
05 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Physics Informed Data Driven Techniques for Power Flow Analysis / Parodi, Guido; Oneto, Luca; Ferro, Giulio; Zampini,
Stefano; Robba, Michela; Anguita, Davide; Coraddu, Andrea. - (2023), pp. 33-40. (Intervento presentato al convegno
2023 IEEE Symposium Series on Computational Intelligence tenutosi a Mexico City (Mexico) nel 05-08 December 2023)
[10.1109/SSCI52147.2023.10371975].

Original

Physics Informed Data Driven Techniques for Power Flow Analysis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/SSCI52147.2023.10371975

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982683 since: 2023-10-03T19:22:20Z

IEEE Computational Intelligence Society

Physics Informed Data Driven Techniques
for Power Flow Analysis

Guido Parodi, Luca Oneto, Giulio Ferro, Stefano Zampini,
Michela Robba, Davide Anguita

University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy
name.surname@unige.it

Andrea Coraddu
Delft University of Technology

Mekelweg 5, 2628 CC, Delft, The Netherlands
a.coraddu@tudelft.nl

Abstract—The last decade has seen significant changes in
the power grid complexity due to the increased integration of
multiple heterogeneous distributed energy resources. Accurate
and fast power flow analysis tools have then become essential to
guarantee grid stability, reliable operation, strategic planning,
and market strategies. State-of-the-art approaches to power
flow analysis are based on iterative numerical techniques which
exhibit high accuracy but slow-, or even no-, convergence. For
this reason, researchers have investigated the use of data-driven
techniques that, while exhibiting lower accuracy with respect to
iterative numerical ones, have the advantage of being extremely
fast. To address the lack of accuracy, physics-informed data-
driven techniques, i.e., techniques that leverage both the data
and domain knowledge to generate simultaneously fast and
accurate models, have been proposed. Nevertheless, these works
exhibit two main limitations: i) they do not fully leverage the
physical knowledge, and ii) they do not fairly compare the
different approaches. In this paper, we propose a novel physics
informed data-driven model able to address both limitations by
fully leveraging the physical knowledge into the data-driven,
i.e., constraining the model and augmenting the available data,
and proposing a framework able to fairly compare the different
approaches proving the actual effectiveness of the proposal.
Results on the IEEE 57 realistic power network will support
the proposal.

Index Terms—Physics Informed, Machine Learning, Power
Systems, Power Flow Analysis

I. INTRODUCTION

Over the last decade, the power grid has been transformed
due to the increasing presence of distributed energy resources
(DERs). DERs include renewable energy resources (RERs),
distributed generation, storage systems, microgrids, and flexi-
ble demand. These DERs introduce a host of new challenges
for grid planners and operators, particularly in the presence of
unpredictable and intermittent RERs [1]. As a result, there
is an increasing need to make fast, accurate, and reliable
decisions for an efficient, affordable, and resilient grid [2].

In this context, the power flow analysis is essential in
understanding and managing the dynamic interactions be-
tween RER, the power grid, and other conventional generation
units [3]. Power flow analysis involves determining the voltage
magnitude and phase angles at different nodes in an electrical
power system, given the system topology, generation, and
load conditions [4]. It aids in ensuring grid stability, reliable
operation, efficient planning, and effective market operations
in the context of RER integration [5].

The power flow problem can be mathematically formulated
as a set of nonlinear equations. The equations describe the
power flow in various branches and buses of the power system,
considering the power injections and line impedances. The
goal is to find a solution that satisfies the power balance and

voltage magnitude constraints for all nodes in the system [6].
Solving the power flow problem involves iterative numeri-
cal techniques (INT). The most common INT used are the
Newton-Rhapson method, the Gauss-Seidel method, and the
Fast Decoupled Load Flow [7]. However, these methods have
some drawbacks related to the slow convergence for large-
scale networks and specific topologies, furthermore, for ill-
conditioned systems, these algorithms are not able to retrieve
a feasible solution [8].

To address the limitations of INT researchers have investi-
gated the use of Data-Driven Techniques (DDT) which basi-
cally transform the power flow analysis problem into a clas-
sical machine learning multi-output regression problem [9]–
[11]. In particular, DDT leverages historical data (collected
in-field or produced with simulators) to learn a function able to
estimate the desired quantities without the need for INT [12].
The learning phase of this functional is both computational and
data demanding but once performed (usually offline) its use
is extremely fast. DDT, while being extremely fast, exhibits
lower accuracy with respect to INT [9]–[11].

In order to address the lower accuracy of DDT with respect
to INT, researchers have proposed to use Physics Informed
DDT (PIDDT) [13]–[17], i.e., techniques that leverage both
the data and domain knowledge to generate models that are
accurate as the INT and fast as the DDT [18]. The main idea
behind the current PIDDT is to constrain the functional learned
by the DDT to satisfy some physical principle (e.g., in our case
the predicted voltage and currents need to follow the power
flow equations [16]).

The limitation of current PIDDT is twofold. The first one i)
is that current PIDDT do not fully leverage the physical knowl-
edge. The second one ii) is that they do not fairly compare
the three approaches (INT, DDT, and PIDDT) providing only
the accuracy of PIDDT or leveraging different architectures in
plain DDT and PIDDT.

To overcome these limitations, in this work, we propose
a novel PIDDT with a twofold contribution. Firstly, our
methodology integrates domain-specific knowledge into the
data-driven model by constraining compliance with the power
flow equations and by augmenting the available data. Sec-
ondly, we present a framework able to fairly compare the
different strategies (INT, DDT, and PIDDT), proving the actual
effectiveness of the proposal.

