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Review article

Review on the numerical modeling of fracture in active materials for lithium
ion batteries
Francesca Pistorio ∗, Davide Clerici, Francesco Mocera, Aurelio Somà
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Piemonte, Italy

H I G H L I G H T S

Stress computation in active material and coupling with transport equations.
Fundamentals of fracture mechanics models: LEFM, phase-field model and cohesive zone model.
How to implement fracture mechanics models when dealing with LIBs.
Literature results: fracture maps, stability conditions, crack path and fatigue.
Relation between capacity fade and fracture mechanics.
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A B S T R A C T

Lithium ion batteries are one of the most widespread energy storage systems, but they still suffer some
weak points, such as safety, limited energy density, and cycle life. The latter is caused by electrochemical
and mechanical damaging mechanisms. The mechanical damaging mechanisms and their interplay with
electrochemistry are reviewed in this paper. Lithium ions are inserted and extracted in the active materials of
electrodes during battery operation, causing the deformation of the electrode microstructure. The deformation
causes stresses and fractures ultimately, inducing electrochemical reactions on the crack surfaces, which lead
to performance decay, such as loss of capacity and power. Then, proper mechanical models are needed to
evaluate stress and crack propagation during battery operation. This review aims to give a comprehensive
explanation of the following subjects: (a) The most general electrochemical–mechanical and transport models
for intercalation materials; (b) Fundamentals of fracture mechanics; (c) Numerical implementation of fracture
mechanics models applied to lithium ion batteries, covering the different approaches used in literature to
estimate fracture in static and dynamic conditions; (d) Summary of the results of fracture mechanics models
for lithium ion batteries; (e) Degradation models based on fracture mechanics.
1. Introduction

Lithium ion batteries (LIBs) are a key element of the energy tran-
sition of these years. Their applications are extremely wide, ranging
from micro and portable electronics to electric vehicles and stationary
applications. The success of these energy storage systems is due to their
high energy and power density, being rechargeable for many cycles,
and their moderate safety and recyclability. Nevertheless, different
damaging mechanisms occur in LIBs, depending on the active material
of the electrode, which ultimately leads to performance decay during
cycle life [1,2]. Among these, mechanical degradation is one of the
most significant and widespread damaging mechanisms affecting most
of the intercalation and alloy materials used in LIBs electrodes. For
this reason, the research community is committed to studying these
phenomena in order to find solutions to increase the life cycle of LIBs.

∗ Corresponding author.
E-mail address: francesca.pistorio@polito.it (F. Pistorio).

The elementary cell of a LIB is made of a couple of electrodes
separated by a polymeric membrane. The electrodes are thin sheets
deposited on a metallic foil (copper for the anode and aluminum for
the cathode) that collects the electrons. Electrodes are a composite
material, obtained by mixing active material particles (in the range
of micrometers), conductive agents (such as carbon black, especially
for graphitic electrodes), and binder (PVDF). This mixture, referred
to as slurry, is smeared on the current collector, dried, and pressed
to reduce the porosity. The liquid electrolyte, usually a mixture of a
lithium salt (LiPF6) and organic solvent (EC, DMC), fills the porosity of
the electrode when the LIB is assembled.

During operation, electrochemical reactions involving the intercala-
tion and deintercalation of lithium ions in the active material particles
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Nomenclature

Symbols

�̄� Concentration dependent diffusive coeffi-
cient

𝑩 Derivative matrix of shape function
𝑪 Damping matrix
𝑲 Stiffness matrix
𝑸 Unknown vector
𝑹 Residual matrix
𝑺 Iteration matrix
�̂� Enriched nodal displacement
𝑐 Nodal concentration
𝑑 Nodal PF variable
𝑓 Enriched nodal displacement associated

with the asymptotic function
ℎ̂ Enriched nodal displacement associated

with the Heaviside function
�̂� Nodal displacement
 Local history field
𝜌𝑒 Specific density of electrode
𝑎 Crack length
𝐴𝑎 Specific surface area
𝐴𝑐 Crack surface
𝐴𝑒 Electrode surface
𝑎𝑠𝑣 Surface-to-volume ratio of active material

particles
𝐶𝐹 Fraction of capacity loss
𝑑 PF variable
𝐸𝑎 Activation energy
𝐸𝑘 Kinetic energy
𝐹𝑒 Enrichment function
𝑓𝑖,𝑗 Dimensionless shape function for SIF com-

putation
𝐺 Energy release rate
𝑖 Current density
𝑖𝑆𝐸𝐼 Current density of SEI side reaction
𝑘 Mechanical constant
𝐾𝑆𝐸𝐼 SEI growth rate coefficient
𝐾𝑡ℎ Fatigue threshold limit
𝑙0 Length scale parameter
𝑙𝑐 Crack width
𝐿𝑒 Electrode thickness
𝐿𝑆𝐸𝐼 SEI thickness
𝑁𝑖 Generic shape functions
𝑛𝑖 Normal versor
𝑁𝐿𝑖𝑆 Lithium ion flux
𝑛𝑆𝐸𝐼 Moles of Lithium ions consumed per SEI

produced
𝑄𝑒 Specific capacity of electrode

of electrodes cause the current flow in the external circuit. Lithium ions
intercalation causes the deformation of the active material microstruc-
ture: the greater the amount of lithium stored in the host material,
the greater the change of lattice parameters of its crystalline structure,
ultimately causing local deformation in the electrode microstructure.

Furthermore, lithium ions are much smaller than active mate-
rial particles, then they diffuse within the particles during insertion/
extraction, leading to an inhomogeneous concentration distribution,
2

𝑟𝑐 Radial coordinate in crack reference frame
𝑅𝑔 Gas constant
𝑇𝑖 Cohesive traction
𝑡𝑖 Traction vector components
𝑡𝑁 Time for one cycle
𝑢ℎ Enriched displacement
𝑉𝑆𝐸𝐼 SEI molar volume
𝑊𝑒𝑥𝑡 Work of external forces
𝑥𝐿𝑖𝑆 Mole fraction of intercalated lithium ions
𝑌 Geometric factor
𝑑𝑓 Thermodynamic driving force
A Area
C First parameter of Paris’ law
c Lithium ion concentration
D Diffusive coefficient
E Young modulus
e electron
F Faraday constant
g Degradation function of PFM
J J-integral
K Stress intensity factor
L Lagrangian
M Molar mass
m Second parameter of Paris’ law
N Number of cycles
Q Capacity
R Particle radius
r Radial coordinate
S Host site
T Temperature
t Time
U Equilibrium potential
u Displacement
w Weight function
x Cartesian direction
y Cartesian direction

Acronyms

CZM Cohesive zone model
DIS Diffusion induced stress
EC Ethylene carbonate
EPFM Elastic–plastic fracture mechanics
FEM Finite element method
GITT Galvanostatic Intermittent Titration Tech-

nique
LAM Loss of active material
LCO Lithium cobalt oxide
LEFM Linear elastic fracture mechanics
LFP Lithium iron phosphate
Li Lithium ion
LIB Lithium ion battery
LLI Loss of lithium inventory

which causes differential strain and stress ultimately [3–9]. Some mate-
rials have a two-phase-behavior, meaning that phases with significant
different lithium content coexist in the same particle. The sharp change
in lithium content at the boundary between the different phases leads
to high mechanical stress.
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m
g

LMO Lithium manganese oxide
NMC Nickel manganese cobalt
OCV Open circuit voltage
P2D Partial two dimension
PF Phase-field variable
PFM Phase-field model
PVDF Polyvinylidene fluoride
SEI Solid electrolyte interphase
SEM Scanning electron microscope
SIF Stress intensity factor
TSL Traction separation law
XFEM Extended finite element method

Greek Symbols

𝛼 Thermodynamic factor
𝜒 Crack surface density function
𝛿 Distance between crack surfaces in CZM
𝛿𝑓 Fracture separation
𝜂 Standard overpotential
𝜂𝑆𝐸𝐼 SEI overpotential
𝛤 Path
𝛾 Activity coefficient
𝛾𝑠 Surface energy
𝛬 Area enclosed in the path 𝛤
𝜆𝐿 Lamè constant
𝜇 Potential
𝜇𝐿 Lamè constant
𝜈 Poisson ratio
𝛺 Partial molar value
𝛱 Total potential energy
𝛱𝛤 Fracture energy
𝛱𝑒𝑙 Elastic strain energy
𝛱𝐿𝑖 Energy due to lithium diffusion
𝛹 Strain energy density
𝛹𝐿𝑖 Chemical energy density
𝜌 Density
𝜌𝑐 Crack density
𝜎 Stress
𝜎𝑠 Electronic conductivity
𝜎𝑐𝑜 Cohesive strength
𝜏 Shear stress
𝜃 Polar coordinate in crack reference frame
𝜃𝑐 Crack propagation direction
𝜀 Deformation
𝜀𝑎 Accessible volume fraction of active mate-

rial
�̃�𝑒𝑙 Degradated elastic strain energy

Recursive subscripts

+ Positive charge
- Negative charge
0 Initial
c Circumferential
cr Critical
el Elastic

The stress in the electrode microstructure is a serious damaging
echanism, causing the propagation of cracks [10,11] which ultimately

ive rise to: (a) chemical processes consuming lithium ions; (b) the
3

eq Equivalent
h Hydrostatic
Li Lithium
LiS Intercalated site with lithium ions
mech Mechanical
min Minimum
r Radial
ref Reference
S Vacant site
solv Solvent
max Maximum

detachment of some portion of active material, no more able to host
lithium ions. Both phenomena ultimately lead to progressive capacity
fade.
The deformation of the crystal structure of electrodes has an impact on
the dimensions of the entire LIBs, and can be observed during cycling
by measuring its thickness change [12,13]: swelling is detected during
charge, recovered with an opposite shrinkage during discharge.

