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A B S T R A C T

The stress intensity factor is a widely used parameter in linear elastic fracture mechanics to
assess the stress field near the crack tip, and it is usually defined as the product between the
remote stress, the square root of the crack length, and a geometric factor depending on the
geometry of the test specimen, the size and location of the crack. However, this well-established
expression cannot be used in case of non-constant stress distribution on crack surfaces, typically
resulting from diffusive field. This work presents an analytical procedure to compute the stress
intensity factor due to any kind of stress distribution that can be expressed as a polynomial.
Firstly, the non-constant stress distribution is expressed as a polynomial. Then, the stress
intensity factor is computed according to the principle of superposition of effects, as the sum of
the stress components of each single polynomial grade and the corresponding geometric factors.
The geometric factors for sphere with central and superficial cracks are determined using a
finite element model, and closed-form expressions for these geometric factors are provided as
functions of a normalized geometric parameter. These functions can be used in case of any
stress loading and spherical geometry. The analytical procedure is specifically applied to assess
the stress intensity factor caused by stress resulting from lithium diffusion in active material
particles of lithium ions batteries electrodes. The results are compared with those obtained using
a multiphysics finite element fracture model, showing good agreement and demonstrating the
accuracy of the proposed analytical procedure. Then, the procedure presented in this work
enables avoiding expensive multiphysics simulations and can be used to develop fast, accurate,
and computationally efficient lithium ion batteries degradation models for the online estimation
of the capacity decay with charge/discharge cycles.

. Introduction

The stress intensity factor (SIF) is the most used parameter in linear elastic fracture mechanics (LEFM) theory to assess the
ingularity of the stress field at the crack tip [1–3].

The accurate estimation of SIF is essential to predict the fracture behavior of components under different loading conditions. For
nstance, the criterion of maximum circumferential stress used to determine the crack propagation path depends on SIF values [4],
s well as the Paris’ law predicting the fatigue life of components due to cyclic loads is a function of SIF range [5,6]. For this reason,
he development of several techniques to determine SIF has been of particular interest in LEFM.

The magnitude of SIF depends on the geometry of the specimen, the size and location of the crack, and the magnitude of the
pplied stress [3].
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Nomenclature

Symbols

𝜎𝑖 ith coefficient of polynomial stress distribution (MPa)
𝜃 Polar coordinate in crack reference frame (−)
𝑎 Crack length (m)
𝑐 Concentration (mol∕m3)
𝑐𝑅 Reference concentration (mol∕m3)
𝐷 Diffusion coefficient (m2∕s)
𝐷𝑒𝑞𝑣 Equivalent diffusion coefficient for coupled model (m2∕s)
𝐸 Young modulus (MPa)
𝐹 Faraday constant (As∕mol)
𝑓𝑖𝑗 Dimensionless shape function
𝐼 Current density (A∕m2)
𝐾 Stress intensity factor (MPa m0.5)
𝑘𝑚 Mechanical coupling parameter (m3∕mol)
𝑛𝑖 Normal versor (−)
𝑅 Active material particle radius (m)
𝑟 Radial coordinate (−)
𝑟𝑐 Polar coordinate in crack reference frame (−)
𝑅𝑔 Gas constant (J/mol K)
𝑇 Temperature (K)
𝑡 Time (s)
𝑡𝑖 Traction vector (MPa)
𝑇𝑅 Reference temperature (K)
𝑢 Particle level displacement (m)
𝑊 Strain energy density (J∕m3)
𝑥1 Coordinate direction along crack extension
𝑥2 Coordinate direction perpendicular to crack extension
𝑌 Geometric factor

Acronyms

CZM Cohesive zone model
DF Diffusive field
DIS Diffusion induced stress
FEM Finite element model
LEFM Linear elastic fracture mechanics
LIB Lithium ions battery
PFM Phase field model
SIF Stress intensity factor
SOC State of charge (%)
WFM Weight function method

Greek Symbols

𝛼 Expansion coefficient (1∕K)
𝜖𝑐 Diffusion strain (−)
𝜖𝑇 Thermal strain (−)
𝜖𝑐 Hoop strain (−)
𝜖𝑟 Radial strain (−)
𝛤 Path

Several analytical solutions of SIF considering different geometries and loading conditions have been developed over the years
nd are collected in well-known handbooks [7–10]. The main drawback of analytical solutions is that they can be applied to a limited
umber of standard cases, despite the ease of computation. On the other hand, numerical computation based on the finite element
2
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𝛬 Area enclosed in the path 𝛤
𝜈 Poisson ratio (−)
𝛺 Partial molar volume (m3∕mol)
𝜎𝑐 Hoop stress (MPa)
𝜎ℎ Hydrostatic stress (MPa)
𝜎𝑟 Radial stress (MPa)

Recursive superscripts

max Maximum

method (FEM) or the weight function method (WFM) is often employed in the case of complex geometry or loading conditions, such
as non-uniform stress distribution on crack surfaces.