For this purpose, we will use data created from the IEEE
57-bus case. This network consists of 57 buses, 7 generators,
and 42 loads. The data baseline has been created from the
MATPOWER repository [19].

The rest of the paper is organized as follows. Section II
reports the current status of the literature related to our work.
Section III formally describes our problem and the available
data. Section IV presents the proposed methodology. Section V
presents the results of applying the methodology described in
Section IV to the data described in Section III. Section VI
concludes the paper.

II. RELATED WORKS

In the context of DDT for power flow analysis several
approaches have been proposed. In the context of shal-
low machine learning models, authors have leveraged Least
Squares and Bayesian linear regression [9], Koopman operator
method [10], and (non-)linear Support Vector Machines [11].
In the context of (deep) neural models, authors have leveraged
Radial Basis Function Network [20], Graph Convolutional
Network [21], and Stacked Denoising Auto-Encoders [22].
Authors of [23]–[25] investigated the use of reinforcement
learning techniques for the solution of the power flow analysis.

In the context of PIDDT for power flow analysis some
approaches, less than the ones based on DDT, have been
proposed [17]. Authors of [13] proposed a multilayer percep-
tron model that leverages the power flow branch equations to
compute additional features to predict physically admissible
solutions. Authors of [14], [15] proposed two approaches in
which the physical information is embedded into the model
by adding network equations as penalty terms inside the loss
function used to train a neural network. Finally, the authors
of [16] presented an encoder-decoder architecture which takes
into account the structure of the Kirchhoff’s laws and the sys-
tem topology achieving good interpolation and extrapolation
performance.

III. PROBLEM FORMALIZATION AND AVAILABLE DATA

In this section, we will first introduce the power flow
problem1 (Section III-A) and then we will describe the data
generated and leveraged by the DDTs and the PIDDTs (Sec-
tion III-C).

A. Power Flow Problem

The power grid can be represented as an undirected graph
G(N , E) where N is the set of nodes of the grid and E is the set
of edges. The nodal quantities, i.e., the interesting quantities
at node n ∈ N , in this grid include the active power injection
Pn, reactive power injection Qn, voltage Vn (real part V R

n
and imaginary part V I

n), and current injection In (real part IRn
and imaginary part IIn). Since Pn and Qn are quite easy to
measure, the scope of the power flow model is to estimate Vn

and In in all the nodes n ∈ N [26]. It is worth noting that we
adopt the active sign convention, as described by Kersting [27],
where positive values are used to denote nodal injections.

1We denote the real and imaginary components of a complex number C ∈
C as CR and CI , respectively. j is the imaginary unit. The transpose and
Hermitian of vector C are represented as CT and CH , respectively. The
symbol ⊙ is the Hadamard product, while |C| and ∠C denote the magnitude
and phase of a complex number, respectively.

B. Iterative Numerical Technique

As a first step, we will describe the INT. First, we will
introduce the admittance matrix model, then the generators
and loads modeling, and finally the Network Equations.

All networks’ lines, i.e., the edge (i, k) ∈ E that connects
the nodes i, k ∈ N , are modeled with a common branch
model, consisting of a standard π line model, with series
impedance ZE

i,k = RE
i,k + jXE

i,k and admittance Y E
i,k =

(ZE)−1
i,k . The network branch admittance matrix Y br is then

defined as follows:

Y br
i,k =


∑

w:(i,w)∈E Y
E
i,w if i = k

−Yi,k if i ̸= k and (i, k) ∈ E
0 otherwise

. (1)

As for the shunt elements, a shunt-connected element such
as a capacitor or inductor is modeled as a fixed impedance
to ground at a bus. The shunt element’s admittance at bus
n ∈ N is given as Y N

n = GN
n + jBN

n where GN
n and BN

i
are the shunt conductance and susceptance at node n ∈ N .
By defining the shunt matrix as

Y sh
i,k =

{
Y N
i if i = k

0 otherwise , (2)

we can define the overall admittance matrix as Y = Y br+Y sh

where G = Y R and B = Y I .
For a node n ∈ N , a generator is modeled as a com-

plex power injection Sg
n at a specific bus. The injection is

Sg
n = P g

n + jQg
n where P g

n and Qg
n are active and reactive

power injections. Instead, constant power loads are modeled
as a specified quantity of active and reactive power consumed
at a bus, P d

n and Qd
n, and the load is Sd

n = P d
n + jQd

n.
The power flow equations which describe the sinusoidal

steady-state equilibrium of a power network are given by the
following set of equations:

I = Y V, (3)

S = V ⊙ IH . (4)

The nodal bus injections are then matched to the injections
from loads and generators according to the nodal power
balance equations, expressed as a function of the complex bus
voltages and generator injections in complex matrix form as

Pn + P d
n + P g

n = 0, Qn +Qd
n +Qg

n = 0, (5)

with n ∈ N . Eq. (5) can be rewritten in terms of polar co-
ordinates according to the possible formulation of the voltage
phasor

Vn = V R
n + jV I

n , Vn = |Vn|(cos(∠Vn) + j sin(∠Vn)), (6)

with n ∈ N , obtaining the equations in terms of the real and
imaginary parts of the voltage

Pn=
∑
k∈N

Gn,k(V
R
n V R

k +V I
n V

I
k)+Bn,k(V

I
n V

R
k −V R

n V I
k),

Qn=
∑
k∈N

Gn,k(V
I
n V

R
k −V R

n V I
k)−Bn,k(V

R
n V R

k +V I
n V

I
k), (7)

Fig. 1: IEEE 57-bus.

with n ∈ N , or in terms of magnitude and phase angle of the
voltage

Pn=
∑

k∈N |Vn||Vk|
(
(Gn,k+jBn,k)e

−j(∠Vn−∠Vk)
)R

,

Qn=−
∑

k∈N |Vn||Vk|
(
(Gn,k+jBn,k)e

−j(∠Vn−∠Vk)
)I

, (8)

with n ∈ N , or in terms of real and imaginary parts of the
voltage and the current

Pn = V R
n IRn + V I

n I
I
n, Qn = −V R

n IIn + V I
n I

R
n , (9)

with n ∈ N . The non-linear Eqns. (7), (8), and (9) can be
solved with different INT [7] but also free tools are available
like MATPOWER [19].