Some reviews covered the interesting arguments regarding the elec-
trochemical mechanical modeling of LIBs [5,14–16], but there are no
reviews concerning fracture mechanics modeling in the microstructure
of LIBs electrodes, as far as the authors know, except for a brief
overview in [15]. On the other hand, a lot of research papers regarding
the computation of fracture occurring in electrodes microstructure have
been published, especially in the last five years. The works available
in the literature followed different approaches, and sometimes it is
difficult to understand the consistency between them. Furthermore,
fracture mechanics applied to LIBs is a complex multiphysics prob-
lem, somewhat difficult to understand from specific research papers.
Starting from these considerations, the authors wrote this review with
a threefold purpose: (a) to clearly explain the theory of fracture me-
chanics applied to LIBs, analyzing in detail all the modeling approaches
present in the literature; (b) to clarify the main results obtained in the
literature; (c) to highlight lacks and possible developments for future
works.

The work is organized as follows:

• Section 2. The most general electrochemical mechanical model
used to compute stress in active materials (the driving force
of fracture), based on non-dilute solution and able to consider
two-phase materials, is detailed derived and explained.

• Section 3. The fundamentals of fracture mechanics are resumed,
explaining their application to LIBs. The following models are
covered: Linear elastic fracture mechanics (LEFM), Phase-field
model (PFM) based on LEFM and Cohesive zone model (CZM).

• Section 4. The numerical implementation of the models covered
in Section 3 with FEM, XFEM and cohesive elements.

• Section 5. The most significant results obtained in the literature
are resumed. The results are divided on the basis of static and
cyclic load. In the former case, fracture maps, crack stability, and
crack path are explained.

• Section 6. The link between electrochemistry and mechanics is
addressed, showing models aiming to estimate performance decay
due to fracture and mechanical damage.

2. Mechanics in LIBs

The inhomogeneous lithium concentration in the active material
particles caused by the diffusion of lithium ions and by the coexistence
of phases with different lithium content causes differential strains,
leading to the so-called diffusion induced stress (DIS) [3–9], as sketched

in Fig. 1a.
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Fig. 1. (a) Mechanical stress resulting from inhomogeneous concentration due to lithium diffusion and phase transition. (b) Mode I fracture caused by the hoop stress 𝜎𝑐 induced
by lithium insertion and extraction.
Hoop stress in the particle is the driving force for crack propaga-
tion according to mode I. Hoop stress is tensile in the core during
insertion, viceversa it is tensile on the surface during extraction, then
cracks in different locations propagate during lithiation or delithiation,
according to Fig. 1b.

Active material particles are quasi-spherical according to scanning
electrode microscope (SEM) observations [17], then a spherical domain
is considered for sake of simplicity. Consequently, all the equations
are written according to the axisymmetric hypothesis, and the ra-
dial direction is the only variable involved. Therefore, displacement,
strain, stress, concentration, boundary conditions, and material prop-
erties do not change along the two hoop directions. The assumption
about the axisymmetric boundary condition is compatible with most
of the materials having a 3D diffusion channel, but is not suitable
for those materials, such as Lithium Iron Phosphate (LFP), present-
ing a 1D diffusion channel and, thus, non-axisymmetric boundary
conditions [17].

DIS in electrode microstructure is a multi-physics problem, as me-
chanical and transport (diffusive/chemical) phenomena occur simulta-
neously and affect each other. Then, the physics of the two domains is
explained in the next sections.

2.1. Mechanical equations

The mechanical field in a spherical particle is modeled according
to the constitutive, congruence, and equilibrium equations reported in
Eqs. (1)a-c [7]. This set of equations allows computing displacement,
deformation, and stress caused by the concentration of intercalated
lithium ions, referred to as 𝑐𝐿𝑖𝑆 . The constitutive equations (Eq. (1)a)
are composed of the elastic (first) term, and chemical (second) term,
which depends on the concentration of intercalated lithium ions and
links chemistry with mechanics.

Constitutive:

𝜀𝑟 =
1
𝐸
(𝜎𝑟 − 2𝜈𝜎𝑐 ) +

𝛺𝑐𝐿𝑖𝑆
3

; 𝜀𝑐 =
1
𝐸
[(1 − 𝜈)𝜎𝑐 − 𝜈𝜎𝑟) +

𝛺𝑐𝐿𝑖𝑆
3

(1a)

Congruence:

𝜀𝑟 =
𝜕𝑢
𝜕𝑟

; 𝜀𝑐 =
𝑢
𝑟

(1b)

Equilibrium:
𝜕𝜎𝑟
𝜕𝑟

+ 2
𝑟
(𝜎𝑟 − 𝜎𝑐 ) = 0 (1c)

Where 𝜎𝑟, 𝜀𝑟, 𝜎𝑐 , 𝜀𝑐 are radial and circumferential stress and strain,
respectively, 𝛺 is the partial molar volume of lithium ions in the host
material and 𝑢 is the radial displacement. The displacement solution is
4

got replacing the congruence equations (Eq. (1)b) in the constitutive
ones (Eq. (1)a), the latter in the equilibrium Equation (Eq. (1)c),
and integrating twice. Then, strains and stresses are computed from
displacement solution with congruence and constitutive equations, and
their results are reported in Eqs. (2)a-c [7]. An analytical expression
of the solution is obtained thanks to the simple geometry, however,
it is generally not possible to obtain a close solution, even for the
mechanical field.

Displacement:

𝑢(𝑟) = 𝛺
3(1 − 𝜈)

[

(1 + 𝜈) 1
𝑟2 ∫

𝑟

0
𝑐𝐿𝑖𝑆 (𝑟)𝑟2 𝑑𝑟 + 2(1 − 2𝜈) 𝑟

𝑅3 ∫

𝑅

0
𝑐𝐿𝑖𝑆 (𝑟)𝑟2 𝑑𝑟

]

(2a)
Radial stress:

𝜎𝑟(𝑟) =
2𝛺
3

𝐸
1 − 𝜈

[

1
𝑅3 ∫

𝑅

0
𝑐𝐿𝑖𝑆 (𝑟)𝑟2 𝑑𝑟 −

1
𝑟3 ∫

𝑟

0
𝑐𝐿𝑖𝑆 (𝑟)𝑟2 𝑑𝑟

]

(2b)

Hoop stress:

𝜎𝑐 (𝑟) =
𝛺
3

𝐸
1 − 𝜈

[

2
𝑅3 ∫

𝑅

0
𝑐𝐿𝑖𝑆 (𝑟)𝑟2 𝑑𝑟 +

1
𝑟3 ∫

𝑟

0
𝑐𝐿𝑖𝑆 (𝑟)𝑟2 𝑑𝑟 − 𝑐𝐿𝑖𝑆 (𝑟)

]

(2c)

The hydrostatic stress is computed according to Eq. (3), and it will
be needed in the transport model.

𝜎ℎ =
(𝜎𝑟 + 2𝜎𝑐 )

3
= 2𝛺𝐸

9(1 − 𝜈)

[

3
𝑅3 ∫

𝑅

0
𝑐𝐿𝑖𝑆 (𝑟)𝑟2 𝑑𝑟 − 𝑐𝐿𝑖𝑆 (𝑟)

]

(3)

At this stage, lithium concentration in intercalated sites 𝑐𝐿𝑖𝑆 is
needed to compute displacement, strain, and stress.

2.2. Transport equations

The most general approach to describe lithium transport and inter-
calation is using a binary solution model, resulting in a concentration-
dependent diffusion coefficient. This approach is based on the work of
Newman et al. [3,6], later developed by Farkhondeh et al. [18] and
Baker et al. [19]. Other authors [20–22] followed a similar approach,
but their derivation appears less rigorous and is not considered in this
review.

The dependence of the diffusion coefficient on the mole fraction of
lithium is twofold. Firstly, it models the coupling between mechanical
and transport equations, indeed the diffusion of lithium ions is the
cause of mechanical stresses, and stress affects diffusion at the same
time. Secondly, it models the phase transition occurring in some ma-
terials on the basis of the open circuit voltage (OCV), according to the
non-ideal solution theory.
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At first, the most general model is explained in Section 2.2.1, con-
sidering a non-ideal (or concentrated) solution, as well as the coupling
between transport and mechanical equations. Then, the dilute approach
is considered in Section 2.2.2, neglecting the dependence of the diffu-
sion coefficient on the OCV, but still considering the coupling between
mechanical and transport equations. Finally, the uncoupled model is
covered in Section 2.2.3, where the coupling between mechanical and
transport equations is neglected, and the diffusion coefficient is no
longer dependent on lithium concentration.

2.2.1. Non-ideal solution model
The binary solution consists of unoccupied sites (S) and li-

intercalated sites (LiS) in the host material, according to the following
reaction:

𝐿𝑖+𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 + 𝑒
−
𝑚𝑎𝑡𝑟𝑖𝑥 + 𝑆ℎ𝑜𝑠𝑡 ⇌ 𝐿𝑖𝑆ℎ𝑜𝑠𝑡 (4)

The mass conservation law (Eq. (5)) tells how the concentration of
intercalated lithium ions (𝑐𝐿𝑖𝑆 ) changes in time inside the particle, as
a result of the molar flux which causes the ions kinetic (𝑁𝐿𝑖𝑆 ). The
particle is assumed to be a sphere, then Eq. (5) is written in radial
coordinates (𝑟) exploiting the spherical symmetry.

