFDM system based on its characteristics and requirements.

• Use lightweight neural networks with fewer layers and parameters to reduce
computational complexity and power consumption.

• Use modular neural networks that can be trained separately for each stage of
an OFDM system to improve flexibility and scalability.

• Use adaptive learning algorithms that can update the neural network parameters
online based on feedback signals or changing channel conditions.

• Use regularization techniques such as dropout or batch normalization to pre-
vent overfitting and improve generalization.

However, there are also some limitations and drawbacks of using neural networks
in OFDM systems. One limitation is that neural networks require a large amount of
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training data to achieve good performance, which may not be available or feasible
in some scenarios. Another limitation is that neural networks may suffer from
overfitting or underfitting problems if the network architecture or hyperparameters
are not properly chosen or tuned. A drawback is that neural networks introduce
additional complexity and computational requirements to the OFDM system design
and implementation. For example, neural networks may require more memory and
processing power than conventional OFDM techniques such as pilot-based channel
estimation or FFT-based data detection. Moreover, neural networks may have higher
latency and energy consumption than traditional OFDM methods due to their iterative
nature.

7.8.1 Channel estimation with neural network

Recently, neural network (NN) based channel estimation has emerged as a promising
alternative that can exploit the nonlinear relationship between the received signal
and the channel state information (CSI) without relying on explicit channel models.
NN based channel estimation can be broadly classified into two categories: pilot-
based [134, 135] and blind-based [136] approaches. Pilot-based approaches use pilot
symbols as inputs to train and test the NN, while blind-based approaches use only
data symbols as inputs and exploit some inherent features of OFDM signals such
as cyclostationarity or sparsity. Both approaches have shown superior performance
over conventional methods in various scenarios such as underwater acoustic OFDM,
massive MIMO-OFDM and time-varying OFDM [134–136].

Several studies have proposed FFNN-based channel estimation methods for
OFDM systems with different architectures, settings and performance metrics. For
example, [137] proposed a fuzzy logic-based neural fuzzy network (FLNFN) algo-
rithm that combines fuzzy logic rules with an FFNN to enhance the accuracy and
robustness of channel estimation in various OFDM channel environments.

CNNs offer several advantages for channel estimation in OFDM systems com-
pared to FFNNs [138–140]. First, CNNs can exploit the local correlation and sparsity
of the channel in different domains, such as angle-delay, spatial-frequency, or time-
frequency domains. By using appropriate convolutional filters and pooling layers,
CNNs can reduce the complexity and enhance the denoising ability of channel esti-
mation. Second, CNNs can leverage the Transformer architecture [141] to capture
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the long-range dependencies and attention mechanisms of the channel. This can
improve the accuracy and robustness of channel estimation for OFDM systems
with pilots. Third, CNNs can be combined with RNNs or long short-term memory
(LSTM) networks to model the temporal dynamics of the channel [138]. This can
further improve the performance of channel estimation for time-varying scenarios.

RNNs can be used for channel estimation in an OFDM system by taking advan-
tage of the temporal correlation of the channel coefficients across different OFDM
symbols[142, 143]. However, RNNs also has limitation compared to other types of
neural networks for channel estimation in an OFDM system. RNNs may have higher
computational complexity and latency than feed-forward neural networks (FFNs) or
CNNs due to their sequential processing nature.

Recent research has explored the use of LSTM for channel estimation in OFDM
systems. For example, Wang et al. [144] proposed an online channel estimation
method that uses an LSTM network to estimate channel coefficients from received
pilot symbols. The LSTM network is trained using a recursive least squares (RLS)
algorithm that updates the network weights as new pilot symbols are received.
Gizzini et al. A temporal-domain channel estimation method proposed in [145], that
also uses an LSTM network. Their method exploits the temporal correlation of the
channel coefficients across multiple sub-carriers and multiple OFDM symbols to
improve channel estimation accuracy.

One of the main advantages of using LSTM-based methods for channel esti-
mation is that they do not rely on any prior knowledge or assumptions about the
channel statistics or structure. Moreover, they do not require any matrix inversion
or interpolation operations that are commonly used in conventional methods such
as LS or MMSE estimations. Another advantage of LSTM-based methods is their
ability to adapt to different scenarios such as different signal-to-noise ratios (SNRs),
modulation schemes, pilot patterns, and channel models by adjusting their network
parameters during training.

Although the use of LSTM-based methods for channel estimation in OFDM
systems is a relatively new area of research, these methods have shown promising
results and are expected to receive more attention in the future.

Although using variations of LSTM-based methods for channel estimation in
OFDM systems, such as using CNNs [146] or FFNNs as feature extractors and using
attention mechanisms or GANs to improve performance, appears to be an attractive
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approach, there is limited research exploring the practical implementation of these
methods. While some initial studies have shown promising results, further research
is needed to fully understand their potential and practicality in real-world scenarios.

Compared to other types of neural networks, such as feedforward neural networks
(FFN), convolutional neural networks (CNN), and unidirectional LSTM, Bi-LSTM
offers several advantages for channel estimation in OFDM systems [147]. Bi-
LSTM can capture both long-term and short-term dependencies among the channel
coefficients, which are essential for dealing with time-varying channels. FFNN
and CNN have limited memory capacity and cannot model long-term dependencies
effectively. Unidirectional LSTM can only exploit past information but not future
information, which may result in suboptimal performance loss. Bi-LSTM can adapt
to different scenarios with different pilot patterns or modulation schemes by adjusting
its parameters during training.

7.8.2 Data Detection with neural network

In an OFDM system, the choice of neural network approach for detection depends
on various factors, including the desired accuracy, available training data, and
computational complexity. One of the popular methods is end-to-end learning
[148, 119], where the neural network is trained to map the received OFDM symbols
directly to the corresponding transmitted symbols (Figure 7.7). This approach
doesn’t require explicit feature extraction and can lead to better performance in cases
where there are complex dependencies between the transmitted and received symbols.
Another method is feature-based learning, where the neural network is trained to
extract useful features from the received symbols, which are then used for detection
[149]. This method can be useful when there are fewer training data available, and
feature engineering can provide a better representation of the signal. A third method
is joint detection and decoding [150, 151], where the neural network performs both
detection and decoding. This method can achieve better performance in systems
with a high degree of channel noise and interference. Finally, a hybrid approach to
data detection in OFDM systems that incorporates neural networks involves using
a combination of traditional signal processing techniques and neural networks to
improve the accuracy and efficiency of detecting data symbols from the received
signal. [152].
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FFNNs have been used for data detection, with good results in terms of accuracy
and computational complexity [153]. However, they may not be able to capture the
temporal dependencies between the symbols, which is important in OFDM signal
detection. CNNs have also been used for data detection [125], with the advantage of
being able to capture spatial dependencies between the symbols. However, they may
require more training data and computational resources compared to FFNNs.