C. Available Data
The network considered in this paper is the IEEE 57-bus

case (Figure 1). The IEEE 57-bus has been chosen as it is
small and easy to use, yet complex enough to use for the
validation of our proposed method similarly to what has been
done in [9], [10], [13], [16]. Regarding power generation, this
test system has 7 distinct generating units, each situated at
individual busbars.

The network is constituted of 57 bus, complemented by 7
generators, and 42 loads.

The dataset has been generated using MATPOWER’s INT.
In order to generate the data, we set a random amplitude noise
±0.2 per unit, using a power basis of 100[MVA]. For each
sample, we rely on the MATPOWER INT to retrieve voltages
and currents. The dataset is composed of 10-thousand unique
samples.

IV. METHODOLOGY

In this section, we will provide an overall description of how
we moved from INT to DDT, followed by an explanation of the

Forward Phase

DDT PIDDT

INT
Design

Physical
Knowledge

Data
Collection

Data

Input
Features

PIDDT
Choice

Data
Augmentation

DDT
Choice

DDT
Prediction

INT
Output

PIDDT
Prediction

INT

Design/Training/Model-Selection/Error-Estimation Phases

Fig. 2: A graphical abstract of Section IV.

shift to PIDDT, as referenced in Section IV-A. In particular, we
will show how to construct a surrogate/digital-twin of the INT
able to solve the power flow problem with the same INT’s level
of accuracy at a fraction of its computational costs. Then we
will describe in detail the proposed DDT surrogate of the INT,
carefully describing our choices and comparing them with
the literature (Section IV-B). Finally, we will describe how
to switch from the DDT to the PIDDT that fully embeds the
physical knowledge into the DDT (Section IV-C). A graphical
abstract of this section is reported in Figure 2.

A. Preliminaries

Creating a surrogate [28] of the INT-based solution of the
power flow problem (Section III-A) can be mapped into a
now-classical machine learning multi-output regression prob-
lem [12]. In particular, given an input space X = Rnx (in
our case Pn and Qn ∀n ∈ N) and the associated output space
Y = Rny (in our case V R

n , V I
n , IRn , and IIn ∀n ∈ N) where the

association is made through the INT (Section III-B), namely
a deterministic rule, the goal is to learn a model fΘ : X → Y ,
characterized by its set of parameters Θ, through an algorithm
AH, characterized by its set of hyperparameters H, that
chooses fΘ in order to well approximate the input output
relation, in our case the INT. The quality of the approximation
is measured according to a loss function ℓ : Y × Y → R.
H takes into account many different aspects [12], [29], [30]:
the functional form of fΘ (e.g., linear, kernel, convolutions,
pooling, and transformers), parameterization of the functional
form (e.g., the kernel type, the kernel hyperparameters, the
number of layers, and the type of layers), the possible explicit
regularization (e.g., type of norm and amount of regularization
and over-parameterization), and implicit regularization (e.g.,
type of optimizer, early stopping, and dropout).

In DDT, Θ and H are chosen (during the training and model
selection phases respectively [12], [31]) purely based on a
series of nd observations of the input and corresponding output
called dataset D = {(x1,y1), · · · , (xnd

,ynd
)} with x ∈ X

and y ∈ Y . Usually the training phases consist in solving the
following problem

minΘ
1

|D|
∑

(x,y)∈D ℓ(fΘ(x),y) +R(Θ), (10)

namely, once chosen H a regularized empirical risk mini-
mization procedure is employed where some hyperparameters
appear explicitly (e.g., inside R(Θ)) while others are hidden
inside the functional form of fΘ or in the min. Once Prob-
lem (10) is solved the generalization performance of AH,
namely, its ability to find optimal fΘ that works well on
previously unseen data, is tuned during the model selection
phase and estimated during the error estimation phase [31].
Researchers and practitioners commonly use resampling tech-
niques since they work well in most situations. Resampling
techniques are based on a simple idea: the original dataset D
is resampled once or many (nr) times, with or without re-
placement, to build three independent datasets called learning,
validation, and test sets, respectively Lr, Vr, and T r, with
r ∈ {1, · · · , nr} such that Lr ∩ Vr = ⊘, Lr ∩ T r = ⊘,
Vr ∩ T r = ⊘, and Lr ∪ Vr ∪ T r = D. Subsequently, to
select the best combination of hyperparameters H∗ in a set
of possible ones S = {H1,H2, · · · } for the algorithm AH
or, in other words, to perform the model selection phase, the
following procedure has to be applied

minH∈S
1
nr

∑nr

r=1
1

|Vr|
∑

(x,y)∈Vr ℓ(AH(Lr)(x),y), (11)

where fΘ∗ = AH(Lr) is a model built with the algorithm
AH with its set of hyperparameters H and with the data Lr.
Since the data in Vr has not been seen during the training
phase, the selected set of hyperparameters is the one that
allows achieving a small error on a previously unseen set
of data. Then, to evaluate the performance of the optimal
model, i.e., the model fΘ∗ (the solution of Problem (10)) with
the best hyperparameters configurations H∗ (the solution of
Problem (11)) the following quantity is computed

1
nr

∑nr

r=1
1

|T r|
∑

(x,y)∈T r ℓ(AH∗(Lr ∪ Vr)(x),y), (12)

where fΘ∗ = AH∗(Lr∪Vr) is a model built with the algorithm
A with the best set of hyperparameters H∗ and with the data
Lr ∪ Vr. Since the data T r has not been seen during the
training phase nor the model selection phase the quantity of
Eq. (12) is an unbiased estimator of the generalization ability
of the final model [31].