𝜕𝑐𝐿𝑖𝑆
𝜕𝑡

+ 1
𝑟2

𝜕
𝜕𝑟

(𝑟2𝑁𝐿𝑖𝑆 ) = 0 (5)

The diffusion of lithium ions within the particle is driven by the
hermodynamic potential (𝜇) which has two contributions: chemical
𝜇𝐿𝑖𝑆 ) and mechanical (𝜇𝑚𝑒𝑐ℎ), as expressed in Eq. (6)a. Temperature
s assumed constant within the particle, so it is neglected as a source
f diffusion. Then, lithium ions are driven by the gradient of the ther-
odynamic potential according to the driving force (𝑑𝑓𝐿𝑖𝑆 ) expressed

n Eq. (6)b [6].

= 𝜇𝐿𝑖𝑆 + 𝜇𝑚𝑒𝑐ℎ =
(

𝜇0𝐿𝑖𝑆 + 𝑅𝑔𝑇 ln(𝛾𝐿𝑖𝑆𝑥𝐿𝑖𝑆 )
)

+
(

−𝛺𝜎ℎ

)

(6a)

𝑓𝐿𝑖𝑆 = 𝑐𝐿𝑖𝑆

(

∇𝜇𝐿𝑖𝑆 −𝛺∇𝜎ℎ

)

(6b)

Where 𝜇0𝐿𝑖𝑆 is chemical potential at the reference state, 𝑅𝑔 is the gas
onstant, 𝑇 is the temperature, 𝑥𝐿𝑖𝑆 is the mole fraction of intercalated
ithium ions and 𝛾𝐿𝑖𝑆 is the activity coefficient which takes into account
he non-ideality of the solution. As a consequence, lithium ions are
riven to areas with a lower concentration and tensile (positive sign),
r less compressive stress.

The molar flux (𝑁𝐿𝑖𝑆 ) is defined in Eq. (7) according to Eq. (6),
ssuming that the flux of vacant and occupied species sums to zero,
eaning that the saturation concentration of lithium ions in the host
𝑐𝑚𝑎𝑥) remains constant [19].

𝐿𝑖𝑆 = − 𝐷
𝑅𝑔𝑇

𝑑𝑓𝐿𝑖𝑆 =

= − 𝐷
𝑅𝑔𝑇

𝑐𝐿𝑖𝑆

[

∇𝜇𝐿𝑖𝑆 −𝛺∇𝜎ℎ

]

=

= − 𝐷
𝑅𝑔𝑇

𝑐𝐿𝑖𝑆

[

𝜕𝜇𝐿𝑖𝑆
𝜕𝑥𝐿𝑖𝑆

−𝛺
𝜕𝜎ℎ
𝜕𝑥𝐿𝑖𝑆

]

∇𝑥𝐿𝑖𝑆

(7)

Where 𝐷 is the diffusion coefficient of lithium in the host material.
It is useful to differentiate the gradient of chemical potential and

hydrostatic stress in Eq. (7), since both depend on lithium concen-
tration, which depends on the radial coordinate in turn. Then, an
explicit expression of 𝜕𝜇𝐿𝑖𝑆

𝜕𝑥𝐿𝑖𝑆
and 𝜕𝜎ℎ

𝜕𝑥𝐿𝑖𝑆
will be obtained to solve the mass

onservation problem.
5

Chemical potential. At first, the term 𝜕𝜇𝐿𝑖𝑆
𝜕𝑥𝐿𝑖𝑆

is considered. The chemical
potential of the species 𝐿𝑖𝑆 (𝜇𝐿𝑖𝑆 ) is written according to Eq. (8).

𝜇𝐿𝑖𝑆 = 𝜇0𝐿𝑖𝑆 + 𝑅𝑔𝑇 ln(𝛾𝐿𝑖𝑆𝑥𝐿𝑖𝑆 ) (8)

The differential of the chemical potential of the species 𝐿𝑖𝑆 with
respect to the mole fraction 𝑥𝐿𝑖𝑆 is computed in Eq. (9), differentiating
Eq. (8).

𝜕𝜇𝐿𝑖𝑆
𝜕𝑥𝐿𝑖𝑆

= 𝜕
𝜕𝑥𝐿𝑖𝑆

[

𝑅𝑔𝑇 𝑙𝑛(𝛾𝐿𝑖𝑆𝑥𝐿𝑖𝑆 )
]

=𝑅𝑔𝑇
𝜕

𝜕𝑥𝐿𝑖𝑆

[

𝑙𝑛(𝛾𝐿𝑖𝑆 ) + ln(𝑥𝐿𝑖𝑆 )
]

=

=
𝑅𝑔𝑇
𝑥𝐿𝑖𝑆

[

𝜕 ln(𝛾𝐿𝑖𝑆 )
𝜕 ln(𝑥𝐿𝑖𝑆 )

+ 1
]

=

=
𝑅𝑔𝑇
𝑥𝐿𝑖𝑆

𝛼

(9)

The term 𝛼 =
[

𝜕 ln(𝛾𝐿𝑖𝑆 )
𝜕 ln(𝑥𝐿𝑖𝑆 )

+ 1
]

is the so-called thermodynamic factor,
and it takes into account the non-ideality of the solution.

The expression of the thermodynamic factor in Eq. (9) is written
in an unsuitable form to be computed experimentally. Then, a rela-
tion between the thermodynamic factor and equilibrium potential is
pursued.

The equilibrium potential 𝑈 of active material with respect to Li+,
even referred to as open circuit voltage (OCV) is expressed in Eq. (10).

𝐹𝑈 = 𝜇0𝐿𝑖 + 𝜇𝑆 − 𝜇𝐿𝑖𝑆 (10)

Where F is the Faraday constant, 𝜇0𝐿𝑖, 𝜇𝑆 and 𝜇𝐿𝑖𝑠 are the chemical
otential of pure lithium metal, empty and li-intercalated sites in the
ost material, respectively.

Then, Eq. (10) is differentiated with respect to 𝑥𝐿𝑖𝑆 , according
o Eq. (11).

𝜕𝑈
𝜕𝑥𝐿𝑖𝑆

=
𝜕𝜇𝑆
𝜕𝑥𝐿𝑖𝑆

−
𝜕𝜇𝐿𝑖𝑆
𝜕𝑥𝐿𝑖𝑆

(11)

Then, the differentiation of the chemical potential of the empty
sites with respect to the mole fraction of lithium ( 𝜕𝜇𝑆

𝜕𝑥𝐿𝑖𝑆
) is obtained

isolating 𝜇𝑆 from the Gibbs–Duhem equation (𝑥𝐿𝑖𝑆𝑑𝜇𝐿𝑖𝑆 + 𝑥𝑆𝑑𝜇𝑆 = 0)
and deriving with respect to 𝑥𝐿𝑖𝑆 , according to Eq. (12).
𝜕𝜇𝑆
𝜕𝑥𝐿𝑖𝑆

= −
𝜕𝜇𝐿𝑖𝑆
𝜕𝑥𝐿𝑖𝑆

𝑥𝐿𝑖𝑆
𝑥𝑆

(12)

The differentiation of the chemical potential of the li-intercalated
sites with respect to the mole fraction of lithium ( 𝜕𝜇𝐿𝑖𝑆𝜕𝑥𝐿𝑖𝑆

) is got in Eq. (13)
replacing Eq. (12) in Eq. (11), and considering that the mole fractions
of vacant and occupied sites sum to one (𝑥𝐿𝑖𝑆 + 𝑥𝑆 = 1)
𝜕𝜇𝐿𝑖𝑆
𝜕𝑥𝐿𝑖𝑆

= −𝐹 (1 − 𝑥𝐿𝑖𝑆 )
𝜕𝑈 (𝑥𝐿𝑖𝑆 )
𝜕𝑥𝐿𝑖𝑆

(13)

Finally, the expression of thermodynamic factor is got in Eq. (14),
equating 𝜕𝜇𝐿𝑖𝑆

𝜕𝑥𝐿𝑖𝑆
reported in Eq. (9) with Eq. (13).

(𝑥𝐿𝑖𝑆 ) = 1 +
𝜕 ln(𝛾𝐿𝑖𝑆 )
𝜕 ln(𝑥𝐿𝑖𝑆 )

= − 𝐹
𝑅𝑔𝑇

𝑥𝐿𝑖𝑆 (1 − 𝑥𝐿𝑖𝑆 )
𝜕𝑈 (𝑥𝐿𝑖𝑆 )
𝜕𝑥𝐿𝑖𝑆

(14)

The expression in Eq. (14) allows practically computing the ther-
modynamic factor from OCV measurements. It is observed that the
OCV curve is flat where the two-phase reaction occurs, making its
derivative almost zero, and eventually decreasing the thermodynamic
factor and, then, the chemical driving force (Eq. (9)). It will be ex-
plained in the ‘‘final equations’’ paragraph that the chemical driving
force is proportional to the overall diffusion coefficient, then diffusion
decreases as well. The localized decrease of diffusion coefficient causes
a sharp variation of lithium concentration, which mimic pretty well the
concentration difference between the coexistent phases.

OCV depends just on lithium concentration, then even its deriva-
tive 𝜕𝑈 is a function of lithium concentration. For this reason,
𝜕𝑥𝐿𝑖𝑆
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the thermodynamic factor makes the diffusion coefficient dependent
on lithium content. Interestingly, Baker et al. [19] showed that the
measurements of diffusion coefficient with Galvanostatic Intermittent
Titration Technique (GITT) fit pretty well with composition-dependent
diffusion coefficient computed with concentrated theory.

Mechanical potential. The term 𝜕𝜎ℎ
𝜕𝑥𝐿𝑖𝑆

is computed deriving the hydro-
tatic stress reported early in Eq. (2).
𝜕𝜎ℎ
𝜕𝑥𝐿𝑖𝑆

= − 2𝛺𝐸
9(1 − 𝜈)

(15)

Final equations. The lithium molar flux (𝑁𝐿𝑖𝑆 ) reported in Eq. (7) is
rewritten in Eq. (16)a-b, according to the results of Eqs. (9), (14) and
(15).