The diffusion process in solid material causes the migration of energy or chemical species driven by temperature gradient
or thermal problem or the concentration gradient for mass transfer problem. The inhomogeneous distribution of the diffusion
pecies results in differential strain, then strain mismatch arises in the material, leading to the so-called diffusion induced stress
DIS) [11,12], which can trigger fracture ultimately.

Several works have addressed a wide range of fracture problems due to stress caused by temperature gradient [13], including
hermal shocks problems [14–20].

Regarding fracture caused by chemical diffusion, an important application is on active material particles in electrodes of lithium
on batteries (LIBs). Indeed, fracture is one of the main causes of aging and degradation in LIBs, then a deep understanding of the
racture mechanics in LIBs is essential, given the rapid spread of this technology [21,22].
racture in electrodes active material have been studied over the years using both experimental [23] and numerical modeling
pproaches [24]. Despite the different mechanisms and factors triggering and enhancing fracture, it is observed that the geometry
nd microstructure of electrodes as well as the current rate affect fracture [25]. In particular, since the current rate is considered a
IB requirement, the appropriate electrode design giving the best trade-off between electrochemical performances, manufacturing
ost, and mechanical damage should be chosen.

During LIB operations, lithium ions move between electrodes and get into their microstructure with insertion and extraction
rocesses. Lithium ions distribution in active material particles is inhomogeneous because of diffusion: the concentration is greater
t the particle surface with respect to the core during insertion, and vice-versa during extraction. Furthermore, lithium ions insertion
nd extraction cause the volume change of the particle, which is proportional to lithium concentration: the greater the lithium ions
oncentration, the greater the volume change of the particle. Then, strain mismatch arises in the particle as areas with higher
ithium concentration swell more than areas with lower lithium concentration. This differential strain causes DIS, resulting in crack
ropagation in electrode microstructure [26–32].
inally, fracture of electrode microstructure causes impedance rise and capacity fade ultimately, because it isolates some portions
f active material, hindering the passage of lithium ions, and triggers undesired side reactions, consuming lithium ions [23].

DIS distribution on crack surfaces of active material particles of LIBs is non-constant. Then, SIF is usually computed with FEM
sing the path-independent J-integral formulation developed for diffusive-mechanical phenomena [33–37], as analytical solutions
re not available. However, the computation is often highly demanding, especially because the solution of a multi-physics problem
s required.
lternatively, SIF is computed according to the WFM [38–42], using a simpler load case to obtain the reference solution. However,

he reference solution is usually got from an approximated geometry (plate or disk), as it does not exist for spherical geometry.
learly, this approximation may affect the accuracy of SIF computation.
lternative methods to study fracture in LIBs, such as Cohesive Zone Model (CZM) [40,43–50] and Phase Field Model (PFM) [51–61]
ay be computationally expensive as well.

This work provides a fast, accurate, and computationally efficient analytical procedure to compute SIF in case of non-constant
tress distribution on the crack surfaces, typically resulting from a diffusive field, such as the concentration gradient in active material
articles of LIBs electrodes. The non-constant stress distribution is expressed as a polynomial and SIF is computed according to the
rinciple of superposition of effects, as the sum of the stress component of each single polynomial grade and the corresponding
eometric factor. A spherical geometry with central and superficial cracks is considered. A FEM model is built to compute a
eneral expressions of the geometric factors as a function of the normalized crack length (crack length divided by the radius of
he sphere). Finally, the validity of the proposed analytical procedure to compute SIF in active material particles of LIBs electrodes
s demonstrated by comparing the analytical results with the multiphysics FEM fracture model results.

The article is organized as follows. The electrochemical–mechanical model to solve lithium concentration, stress, and strain
istribution in active material particles of LIBs electrodes is provided in Section 2.1. The basis of LEFM theory and the analytical
ethod for SIF computation based on the principle of superposition of effects are provided in Section 2.2. The implementation of

he analytical procedure to compute SIF in case of non-uniform stress distribution on crack surfaces is described in Section 2.3.
losed-form expressions of the geometric factors for sphere with central and superficial cracks and the results of the analytical
omputation of SIF for graphite particles are shown in Section 3.
3
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Table 1
DIS model equations [12].