In PIDDT everything is quite similar to what has been
explained for DDT except for the fact that training and model
selection phases are not made purely based on the data D
but also based on the physical knowledge about how fΘ, i.e.,
the model that we want to learn, should behave [18]. For
example, in our case we know that the input/output relation
induced by the INT should satisfy the Eqns. (3) and (4)
(where Eq. (4) can be written as Eqns. (7), or (8), or (9)).
In other cases the knowledge may be less precise, e.g., the
fΘ should be monotonically increasing in some variable or
its derivative should not be greater than a certain threshold.
At the same time the physical knowledge may be leveraged
also in augmenting D. More formally, the physical knowledge
can be encapsulated in AH in many different ways [17], [18]:
by modifying functional form of fΘ (e.g., that should satisfy
some property), by including/excluding some parameterization
of the functional form (e.g., some choice of the architecture

may be not useful), as explicit regularization/constraint (e.g.,
transforming a constraint into a regularizer), and as implicit
regularization (e.g., augmenting the data).

B. The proposed Data-Driven Technique
The no-free-lunch theorem [32] ensures us that, in order

to find the best algorithm for a particular application, it is
necessary to test multiple algorithms since no optimal a-
propri choice can be made. Nevertheless, in our case, domain-
specific constraints limit the set of possible choices. In fact, our
purpose is to surrogate the INT with a DDT that can achieve
high accuracy with limited computational requirements when
it comes to computing fΘ(x), namely in the forward phase.
The computational requirement constraints immediately ex-
clude some machine learning algorithms: kernel methods or
ensemble methods that, in order to achieve high accuracy, need
a totally different model for each of the outputs [12], resulting
in a computationally expensive forward phase. Instead, neural
networks, are the most suitable choice in this context since
their structure is composed of a first non-linear block that
learns a representation fed to a linear block that makes
the actual predictions resulting in a model which is quite
computationally efficient [29], [30]. For the specific needs of
our application, deploying a deep neural network (e.g., graph
neural network, convolution, or transformer) may not be the
most effective or sensible choice. In fact, the topology of our
power network is fixed, and a simple vector x ∈ Rnx contain-
ing Pn and Qn ∀n ∈ N is already a good representation of
the power network. So a single fully connected hidden-layer
neural network should be a good choice: it allows to rely on an
universal approximator [29], [30] limiting, at the same time,
the possible number of parameters (and then computational
requirements of the forward phase) and hyperparameters (and
then the computational requirements of building the DDT).
More formally, our choice for the network is the following
one

fΘ={W o,Wh}(x) = W oφ(Whx), (13)

where W o ∈ Rny×nh , Wh ∈ Rnh×nx (for a total of
nynh+nhnx parameters), φ is the activation function, and nh

is the number of hidden unit. Then, for AH, i.e., Problem (10),
we do not insert any regularization since data produced by
the INT are not noisy, while for solving the minimization
problem we opt for the ADAM algorithm [33], with a fixed
batch size of 128, empowered by a scheduler that decreases
the learning rate ρ by a factor ρf when training error does
not decrease more than a threshold ρt for a given epoch
number ρe. As a consequence the hyperparameters H of
our algorithm AH are the following ones: the number of
hidden units nh, the activation φ, the initial learning rate ρ0,
the learning factor of the scheduler ρf , the threshold of the
scheduler ρt, the epoch number of the scheduler ρe, and the
total epochs ne. Then in model selection and error estimation
phase we set nr = 1 using a sampler with no replacement,
70% of the data for learning 15% for validation, and 15%
for test, and S as the Cartesian product of searching nh ∈
{102, 102.2, · · · , 104}, φ ∈ {relu, sigmoid} where relu is
the rectified linear unit and the sigmoid is the sigmoid func-
tion, ρ0 ∈ {10−6, 10−5, · · · , 10−1}, ρf ∈ {0.90, 0.95, 0.99},
ρt ∈ {10−7, 10−6, · · · , 10−4}, ρe ∈ {10, 15, 20}, and ne ∈
{1000, 2000, · · · , 5000}.

Hyperparameter Ranges

nr 1

|L|, |V|, |T | 70%, 15%, 15%

PI
D

D
T
σ

PI
D

D
T
0 D

D
T

nh 102, 102.2, · · · , 104

φ relu, sigmoid

ρ0 10−6, 10−5, · · · , 10−1

ρf 0.90, 0.95, 0.99

ρt 10−7, 10−6, · · · , 10−4

ρe 10, 15, 20

ne 1000, 2000, · · · , 5000
λ0 10−4, 10−6, 10−8, 10−10

λc 4, 5, 6, 7

λf 10, 100

σ 0.001, 0.01, 0.1, 1, 1.5, 2

TABLE I: Hyperparameters ranges for DDT, PIDDT0, and
PIDDTσ .

A summary of the hyperparameters ranges is reported in
Table I.

C. The proposed Physics Informed Data-Driven Technique

For the PIDDT we inherit everything we described for the
DDT, empowering it with the physical knowledge.