RNNs have been used for data detection, as they are able to capture the temporal
dependencies between the symbols. LSTMs and Bi-LSTMs have also been used for
data detection [154–156, 147], with the advantage of being able to capture long-term
dependencies and bidirectional information, respectively. However, they may require
more computational resources compared to FFNNs and CNNs.

7.8.3 Hybrid model

A hybrid model for OFDM systems combines traditional techniques and neural
network techniques to improve OFDM system performance. This approach provides
several advantages, including exploiting the strengths of both techniques, overcoming
limitations and drawbacks of each technique, and achieving better trade-offs between
conflicting objectives [157].

The benefits of a hybrid model depend on the specific application and scenario.
For example, using a hybrid model based on deep learning can improve spectral
efficiency and lower BER in aerial massive MIMO-OFDM systems with implicit
CSI. Alternatively, a hybrid model based on alternating optimization can reduce
transmit power consumption and enhance coverage performance in mmWave OFDM
distributed antenna systems [158].

Design considerations for a hybrid model include neural network architecture
and parameters, training data and objective function, optimization algorithm and
convergence criterion, complexity-performance trade-offs, robustness against noise
and interference, and compatibility with existing standards and protocols.

The performance of a hybrid model can be optimized for a given application
by tuning factors such as antenna configuration, sub-carrier allocation, modulation
scheme, coding rate, pilot pattern and power allocation, beamforming weights and
directions, and neural network hyperparameters.
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Limitations of hybrid models include the need for large amounts of training data
and computational resources, difficulty interpreting or explaining neural network
behavior, sensitivity to overfitting or underfitting problems, and lack of theoretical
guarantees or performance bounds.

The complexity of a hybrid model compared to a traditional OFDM system or
one that uses only neural network techniques depends on factors such as the type and
number of operations, degree of parallelism or pipelining, hardware implementation
cost and feasibility, and scalability with respect to system size and parameters.

7.8.4 Insufficient CP and mobility

Few research studies have focused on using deep learning to address the challenges
of insufficient or absent cyclic prefix (CP) in OFDM systems recently. However,
these studies have demonstrated promising results and highlighted the potential of
neural networks to mitigate the negative effects of CP impairment [159, 160].

For example, [159] proposes DL-OAMP, a deep learning-based approach that
addresses channel estimation and signal detection challenges in an OFDM system
without CP. The proposed receiver comprises two neural networks: a channel es-
timation neural network (CE-Net) and an OAMP-Net for signal detection using
Orthogonal Approximate Message Passing. The CE-Net uses the least square chan-
nel estimation algorithm for initialization, which is then refined using a minimum
mean-squared error (MMSE) neural network. The OAMP-Net is constructed by
unfolding the iterative OAMP algorithm and adding trainable parameters to enhance
detection performance.

Using deep learning to address the challenges of insufficient or absent CP in
OFDM systems is a promising approach that has the potential to improve system
performance despite the limited number of research studies available.

On the other hand, there has been a significant increase in research studies that
aim to address high mobility scenarios in OFDM systems using the capabilities
of neural networks [161, 162]. Researchers have explored various approaches that
leverage the power of neural networks. For example, some studies have investigated
the use of CNNs for channel estimation [146] in high mobility scenarios. Other
studies have proposed the use of recurrent neural networks (RNNs) for predicting the
channel impulse response and compensating for the Doppler frequency shift [162].
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The increasing number of research studies that explore the use of neural networks
in addressing the challenges of high mobility scenarios in OFDM systems highlights
the potential of this approach in improving the performance and reliability of future
mobile communication systems.

While there has been significant research in the field of OFDM receiver based on
neural networks, there is a lack of techniques that can effectively address insufficient
cyclic prefix and inter-symbol interference over multiple OFDM symbols, especially
in the presence of mobility. In the next chapter, we will introduce a technique that we
have developed, which is specifically designed for 5G-NR SFN network broadcasting
but can serve as a framework for all OFDM systems.



Chapter 8

5G-NR broadcasting with
bi-directional Long Short Term
Memory Neural Network

In our earlier research on 5G-NR terrestrial broadcasting, we introduced a linear
equalizer as outlined in [104]. However, we did not take into account the impact
of mobility scenarios and channel estimation on the equalizer’s performance. To
address these limitations, we designed a radically new receiver that uses bidirectional
long short-term memory (Bi-LSTM) to perform channel estimation, equalization,
and LLR computation functions simultaneously, as described in [163]. Additionally,
we enhanced the system’s spectral efficiency by superimposing the data with the
pilot signal at the transmitter instead of interspreading them. Our proposed channel
estimation technique substantially reduces the overhead associated with pilot-aided
methods. These findings demonstrate the effectiveness of our method in improving
the performance of 5G-NR terrestrial broadcasting systems, especially in challenging
scenarios with high mobility and strong inter-symbol interference (ISI).

Our neural network is designed to take in a sequence of received OFDM symbols,.
The sequence includes both past and future OFDM symbols relative to the currently
estimated symbol. The RNN output provides log-likelihood ration on the coded
bits that are fed to the following channel LDPC decoder. In the paper we provide a
detailed explanation of the RNN training process.
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The most critical parameters for controlling the system’s performance are the
length of the OFDM sequences (M) and the alpha (α) parameter, which determines
the energy ratio between the pilot and data signals. We meticulously chose these
hyperparameters to optimize the system’s performance.

Our proposed approach outperforms the classical system that was specifically
designed for the considered SFN scenarios, even in mobile scenarios. Furthermore,
we demonstrate the versatility of our scheme in various scenarios by showcasing that
a single RNN, trained at a fixed SNR and user speed, can achieve outstanding results
in a wide range of SNRs and user speeds.

Our receiver design was primarily intended for 5G-NR terrestrial broadcast-
ing under mobility conditions. However, it can be viewed as a general proposal
for any wireless communication system that utilizes orthogonal frequency-division
multiplexing (OFDM). By incorporating mobility constraints into the wireless com-
munication system design, it becomes possible to eliminate the requirement for a
cyclic prefix and improve spectral efficiency removing the correspondent overhead.
However, it is essential to note that the complexity of implementing such a system
poses a significant challenge. Nevertheless, our approach provides a valuable foun-
dation for developing wireless communication systems that are more efficient and
high-performing.

Possible future investigations pertaining to this problem include:

1. Adopting other advanced but classical receivers, combined with pilot superposi-
tion, to increase system efficiency for a mobile SFN with 5G-NR numerology.