Diffusive equations

Mass conservation 𝜕𝑐
𝜕𝑡

= 𝐷
𝑟2

𝜕
𝜕𝑟

(

𝑟2 𝜕𝑐
𝜕𝑟

)

(1)

Boundary conditions
⎧

⎪

⎨

⎪

⎩

𝜕𝑐
𝜕𝑟
|

|

|𝑟=0
= 0 for 𝑡 ≥ 0

𝜕𝑐
𝜕𝑟
|

|

|𝑟=𝑅
= 𝑅𝑐𝑚𝑎𝑥𝐶𝑟𝑎𝑡𝑒

3⋅3600
for 𝑡 ≥ 0

(2)

Mechanical equations

Constitutive 𝜀𝑟 =
1
𝐸

[

𝜎𝑟 − 2𝜈𝜎𝑐
]

+ 𝛺
3
(𝑐 − 𝑐𝑅) 𝜀𝑐 =

1
𝐸

[

(1 − 𝜈)𝜎𝑐 − 𝜈𝜎𝑟
]

+ 𝛺
3
(𝑐 − 𝑐𝑅) (3)

Congruence 𝜀𝑟 =
𝑑𝑢
𝑑𝑟

𝜀𝑐 =
𝑢
𝑟

(4)

Equilibrium 𝜕𝜎𝑟
𝜕𝑟

+ 2
𝑟

(

𝜎𝑟 − 𝜎𝑐

)

= 0 (5)

Boundary conditions 𝑢||
|𝑟=0

= 0 𝜎𝑟
|

|

|𝑟=𝑅
= 0 (6)

Solutions

Concentration 𝑐(𝑟, 𝑡) = 𝑐0 +
𝐼𝑅
𝐹𝐷

[

3𝜏 + 1
2

(

𝑟
𝑅

)2

− 3
10

− 2 𝑅
𝑟

∑∞
𝑛=1

(

𝑠𝑖𝑛(𝜆𝑛𝑟∕𝑅)
𝜆2𝑛𝑠𝑖𝑛(𝜆𝑛 )

𝑒−𝜆2𝑛𝜏
)]

(7)

Displacement 𝑢(𝑟) = 𝛺
3(1−𝜈)

[

(1 + 𝜈) 1
𝑟2
∫ 𝑟
0 (𝑐 − 𝑐𝑅)𝑟2 𝑑𝑟 + 2(1 − 2𝜈) 𝑟

𝑅3 ∫
𝑅
0 (𝑐 − 𝑐𝑅)𝑟2 𝑑𝑟

]

(8)

Radial stress 𝜎𝑟(𝑟) =
2𝛺
3

𝐸
1−𝜈

[

1
𝑅3 ∫

𝑅
0 (𝑐 − 𝑐𝑅)𝑟2 𝑑𝑟 − 1

𝑟3
∫ 𝑟
0 (𝑐 − 𝑐𝑅)𝑟2 𝑑𝑟

]

(9)

Hoop stress 𝜎𝑐 (𝑟) =
𝛺
3

𝐸
1−𝜈

[

2
𝑅3 ∫

𝑅
0 (𝑐 − 𝑐𝑅)𝑟2 𝑑𝑟 + 1

𝑟3
∫ 𝑟
0 (𝑐 − 𝑐𝑅)𝑟2 𝑑𝑟 − (𝑐 − 𝑐𝑅)

]

(10)

2. Material and methods

2.1. Electrochemical–mechanical model

In this work, the electrochemical–mechanical model aims to compute the concentration distribution of lithium ions in active
aterial particles of electrodes due to the lithium flux at the particle boundary, depending on the current delivered by the battery.
hen, the resulting stress and strain are computed according to the concentration distribution. The main equations of the model
long with the boundary conditions are given in Table 1.

The problem is multiphysics and consists of: (a) transport equation, namely the mass transfer equation (Eq. (1)), which is
nalogous to the heat transfer equation and describes how lithium diffusion (analogous to heat transfer) causes the concentration 𝑐

(analogous to temperature 𝑇 ) to change with time; (b) stress–strain equations, namely constitutive (Eq. (3)), congruence (Eq. (4))
nd equilibrium (Eq. (5)) equations.

The active material particle is modeled as a sphere, and the material is assumed isotropic, homogeneous, and linear elastic [25].
hen, the problem is one-dimensional thanks to the hypothesis of axisymmetry, and the equations are written as a function of just
he radial coordinate (𝑟).

The stress–strain equations governing the mechanical field caused by lithium diffusion are analogous to stress–strain equations
ncluding thermal effects. Indeed, lithium diffusion causes chemical strain (Eq. (11)a) which is analogous to thermal strain caused
y temperature variation (Eq. (11)b).

𝜀𝐷𝐹 =

{

𝛺
3

(

𝑐 − 𝑐𝑅
)

Chemical strain (𝐷𝐹 = 𝑐) (a)
𝛼(𝑇 − 𝑇𝑅) Thermal strain (𝐷𝐹 = 𝑇 ) (b)

(11)

Where 𝜀𝐷𝐹 is the strain due to diffusive field (chemical or thermal field), 𝛺 is the partial molar volume of active material, 𝛼 is the
coefficient of thermal expansion and (𝑐 − 𝑐𝑅), and (𝑇 − 𝑇𝑅) are the concentration and temperature variation net of the reference
state (𝑐𝑅 and 𝑇𝑅), respectively. Then, the total strain in the constitutive equation has two contributions, namely the elastic strain
component (first term on the right-hand side of Eq. (3)) and the chemical strain component (second term on the right-hand side
of Eq. (3)).