In the author’s opinion, this step is crucial since it allows
us to compare the DDT with the PIDDT fairly. In fact, in
most papers [13], [16], the DDT architecture (i.e., formulation
of Problem (10), architectural choices, hyperparameter spaces,
model selection phase, etc.) is different from the one of the
PIDDT making the comparison unfair. In other papers [14],
[15], [34], instead, the architecture is the same, but the model
selection phase is performed only for the DDT, fixing all
the hyperparameters to the optimal choice for the DDT, and
then the comparison with the PIDDT is performed with this
hyperparameters configuration. This is again unfair since the
optimal hyperparameters for the DDT may be different from
the one of the PIDDT.

Our proposal to empower the DDT with the physical
knowledge is to construct a custom regularizer R(Θ) to plug
in Problem (10) that fully leverages Eqns. (3) and (4) (where
Eq. (4) can be written as Eqns. (7), or (8), or (9)). In particular,
we would like to underline three Facts

i Eqns. (3) and (4) tells us that the output (V and I in
Eqns. (3) and (4) namely V R

n , V I
n , IRn , and IIn ∀n ∈ N)

of our model fΘ based on its input (S namely P and Q
that are Pn and Qn ∀n ∈ N) need to satisfy the constraint
stated in the equations themselves, namely the following
quantity

∥I − Y V ∥+ ∥S − V ⊙ IH∥, (14)

should be as small as possible (ideally it should tend to
zero);

ii in order to collect D we need to run the INT, or in
other words, we need to generate the data as explained
in Section III-C. Note that ∀(x,y) ∈ D we basically have
that x ≡ S ≡ P,Q and y ≡ V, I;

iii in order to estimate the quantity Eq. (14) we do not need
to run any INT, in fact we simply sample some feasible

P and Q, compute V and I using fΘ, and then we can
compute the quantity Eq. (14).

Based on these Facts we can now formulate R(Θ) as follows

R(Θ) = λ
∑

S∈D [∥I(fΘ(S))− Y V (fΘ(S))∥
+∥S − V (fΘ(S))⊙ IH(fΘ(S))∥

]
, (15)

where λ is a hyperparameter which regulates how much we
want to enforce the quantity Eq. (14) to be small and I(fΘ(S))
and V (fΘ(S)) are the I and V predicted by fΘ when S is
provided as input respectively. Note that the second term in
the summation of Eq. (15) can be written in different ways
considering Eqns. (7), or (8), or (9). For example if we exploit
Eq. (9) we have

∥S − V (fΘ(S))⊙ IH(fΘ(S))∥ (16)

=
∑
n∈N

[
|Pn−V R

n (fΘ(S))I
R
n (fΘ(S))−V I

n (fΘ(S))I
I
n(fΘ(S))|

+ |Qn+V R
n (fΘ(S))I

I
n(fΘ(S))−V I

n (fΘ(S))I
R
n (fΘ(S))|

]
.

Note that the regularizer of Eq. (15) is similar to the one that
has been exploited in many works [14], [15].

The primary limitation of this approach lies in its exclusive
reliance on two of the previously identified Facts (Facts i
and ii), thereby neglecting to effectively incorporate the third
one (Fact iii). For this reason, in this work, we propose to
modify regularizer of Eq. (15) as follows

R(Θ) = λ
2

∑
S∈D [∥I(fΘ(S))− Y V (fΘ(S))∥

+∥S − V (fΘ(S))⊙ IH(fΘ(S))∥
]

+ λ
2

∑
S̃∈{S+NS(σ):S∈D}

[
∥I(fΘ(S̃))− Y V (fΘ(S̃))∥

+∥S̃ − V (fΘ(S̃))⊙ IH(fΘ(S̃))∥
]
, (17)

where NS(σ) is a Gaussian noise of variance σ applied to all
elements of S. Essentially, compared to Regularizer (15), Reg-
ularizer (17) makes more comprehensive use of Fact iii. This
is because it enables a more precise estimation and exploration
of the behavior of fΘ with respect to the quantity defined in
Eq. (14). This improved precision is achievable even when
the cardinality of D is small, as the data can be augmented
with a noise NS(σ), eliminating the necessity to increase D
and then run the INT multiple times. Moreover, when σ = 0,
Regularizer (17) degenerates into Regularizer (15). For this
reason we will refer as the classical PIDDT to the PIDDT with
σ = 0 (PIDDT0) and as the empowered PIDDT (PIDDTσ) the
PIDDT with σ considered as hyperparameter to tune.

At this stage, it is necessary to list the hyperparameters of
the PIDDT which are the same as the ones of the DDT plus λ,
and σ. Note that λ, theoretically, should be as large as possible
so as to enforce the quantity of Eq. (14) to be zero. This cannot
be done in practice since it would make it difficult to solve
the related optimization problem. For this reason, also for λ,
we start from a initial value λ0 and we set a scheduler that
every ne/λc epochs, where λc is the number of changes of λ,
increases λ of a factor of λf . Then in model selection and error
estimation phase we leverage the same setting described for
the DDT enriching S by making a Cartesian product with σ ∈
{0.001, 0.01, 0.1, 1, 1.5, 2}, λ0 ∈ {10−4, 10−6, 10−8, 10−10},
λc ∈ {4, 5, 6, 7}, and λf ∈ {10, 100}.

nd

MAPE MAPE % Impr. MAPE % Impr.