𝑁𝐿𝑖𝑆 = −𝐷𝑐𝑚𝑎𝑥

[

− 𝐹
𝑅𝑇

𝑥𝐿𝑖𝑆 (1 − 𝑥𝐿𝑖𝑆 )
𝜕𝑈 (𝑥𝐿𝑖𝑆 )
𝜕𝑥𝐿𝑖𝑆

+ 𝑥𝐿𝑖𝑆
2𝛺2𝐸𝑐𝑚𝑎𝑥
9(1 − 𝜈)𝑅𝑇

]

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

(16a)

𝐿𝑖𝑆 = −𝐷𝑐𝑚𝑎𝑥

[

𝛼 + 𝑥𝐿𝑖𝑆𝑘
]

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

(16b)

Where the saturation concentration 𝑐𝑚𝑎𝑥 = 𝑐𝐿𝑖𝑆∕𝑥𝐿𝑖𝑆 and 𝑘 =
2𝛺2𝐸𝑐𝑚𝑎𝑥
9(1−𝜈)𝑅𝑇 .

Eq. (16)a-b can be rewritten as the Fick’s law (Eq. (17)a) defining
the concentration-dependent diffusion coefficient (�̄�(𝑥𝐿𝑖𝑆 )) reported
in Eq. (17)b.

𝑁𝐿𝑖𝑆 = −�̄�(𝑥𝐿𝑖𝑆 )𝑐𝑚𝑎𝑥
𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

(17a)

̄ (𝑥𝐿𝑖𝑆 ) = 𝐷
[

− 𝐹
𝑅𝑇

𝑥𝐿𝑖𝑆 (1 − 𝑥𝐿𝑖𝑆 )
𝜕𝑈 (𝑥𝐿𝑖𝑆 )
𝜕𝑥𝐿𝑖𝑆

+ 𝑥𝐿𝑖𝑆
2𝛺2𝐸𝑐𝑚𝑎𝑥
9(1 − 𝜈)𝑅𝑇

]

=

= 𝐷
[

𝛼 + 𝑥𝐿𝑖𝑆𝑘
]

(17b)

Finally, the lithium molar flux in Eq. (16) is replaced in the mass
conservation (Eq. (5)) to obtain the first of Eq. (18). Then, the distribu-
tion of lithium ions concentration in the spherical particle is obtained
solving the problem described by Eq. (18), where 𝑁𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡) is the
lithium ions flux applied on the external surface, which is generally
time-dependent.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑐
𝜕𝑡

=𝐷𝑐𝑚𝑎𝑥

[

2
𝑟

(

𝛼+𝑥𝐿𝑖𝑆𝑘
)

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

+
(

𝜕𝛼
𝜕𝑥𝐿𝑖𝑆

+ 𝑘
)(

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

)2

+
(

𝛼 + 𝑥𝐿𝑖𝑆𝑘
)

𝜕2𝑥𝐿𝑖𝑆
𝜕𝑟2

]

𝜕𝑐(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=𝑅
= 𝑁𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡), for t ≥ 0

𝜕𝑐(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=0
= 0, for t ≥ 0

(18)

The lithium flux over the particle surface is assumed to be known
rom the results of an electrochemical model, e.g. single particle model
SPM) or partial 2D model (P2D) [23].

The solution to the problem in Eq. (18) cannot be computed an-
lytically. Finite difference (FDM) [6,18,19] of finite element mod-
ls (FEM) are usually employed, especially implemented in COMSOL
ultiphysics [20,24].

.2.2. Ideal solution model
The ideal or dilute solution model does not consider the interaction

etween lithium ions, then the activity coefficient 𝛾𝐿𝑖𝑆 is equal to 1,
hus the model neglects the correction on concentration through 𝛾𝐿𝑖𝑆
n Eq. (8). Consequently, the thermodynamic factor 𝛼 is equal to 1, and
he concentration-dependent diffusion coefficient (�̄�(𝑥𝐿𝑖𝑆 )), reported
reviously in Eq. (17)b, modifies according to Eq. (19)b.

= −�̄�(𝑥 )𝑐
𝜕𝑥𝐿𝑖𝑆 (19a)
6

𝐿𝑖𝑆 𝐿𝑖𝑆 𝑚𝑎𝑥 𝜕𝑟
�̄�(𝑥𝐿𝑖𝑆 ) = 𝐷
[

1 + 𝑥𝐿𝑖𝑆
2𝛺2𝐸𝑐𝑚𝑎𝑥
9(1 − 𝜈)𝑅𝑇

]

= 𝐷
[

1 + 𝑥𝐿𝑖𝑆𝑘
]

(19b)

Then, the transport equation changes as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑐
𝜕𝑡

=𝐷𝑐𝑚𝑎𝑥

[

2
𝑟

(

1 + 𝑥𝐿𝑖𝑆𝑘
)

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

+𝑘
(

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

)2
+
(

1 + 𝑥𝐿𝑖𝑆𝑘
)

𝜕2𝑥𝐿𝑖𝑆
𝜕𝑟2

]

𝜕𝑐(𝑟,𝑡)
𝜕𝑟

|

|

|

|𝑟=𝑅
= 𝑁𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡) for t ≥ 0

𝜕𝑐(𝑟,𝑡)
𝜕𝑟

|

|

|

|𝑟=0
= 0 for t ≥ 0

(20)

The analytical solution of Eq. (20) is known [7], and it exploits
the solution of Fick’s problem in Eq. (19)a, defining a concentration-
dependent diffusion coefficient according to Eq. (19)b.

The coupling between the mechanical and transport equations is
still considered in this model.

2.2.3. Uncoupled model
The simplest approach consists of neglecting both activity cor-

rection, thus possible phase transitions, and the coupling between
mechanical and transport equations, defining the so-called uncoupled
model [7].

In this model, the term 𝛺∇𝜎ℎ in the thermodynamic driving force
(Eq. (6)b) is neglected, as well as the activity coefficient in the chemical
potential is considered unitary, as in the model of Section 2.2.2. Con-
sidering these assumptions, �̄�=D and the lithium molar flux in Eq. (16)
is rewritten according to Eq. (21).

𝑁𝐿𝑖𝑆 = −𝐷𝑐𝑚𝑎𝑥
𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

(21)

Where 𝐷 is the nominal diffusion coefficient, which is no longer
concentration-dependent. Then, the transport equations are written
according to Eq. (22).

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑐
𝜕𝑡

= 𝐷𝑐𝑚𝑎𝑥
𝜕2𝑥𝐿𝑖𝑆
𝜕𝑟2

𝜕𝑐(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=𝑅
= 𝑁𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡) for t ≥ 0

𝜕𝑐(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=0
= 0 for t ≥ 0

(22)

The uncoupled model overestimates stress, because the coupling
increases the diffusion coefficient, as the stress gradient is coherent
with concentration gradient [7,9].

2.3. Concluding remarks

The mechanical model of an active material spherical particle sub-
jected to lithium intercalation is explained. Lithium intercalation causes
a deformation proportional to its concentration, which is added to the
elastic deformation in the constitutive equations.

Lithium concentration is then computed by solving the transport
equation, which can be written according to three different approaches:

• Non-ideal solution and coupled model. The non-ideality of the
solution is considered to describe the phase-changing behavior
of the material. Furthermore, the mutual influence (referred to
as coupling) between the mechanical and the transport fields is
considered.

• Ideal solution and coupled model. The non-ideality of the
solution is neglected, and the activity coefficient 𝛾𝐿𝑖𝑆 is set to
one. Just single-phase material can be described by this model.
The coupling between the mechanical and the transport fields is
still considered.
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Table 1
Summary of the components of lithium flux written as 𝑁𝐿𝑖𝑠 = −

𝑐𝐿𝑖𝑆𝐷
𝑅𝑇

[

𝜕𝜇𝐿𝑖𝑆
𝜕𝑥𝐿𝑖𝑆

− 𝛺
𝜕𝜎ℎ
𝜕𝑥𝐿𝑖𝑆

]

∇𝑥𝐿𝑖𝑆 , resulting lithium flux, and apparent

concentration-dependent diffusion coefficient, considering the traditional Fick law: 𝑁𝐿𝑖𝑆 = −�̄�∇𝑥𝐿𝑖𝑆 .
Non-ideal model (coupled) Ideal model (coupled) Ideal model (uncoupled)

𝜕𝜇
𝜕𝑥𝐿𝑖𝑆

𝑅𝑇
𝑥𝐿𝑖𝑆

𝛼 𝑅𝑇
𝑥𝐿𝑖𝑆

𝑅𝑇
𝑥𝐿𝑖𝑆

𝜕𝜎ℎ
𝜕𝑥𝐿𝑖𝑆

− 2𝛺𝐸
9(1 − 𝜈)

− 2𝛺𝐸
9(1 − 𝜈)

Neglected

𝑁𝐿𝑖𝑆 −𝐷𝑐𝑚𝑎𝑥

[

𝛼 + 𝑥𝐿𝑖𝑆𝑘
]

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

−𝐷𝑐𝑚𝑎𝑥

[

1 + 𝑥𝐿𝑖𝑆𝑘
]

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

−𝐷𝑐𝑚𝑎𝑥
𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

�̄� 𝐷
[

𝛼 + 𝑥𝐿𝑖𝑆𝑘
]

𝐷
[

1 + 𝑥𝐿𝑖𝑆𝑘
]

𝐷
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• Ideal solution and uncoupled model. The non-ideality of the
solution is neglected, and the activity coefficient 𝛾𝐿𝑖𝑆 is set to
one. Just single-phase material can be described by this model.
Furthermore, the coupling between the mechanical and the trans-
port fields is neglected, and transport is no longer affected by
mechanical stress.

isplacement, strain, and stress can be computed by Eq. (2) once
oncentration distribution is solved using the chosen model according
o Eqs. (18), or (20) or (22).