The constitutive (Eq. (3)) and congruence (Eq. (4)) equations are replaced in the equilibrium equation (Eq. (5)), which is written
as a function of the displacement 𝑢. The displacement 𝑢 is got by integrating twice the resulting equation and applying the boundary
conditions reported in Eq. (6). Radial and hoop strains are computed by replacing the displacement solution 𝑢 in the congruence
equation (Eq. (4)), then radial and hoop stress are computed using the constitutive equation (Eq. (3)).
The solution for displacement, stress, and strain are reported in Eqs. (8)–(10), and they can be computed once the lithium
concentration is got solving the diffusive problem (Eq. (7)).

The mass transfer equation (Eq. (1)) can be rewritten to take into account the coupling between mechanical and chemical fields,
as shown in previous authors’ works [12]. In this case, DIS affects lithium transport through the gradient of hydrostatic stress,
4
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w
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c
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t
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according to Eq. (12).

𝜕𝑐
𝜕𝑡

= 𝐷
𝑟2

𝜕
𝜕𝑟

(

𝑟2 𝜕𝑐
𝜕𝑟

− 𝑟2
𝛺(𝑐 − 𝑐𝑅)

𝑅𝑔𝑇
𝜕𝜎ℎ
𝜕𝑟

)

(12)

here 𝐷 is the diffusion coefficient, 𝜎ℎ = 𝜎𝑟+2𝜎𝑐
3 is the hydrostatic stress, and 𝑅𝑔 is the gas constant.

Eq. (12) can be written in the same form as the mass transfer equation reported in Eq. (1) to keep the analogy with the heat transfer
equation and to use the solution reported in Eqs. (7)–(10). In this case, an equivalent concentration-dependent diffusion coefficient
(𝐷𝑒𝑞𝑣(𝑐)) replaces the physical diffusion coefficient 𝐷 in Eq. (1), as reported in Eq. (13) [12].

𝐷𝑒𝑞𝑣(𝑐) = 𝐷
[

1 + 𝑘𝑚(𝑐 − 𝑐𝑅)
]

(13)

where 𝑘𝑚 = 2𝛺2𝐸
9𝑅𝑔𝑇 (1−𝜈)

is the coefficient coupling the mechanical and chemical fields, 𝐸 is the Young modulus, and 𝜈 is the Poisson
ratio.

2.2. Linear elastic fracture mechanics theory

According to the LEFM theory, the stress at the crack tip is infinite, thus suitable parameters are needed to properly describe
the stress field near the crack tip.
The SIF (𝐾) is a well-established parameter used to quantify the singularity of the stress field near the crack tip, according
to Eq. (14) [3].

𝜎𝑖𝑗 =
𝐾

√

2𝜋𝑟𝑐
𝑓𝑖𝑗 (𝜃) (14)

here 𝜎𝑖𝑗 are the components of the stress tensor, 𝑟𝑐 and 𝜃 are the polar coordinates with the origin at the crack tip and 𝑓𝑖𝑗 (𝜃) is a
imensionless shape function.

SIF is generally computed analytically in the case of simple geometry and loading condition, on the other hand, numerical
omputation based on FEM is often used for cases involving arbitrary cracks in complex structures or under complex loading
onditions.

.2.1. Stress intensity factor — numerical computation
The SIF is generally computed with FEM using the J-integral, which is a contour integral developed by Rice [62] to characterize

he crack tip state both in linear elastic and elastic–plastic materials.
The standard form of J-integral proposed by Rice [62] for 2D fracture problem is reported in Eq. (15), considering an arbitrary

ounterclockwise path 𝛤 around the crack tip (Fig. 1).

𝐽 = ∫𝛤

(

𝑊 𝑑𝑥2 − 𝐭 ⋅ 𝜕𝐮
𝜕𝑥1

𝑑𝑠
)

(15)

where 𝑊 = ∫ 𝜖𝑖𝑗
0 𝜎𝑖𝑗𝑑𝜖𝑖𝑗 (Einstein notation) is the strain energy density, 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the components of the stress and strain tensors,

𝐮 is the displacement vector, 𝐭 is the traction vector acting on the path 𝛤 and its components are 𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 , 𝑛𝑗 is the versor normal
to 𝛤 , 𝑥1 and 𝑥2 are the coordinate directions, and 𝑑𝑠 is the element length along the path 𝛤 .

Rice demonstrated that the J-integral is path-independent, meaning that its value does not depend on the chosen path 𝛤 .
However, the standard form of J-integral is no longer path-independent in thermo-mechanical [63,64] or mechanical-diffusive
[33–35] fracture problems. In this case, the modified expression of J-integral (𝐽𝐷𝐹 ) keeping the path-independence property is

Fig. 1. Scheme of the crack region, where 𝛤 is an arbitrary counterclockwise path surrounding the crack tip, 𝛬 is the area enclosed by the path 𝛤 , 𝑥1, 𝑥2 are
the coordinate directions and 𝑛 is the versor normal to 𝛤 .
5
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Fig. 2. Polynomial stress distribution applied on the crack surface, where 𝑥 is the coordinate along the crack surface and 𝑎 is the crack length.

reported in Eq. (16).