DDT PIDDT0
DDT

vs
PIDDT0

PIDDTσ
PIDDT0

vs
PIDDTσ

100 5.68 ± 0.09 4.68 ± 0.13 18 3.84 ± 0.27 18

1000 0.77 ± 0.16 0.33 ± 0.01 57 0.28 ± 0.02 14

10000 0.23 0.12 48 0.11 2

TABLE II: Average MAPE over the different outputs of the
DDT, the PIDDT0, and the PIDDTσ against the INT together
with the percentage of improvement of the PIDDT0 over the
DDT and the PIDDTσ over the PIDDT0 for the different
values of nd.

A summary of the hyperparameters ranges is reported in
Table I.

V. EXPERIMENTAL RESULTS

In this section we will compare the performance of DDT,
PIDDT0, and PIDDTσ (see Section IV) against the INT (see
Section III-B) using the data described in Section III-C.

The performances, in terms of accuracy, will be measured
in accordance with a quantitative metric, the Mean Absolute
Percentage Error (MAPE), computed against the INT on the
test set T , which allows also to combine (average) over the dif-
ferent outputs (V R

n , V I
n , IRn , and IIn ∀n ∈ N) of the model [35]

and a qualitative metric, the scatter plot INT versus DDT,
PIDDT0, or PIDDTσ where all the outputs are normalized
between [0, 1] so to consider all output simultaneously [36].
For the sake of completeness, when space constraints make it
possible, we will also report the accuracy result over the four
groups of outputs (V R, V I , IR, and II) using the MAPE and
the Coefficient of Determination (R2) [35].

The performances, in terms of computational requirements,
will be measured by means of time to make a prediction of all
the outputs (V R

n , V I
n , IRn , and IIn ∀n ∈ N) given the inputs

(Pn and Qn ∀n ∈ N) since our surrogate will be leveraged
to replace the INT so training time is unimportant while the
forward phase is crucial.

The training, model selection (performance tuning), and
error estimation (performance assessment) [31] have been
performed following the procedure described in Section IV-A
with the setting described in Table I. We performed all the
experiments varying nd ∈ {100, 1000, 1000} and for nd ∈
{100, 1000} we repeated the experiment 30 times reporting
mean and standard deviation of the result while, because of
computational constraints, when nd = 10000 experiment have
been repeated just once.

All experiments have been run on the DelftBlue supercom-
puter at the Delft High-Performance Computing Center [37],
which hosts 238 Compute nodes with a total of 476 Intel
XEON E5-6248R 24C 3.0GHz CPUs and 192 GB of Memory
per node.

Table II reports, for the different values of nd, the average
MAPE over the different outputs of the DDT, the PIDDT0, and
the PIDDTσ against the INT together with the percentage of
improvement of the PIDDT0 over the DDT and the PIDDTσ

over the PIDDT0. From Table II it is possible to observe that,
as expected from the theory, the more data (larger nd) the
better the models work. The PIDDT0 is consistently more

Output DDT PIDDT0 PIDDTσ

MAPE

V R 0.2181 0.0910 0.0886

V I 0.1443 0.0525 0.0499

IR 0.2390 0.1500 0.1480

II 0.3259 0.1839 0.1824

R2

V R 0.9821 0.9823 0.9823

V I 0.9823 0.9824 0.9824

IR 0.9996 0.9998 0.9998

II 0.9990 0.9996 0.9996

TABLE III: MAPE and R2 of the DDT, the PIDDT0, and the
PIDDTσ against the INT, for nd = 10000 and for each group
of the outputs.

Hyperparameter DDT PIDDT0 PIDDTσ

nr 1

|L|, |V|, |T | 70%, 15%, 15%

nh 1291 3162 3162

φ relu relu relu

ρ0 10−4 10−4 10−4

ρf 0.90 0.95 0.95

ρt 10−4 10−6 10−6

ρe 10 20 20

ne 2000 5000 5000

λ0 10−10 10−10

λc 7 7

λf 100 100

σ 0.01

TABLE IV: Optimal configuration of the hyperparameters for
nd = 10000 for the DDT, the PIDDT0, and the PIDDTσ .

accurate than the DDT with peaks of improvements up to 50%.
Also PIDDTσ is consistently more accurate than PIDDT0

especially in the small sample (small nd) regime with peaks
of improvements up to 20%. Note also that the models start to
become practical already when nd = 1000 with errors below
1%.

In order to get some more insight, with respect to the one
derived from Table II, we reported a series of tables and graphs
that shade some lights on other properties of the developed
models. Table III reports, for nd = 10000, namely the higher
number of samples considered, and for each group of the
outputs (V R, V I , IR, and II) the MAE and the R2 of the
DDT, the PIDDT0, and the PIDDTσ against the INT. Table IV
reports, for nd = 10000, namely the higher number of samples
considered, the optimal configuration of the hyperparameters
for the DDT, the PIDDT0, and the PIDDTσ . Note that the
blank cells mean that the particular hyperparameter does
not apply to the particular model. Figure 3 reports, for the
different values of nd, the distribution of the absolute error
of the DDT, the PIDDT0, and the PIDDTσ against the INT.
Figure 4 reports the scatter plot of the INT versus PIDDTσ (the
best performing model), where all the outputs are normalized
between [0, 1] for the different values of nd. From Tables III
and IV and Figures 3 and 4 it is possible to derive a series

(a) nd = 100 (b) nd = 1000 (c) nd = 10000

Fig. 3: Distribution of the absolute error of the DDT, the PIDDT0, and the PIDDTσ against the INT for the different values
of nd.