2. Reducing the complexity of the RNN. The proposed Bi-LSTM structure is
well-suited for the receiver, but may be too large as it was proposed for solving
more complex issues. A deeper investigation into the required RNN features
may lead to simpler structures and better understanding of the relationship
between the RNN and classical advanced receivers based on MMSE and
MLSE.

3. Investigating system performance with higher-order modulations that offer
higher spectral efficiencies.

4. Scaling the proposed receiver solution to the practical bandwidth used in
broadcasting.
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5. Testing the flexibility of a single trained RNN for different network infrastruc-
tures (e.g., ISD) and, consequently, different delay spreads.

Additionally, we would like to highlight that the detailed information on the
system’s implementation, including the mathematical derivations of the proposed
algorithms, the simulation setup, and the performance metrics used for the evaluation,
can be found in the paper (Appendix B).
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Single-Frequency Network Terrestrial
Broadcasting with 5G-NR
Numerology Using Recurrent Neural
Network
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Abstract: We explore the feasibility of Terrestrial Broadcasting in a Single-Frequency Network (SFN)
with standard 5G New Radio (5GNR) numerology designed for uni-cast transmission. Instead of the
classical OFDM symbol-by-symbol detector scheme or a more complex equalization technique, we
designed a Recurrent-Neural-Network (RNN)-based detector that replaces the channel estimation and
equalization blocks. The RNN is a bidirectional Long Short-Term Memory (bi-LSTM) that computes
the log-likelihood ratios delivered to the LDPC decoder starting from the received symbols affected
by strong intersymbol/intercarrier interference (ISI/ICI) on time-varying channels. To simplify the
RNN receiver and reduce the system overhead, pilot and data signals in our proposed scheme are
superimposed instead of interspersed. We describe the parameter optimization of the RNN and
provide end-to-end simulation results, comparing them with those of a classical system, where the
OFDM waveform is specifically designed for Terrestrial Broadcasting. We show that the system
outperforms classical receivers, especially in challenging scenarios associated with large intersite
distance and large mobility. We also provide evidence of the robustness of the designed RNN receiver,
showing that an RNN receiver trained on a single signal-to-noise ratio and user velocity performs
efficiently also in a large range of scenarios with different signal-to-noise ratios and velocities.

Keywords: OFDM; channel estimation; channel equalization; data detection; neural network; RNN;
LSTM; 5GNR; broadcasting

1. Introduction

In a Single-Frequency Network (SFN) Terrestrial Broadcasting system based on Orthog-
onal Frequency Division Multiplexing (OFDM), all broadcasting stations simultaneously
transmit the same OFDM signal over the same frequency channel. The signal propagates
through different paths and reaches the receiver at separate times, creating an “artificial”
delay spread. To compensate the different propagation delays and eliminate the ISI be-
tween received symbols, a Cyclic Prefix (CP) is appended to the transmitted symbol. The
CP length is then designed to be greater than the echoes’ temporal dispersion, which, in
turn, is related to the maximum Intersite Distance (ISD) of the considered broadcasting
infrastructure. Most recent Terrestrial Broadcasting OFDM standards are based on this
solution, such as DVB-T2 [1] and ATSC 3.0 [2].

LTE-based Terrestrial Broadcasting has also introduced two specific carrier spacings [3]
to meet the requirements of a dedicated broadcast network. The 2.5 kHz carrier spacing
with a 100 µs CP length delivers mobile services to portable and handheld receivers with
a 15 km ISD and a speed up to 250 km/h. The 0.37 kHz carrier spacing with a 300 µs CP
length is designed for roof-top reception and up to a 175 km ISD.

In strongly double-selective scenarios, the classical approach to the OFDM design of
SFNs becomes progressively inefficient for the two following reasons. On the one hand, to
prevent the ISI, the CP must be kept larger than the delay spread associated with the ISD,
and at the same time, the symbol duration must be kept much smaller than the channel
coherence time to prevent the ICI. The ratio of the CP to the symbol duration, representing
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the system energy and throughput overhead, can become unacceptable. Furthermore,
the pilot density required to efficiently estimate and interpolate the channel with a small
coherence bandwidth and time becomes unacceptably high, introducing a further overhead.

Fifth-Generation New Radio (5GNR) defines OFDM numerologies designed only for
uni-cast transmission, with larger carrier spacing (a minimum of 15 kHz) and characterized
by a rather short CP (4.7 µs). In this case, with a classical OFDM receiver, it is possible
to support SFNs with a maximum of only a 5 km ISD [4], not compatible with most
broadcaster infrastructures.

To support larger ISDs with 5GNR numerologies, the receiver must then be equipped
with an advanced OFDM detector capable of dealing with a large ISI/ICI.

In [5], we proposed a linear 2D filter in the frequency domain for the equalization of
the OFDM system in the presence of the ISI spanning several OFDM symbols. The results
showed that, by using the channel shortening technique in [6], it is possible to obtain with
5GNR numerologies the same performance of OFDM systems specifically designed for
SFN Terrestrial Broadcasting [3]. Those results, however, were based on a static channel
and assumed the channel impulse response is known by the receiver.

In this paper, we approach the more realistic and challenging scenario, where on
top of a strong ISI and ICI, due to the adoption of 5GNR numerology for SFN scenarios,
the considered channel is very rapidly time-varying (mobile speed up to 200 km/h) and
unknown to the receiver.

In the literature, the investigation of advanced receiver techniques for the compensa-
tion of the ISI/ICI in an OFDM system is broad, but limited to specific scenarios. For ADSL
systems, which are characterized by quasi-static channels, the authors of [7] proposed an
approach to compensate the effect of the channel within the CP in a static channel condition.
In [8,9], the authors proposed low-complexity equalizers for video broadcasting in time-
and frequency-selective channels, although the considered CP length was larger than the
delay spread. The authors in [10] studied a one-tap decision feedback equalizer for an
OFDM system with the ISI and ICI, but in a low-mobility environment. The authors of [11]
designed a more complex system for a doubly dispersive multi-carrier system and focused
on a large delay spread with an embedded channel encoder. The delay spread was within
the OFDM symbol. Notice that most of these papers assumed channel state information
is known by the receiver, a very strong assumption, especially in a mobile environment.
Furthermore, in the literature on OFDM for the wireless channel, the amount of ISI is
typically limited within one symbol period, while, in our problem, statement, it can last
several OFDM symbols. While the adoption of advanced equalization techniques may
eliminate the CP inefficiency by removing the constraint on the CP and symbol duration,
the second source of inefficiency due to the required pilot density for channel estimation
cannot be eliminated.