𝐽𝐷𝐹 = ∫𝛤

(

𝑊 𝑑𝑥2 − 𝐭 ⋅ 𝜕𝐮
𝜕𝑥1

𝑑𝑠
)

+ ∫𝛬

(

𝝈𝑃 ⋅
𝜕𝜺𝐷𝐹

𝜕𝑥1
𝑑𝛬

)

(16)

Where 𝛬 is the area enclosed within the path 𝛤 , 𝝈𝑃 = [𝜎11, 𝜎22, 𝜎33] is the vector of the principal stresses, 𝜺𝐷𝐹 is the strain vector
due to the diffusive fields, i.e. the chemical (Eq. (11)a) or thermal field (Eq. (11)b).
Eq. (16) states that the energy related to thermal or chemical strain (the second term on the right-hand side of Eq. (16)) has to be
added to the standard J-integral expression developed by Rice (the first term on the right-hand side of Eq. (16)) in order to satisfy
the energy balance and to ensure the path-independence property of J-integral.

The J-integral is equal to the energy release rate 𝐺 when the LEFM theory holds, then SIF can be computed from the J-integral
according to Eq. (17).

𝐾 =

⎧

⎪

⎨

⎪

⎩

√

𝐽𝐸 plane stress
√

𝐽𝐸
(1−𝜈2) plane strain

(17)

2.2.2. Stress intensity factor — analytical computation
The SIF 𝐾 can be analytically computed using the dimensionless geometric factor 𝑌 according to Eq. (18) [3].

𝐾 = 𝑌 𝜎
√

𝑎 (18)

Where 𝑎 is the crack size and 𝜎 is the nominal stress in the far-field, i.e. the stress unaffected by the geometrical discontinuity of
the crack. The geometric factor 𝑌 accounts for the specimen geometry, as well as the size, location, and shape of the crack. Once
the geometric factor is known, the SIF can be computed for any combination of 𝜎 and 𝑎, as long as the loading conditions are the
same.
A large number of geometric factors for various crack geometries are published in the literature and tabulated in several
handbooks [7,8,65]. These geometric factors are obtained considering simple loading cases, namely tension, bending, or their
combination, resulting in a constant or linear stress distribution on the crack surfaces. Then, a more complex loading condition
requires the determination of new geometric factor.

Alternatively, the principle of superposition of effects is used in this work to compute the SIF resulting from an arbitrary stress
distribution on the crack surfaces, thanks to the hypothesis of linear elasticity.
First, the arbitrary stress distribution in the uncracked body over the region where the crack is located is expressed by a polynomial
of grade 𝑛, according to Eq. (19).

𝜎(𝑥) =
𝑛
∑

𝑖=0
𝜎𝑖𝑥

𝑖 (19)

Where 𝜎𝑖 are the coefficients of the polynomial and 𝑥 is the coordinate along the crack surface and it is positive moving toward the
crack tip (Fig. 2).

Then, the SIF (𝐾) is computed by combining Eqs. (19) and (18) and using the principle of superposition of effects, according
to Eq. (20).

𝐾 =
𝑛
∑

𝑖=0
𝑌𝑖𝜎𝑖𝑥

𝑖
√

𝑎 (20)

Where 𝑌𝑖 is the geometric factor for the specific crack configuration corresponding to the 𝑖th term of the polynomial stress
distribution.
6
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Fig. 3. Analytical procedure for SIF computation, where the validation procedure is reported in green.

2.3. Procedure for analytical SIF computation

The analytical procedure developed for SIF computation in case of arbitrary stress distribution on crack surfaces is deepened
in this section. According to Fig. 3, a FEM model is implemented to compute geometric factors. Then, these geometric factors are
used to analytically compute the SIF based on the stress distribution resulting from DIS model. Finally, the analytical computation
is validated with the SIF numerically computed using the FEM model.

2.3.1. FEM model
A FEM model is built in Ansys Mechanical APDL aiming: (a) to compute the geometric factors for a sphere with central and

superficial cracks. These geometric factors are generic and can be used for any arbitrary polynomial stress distribution; (b) to
compute SIF due to DIS in active material particles of LIBs electrodes and to validate the results of the analytical computation
of SIF based on the geometric factors obtained according to point a.

Fig. 4 shows the geometry of the sphere with central and superficial cracks. The central crack has the shape of a disk with
diameter of 2𝑎 (Fig. 4a), on the other hand, the superficial crack is a semi-circle with crack depth of 𝑎 (Fig. 4e). The sphere with the
central crack is modeled in 2D exploiting the axisymmetry. On the other hand, a 3D model is built for the sphere with superficial
crack, and just half of the sphere is modeled thanks to the symmetry.