For sake of clarity, the components of lithium flux, the resulting
ithium flux, and the concentration-dependent diffusion coefficient are
isted in Table 1 for each model.

In the following sections, the subscript ‘‘𝐿𝑖𝑆’’ is neglected, and the
concentration of lithium ions in active material will be simply referred
to as ‘‘𝑐’’.

The mechanical stress computed with the DIS model is the driving
force of crack propagation in the active materials of electrodes, thus
the DIS model constitutes the basis of fracture mechanics modeling in
LIBs.

3. Fundamentals of fracture mechanics applied to LIBs

Stresses and displacements computed in Section 2 are the basis of
fracture mechanics models, which aim to give a local estimation of
stress and displacement at the crack tip.

LEFM theory describes fracture in linear elastic material, i.e. when
the plastic zone at the crack tip is small compared to the crack length.

The main drawback of LEFM theory is that it can predict fracture
only for a body with pre-existent cracks, thus it is not able to model the
crack initiation stage. An alternative approach is the CZM theory, which
allows solving the fracture problem even when the non-linear area near
the crack tip is not negligible and without assuming pre-existent cracks.

The PFM represents an additional and effective alternative to the
discontinuous approach of LEFM theory. It represents a stand-alone
modeling strategy able to predict the initiation, growth, merging,
branching, and arrest of cracks, in arbitrary dimensions and geometries,
both in brittle and ductile materials.

In the following sections, an overview of LEFM, CZM, and PFM
theories is given, with special regard to their application to predict
fracture in LIBs both due to static and cyclic loading.

3.1. LEFM

The stress state at the crack tip can be characterized using a stress-
based approach or an energetic-based approach. According to the LEFM
theory, the stress at the crack tip is infinite, thus suitable parameters
are needed to properly describe the stress state at the crack tip.

LEFM theory predicts the stress field singularity at the crack tip in
terms of stress intensity factor (SIF) (𝐾), energy release rate (𝐺), or
7

J-integral.
3.1.1. Stress intensity factor 𝐾
The SIF (𝐾) is the most used parameter in LEFM to characterize

the stress field at the crack tip. The magnitude of 𝐾 depends on the
geometry of the specimen, the size and location of the crack, and the
magnitude of the applied stress, according to Eq. (23).

𝐾 = 𝑌 𝜎
√

𝜋𝑎 (23)

Where 𝑌 is a geometric factor accounting for the specimen geometry
and crack location, 𝜎 is the applied stress, and 𝑎 is the crack length. Ac-
ording to Irwin [25], the stress field at the crack tip can be expressed
s a function of 𝐾, as reported in Eq. (24).

𝑖𝑗 =
𝐾

√

2𝜋𝑟𝑐
𝑓𝑖𝑗 (𝜃) (24)

here 𝜎𝑖𝑗 are the components of the stress tensor, 𝑟𝑐 and 𝜃 are the polar
coordinates with origin at the crack tip as depicted in Figure S1a, and
𝑓𝑖𝑗 (𝜃) is a dimensionless shape function. Eq. (24) shows that a stress
ingularity proportional to 1

√

𝑟𝑐
exists at the crack tip.

A crack subjected to any arbitrary loading can be resolved into
hree independent cracking modes: mode I (tensile), mode II (shearing)
nd mode III (tearing), as shown in Figure S1b. Consequently, three
ifferent SIFs can be used to characterize the stress field at the crack tip.
he corresponding stress fields due to modes I, II and III are expressed
y Eqs. (25)a, b and c, respectively.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜎𝑥𝑥 = 𝐾𝐼
√

2𝜋𝑟𝑐
cos(𝜃∕2)[1 − sin(𝜃∕2) sin(3𝜃∕2)]

𝜎𝑦𝑦 =
𝐾𝐼

√

2𝜋𝑟𝑐
cos(𝜃∕2)[1 + sin(𝜃∕2) sin(3𝜃∕2)]

𝜏𝑥𝑦 =
𝐾𝐼

√

2𝜋𝑟𝑐
sin(𝜃∕2) cos(𝜃∕2) cos(3𝜃∕2)

𝜎𝑧𝑧 = 𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)

𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0,

(25a)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜎𝑥𝑥 = 𝐾𝐼𝐼
√

2𝜋𝑟𝑐
sin(𝜃∕2)[2 + cos(𝜃∕2) cos(3𝜃∕2)]

𝜎𝑦𝑦 =
𝐾𝐼𝐼

√

2𝜋𝑟𝑐
sin(𝜃∕2) cos(𝜃∕2) cos(3𝜃∕2)

𝜏𝑥𝑦 =
𝐾𝐼𝐼

√

2𝜋𝑟𝑐
cos(𝜃∕2)[1 − sin(𝜃∕2) sin(3𝜃∕2)]

𝜎𝑧𝑧 = 𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)

𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0.

(25b)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 𝜏𝑦𝑧 = 0

𝜏𝑥𝑧 =
𝐾𝐼𝐼𝐼
√

2𝜋𝑟𝑐

𝜏𝑦𝑧 =
𝐾𝐼𝐼𝐼
√

2𝜋𝑟𝑐
cos(𝜃∕2).

(25c)

where 𝐾𝑖 is the SIF relative to mode 𝑖.

3.1.2. Energy release rate G
The energy release rate 𝐺 is defined as the decrease of the total
potential energy per increase in fracture length (or surface area for 3D
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problems), according to Eq. (26).

𝐺 = − 𝜕𝛱
𝜕𝑎

(26)

Where𝛱 is the total potential energy and 𝑎 is the crack length (or area).
The total potential energy is defined in Eq. (27).

𝛱 = 𝛱𝑒𝑙 +𝛱𝛤 −𝑊𝑒𝑥𝑡 (27)

Where 𝛱𝑒𝑙 is the elastic strain energy, 𝛱𝛤 is the fracture energy and
𝑊𝑒𝑥𝑡 is the work done by external forces. For a given mode 𝑖, the energy
release rate 𝐺𝑖 is a function of the corresponding SIF, as expressed by
Eqs. (28)a, b and c for mode I, II and III, respectively.

𝐺𝐼 =

{ 1
𝐸𝐾

2
𝐼 plane stress

1−𝜈2
𝐸 𝐾2

𝐼 plane strain
(28a)

𝐼𝐼 = 1 − 𝜈2
𝐸

𝐾2
𝐼𝐼 (28b)

𝐼𝐼𝐼 =
𝐾2
𝐼𝐼𝐼

2𝜇𝐿
(28c)

Where 𝐸 is the Young modulus, 𝜈 is the Poisson ratio and 𝜇𝐿 is the
hear modulus. The energy release rate 𝐺 due to the combination of all
racking modes is obtained by applying the superimposition of effects,
s reported in Eq. (29).

= 𝐺𝐼 + 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 (29)

.1.3. J-integral
The J-integral was proposed independently by Rice [26] and

herepanov [27] as a contour integral characterizing the crack tip state
n elastic–plastic materials. The J-integral proposed by Rice for a 2D
racture problem is expressed in Eq. (30), according to Figure S2 and
onsidering an arbitrary counterclockwise path 𝛤 around the crack tip.

= ∫𝛤

(

𝜓𝑒𝑙𝑑𝑦 − 𝑡𝑖
𝜕𝑢𝑖
𝜕𝑥

)

𝑑𝑠 (30)

here 𝜓𝑒𝑙 = ∫ 𝜀𝑖𝑗0 𝜎𝑖𝑗𝑑𝜀𝑖𝑗 is the strain energy density, 𝜎𝑖𝑗 are the
omponents of the stress tensor, 𝜀𝑖𝑗 are the components of the strain
ensor, 𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 are the components of the traction vector acting
n the path 𝛤 , 𝑛𝑗 is the versor normal to 𝛤 , 𝑢𝑖 are the displacement
omponents, 𝑥 and 𝑦 are the coordinates parallel and perpendicular to
he crack direction respectively, and 𝑑𝑠 is the element length along 𝛤 .

Eq. (30) states that the total energy inside the contour 𝛤 , accounted
by the first term of the line integral, is caused by the mechanical work
done by the traction force acting on the contour 𝛤 , accounted by the
econd term of the line integral.

Rice demonstrated that: (1) the J-integral is path-independent,
hich means that its value is independent on the chosen path 𝛤 and

2) the J-integral is equal to the energy release rate 𝐺 when the LEFM
heory holds, thus it can be correlated to the SIF 𝐾𝑖 according to
qs. (28)a-c.

However, Eq. (30) cannot be used to compute the J-integral when
ealing with fracture in active materials of LIBs because the chemical
nd mechanical driving forces are present at the same time. In this
ase, the J-integral formulated by Rice is no longer path-independent,
nd the modified expression of the 𝐽 -integral, which keeps the path-
ndependence property, is reported in Eq. (31) [28–30].

̂ = ∫𝛤

(

𝜓𝑒𝑙𝑑𝑦 − 𝑡𝑖
𝜕𝑢𝑖
𝜕𝑥

)

𝑑𝑠 + ∫𝛬
𝛺𝜎ℎ

𝜕𝑐
𝜕𝑥
𝑑𝛬 (31)

Where 𝛬 is the area enclosed by 𝛤 . The first term of Eq. (31) is
he standard J-integral reported in Eq. (30), whereas the second term
ccounts for the energy due to the deformation induced by lithium
iffusion. Eq. (31) states that the elastic strain energy is no longer
he only energy source when considering fracture caused by lithiation
8

nd delithiation processes, thus the energy related to diffusion induced
eformation needs to be taken into account to satisfy the energy
alance and to ensure the path-independence property of 𝐽 -integral.