In this paper, we consider a more recent approach, where the totality or part of the
receiver structure is substituted by the RNN. RNNs offer an impressive capability of
adapting their behavior to solve very complex inference problems, and they have the ability
to learn and extract information from time series [12]. In this research, for the first time, we
used an RNN, bidirectional Long Short-Term Memory (bi-LSTM), in processing the 5GNR
waveform to enable Terrestrial Broadcasting.

bi-LSTM [13] is a special kind of RNN composed of two chains of concatenated
LSTM cells to which the data sequence is fed, once forward and once backward, and
finally, concatenated. The structure is similar to that of the BCJR algorithm for maximum
likelihood detection, where forward and backward recursions are performed to extract
information from the past and future observations relevant for the target variable to be
estimated. Each LSTM cell is composed of an input gate, forget gate, output gate, and one
candidate memory cell [14].

The ability of the RNN to process time sequences was investigated also in the context
of signal processing. For instance, the authors of [15] proposed a Sliding Bidirectional
Recurrent Neural Network (SBRNN) for single-carrier real-time sequence detection. The
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authors of [16] introduced a scheme for joint channel estimation and symbol detection
for an OFDM system. The work in [17] proposed a deep-learning-assisted technique for
signal detection in the up-link and fast time-varying channel with bi-LSTM. In [18], the
authors proposed a neural network architecture named Cascaded Net (CN) for OFDM
symbol equalization.

To the best of our knowledge, in the RNNs that have been proposed in the past for
OFDM systems, the authors either assumed the channel impulse response length within
the CP length (no ISI) or they did not investigate the OFDM symbol affected by the ISI and
time-varying channel jointly. Furthermore, the authors used the classical OFDM approach
for assigning specific resources for channel estimation, causing a large amount of overhead
to be imposed on the system, especially in situations where the speed of the receiver is
high and a dense pilot map is required. In most cases, the authors did not consider the
presence of an outer forward error correction technique, e.g., Low-Density Parity Check
Code (LDPC), and directly reported the bit error rate at the output of the detector as the
key performance indicator.

To remove the two sources of inefficiency, due to the excessive CP length and pilot
density, we propose a novel approach that embeds two solutions:

1. Replacement of the channel estimator, channel equalization, and LLR computation
blocks with a recurrent neural network block;

2. Usage of superimposed pilots instead of interspersed pilots.

In the proposed receiver, the RNN detector is placed after the FFT and before the
LDPC decoding. By suitably training it offline, the designed RNN receiver shows the
appropriate flexibility to face rapid channel changes and strong ISI/ICI in a wide set of
scenarios. The paper presents the detail of the careful optimization procedure of the RNN
that led to the final design.

The rest of this paper is organized as follows. In Section 2, we provide the details of
the considered channel models for the SFN scenario and the description of the reference
classical OFDM system. We then describe our proposed receiver based on the RNN detector
and superimposed pilots, discussing its complexity. In Section 3, we optimize the hyper-
parameters of the proposed RNN detector for two SFN infrastructures. In Section 4, we
present end-to-end simulation results comparing and discussing the performance of the
proposed approach with that of the reference system. Conclusions follow in Section 5.

2. Reference System and Proposed Approach with RNN and Superimposed Pilots

The considered OFDM system for Terrestrial Broadcasting in an SFN is shown in
Figure 1. In the following sections, we provide the details on the channel model, the
reference classical system, and the proposed approach, which includes the superposition of
the pilots and the adoption of the RNN in a part of the receiver (modification highlighted
in red in Figure 1).

2.1. Channel Model for SFN

The transmitted signal is sent through a Tapped Delay Line (TDL) channel model,
which is characterized by its maximum delay spread. The considered TDL channel model
(TDL-A) is the standard one defined in [19]. TDL-A is a challenging channel model
for a non-line-of-sight environment. It is used also for modeling an SFN by properly
scaling its maximum delay spread according to the considered ISD. In Table 1, we report
the correspondence between the maximum delay spread in the TDL-A model and the
considered ISD in the SFN for Low-Power Low-Tower (LPLT), Medium-Power Medium-
Tower (MPMT), and High-Power-High Tower (HPHT) transmission networks.
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Table 1. Correspondence between maximum delay spread and intersite distance for modeling SFNs.

Parameter LPLT MPMT HPHT

ISD (km) 15 50 125
Delay spread (µs) 20 40 50

Subst. block
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Figure 1. The OFDM system and position of the proposed RNN detector.

In all considered scenarios, we fixed the number of receiver antennas to K = 2 and
the carrier frequency to f0 = 700 MHz, a common choice for broadcasting. The considered
maximum user speed is v = 200 km/h, corresponding to a maximum Doppler frequency
fD = c

v f0 = 129 Hz, with Jake’s model for the spectrum of tap coefficients.

2.2. Classical Terrestrial Broadcasting in SFN

The stream of information bits b generated by the source is encoded by the channel
encoder [20], producing the sequence of coded bits c. The encoded bits are converted to
complex signals by the QAM modulator. For channel estimation, a properly designed pilot
sequence p is interspersed with the information signals. The N parallel frequency domain
signals are converted to the time domain via the Inverse Fast Fourier Transform (IFFT), and
the CP with a suitable length is inserted to prevent the ISI (OFDM modulator block).

At the receiver side, time domain signals are received by K antennas. The OFDM
demodulators, one for each receiving antenna, convert time domain signals to N parallel
frequency domain signals. A pilot-assisted channel estimation is carried out using the
transmitted pilot symbols. The considered channel estimation algorithm in the reference
receiver uses least-mean-squares estimation and linear interpolation to obtain the channel
gains on data subcarriers. A single tap equalizer is then used to provide the equalized
signal. The LLR computation block calculates log-likelihood ratios on coded bits λn at time
n, and the LDPC decoder processes the LLR to provide estimated bits b̂.

It is well known that the performance of this simple receiver scheme is directly con-
nected to the trade-offs between the CP length, channel delay spread, carrier spacing, and
user mobility. In the standard design of OFDM numerology, the CP length is kept larger
than the delay spread to prevent the ISI and OFDM symbol duration 1/∆ f is kept much
smaller than the channel coherence time to prevent the ICI.

The 5GNR numerology with a short or very short OFDM symbol length makes possible
the symbol-by-symbol detection of the OFDM symbol even with a high speed. However,
the short CP length (4.7 µs) of the 5G OFDM symbol is not compatible with the large ISD of
the Terrestrial Broadcasting scenario (see Table 1). The delay spread of SFN environments
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makes each transmitted OFDM symbol interfere with several contiguous OFDM symbols.
The ISI between OFDM symbols destroys the orthogonality of carrier spacing, and the
ICI occurs. Terrestrial Broadcasting with 5GNR numerology becomes impossible with the
classical data detection scheme.

2.3. The Proposed Approach

The blocks highlighted in red in Figure 1 summarize the proposed modifications to
the reference system.