(a) nd = 100 (b) nd = 1000 (c) nd = 10000

Fig. 4: Scatter plot of the INT versus PIDDTσ where all the outputs are normalized between [0, 1] for the different values of
nd.

of observations. From Table III, we can observe that all
models work quite well on all outputs with small differences
that can be mitigated, as future work, by balancing in a
different way the errors on the different output during the
training phase (see Eq. (10)). From Table IV, we can observe
that some optimal configurations of the hyperparameters are
actually the same across the different approaches (the DDT,
the PIDDT0, and the PIDDTσ) reflecting the stability of the
results. Interesting to note that between the PIDDT0 and
the PIDDTσ the only optimal hyperparameter that changes
is actually σ. Note also that the DDT requires much less
weights, i.e., number of hidden neurons nh, with respect to
the PIDDT0 and the PIDDTσ: this reflects the fact that the
PIDDT0 and the PIDDTσ need also to embed the physical
knowledge needing more representation power. Note also the
PIDDT0 and the PIDDTσ need more epochs to converge to the
optimal solution with respect to the DDT further supporting
our previous statement. From Figure 3, we can more clearly
appreciate the improvements of the PIDDT0 over the DDT
and of the PIDDTσ over the PIDDT0, the improvements and
changes when increasing the number of samples nd, and the
fact that the distribution of the errors of the PIDDT0 and
the PIDDTσ is much more acceptable and plausible (light-

INT nd DDT PIDDT0 PIDDTσ

15 s
100 0.06 ± 0.01 ms 0.07 ± 0.01 ms 0.19 ± 0.01 ms

1000 0.09 ± 0.01 ms 0.07 ± 0.01 ms 0.08 ± 0.01 ms

10000 0.09 ± 0.01 ms 0.09 ± 0.01 ms 0.11 ± 0.01 ms

TABLE V: Time needed to make a prediction of all the outputs
(V R

n , V I
n , IRn , and IIn ∀n ∈ N) given the inputs (Pn and Qn

∀n ∈ N) varying nd for the INT, the DDT, the PIDDT0, and
the PIDDTσ .

tailed). Finally, from Figure 4, we can qualitatively observe the
remarkable improvements of the PIDDTσ when increasing the
number of samples nd and the fact that already for nd = 1000
the model becomes practical.

Finally Table V reports, for the different values of nd, the
time needed to make a prediction of all the outputs (V R

n , V I
n ,

IRn , and IIn ∀n ∈ N) given the inputs (Pn and Qn ∀n ∈ N) for
the INT (which of course does not depend on nd), the DDT,
the PIDDT0, and the PIDDTσ . From Table V it is possible
to observe that the INT is up to 5 order of magnitude slower
than the DDT, the PIDDT0, and the PIDDTσ , then the latter are
much more practical and effective not having also the problem

of convergence of the INT. Note that the differences between
the DDT, the PIDDT0, and the PIDDTσ are negligible in terms
of time to make a prediction.

VI. CONCLUSIONS

The power grid complexity has significantly increased over
the past decade, primarily due to the integration of diverse
distributed energy resources. To ensure grid stability, reliable
operation, strategic planning, and effective market strategies,
the development of accurate and efficient power flow anal-
ysis tools has become crucial. While current state-of-the-art
approaches rely on iterative numerical techniques that offer
high accuracy, their convergence speed is often slow or even
nonexistent. As a result, researchers have explored data-driven
techniques as an alternative solution, despite their relatively
lower accuracy compared to iterative methods. These data-
driven techniques offer the advantage of exceptional speed.
However, they have been limited by two main factors: a failure
to fully exploit the existing physical knowledge and a lack of
fair comparisons between different approaches. In this study,
we propose a novel physics informed data-driven model that
overcomes these limitations. By integrating domain knowledge
into the data-driven model, constraining it and augmenting
the available data, we were able to outperform current ap-
proaches especially in small sample scenarios. Furthermore,
we introduce a comprehensive framework that enables a fair
comparison of various approaches, thus demonstrating the true
effectiveness of our proposal. Our experimental results on the
IEEE 57 realistic power network provide strong support for
our proposition. Of course this work is a first step toward the
solution of the power flow problem and larger power networks
need to be tested to support the quality of the proposal.

REFERENCES

[1] N. Mahmud and A. Zahedi, “Review of control strategies for voltage
regulation of the smart distribution network with high penetration of
renewable distributed generation,” Renewable and Sustainable Energy
Reviews, vol. 64, pp. 582–595, 2016.

[2] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei, “A survey of distributed optimization and
control algorithms for electric power systems,” IEEE Transactions on
Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.

[3] H. Chen, J. Chen, D. Shi, and X. Duan, “Power flow study and voltage
stability analysis for distribution systems with distributed generation,”
in IEEE power engineering society general meeting, 2006.

[4] B. Stott, “Review of load-flow calculation methods,” Proceedings of the
IEEE, vol. 62, no. 7, pp. 916–929, 1974.

[5] A. Potter, R. Haider, G. Ferro, M. Robba, and A. M. Annaswamy, “A
reactive power market for the future grid,” Advances in Applied Energy,
vol. 9, p. 100114, 2023.

[6] G. Ferro, M. Robba, D. D’Achiardi, R. Haider, and A. M. Annaswamy,
“A distributed approach to the optimal power flow problem for un-
balanced and mesh networks,” IFAC-PapersOnLine, vol. 53, no. 2, pp.
13 287–13 292, 2020.

[7] M. Karimi, A. Shahriari, M. R. Aghamohammadi, H. Marzooghi,
and V. Terzija, “Application of newton-based load flow methods for
determining steady-state condition of well and ill-conditioned power
systems: A review,” International Journal of Electrical Power & Energy
Systems, vol. 113, pp. 298–309, 2019.