3.1.4. Crack growth
A significant objective of fracture mechanics models is the descrip-

tion of crack growth. Such models aim to calculate:

• the threshold load which initiates crack propagation;
• the direction of crack propagation 𝜃𝑐 ;
• the amount of crack propagation 𝛥𝑎.

In addition, an important feature of fracture is the stability of crack
propagation. Crack propagation can be classified as unstable or stable.
The crack propagation is unstable if the crack grows abruptly without
increasing the external load. On the contrary, the crack growth is stable
if an additional increase of the external load is necessary to further
increase the crack length.

The following sections provide the crack propagation criteria to
establish the occurrence and direction of crack propagation, according
to static or cyclic loads.

Crack propagation due to static load. When a component is subjected
to a static load and a single cracking mode, the corresponding SIF
𝐾𝑖 provides the crack propagation criterion. Crack propagation occurs
when 𝐾𝑖 is greater than the material fracture toughness 𝐾𝑖,𝑐𝑟, according
to Eq. (32).

𝐾𝑖 ≥ 𝐾𝑖,𝑐𝑟 Crack propagation (32)

Alternatively, the energetic criterion proposed by Griffith can be
employed. The crack propagates when the energy release rate 𝐺 is
greater than the critical energy release rate 𝐺𝑐𝑟, which is an intrinsic
material parameter.

𝐺 ≥ 𝐺𝑐𝑟 = 2𝛾𝑠 Crack propagation (33)

Where 𝛾𝑠 is the surface energy, depending on the material.
The crack propagates following the initial orientation when it is

subjected to a single cracking mode.
On the other hand, three criteria are used to determine the occurrence
and the direction of crack propagation in the case of mixed cracking
mode: the criterion of the maximum circumferential stress, the criterion
of the maximum energy release rate, and the criterion of the strain
energy density.

The criterion of the maximum circumferential stress is the most
adopted because of its simplicity and effectiveness, even in commercial
FE software, such as Ansys and Abaqus. Then, this criterion is described
here, and further details about the other two criteria can be found in a
reference textbook [31].

The criterion of the maximum circumferential stress states that
crack grows if the circumferential stress 𝜎𝑐 (at a certain distance 𝑟𝑐
from the crack tip) reaches a critical material threshold 𝜎𝑐,𝑚𝑎𝑥. The
circumferential stress at the crack tip is calculated as a function of
𝐾𝑖, where 𝑖 is the number of present modes, according to Anderson
et al. [31]. On the other hand, 𝜎𝑐,𝑚𝑎𝑥 is related to the fracture toughness
of mode I (𝐾𝐼,𝑐𝑟) according to Eq. (34), regardless of the modes present.

𝜎𝑐 (𝑟𝑐 , 𝜃𝑐 ) ≥ 𝜎𝑐,𝑚𝑎𝑥 = 𝐾𝐼,𝑐𝑟
√

2𝜋𝑟𝑐
Mixed-mode crack propagation (34)

The crack propagates in the direction 𝜃𝑐 which maximizes the
circumferential stress, according to Eq. (35).

𝜃𝑐 = 2 arctan
⎡

⎢

⎢

1
4
𝐾𝐼
𝐾𝐼𝐼

− 1
4

√

(

𝐾𝐼
𝐾𝐼𝐼

)2
+ 8

⎤

⎥

⎥

(35)

⎣ ⎦
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Crack propagation due to cyclic loading. When a component is subjected
to cyclic loading, micro-cracks arise from the material imperfections,
such as voids and micro-defects at first (Stage I). As the fatigue thresh-
old is overcome, these micro-cracks start to propagate stably (Stage II)
and then unstably (Stage III), leading to component failure ultimately.

Paris’ law is often used to model fatigue crack growth due to cyclic
loading. According to Paris’ law, the crack growth is described by the
SIF range (𝛥𝐾), which is defined according to Eq. (36).

𝛥𝐾 = 𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛 (36)

Where 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛 are the maximum and minimum SIF during
the loading cycle, respectively. The crack does not propagate (Stage 𝐼)
when 𝛥𝐾 is below the fatigue threshold 𝐾𝑡ℎ, whereas crack propagation
becomes unstable when 𝛥𝐾 ≥ 𝐾𝑖,𝑐𝑟 (Stage 𝐼𝐼𝐼). The stable propa-
ation of the crack (Stage 𝐼𝐼) is described by Paris’ Law, according
o Eq. (37) [32–34].
𝑑𝑎
𝑑𝑁

= 𝐶(𝛥𝐾)𝑚 (37)

Where 𝑑𝑎
𝑑𝑁 is the crack growth rate, 𝑁 is the number of loading cycles,

𝐶 and 𝑚 are material constants determined experimentally.
A modification of Paris’ law including the effect of stress ratio 𝑅 =

𝐾𝑚𝑖𝑛
𝐾𝑚𝑎𝑥

and the limits of threshold and unstable crack propagation regimes
is expressed by Eq. (38).

𝑑𝑎
𝑑𝑁

=
𝐶(𝛥𝐾 −𝐾𝑡ℎ)𝑚

(1 − 𝑅)𝐾𝑐𝑟 − 𝛥𝐾
(38)

Active material particles of electrodes experience alternating stress
during repeated charge and discharge cycles which may cause the
growth of pre-existent defects. Therefore, Paris’ law can be applied to
account for fatigue crack growth in active material particles under the
following assumptions [35–40]:

• The particle is assumed to be spherical.
• All pre-existent cracks are the same and uniformly distributed

among particles.
• The number of cracks does not change throughout the battery life,

meaning that no crack can initiate during cycling.
• Crack width remains constant and only the crack length 𝑎 in-

creases during cycling.

In this case, crack propagation under mode I occurs due to the
tensile hoop stress 𝜎𝑐 . Substituting the expression of the SIF range
(Eq. (39)a) in Eq. (37), Paris’ law for fracture in LIBs due to mode I
is expressed by Eq. (39)b.

𝛥𝐾 = 𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛 = (𝜎𝑐,𝑚𝑎𝑥 − 𝜎𝑐,𝑚𝑖𝑛)𝑌
√

𝜋𝑎 (39a)
𝑑𝑎
𝑑𝑁

= 𝐶[(𝜎𝑐,𝑚𝑎𝑥 − 𝜎𝑐,𝑚𝑖𝑛)𝑌
√

𝜋𝑎]𝑚 (39b)

Where 𝜎𝑐,𝑚𝑎𝑥 and 𝜎𝑐,𝑚𝑖𝑛 are the maximum and minimum tensile hoop
tress occurring during cycling, respectively.

Alternatively, an equivalent SIF range (𝛥𝐾𝑒𝑞) is employed when
dealing with mixed-mode crack propagation, according to Eq. (40)a,
and Paris’ law is reported in Eq. (40)b.

𝛥𝐾𝑒𝑞 =
1
2
cos

(

𝜃𝑐
2

)

[

𝛥𝐾𝐼 (1 + cos 𝜃𝑐 ) − 3𝛥𝐾𝐼𝐼 sin 𝜃𝑐
]

(40a)

𝑑𝑎
𝑑𝑁

= 𝐶
{

1
2
cos

(

𝜃𝑐
2

)

[

𝛥𝐾𝐼 (1 + cos 𝜃𝑐 ) − 3𝛥𝐾𝐼𝐼 sin 𝜃𝑐
]

}𝑚
(40b)

Where the direction of crack propagation 𝜃𝑐 is evaluated using Eq. (35).
Paris’ law can be solved both numerically or analytically, namely

he SIF range can be computed using a FEM or XFEM-based approach
r analytically computing the hoop stress and geometric factor Y.

The parameters 𝐶 and 𝑚 are empirical coefficients depending on
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the electrode material and they have to be obtained by performing
experimental tests. However, performing experimental measurements
is not trivial, and reliable results are still lacking in the literature.
Therefore, most of the studies treated 𝐶 and 𝑚 as fitting parameters,
as it will be further explained in Section 6.

3.2. Phase-field model

The phase-field model (PFM) is used to model crack nucleation
and growth and represents a valid alternative to discrete crack models
based on LEFM theory. In discrete crack models, cracks are described
as geometric features with physical discontinuity. On the other hand,
the PFM assumes that the discontinuities introduced by cracks are not
sharp, but can be approximated as smeared damage using a continuous
parameter, namely the crack phase-field (PF) variable. The continuum
approximation of cracks allows addressing some of the numerical chal-
lenges of discrete crack models, such as the description of complex
crack paths, as well as the inclusion of the effects for crack branching,
kinking, or coalescence of multiple cracks without mesh-size influences.

The PFM was initially proposed by Bourdin et al. [41], starting from
the variational formulation of Griffith’s theory of brittle fracture. Then,
it was further developed by Borden et al. [42] and Miehe et al. [43].

The PFM has been successfully used to solve different fracture prob-
lems, such as brittle, quasi-brittle, and ductile fracture, even when a sig-
nificant multi-physics coupling is present, as for fracture in LIBs [44].

The fundamental features and the main equations of the PFM solv-
ing fracture in LIBs are discussed below, but further details about
the generic implementation of PFM can be found in other reference
texts [45–47].