2.3.1. Superimposed Pilots

One major obstacle in adopting the RNN structure is that of properly exploiting
the pilot sequence information that is provided as side information at the receiver for
performing the required channel estimation task. When using pilot sequences interspersed
with data symbols, the classical receiver exploits the knowledge of pilot positions to
perform different operations at different time/frequency resources. Channel estimation is
performed on pilot resources, while equalization, exploiting the channel estimation results,
is performed on data resources. This non-stationary behavior of the classical receiver is
incompatible with the RNN structure, which is intrinsically stationary, and information
about the pilot position is difficult to embed in such structures. For this reason, at the
transmitter side, instead of using the typical interspersing pilot technique, pilot and data
signals are superimposed. The superimposed pilot approach has been already proposed
and studied in advanced receivers [21]. At the price of introducing cross-interference
between the data and pilots, it offers several advantages. No bandwidth overhead for
channel estimation is introduced as all resources are assigned to data, and at the same
time, pilot information is available at all resources for channel estimation. The cross-
interference between the data and pilot, on the other hand, can be suitably removed by
advanced cancellation techniques. In our case, this approach also circumvents the problem
of exploiting the information on the pilot position at the RNN detector.

At the transmitter side, with superimposed pilots, the transmitted symbol at time n
on carrier m is obtained as:

zmn = dmn
√

1 − α2 + pmnα (1)

where dmn is the data symbol and pmn the pilot symbol. The single parameter α controls
the assigned energy ratio for the pilot and data signal.

2.3.2. A Recurrent Neural Network Detector for SFN Terrestrial Broadcasting

In our proposed receiver in Figure 1, we substituted three blocks of the OFDM detector
(channel estimator, channel equalizer, and LLR computation) with one RNN block.

The details of the RNN receiver are shown in Figure 2. The RNN includes two layers
of bi-LSTM, two dropout layers, and one output dense SoftMax for delivering the bit
log-likelihood vector.

With K receiving antennas, the demodulated OFDM symbol vector becomes rn =
[r11, . . . , r1N , . . . , rK1, . . . , rKN ]n, and the vector of reference known pilots is denoted by
pn = [p1, . . . , pN ]n. The available observation vector at time n at the RNN input is then the
real vector yn = [ℜ[rn, pn],ℑ[rn, pn]] with size 2(K + 1) · N.

As transmission is affected by the ISI, M consecutive OFDM symbols are included for
the data estimation, so that the input vector at time n to the RNNs is given by:

ȳn ,
[
yn−⌊ M

2 ⌋, . . . , yn, . . . , yn+⌊ M
2 ⌋

]
. (2)

The complexity and representation capability of bi-LSTM is controlled by the number
of LSTM cell units (U), which also corresponds to the size of the output of each LSTM cell.
The dropout layer is one regularization technique that is used only during network training
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and prevents overfitting [22]. The dense layer maps the output of the previous layer to the
dimensionality of the output space, which consists of N × nb bit log-likelihood ratios:

λi = ln
(

qi
1 − qi

)
, (3)

where qi is the i-th predicted probability of symbol “1”.
To train the RNN detector, we generated S pairs of ȳn and their target coded bits cn.

At each stage of one training epoch, B pairs (a batch) from S pairs are selected randomly
and forwarded to the RNN detector. We calculated the error between the target and actual
response of the RNN detector with the binary cross-entropy loss function, which is given by:

δ = − 1
B

1
N · nb

B

∑
j=1

N·nb

∑
i=1

[cij · log qij + (1 − cij) · log(1 − qij)], (4)

where B is the batch size and cij is the target bit value. The error δ is then backpropagated
along the network, revising the weights via the gradient descent algorithm [23]. This
operation is repeated S

B times, and one epoch ends. In the next epoch, each batch is
randomly created again, from the same set of S pairs, and the operation is repeated until an
acceptable level of entropy is achieved at the end of an epoch.
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Figure 2. Unrolled RNN detector for an OFDM system (M is odd).

2.3.3. Discussion on RNN Detector Complexity

One of the major issues that prevents the adoption of RNNs as a substitute of the
classical receiver structure is their complexity. The number of operations in each of the M
cells in a single layer of bi-LSTM (F), corresponding to the number of trainable parameters,
is given by:

F = 2 × 4 × (I × U + U2 + U), (5)

where I is the size of the input vector to each bi-LSTM layer. In our RNN in Figure 2,
I = 2(K + 1) · N for the first layer and I = 2 · U for the second layer. The complexity
of the RNN increases then linearly with the increasing size of input vector I and the
sequence length M, but quadratically with the number of units. The output dense layer
complexity amounts to nb × 2 × U and is negligible. In this study, we fixed the number
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of units to U = 400 based on the work of [17]; all optimizations were performed based on
this value, but according to further results presented in the final section of Table 2, similar
entropy losses were obtained using lower values for the number of units. Using U = 100,
although the training time increased, the performance became slightly better. In this case,
the complexity of the system was reduced by a factor 1/16.

3. Optimization of RNN

In this section, we define the system parameters of the RNN. Then, the RNN parame-
ters are optimized separately for one LPLT and one HPHT network.

3.1. RNN System Parameters and Preliminary Data Generation for Training

For the RNN, we considered a system with 12 OFDM carriers with a carrier spacing of
15 kHz, yielding a system bandwidth of 180 kHz (one resource element in 5G New Radio)
for link-level simulations. This small bandwidth was chosen to facilitate the RNN training
process and can be increased to practical values for broadcasting, such as 10 MHz, in which
case, the complexity of the receiver increases linearly by replicating the RNN detector for
each resource block.

The OFDM symbol length is 71 µs, including the normal CP (4.7 µs). We used the
4-QAM constellation (nb = 2) corresponding to 24 coded bits transmitted per symbol.

The TDL-A channel model has 20 µs and 50 µs delay spreads, which are standard
values for emulating LPLT and HPHT networks with 15- and 125-kilometer ISDs (see
Table 1). We fixed the number of receiver antennas to K = 2 and the carrier frequency to 700
MHz. The receiver speeds used for generating the training pairs were equal to 160 km/h
for LPLT and 3 km/h for HPHT, which make the maximum Doppler shift around 103
and 3 Hz, respectively. Ten million pairs (yn, cn) at a fixed SNR = 5 dB were generated
for parameter optimization and offline training, one for the LPLT network and one for the
HPHT network. The ADAM optimizer [24] was used for training the RNN detector with
a learning rate of 0.001. At the end of the training phase, we then generated two RNNs,
one trained at 160 km/h for LPLT and one trained at 3 km/h for HPHT. These two RNNs
are those used in all results reported in the final section. The Matlab platform was used to
generate the input data sequences and output labels of the RNN. The RNN training was
performed using Keras, a Python interface for the Tensorflow library. The trained RNN was
then imported into MATLAB to check the system end-to-end performances.