The mesh is composed of PLANE183 elements in axisymmetric mode for the 2D model (Fig. 4b–d) and SOLID186 elements
for the 3D model (Fig. 4f–h). Special care is taken for the mesh near the crack region. Singular elements are used to capture the
1

√

𝑟𝑐
singularity of the stress field [66], then the elements are chosen to be small near the crack region, and their size is gradually

increased when moving away from it.
The reader can refer to previous authors’ works for a detailed description of the strategy to build the FEM model and mesh [25,37].

2.3.2. Geometric factors computation
The geometric factors for sphere with central and superficial cracks depend just on the ratio 𝑎∕𝑅. Each geometric factor (𝑌𝑖)

corresponding to the single grade of the polynomial stress distribution is determined as summarized below, chosen the ratio 𝑎∕𝑅.

1. The single grade of the polynomial stress distribution (𝜎𝑖𝑥𝑖) is applied as a pressure load on nodes of the crack line (2D model)
and the crack surface (3D model).
7
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Fig. 4. (a) Geometry of sphere with disk-shaped crack located at the center, (b) corresponding 2D axisymmetric FEM mesh model with detail of (c) crack tip
region and (d) elements around crack tip region. (e) Geometry of sphere with semi-circular crack located on the surface, (f) corresponding 3D FEM mesh model
with detail of (g) crack region and (h) elements around the crack region (bottom view).

2. The corresponding SIF (𝐾𝐹𝐸𝑀
𝑖 ) is computed from the J-integral using the CINT command in Ansys, according to Eq. (17).

3. The geometric factor 𝑌𝑖 is estimated using Eq. (20), as reported in Eq. (21).

𝑌𝑖 =
𝐾𝐹𝐸𝑀

𝑖

𝜎𝑖𝑎𝑖
√

𝑎
𝑖 ∈ {0, 1,… , 𝑛} (21)

The procedure is repeated considering another value of 𝑎∕𝑅, then closed-form expressions of the geometric factors are computed
as a function of 𝑎∕𝑅.

2.3.3. SIF computation in case of DIS
DIS model presented in Section 2.1 is used to compute the hoop stress distribution in the uncracked particle over the region

where the crack is located. Then, the hoop stress is approximated with a polynomial and the SIF is analytically computed according
to Eq. (20), using the geometric factors computed as reported in Section 2.3.2.

SIF is also computed numerically with FEM in order to validate the analytical results. In this case, the concentration distribution
within the active material particle is computed analytically according to DIS model reported in Section 2.1. Then, the concentration
is converted into the equivalent temperature exploiting the analogy between diffusive and thermal equations [25,37]. The equivalent
temperature is mapped on structural nodes of the FEM model including the crack surfaces. Finally, SIF is computed from the
J-integral using the CINT command in Ansys, according to Eq. (17).

3. Results and discussion

The geometric factors computed for sphere with central and superficial cracks are reported in this section. Then, SIF due to the
hoop stress resulting from lithium diffusion in active material particles is analytically computed, according to Section 2.3.3. Finally,
the analytical results are compared with FEM fracture model results.

3.1. Geometric factors results

In this work, the geometric factors are computed considering a polynomial of grade 6, then, seven geometric factors are computed
according to the procedure previously reported in Section 2.3.2. In other applications, if the stress distribution can be satisfactorily
fitted with a polynomial of lower grade, geometric factors of higher order can be neglected accordingly.
Figs. 5 and 6 show the geometric factors for the sphere with central and superficial cracks, respectively.

The results show that the geometric factors are quadratic functions of the normalized crack length 𝑎∕𝑅. Tables 2 and 3 provide
closed-form expressions for these geometric factors.

The values of geometric factor corresponding to a constant stress distribution on the surfaces of central crack (𝑌0) are in agreement
with the values reported in the literature by Reinhardt et al. in [67].
8
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Fig. 5. Geometric factors 𝑌𝑖 for sphere with central crack. The curves in black refer to values obtained combining FEM solutions and Eq. (21), on the other
hand, the red dots result from the fitting with quadratic functions (𝑝( 𝑎

𝑅
)2 + 𝑞( 𝑎

𝑅
) + 𝑟).

Fig. 6. Geometric factors 𝑌𝑖 for sphere with superficial crack. The curves in black refer to values obtained combining FEM solutions and Eq. (21), on the other
hand, the red dots result from the fitting with quadratic functions (𝑝( 𝑎

𝑅
)2 + 𝑞( 𝑎

𝑅
) + 𝑟).

Table 2
Coefficients of the quadratic function 𝑝( 𝑎

𝑅
)2 + 𝑞( 𝑎

𝑅
) + 𝑟 for geometric factors of sphere with central crack.