Consider an arbitrary domain 𝛺 ⊂ R𝑛𝑑𝑖𝑚 (𝑛𝑑𝑖𝑚 = 2, 3), with the
xternal boundary 𝜕𝛺 ⊂ R𝑛𝑑𝑖𝑚−1 and internal crack with corresponding

cracked surface 𝛤 ⊂ R𝑛𝑑𝑖𝑚−1, as shown in Figure S3.
The total potential energy (𝛱) of the system is written as the sum of

the elastic strain energy (𝛱𝑒𝑙), the fracture energy (𝛱𝛤 ) and the energy
ue to lithium diffusion (𝛱𝐿𝑖) in Eq. (41), according to Griffith’s theory
nd neglecting inertia effects and external forces.

(𝐮, 𝑐, 𝛤 ) = 𝛱𝑒𝑙(𝐮, 𝑐, 𝛤 ) +𝛱𝛤 (𝛤 ) +𝛱𝐿𝑖(𝑐) =∫𝛺
𝜓𝑒𝑙(𝜺𝒆𝒍(𝒖, 𝑐)) 𝑑𝛺 +

+∫𝛤
𝐺𝑐𝑟 𝑑𝛤 + ∫𝛺

𝜓𝐿𝑖(𝑐) 𝑑𝛺

(41)

Where 𝜓𝑒𝑙 is the elastic strain energy density, 𝐺𝑐𝑟 is the critical energy
release rate, and 𝜓𝐿𝑖 is the chemical energy density due to lithium
diffusion.

The elastic strain energy density 𝜓𝑒𝑙 is defined in Eq. (42).

𝜓𝑒𝑙(𝜺𝒆𝒍(𝒖, 𝑐)) =
1
2
𝜆𝐿[Tr(𝜺𝒆𝒍)]2 + 𝜇𝐿[Tr(𝜺𝒆𝒍2)] (42)

Where 𝜆𝐿 and 𝜇𝐿 are Lamè’s first parameter and shear modulus re-
spectively, and 𝜺𝒆𝒍(𝐮, 𝑐) is the elastic strain tensor given by Eq. (43).

𝜺𝒆𝒍(𝐮, 𝑐) = 𝜺(𝐮) − 𝜺𝑳𝒊(𝑐) (43)

Where 𝜺(𝐮) = 1
2 (∇𝐮+(∇𝐮𝑇 )) is the total strain tensor, 𝜺𝑳𝒊 =

(𝑐−𝑐𝑟𝑒𝑓 )𝛺
3 𝑰 is

he chemical strain tensor, 𝒖 is the displacement field of the body, 𝑐𝑟𝑒𝑓
s the zero-strain concentration and 𝑰 is the second-order unit tensor.

The chemical energy density 𝜓𝐿𝑖 is expressed in Eq. (44) as a func-
tion of the thermodynamic potential (𝜇). The thermodynamic potential
is computed according to Eq. (6)a, choosing the value of 𝛾𝐿𝑖𝑆 on the
basis of the ideal or non-ideal solution hypothesis.

𝜇 =
𝜕𝜓𝐿𝑖𝑆 (𝑐)

𝜕𝑐
(44)

In PFM, the scalar PF variable 𝑑(𝒙) ∈ [0, 1] and length scale
parameter 𝑙 are introduced to avoid the explicit representation of the
0
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crack surface 𝛤 and to approximate the crack as a band of finite thick-
ness. The PF parameter (𝑑) distinguishes the intact from the cracked

aterial, according to the definition reported in Eq. (45).

(𝐱) =
{

0, if the material is intact
1, if the material is cracked

(45)

Where 𝐱 is the direction normal to the crack surface.
The key feature of the PFM is that the PF variable (𝑑) varies con-

tinuously within the transition region between intact and completely
cracked material. The length scale parameter (𝑙0) controls the width of
his transition region, thus determining the area where the PF variable
𝑑) ranges. As 𝑙0 approaches zero, a discontinuous function representing
he discrete crack is recovered.

Then, the surface integral of the fracture energy 𝛱𝛤 (𝛤 ) in Eq. (41)
s substituted with a volume integral defined over the entire domain 𝛺,

according to Eq. (46).

𝛱𝛤 (𝛤 ) = ∫𝛤
𝐺𝑐𝑟𝑑𝛤 ≈ 𝛱𝛤 (𝑑) = ∫𝛺

𝐺𝑐𝑟𝜒(𝑑,∇𝑑)𝑑𝛺 (46)

Where 𝜒(𝑑,∇𝑑) is the crack surface density function that considers
the amount of damage in the volume 𝛺. It has the unit of length and
allows extending the integral of the crack surface to the volume. A
common choice for 𝜒(𝑑,∇𝑑) is reported in Eq. (47) [41].

𝜒(𝑑,∇𝑑) =
(

𝑑2

2𝑙0
+
𝑙0
2
|∇𝑑|2

)

(47)

The gradual degradation of the material stiffness caused by the
crack propagation can be taken into account by coupling the expression
of the elastic strain energy density 𝜓𝑒𝑙 reported in Eq. (42) with the PF
variable (𝑑), using a degradation function 𝑔(𝑑). Therefore, the elastic
strain energy density affected by degradation (�̃�𝑒𝑙(𝐮, 𝑐, 𝑑)) is expressed
according to Eq. (48), giving rise to the so-called isotropic PFM.

�̃�𝑒𝑙(𝐮, 𝑐, 𝑑) = 𝑔(𝑑)𝜓𝑒𝑙(𝐮, 𝑐) (48)

The degradation function 𝑔(𝑑) monotonically decreases as the PF
variable (𝑑) increases, and satisfies 𝑔(0) = 1 and 𝑔(1) = 0. A common
expression of 𝑔(𝑑) is reported in Eq. (49) [41].

𝑔(𝑑) = (1 − 𝑑)2 (49)

The isotropic PFM allows crack propagation in regions subjected to
compressive stress, thus causing nonphysically crack evolution paths.
To address this issue, Amor et al. [48] and Miehe et al. [49] proposed
an anisotropic PFM that splits the elastic energy density into tension
and compression contributions. Then, the degradation function (𝑔(𝑑))
is applied only to the tensile part of the elastic strain energy density,
according to Eq. (50).

�̃�𝑒𝑙(𝐮, 𝑐, 𝑑) = 𝑔(𝑑)𝜓+
𝑒𝑙(𝐮, 𝑐) + 𝜓

−
𝑒𝑙(𝐮, 𝑐) (50)

Where 𝜓+
𝑒𝑙 and 𝜓−

𝑒𝑙 are the tensile and compressive contributions
of the elastic strain energy density and their definitions depend on
the type of energy split criterion adopted [45]. The approximated
total potential energy 𝛱(𝐮, 𝑐, 𝑑) according to the anisotropic PFM is
expressed in Eq. (51), replacing 𝜓𝑒𝑙(𝐮, 𝑐) with �̃�𝑒𝑙(𝐮, 𝑐, 𝑑) (Eq. (50)) and
𝛱𝛤 (𝛤 ) with 𝛱𝛤 (𝑑) (Eq. (46)) in Eq. (41).

𝛱(𝐮, 𝑐, 𝛤 ) ≈ 𝛱(𝐮, 𝑐, 𝑑) =∫𝛺

[

𝑔(𝑑)𝜓+
𝑒𝑙(𝐮, 𝑐) + 𝜓

−
𝑒𝑙(𝐮, 𝑐)

]

𝑑𝛺 +

+∫𝛺

[

𝐺𝑐𝑟𝛾(𝑑,∇𝑑)
]

𝑑𝛺 + ∫𝛺
𝜓𝐿𝑖(𝑐)𝑑𝛺

(51)

At this stage, the governing equations for displacement, PF vari-
able, and concentration can be obtained by writing the Lagrangian
𝐿(𝐮, �̇�, 𝑐, 𝑑) of the system and finding a stationarity point 𝛿𝐿 = 0.
The Lagrangian of the system can be expressed as the difference be-
tween the kinetic energy 𝐸 (�̇�) and the total potential energy 𝛱(𝐮, 𝑐, 𝑑)
10

𝑘

(Eq. (51)), according to Eq. (52):

𝐿(𝐮, �̇�, 𝑐, 𝑑) = 𝐸𝑘 −𝛱 = ∫𝛺
1
2
𝜌�̇� ⋅ �̇� − ∫𝛺

[

𝑔(𝑑)𝜓+
𝑒𝑙(𝐮, 𝑐)𝜓

−
𝑒𝑙(𝐮, 𝑐)

]

𝑑𝛺 +

− ∫𝛺

[

𝐺𝑐𝑟𝛾(𝑑,∇𝑑)
]

𝑑𝛺 +

− ∫𝛺
𝜓𝐿𝑖(𝑐)𝑑𝛺

(52)

Then, the Euler–Lagrange equations of displacement (𝐮) and PF vari-
ble (𝑑) are obtained in Eq. (53) finding the stationary point of Eq. (52)
𝛿𝐿 = 0), adopting the crack surface density 𝜒(𝑑,∇𝑑) and degradation
unctions expressed in Eqs. (47) and (49) respectively, and assuming
uasi-static condition (�̈� = 0). Eq. (53)a is the standard equilibrium
quation, and Eq. (53)b describes the evolution of the PF variable (𝑑).

⋅ [𝝈(𝐮, 𝑑)] = 0, (53a)

𝑐𝑟

(

𝑑
𝑙0

− 𝑙0𝛥𝑑
)

+ 2(𝑑 − 1)𝜓+
𝑒𝑙(u, 𝑐) = 0 (53b)

Where the degraded stress tensor 𝝈(𝐮, 𝑑) is written in Eq. (54).