3.2. RNN Preliminary Hyper-Parameter Optimization for LPLT Network

The target free hyper-parameters for optimizing the proposed RNN system are the
value of α for pilot superposition, the length M of the input vector to the RNN, and the batch
size B used for training. In the preliminary optimization step, we randomly generated 100 k
arrays of ȳn with SNR = 5 dB and speed 160 km/h, each with size M, and corresponding
target bits c from the data pairs created in the previous step. We then trained the network
with 90 k arrays of ȳn, and the trained RNN detector was tested with the final 10 k of ȳn.

Some relevant results of the optimization campaign are reported in Table 2 for the
LPLT network. In the second column of the table, we report the minimum binary cross-
entropy (δ), and in the third column, the epochs were the minimum reached, to show the
amount of time required for optimization.

Fixing B = 4096 and M = 15, the assignment α = 0.5 provided minimum cross-entropy
loss for the test data sequences.

Regarding the optimization of the length of the input observation window M, since
the RNN performs both tasks of channel estimation and equalization, M is expected in
general to be related to both the coherence time of the channel and the delay spread. In our
scenario, having fixed α = 0.5 and B = 4096, the best trade-off was obtained for M = 15.

We finally examined the effect of batch size B for the RNN detector, with M = 15
and α = 0.5. Training the RNN detector with a larger batch size provided a lower binary
cross-entropy loss.
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Based on this initial parameter optimization, in the final RNN, we set α = 0.5, B =
4096, M = 15, dropout to 0.5, and U = 400. To improve the performance, we increased the
training set S to two million for each epoch, keeping the final 10k pairs for testing (last line
in Table 2).

Considering that the RNN complexity is driven by the value of U, we also checked
the network performance by reducing U. Results are reported in the third part of Table 2. It
turned out that, in this case, reducing U may require a longer training time (third column
of the table), but can lead to a network with better performances and lower complexity.

Table 2. RNN parameter optimization. Minimum binary cross-entropy loss of the validation data set
for the LPLT SFN.

Parameters Minimum Loss (δ) Minimum Epochs

α = 0.25 0.4043 33
α = 0.5 0.3774 32

α = 0.75 0.442 40

M = 7 0.3953 38
M = 15 0.3774 32
M = 21 0.3972 38

B = 64 0.3921 20
B = 256 0.3839 15
B = 4096 0.3774 20

U = 400 0.3774 32
U = 200 0.3576 96
U = 100 0.3481 271

final LPLT RNN 0.25 56

3.3. RNN Hyper-Parameter Optimization for HPHT Network

The described LPLT parameter optimization was repeated for the HPHT network (see
Table 3). In this case, the SNR was still fixed to 5 dB and the speed was set to 3 km/h.

We optimized parameter α with M = 9, B = 4096, and U = 400. The minimum
cross-entropy loss was obtained with α=0.5, which is the same result obtained for the
LPLT network. Then, we optimized M fixing α = 0.5. The value M = 9 provided the best
performance.

Due to the larger delay spread, as expected, the minimum loss obtained for HPHT
was larger than that obtained for the LPLT RNN. For training the final network, setting
M = 9, α = 0.5, B = 4096, and U = 400, we increased S to three million (last line of Table 3).

Table 3. RNN parameter optimization. Minimum binary cross-entropy loss of the validation data set
for the HPHT SFN.

Parameters Minimum Loss (δ) Minimum Epochs

α = 0.25 0.5057 27
α = 0.5 0.3926 32

α = 0.75 0.415 37

M = 7 0.4067 33
M = 9 0.3926 32
M = 11 0.3952 30
M = 13 0.3939 31
M = 15 0.3931 31
M = 17 0.3973 30
M = 19 0.4009 29
M = 21 0.4099 32

final HPHT RNN 0.28 56
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4. End-to-End Simulations Compared to a Reference Classical System

In this section, we present the performance of the two RNNs optimized in the previous
section against a classical reference system, whose system parameters are described in the
next subsection.

4.1. Classical Reference System Numerologies and Pilot Signals

The Third Generation Partnership Project (3GPP) specified two numerologies in Long-
Term Evolution (LTE) evolved Multimedia Broadcast Multi-cast Service (eMBMS) to address
the requirements of a dedicated broadcast network. The first one, with a carrier spacing of
2.5 kHz with a 100 µs CP length, is designed for the LPLT SFN with a maximum ISD of
15 km. This solution provides high mobility supporting up to 250 km/h for broadcasting
scenarios.

The second one, with a carrier spacing of 0.37 kHz and a 300 µs CP length, is designed
to support the conventional HPHT SFN up to a 175 km ISD, targeting fixed roof-top
reception. The performances of these systems in some typical broadcasting scenarios
are available in [3,25].

Using the fixed bandwidth of 180 kHz considered for the RNN-based system, the
number of carriers for the two systems is N = 180/2.5 = 72 and N = 180/0.37 ≈ 486,
respectively.

The suggested pilot pattern in [26] to support the time-varying characteristic of the
TDL-A channel requires 1 out of 4 resources allocated for the pilots, with pilot resource
frequency spacing Fd = 2 and time spacing Td = 2. These values are reduced to 1 out of 6
in the roof-top scenario (Fd = 3, Td = 2).

4.2. End-to-End Simulation for LPLT and HPHT SFN

The transmitted information throughput T (bits/s) of an OFDM system can be written
as

T = Rs × nb · N × (η × rc), (6)

where Rs is the OFDM symbol rate, η is the waveform efficiency, a factor smaller than one
that accounts for the system overhead, and rc is the code rate. The values of the parameters
in Equation (6) differ for the two considered systems due to the different strategies for pilot
insertion and different CP overheads. In our RNN system, the overhead is only due to
the 5GNR CP insertion, and the efficiency amounts to ηRNN = 15/16 = 0.9375; for the
LPLT reference system, it is the product of the CP efficiency (400 µs/500 µs) and the pilot
efficiency 3/4, so that, overall, the efficiency is ηC = 0.6.

To have a fair performance comparison, we fixed the same throughput, so that we
adjusted the code rate rc of the two systems to have a fixed product η × rc:

r(C)c ηC = r(RNN)
c ηRNN → r(C)c = 1.5625 · r(RNN)

c .

The performance comparison of the two systems (RNN system with 15 kHz 5GNR
numerology, classical system with 2.5 kHz), in terms of the BER at the output of the 5GNR
LDPC decoder, is shown in Figure 3. For both systems, we used an LDPC encoder with
codeword block size 20k and a layered LDPC decoder with 25 iterations.