[8] S. Iwamoto and Y. Tamura, “A load flow calculation method for ill-
conditioned power systems,” IEEE transactions on power apparatus and
systems, no. 4, pp. 1736–1743, 1981.

[9] Y. Liu, N. Zhang, Y. Wang, J. Yang, and C. Kang, “Data-driven power
flow linearization: A regression approach,” IEEE Transactions on Smart
Grid, vol. 10, no. 3, pp. 2569–2580, 2018.

[10] L. Guo, Y. Zhang, X. Li, Z. Wang, Y. Liu, L. Bai, and C. Wang,
“Data-driven power flow calculation method: A lifting dimension linear
regression approach,” IEEE Transactions on Power Systems, vol. 37,
no. 3, pp. 1798–1808, 2021.

[11] J. Yu, Y. Weng, and R. Rajagopal, “Mapping rule estimation for power
flow analysis in distribution grids,” arXiv preprint arXiv:1702.07948,
2017.

[12] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[13] H. H. Müller, M. J. Rider, and C. A. Castro, “Artificial neural networks
for load flow and external equivalents studies,” Electric power systems
research, vol. 80, no. 9, pp. 1033–1041, 2010.

[14] Y. Yang, Z. Yang, J. Yu, B. Zhang, Y. Zhang, and H. Yu, “Fast calculation
of probabilistic power flow: A model-based deep learning approach,”
IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2235–2244, 2019.

[15] F. Fioretto, T. W. K. Mak, and P. Van Hentenryck, “Predicting ac optimal
power flows: Combining deep learning and lagrangian dual methods,”
in AAAI conference on artificial intelligence, 2020.

[16] X. Hu, H. Hu, S. Verma, and Z. Zhang, “Physics-guided deep neural net-
works for power flow analysis,” IEEE Transactions on Power Systems,
vol. 36, no. 3, pp. 2082–2092, 2020.

[17] B. Huang and J. Wang, “Applications of physics-informed neural net-
works in power systems-a review,” IEEE Transactions on Power Systems,
2022.

[18] G. Karniadakis, I. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” Nature Reviews Physics, vol. 3,
no. 6, pp. 422–440, 2021.

[19] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on power systems,
vol. 26, no. 1, pp. 12–19, 2010.

[20] A. Karami and M. Mohammadi, “Radial basis function neural network
for power system load-flow,” International Journal of Electrical Power
& Energy Systems, vol. 30, no. 1, pp. 60–66, 2008.

[21] V. Bolz, J. Rueß, and A. Zell, “Power flow approximation based on graph
convolutional networks,” in IEEE international conference on machine
learning and applications, 2019.

[22] M. Xiang, J. Yu, Z. Yang, Y. Yang, H. Yu, and H. He, “Probabilistic
power flow with topology changes based on deep neural network,”
International Journal of Electrical Power & Energy Systems, vol. 117,
p. 105650, 2020.

[23] Z. Yan and Y. Xu, “Real-time optimal power flow: A lagrangian based
deep reinforcement learning approach,” IEEE Transactions on Power
Systems, vol. 35, no. 4, pp. 3270–3273, 2020.

[24] Y. Zhou, W. Lee, R. Diao, and D. Shi, “Deep reinforcement learning
based real-time ac optimal power flow considering uncertainties,” Jour-
nal of Modern Power Systems and Clean Energy, vol. 10, no. 5, pp.
1098–1109, 2021.

[25] D. Cao, W. Hu, X. Xu, Q. Wu, Q. Huang, Z. Chen, and F. Blaabjerg,
“Deep reinforcement learning based approach for optimal power flow
of distribution networks embedded with renewable energy and storage
devices,” Journal of Modern Power Systems and Clean Energy, vol. 9,
no. 5, pp. 1101–1110, 2021.

[26] A. Primadianto and C. N. Lu, “A review on distribution system state
estimation,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp.
3875–3883, 2016.

[27] W. H. Kersting, Distribution system modeling and analysis. CRC press,
2017.

[28] R. Alizadeh, J. K. Allen, and F. Mistree, “Managing computational
complexity using surrogate models: a critical review,” Research in
Engineering Design, vol. 31, pp. 275–298, 2020.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[30] C. C. Aggarwal, Neural networks and deep learning. Springer, 2018.
[31] L. Oneto, Model Selection and Error Estimation in a Nutshell. Springer,

2020.
[32] D. H. Wolpert, “The lack of a priori distinctions between learning

algorithms,” Neural computation, vol. 8, no. 7, pp. 1341–1390, 1996.
[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.
[34] M. K. Singh, S. Gupta, V. Kekatos, G. Cavraro, and A. Bern-

stein, “Learning to optimize power distribution grids using sensitivity-
informed deep neural networks,” in IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids,
2020.

[35] M. Z. Naser and A. H. Alavi, “Error metrics and performance fitness
indicators for artificial intelligence and machine learning in engineering
and sciences,” Architecture, Structures and Construction, pp. 1–19, 2021.

[36] K. L. Sainani, “The value of scatter plots,” PM&R, vol. 8, no. 12, pp.
1213–1217, 2016.

[37] Delft High Performance Computing Centre (DHPC), “DelftBlue
Supercomputer (Phase 1),” https://www.tudelft.nl/dhpc/ark:
/44463/DelftBluePhase1, 2022.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

	Introduction
	Related Works
	Problem Formalization and Available Data
	Power Flow Problem
	Iterative Numerical Technique
	Available Data

	Methodology
	Preliminaries
	The proposed Data-Driven Technique
	The proposed Physics Informed Data-Driven Technique

	Experimental Results
	Conclusions
	References