Geometric factor 𝑝 𝑞 𝑟

𝑌0 1.7252 −0.6009 1.1863
𝑌1 1.0172 −0.3566 0.9207
𝑌2 0.6905 −0.2427 0.7757
𝑌3 0.5075 −0.1783 0.6818
𝑌4 0.3928 −0.1377 0.6149
𝑌5 0.3152 −0.1099 0.5642
𝑌6 0.2597 −0.0900 0.5241

Table 3
Coefficients of the quadratic function 𝑝( 𝑎

𝑅
)2 + 𝑞( 𝑎

𝑅
) + 𝑟 for geometric factors of sphere with superficial crack.

Geometric factor 𝑝 𝑞 𝑟

𝑌0 1.2231 0.1864 1.0210
𝑌1 0.0381 0.4987 0.5692
𝑌2 −0.2373 0.5204 0.4305
𝑌3 −0.1111 0.3367 0.3833
𝑌4 −0.1440 0.3360 0.3266
𝑌5 −0.2040 0.3565 0.2828
𝑌6 −0.1500 0.3114 0.2567
9
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Table 4
Graphite properties [12].
Property Symbol Value Unit

Radius 𝑅 10 × 10−6 m
Young modulus 𝐸 15 MPa
Poisson ratio 𝜈 0.3 –
Partial molar volume 𝛺 4.2 × 10−6 m3∕mol
Diffusion coefficient 𝐷 2 × 10−14 m2∕s
Maximum concentration 𝑐𝑚𝑎𝑥 2.9155 × 104 mol∕m3

Temperature 𝑇 298 K

Fig. 7. Results of DIS and fracture model for graphite particle varying C-rate at 50% SOC. Hoop stress distribution (a) during lithium insertion and (c) during
ithium extraction. SIF values varying 𝑎∕𝑅 for (b) particle with central crack during lithium insertion and (d) particle with superficial crack during lithium

extraction.

3.2. Numerical validation of the analytical method in case of DIS

SIF due to the hoop stress caused by lithium diffusion in active material particles of LIB electrodes is computed both analytically
using the geometric factors reported in Tables 2 and 3 and numerically with the FEM fracture model described in Section 2.3.1.
The results are provided in this section.

The electrochemical–mechanical problem is solved analytically according to DIS model reported in Section 2.1, including the
coupling between chemical and mechanical fields. A constant flux is applied at the particle boundary using Eq. (2), according to
the current delivered by the battery.

On the following, the C-rate equal to 1 allows completely filling (or emptying) the active material particle in one hour.
Furthermore, the SOC is intended as the percentage of lithium ions within the particle relative to the maximum concentration
(𝑆𝑂𝐶 = 𝑐

𝑐𝑚𝑎𝑥
).

A graphite particle is chosen as a case study and the corresponding physical parameters are reported in Table 4.
Lithium insertion is considered for the particle with central crack, on the other hand, lithium extraction is considered for particle

with superficial crack, as they trigger tensile hoop stress on the particle center and surface, respectively.
Fig. 7a,c shows the hoop stress distribution within the graphite particle during lithium insertion and extraction respectively,

varying the C-rate and considering 50% SOC. The results show that higher C-rate causes higher concentration gradients within
active material particles, then higher stress, as also reported in previous authors’ works [12].

SIF values computed analytically with the geometric factors reported in Tables 2 and 3 are compared to the results derived
numerically with the FEM model in Fig. 7b,d, varying the crack length and C-rate. The comparison shows a perfect agreement,
demonstrating the validity of the analytical procedure proposed in this work for SIF computation in the case of non-constant stress
distribution on crack surfaces.
10



Engineering Fracture Mechanics 292 (2023) 109597F. Pistorio et al.
Fig. 8. Comparison between SIF values computed with the analytical procedure developed in this work and the approximation of plates and constant stress
distribution usually made in the literature (𝐾 = 1.12

√

𝜋𝜎𝑐,𝑠𝑢𝑝
√

𝑎, where 𝜎𝑐,𝑠𝑢𝑝 is the hoop stress on the particle surface). Graphite particle with superficial crack
during lithium extraction at 1C and 50% SOC is considered. The dotted line shows where the SIF changes sign.

Furthermore, the results show that both C-rate, then the hoop stress within the particle, and crack length affect SIF, according
to Eq. (20). Higher C-rate is more detrimental from the fracture point of view because results in higher SIF, as also reported in
previous authors’ works [25] and confirmed by experimental measurements [68,69].
On the other hand, longer crack results in higher SIF as long as the normalized crack length is lower than 𝑎∕𝑅 = 0.5 for particle
with central crack and 𝑎∕𝑅 = 0.15 for particle with superficial crack. Beyond these limits, the increase in crack length leads to a
decrease in SIF, because of the non-constant far field stress driving the crack.
SIF variation with the crack length is attributed to the variation of the hoop stress distribution according to the radial coordinate.
Indeed, the hoop stress decreases and becomes compressive going from the particle core to the surface for lithium insertion (Fig. 7a)
and going from the particle surface to the core for lithium extraction (Fig. 7c). Then, longer crack experiences lower hoop stress than
smaller crack because the crack tip gets closer to the compressive (or less tension) region. Then, referring to Eq. (20), an increase
in the crack length increases the SIF as long as it balances the decrease in the hoop stress.