We report results with two target throughputs T1 = 114 kbit/s and T2 = 162 kbit/s.
For T1, the corresponding code rate for the RNN system is r(RNN)

c,1 = 0.34 and that required

for the reference classical system is r(C)c,1 = 0.53. For T2, r(RNN)
c,2 = 0.48 and r(C)c,2 = 0.75.

The results acquired for the classical system are aligned with the results found in [25]
for similar scenario settings. At BER = 10−3, the RNN provides a gain of 2 dB for T1 and a
gain of 4 dB for T2. Notice that the RNN system with larger throughput T2 (green curve)
also outperforms the classical system with lower throughput T1 (blue curve). Although the
receiver was trained at SNR = 5 dB, its performance remained excellent at different SNR
values.
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We also investigated the flexibility of the designed RNN, trained at a fixed speed of
160 km/h and SNR = 5 dB, for other mobile speeds. The results are depicted in Figure 4 for
the same throughput of 138 kbit/s, corresponding to r(RNN)

c = 0.41 and r(C)c = 0.64.
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Figure 3. LPLT (ISD = 15 km). Performances of the RNN vs. classical Terrestrial Broadcasting system
with two throughputs (T1 = 114 kbit/s, T2 = 162 kbit/s) and a fixed speed of 160 km/h.

The RNN receiver performed better than the classic receiver at all speeds. The results
showed that the RNN receiver, in addition to flexibility under different SNRs, has also high
flexibility with respect to user mobility.

We evaluated the performance of the second trained HPHT RNN and compared it
with that of the second classical system designed for the HPHT scenario and a speed of 120
km/h. In this case, the pilot efficiency of the classical system increased to 5/6 and the CP
efficiency to 2700/3000, so that its waveform efficiency increased to η = 0.75.

The end-to-end simulation results for throughput systems T1 = 93 kbit/s and T2
= 110 kbit/s are depicted in Figure 5. For the first throughput T1, the RNN code rate
was r(RNN)

c,1 = 0.276 and the classical system code rate was r(C)c,1 = 0.34. For the second

throughput T2, r(RNN)
c,1 = 0.34 and r(C)c,2 = 0.41.
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Figure 4. LPLT (ISD = 15 km). Performances of the RNN vs. classical Terrestrial Broadcasting system

for the same throughput (138 kbit/s) and different user speeds. r(RNN)
c = 0.41 and r(C)c = 0.64.

In this case also, the result showed that the RNN system outperformed the classical
system, although the gain was reduced because of the increased efficiency of the classical
system. At BER = 10−3, 1.2 dB and 2.3 gains were observed for T1 and T2, respectively.

Although we trained the RNN at a fixed velocity (3 km/h) and a fixed SNR (5 dB), also
in this case, the RNN showed robustness at a high speed (120 km/h) and different SNRs.
Notice that the classical system in this case was designed for fixed roof-top reception. No
numerologies in eMBMS are provided for HPHT and mobile users. Its performances were
still reasonable at 120 km/h for low-order modulation. The system however would provide
unacceptable losses for higher-order modulation, due to the excessive symbol length (3 ms),
incompatible with the time coherence of the channel.

The classic system can provide near-optimal performance for an SFN with a symbol-
by-symbol detector by properly adjusting the OFDM length and proper allocation of the
CP and pilot signals. In the classical approach, the OFDM numerology is designed to avoid
the ISI and ICI and the pilot density is chosen to achieve a satisfactory channel estimation.
This approach, however, becomes inefficient in the considered scenarios wherethe same
delay spread is very large (HPHT) and the coherence time is small due to the user mobility.

The simulation results showed that a single trained network has great flexibility with
respect to both the SNR and user speed. For HPHT, the network trained at 3 km/h provided
excellent results at 120 km/h. For LPLT (see Figure 4), the trained network at 160 km/h
provided excellent performance for a large set of speeds.
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Figure 5. The end-to-end simulation for different throughput systems (T1 = 93 kbit/s) and (T2
= 110 kbit/s) at a fixed speed of 120 km/h and a large ISD (125 km ISD). The RNN with 5GNR
numerology and trained at 3 km/h and the classical system with a 0.37 kHz carrier spacing with a
long cyclic prefix of 300 µs.

5. Conclusions and Future Work

In this paper, we investigated the use of an RNN-based detector to support SFN
Terrestrial Broadcasting. We considered the very challenging scenario where the 5GNR
OFDM numerology with a short cyclic prefix (4.7 µs) and large carrier spacing (15 kHz) is
used in SFN scenarios characterized by a very large delay spread (up to 50 µs). Furthermore,
we considered high mobility scenarios with an unknown channel at the receiver, so that,
also, channel estimation was critical.

The importance of this research comes from the fact that it is not possible to meet the
requirements of SFN Terrestrial Broadcasting with the current 5GNR numerology and a
classical symbol-by-symbol OFDM receiver. The possibility of using the existing 5GNR
numerology for delivering broadcasting services from SFN infrastructures is indeed of
great importance for broadcasters.

Previous research on SFNs mostly focused on the design of the classical OFDM
system, with an ISI-/ICI-free symbol-by-symbol detection scheme. They designed new
numerologies, cyclic prefix lengths, and pilot signals based on new SFN scenarios. Results
on advanced, but “classical” techniques for SFNs with 5GNR numerology are not available
in the literature, to our knowledge.

We proposed two ingredients for the solution, the superposition of pilots on the data
at the transmitter to eliminate the pilot overhead in largely selective channels and the
adoption of a suitably trained RNN at the receiver to deal with the large ISI and ICI at
the receiver. The superposition of pilots also allowed us to efficiently use and train the
RNN. The proposed RNN structure includes two cascaded bi-LSTM networks. In our
solution, the RNN substitutes the channel estimation and equalization blocks, while the
powerful outer LDPC channel decoder is kept as part of the receiver structure. The RNN
thus provides the bit log-likelihood ratio to the following decoder, and the cost function
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for training the RNN is changed accordingly. The hyper-parameters of the proposed RNN
were optimized for generating two trained RNNs for the LPLT and HPHT SFN scenarios.

While some advanced equalizer solutions and even RNN-based receivers were pro-
posed in past literature for OFDM, no one has considered the full problem related to the
SFN as we stated, and no one has investigated the combined approach of the superposition
of pilots and an RNN to solve the channel estimation and equalization problem.

We compared the end-to-end performances of the proposed approach with respect to
the classical approach, used in OFDM standards such as DVB-T and ATSC. In the classical
approach, OFDM numerology is designed to avoid the ISI and ICI and pilot density is
chosen to achieve a satisfactory channel estimation. This approach becomes progressively
inefficient in the considered scenario, where, at the same time, the delay spread is very
large (HPHT) and the coherence time is small due to the user mobility. We used as the
key performance indicator the BER after LDPC decoding and, consequently, that delivered
to the end user. This KPI is the most relevant one in the evaluation of the physical layer,
and the reported gains translate into energy savings and/or a throughput increase for the
broadcasters.

The proposed approach largely outperforms the classical system, explicitly designed
for the considered SFN scenarios, in all mobile scenarios. We also demonstrated the
flexibility of the proposed scheme in different scenarios, as we provided evidence that a
single RNN, trained at a fixed SNR and user speed, provides excellent performances in
large ranges of SNRs and user speeds.

Possible future investigations related to the considered problem include:

• Adoption for a mobile SFN with 5GNR numerology of other types of advanced, but
classical receivers, maybe combined with pilot superposition to increase the system
efficiency.

• Reduction of the complexity of the RNN. The proposed structure based on bi-LSTM
is well suited for the receiver, but probably oversized, as it was proposed for solving
more complex problems. A deeper investigation of the required RNN features would
probably lead to simpler structures together with a better understanding of the rela-
tionships of the RNN with the classical advanced receivers based on the MMSE and
MLSE.

• The investigation of system performance with higher-order modulations, yielding
higher spectral efficiencies.

• The scaling of the proposed receiver solution to the practical bandwidth used in
broadcasting.

• The flexibility of a single trained RNN also for different network infrastructures (i.e.,
ISD) and, consequently, different delay spreads.
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Chapter 9

Conclusion and future works

Although the physical layer of 5G New Radio (NR) in Release 15 was originally
intended for uni-cast transmission, several attempts have been made to enable SFN
terrestrial broadcasting in 5G technology. Researchers have tried to optimize the
cyclic prefix length in relation to the artificial delay spread of the channel, but
this proved challenging due to the 1 millisecond sub-frame limit of the 5G-NR
frame structure. Specifically, SFN scenarios with large inter-site distances, such as
high-power, high-tower scenarios, were difficult to accommodate within the 5G-NR
framework. Furthermore, designing an optimal cyclic prefix for fixed scenarios does
not guarantee the same level of performance in mobility scenarios. Ultimately, it
became necessary to develop a distinct frame structure from the 5G-NR to enable
single frequency network terrestrial broadcasting.

We attempted to investigate a different approach by implementing an advanced
techniques at the receiver side to address the challenge of insufficient cyclic prefix
length in the presence of mobility. We developed an advanced channel equalizer using
the channel shortening technique. This equalizer was designed to receive a sequence
of demodulated OFDM symbols affected by ISI and ICI, and provide a linearly
equalized signal. To evaluate the effectiveness of this approach, we conducted link
level simulations that included the 5G LDPC encoder. Our results demonstrate that
this receiver was highly effective, performing on par with numerology designed
specifically for terrestrial broadcasting that includes a sufficient cyclic prefix. These
promising findings suggest that our advance channel equalizer could be a valuable
tool in enabling 5G-NR terrestrial SFN broadcasting.
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Initially, our approach assumed a static and known channel. However, we
recognized that this assumption may not be realistic in real-world scenarios, where
factors such as mobility and channel estimation can significantly impact the channel.
To address these challenges, we adopted a novel approach based on recurrent neural
network neural networks.

We developed an end-to-end OFDM receiver based on Bi-LSTM that can perform
channel estimation, channel equalization, and provide soft decisions for the following
channel decoder, without any prior knowledge of the channel. To eliminate the
overhead for pilot signals, we have superimposed data with the pilot signal. One key
advantage is that superimposed pilot techniques can eliminate the need for dedicated
pilot signals, which can increase the overall spectral efficiency of the system.

We trained an LSTM-based receiver using a fixed speed and signal-to-noise ratio,
and subsequently used the trained receiver to perform link simulations. Our findings
indicate that the receiver exhibits a high degree of flexibility in various speed and
signal-to-noise ratio settings, resembling the functionality of an OFDM receiver
that is custom-designed for a particular SFN broadcasting scenario. These results
demonstrate that training the network under limited conditions can still enable it to
function effectively in vastly different scenarios.

While our design was originally intended for 5G-NR terrestrial broadcasting,
it can also be utilized for any OFDM system that is susceptible to inter-symbol
interference (ISI) and inter-carrier interference (ICI). The key advantage of this
approach is its ability to handle complex and dynamic channel conditions, such as
those that arise in mobile communications, and to provide effective data detection
even when there is significant ISI and ICI present.

In light of these considerations, there are several compelling directions for future
research. Firstly, it would have been very interesting to conduct an additional study
on the proposed Recurrent Neural Network (RNN)-based solution while retaining
the dedicated pilot sub-carriers in 5G-NR. This investigation would provide insights
into the specific impact and effectiveness of the RNN approach in the presence of
dedicated pilot sub-carriers. By comparing the results with the existing solution,
a more comprehensive understanding of the proposed solution’s performance and
advantages could be obtained.

Similarly, it would have been valuable to analyze the superposition of pilot signals
with the data signal without relying on the recurrent neural network. This alternative
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approach could shed light on the effectiveness of other techniques or algorithms
for channel equalization in OFDM systems. By examining the performance of
this non-RNN-based method and comparing it to the proposed solution, a more
comprehensive analysis of the solution’s overall impact and potential limitations
could be achieved.

Furthermore, while our research has shown encouraging results, the increased
complexity of these receivers may hinder their adoption in real-world systems. Thus,
further investigation is needed to explore methods for simplifying these receivers
while maintaining their effectiveness. Finding ways to reduce their complexity will
be crucial for practical deployment in various systems.

Another important area for future research is evaluating the performance of the
proposed Recurrent Neural Network (RNN)-based solution in systems employing
higher-order modulation schemes. Although our evaluation has concentrated on
specific modulation orders, extending it to higher orders is crucial for determining
the practicality of these advanced receivers in a broader range of applications.

Furthermore, our current system design does not incorporate time synchroniza-
tion, even though we operate in a sequence of OFDM symbols. In future research,
it is crucial to incorporate synchronization into our system design and evaluate its
impact on the performance of the receivers. Time synchronization is essential for
ensuring accurate and reliable data transmission in OFDM systems, and its inclusion
will contribute to the overall effectiveness of the proposed solution.

Moreover, it would be interesting to explore the potential use of these advanced
receivers beyond broadcasting over a SFN. For instance, in satellite communications
or cellular networks, there may be additional applications of these advanced receivers
in SFN environments.

Conducting these additional studies, including the exploration of simplified
receiver designs, evaluating RNN performance with higher-order modulation, in-
corporating time synchronization, and investigating alternative infrastructures, will
contribute to a deeper understanding of the proposed solution’s capabilities, limita-
tions, and practical applicability. These investigations will aid in the development of
more robust and versatile solutions for real-world implementation in a wide range of
scenarios.
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