Multiphysics FEM fracture model simulations require significant computational capacity and long simulation times, which can
vary from minutes to some hours or even more in the cases of simulation of fracture due to LIB cycling. On the contrary, the
computational time is reduced to a few seconds when using the proposed analytical procedure, because just a sum of products is
required to compute SIF. Simulation time should be kept as low as possible with the perspective of developing an aging model to
assess the capacity fade due to LIB cycling as well as to estimate in real-time the remaining useful life of LIB. Then, the proposed
analytical computation of SIF represents the best compromise to simulate the effect of fracture on battery degradation in terms of
accuracy and computational cost.

Several works in the literature deal with fracture in active material particles due to repeated charge/discharge cycles. In this
case, Paris’ law is often applied to quantify the increase of crack length with cycling. However, SIF is generally computed neglecting
the non-constant stress distribution on crack surfaces, directly using Eq. (18), where the far-field stress is the hoop stress on the
surface of the uncracked particle. Furthermore, the geometric factor of plate under uniaxial stress (𝑌0 = 1.12

√

𝜋 [1]) is used instead
of the one corresponding to spherical geometry [70–74].
A comparison between SIF values computed using the analytical procedure proposed in this work and the approximation of plate
and constant stress distribution usually made in the literature is shown in Fig. 8. Particle with superficial crack during lithium
extraction at 1C and 50% SOC is considered.

The results show that the difference between SIF values is small as long as 𝑎∕𝑅 is lower than 0.15, on the other hand, the
difference increases as 𝑎∕𝑅 increases. Indeed, the decrease of SIF with the increase of crack length is not captured when using the
superficial hoop stress instead of considering the entire stress distribution on crack surfaces. Furthermore, the geometric factor of
plate is far from the case of spherical geometry. Then, this approximation affects the accuracy of Paris’ law in assessing the increase
of crack length, and consequently the results of the degradation model estimating the capacity loss of LIB with cycling.

In this work, the effect of the geometric discontinuity of the crack on lithium concentration is not modeled as SIF is computed
using the hoop stress distribution of uncracked particle. However, lithium accumulates at the crack tip due to the coupling between
chemical and mechanical fields, as reported in previous authors’ work [25]. This causes the material near the crack tip to expand,
decreasing the elastic component of deformation, and stress in turn. However, the difference between SIF values computed with the
analytical procedure presented in this work and using the multiphysics FEM model considering the full coupling between fracture,
chemical, and mechanical fields is less than 3%. Then, this difference can be considered acceptable, especially from the perspective
of avoiding expensive multiphysics FEM simulations and limiting the computational effort of SIF computation.
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4. Conclusions

This work presents a general analytical procedure to compute the SIF resulting from arbitrary stress distribution on the crack
urfaces. In particular, this method can be applied in case of diffusion induced stress, caused by the diffusion of chemical species
nd thermal diffusion. In this case, the well-established analytical expression of SIF, i.e. the geometric factor 𝑌 multiplied by the
emote stress 𝜎 and square root of crack length 𝑎 (𝐾 = 𝑌 𝜎

√

𝑎), cannot be applied as the stress on crack surfaces is non-constant.
Firstly, the generic stress distribution on crack surfaces is approximated by a polynomial function. Then, the SIF is computed

according to the principle of superposition of effects, as the sum of the products between each individual polynomial grade and the
corresponding geometric factor.

The geometric factors for sphere with central and superficial cracks are computed with a FEM fracture model built in Ansys
Mechanical APDL and are expressed as a function of the normalized crack length 𝑎∕𝑅. These geometric factors are general and can
be used for any kind of stress distribution.
Diffusion induced stresses are of particular interest in LIB because they are one of the most significant causes of degradation. For
this reason, the developed analytical procedure is applied to compute the SIF in active material particles of LIBs electrode, where the
diffusion of lithium ions causes an inhomogeneous concentration, leading to nonlinear stress distribution on crack surfaces, which
drives crack propagation. SIF values resulting from the analytical computation are compared with the multiphysics FEM fracture
model results, showing good agreement.
The proposed analytical computation is more accurate than the traditional analytical approach used in the literature, which instead
relies on the geometric factor of plates and neglects the non-constant stress distribution on crack surfaces. Furthermore, the proposed
analytical computation of SIF requires just the stress distribution resulting from the concentration gradient in particles without
cracks, which can be obtained using well-established closed-form solutions. Then, SIF is computed by performing a sum of products,
running in a few seconds and being faster and less computationally demanding compared to solving multiphysics FEM fracture
models, whose simulation time ranges between minutes to some hours. Then, the proposed analytical procedure can be used to
assess fracture in active material particles due to charge/discharge cycles, with the perspective of developing fast, accurate, and
computationally efficient degradation models for the online estimation of LIBs capacity decay.
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