= 𝑔(𝑑)
𝜕𝜓+

𝑒𝑙
𝜕𝜺𝒆𝒍

+
𝜕𝜓−

𝑒𝑙
𝜕𝜺𝒆𝒍

= (1 − 𝑑)2
𝜕𝜓+

𝑒𝑙
𝜕𝜺𝒆𝒍

+
𝜕𝜓−

𝑒𝑙
𝜕𝜺𝒆𝒍

(54)

The reduction of the crack length when 𝜓+
𝑒𝑙 decreases, such as during

he unloading phase, is avoided by adding the irreversibility constraint
n Eq. (53)b, according to the approach of Miehe et al. [43]. Thus,
+
𝑒𝑙 in Eq. (53)b is replaced with the so-called local history field ,

as reported in Eq. (55).

𝐺𝑐𝑟

(

𝑑
𝑙0

− 𝑙0𝛥𝑑
)

+ 2(𝑑 − 1) = 0 (55)

here  is defined as the maximum tensile contribution of the elastic
nergy density function according to Eq. (56).

(𝐱, 𝑡) ∶= max
𝑑∈[0,𝑡]

𝜓+
𝑒𝑙 (56)

Although the anisotropic formulation prevents crack growth across
ompressive regions, it leads to nonlinear equilibrium equations, thus
o a more expensive numerical computation. Ambati et al. [50] solved
his issue developing the hybrid PFM, which has a linear equilib-
ium equation. Therefore, the equilibrium equation is taken from the
sotropic PFM, replacing 𝝈(𝐮, 𝑑) in Eq. (54) with 𝝈(𝐮, 𝑑) = 𝑔(𝑑) 𝜕𝜓𝑒𝑙𝜕𝜺𝒆𝒍

=

1 − 𝑑)2 𝜕𝜓𝑒𝑙𝜕𝜺𝒆𝒍
, whereas Eq. (53)b does not change.

Finally, the lithium ion concentration (𝑐) is governed by the trans-
port equation, expressed by Eqs. (18), (20) or (22) in 2, according to
the non-ideal coupled, ideal coupled or ideal uncoupled solution model,
respectively.

Thus, the complete set of governing equations in the strong form
solving the fracture problem in LIBs with the PFM are obtained by com-
bining Eq. (53)a (equilibrium), Eq. (55) (PF evolution) and Eq. (18),
(20) or (22) (lithium ion transport), as resumed in Eq. (53).

A well-defined set of boundary conditions is given by 𝐮 = �̄� on 𝜕𝛺𝑢
and 𝝈 ⋅ 𝐧 = �̄� on 𝜕𝛺 for the equilibrium equation, and ∇ ⋅ 𝑑 = 0 and
𝑡
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Fig. 2. (a) Sketch of the CZM domains. (b) Generic TSL for single-mode fracture.
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= 0 on 𝜕𝛺 for the evolution of the PF variable. Finally, the initial
onditions are 𝑐(𝐱, 𝑡0) = 𝑐0 and 𝐮(𝐱, 𝑡0) = 𝐮𝟎.
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𝐄𝐪𝐮𝐢𝐥𝐢𝐛𝐫𝐢𝐮𝐦
∇ ⋅ [𝝈(𝐮, 𝑑)] = 0,
𝐮 = �̄� on 𝜕𝛺𝑢

𝝈 ⋅ 𝐧 = �̄� on 𝜕𝛺𝑡

𝐏𝐅 𝐞𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧

𝐺𝑐𝑟

(

𝑑
𝑙0

− 𝑙0𝛥𝑑
)

+ 2(𝑑 − 1) = 0,

∇ ⋅ 𝑑 = 0 on 𝜕𝛺
𝑑 = 0 on 𝜕𝛺

𝐋𝐢𝐭𝐡𝐢𝐮𝐦 𝐢𝐨𝐧 𝐭𝐫𝐚𝐧𝐬𝐩𝐨𝐫𝐭
𝜕𝑐
𝜕𝑡

= 𝐷𝑐𝑚𝑎𝑥

[ (

2
𝑟
𝛼 + 2

𝑟
𝑥𝐿𝑖𝑆𝑘 +

𝜕𝛼
𝜕𝑟

)

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

+

+ 𝑘
(

𝜕𝑥𝐿𝑖𝑆
𝜕𝑟

)2
+ (𝛼 + 𝑘𝑥𝐿𝑖𝑆 )

𝜕2𝑥𝐿𝑖𝑆
𝜕𝑟2

]

,

𝜕𝑐(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=𝑅
= 𝑁𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡), for t ≥ 0

𝜕𝑐(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=0
= 0, for t ≥ 0

(57)

.3. Cohesive zone model

The cohesive zone model (CZM) overcomes the limits of the LEFM
heory as it allows modeling fracture even when the size of the non-
inear zone near the crack tip is not negligible as compared to the crack
imension, and without assuming the presence of an initial crack [51].

CZM models fracture as a gradual phenomenon, which occurs in
he so-called cohesive fracture zone in front of the crack tip. Referring
o Fig. 2a and considering a single-mode fracture, the crack region is
ivided into three parts: (a) the intact zone loaded by nominal stress,
b) the cohesive fracture zone which is loaded by the cohesive traction
𝑖 (where the subscript 𝑖 refers to pure fracture mode 𝐼 , 𝐼𝐼 or 𝐼𝐼𝐼),
c) the cracked zone which is stress-free. The cohesive traction 𝑇𝑖 joins
ogether the crack surfaces and depends on the distance between the
rack surfaces (𝛿). The relation between the cohesive traction 𝑇𝑖 and 𝛿
s the so-called traction separation law (TSL), represented in Fig. 2b.

Fracture consists of the initiation and propagation of the crack
aused by the opening and advance of the cohesive zone in front of
he crack tip. The main idea is that infinite stress at the crack tip is not
ealistic. Thus, the crack tip singularity is removed by considering that
he stress in the cohesive zone cannot overcome the cohesive strength
f the material 𝜎 (refer to Fig. 2b). Indeed, when the cohesive traction
11

𝑐𝑜 s
reaches 𝜎𝑐𝑜, it decreases and drops to zero when 𝛿 reaches the critical
value 𝛿𝑓 . At this stage, the complete separation occurs and new crack
surfaces are generated (Fig. 2a-b).

The TSL law is expressed according to Eq. (58) and depends on the
material.

𝑇𝑖 = 𝑇𝑖(𝛿𝑖) (58)

The area under the cohesive law curve represents the so-called
cohesive energy 𝛤𝑐,𝑖, i.e. the energy required for the separation of crack
surfaces, expressed in Eq. (59).

𝛤𝑐,𝑖 = ∫

𝛿𝑓,𝑖

0
𝑇𝑖(𝛿𝑖)𝑑𝛿𝑖 (59)

The cohesive energy is equal to the Griffith critical energy release
rate if there is no energy dissipation around the crack.

Different TSLs exist in the literature, based on the type of material
and separation mechanism, such as triangle, bilinear, linear–parabolic
and exponential. Table S5 summarizes the most popular TSL with their
corresponding equations and a brief description of their applications
[52–57]. The bilinear law is the most used TSL to model fracture in
LIBs.

The quadratic stress criterion in Eq. (60) is adopted to define
the damage initiation when the material is subjected to mixed-mode
loading.
(

𝑇𝐼
𝜎𝑐𝑜,𝐼

)2
+
(

𝑇𝐼𝐼
𝜎𝑐𝑜,𝐼𝐼

)2
+
(

𝑇𝐼𝐼𝐼
𝜎𝑐𝑜,𝐼𝐼𝐼

)2
= 1 (60)

Where 𝜎𝑐𝑜,𝑖 is the cohesive strength for the mode 𝑖. Then, an equiv-
lent separation 𝛿𝑒𝑞 is computed according to Eq. (61), considering the

contribution of all the modes.

𝛿𝑒𝑞 =
√

𝛿2𝐼 + 𝛿
2
𝐼𝐼 + 𝛿

2
𝐼𝐼𝐼 (61)

The complete separation, which occurs when the cohesive energy
of mode 𝑖 (𝛤𝑐,𝑖) equals the corresponding energy release rate 𝐺𝑖 in the
case of single mode, is defined by the following mixed-mode criterion:

(

𝐺𝐼
𝛤𝑐,𝐼

)𝛼𝑐𝑜
+
(

𝐺𝐼𝐼
𝛤𝑐,𝐼𝐼

)𝛼𝑐𝑜
+
(

𝐺𝐼𝐼𝐼
𝛤𝑐,𝐼𝐼𝐼

)𝛼𝑐𝑜
= 1 (62)

here 𝛼𝑐𝑜 is an empiric value, usually ranging between 1 and 1.6 and
efined through experimental tests [58].

.4. Concluding remarks

The fundamentals fracture mechanics model are reviewed in this
ection. In particular, the followings are remarked:
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Table 2
Summary of the main works existing in the literature using the weight function method to compute 𝐾𝐼 in LIBs. Coupling refers to the
mechanical–diffusive coupling explained in Section 2.
Particle geometry Crack geometry Electrode material Coupling Ref.

Spherical Superficial crack LMO No [59]
Spherical Superficial crack LMO No [60]
Spherical Superficial crack LMO Yes [61]
Spherical Edge crack on phases interface LFP Yes [62]
Spherical Radial crack Silicon No [63]
T
i
S

t
p
f

𝑤

• LEFM assumes that the plastic area near the crack tip is negligible
compared to the crack dimension. The stress at the crack tip
is computed with the SIF, which is also a parameter used to
determine if the crack can propagate, both due to static and
cyclic loads according to proper criteria. Therefore, the LEFM
model is applied when the material behavior near the crack tip
is linear elastic and, compared to the other fracture models, it
cannot describe the fracture in non-linear and plastic materials.
Furthermore, a pre-existent crack is needed, thus it is not possible
to model the crack initiation stage. On the other hand, compared
to other fracture models, analytical solutions based on LEFM
theory in the case of simple geometries and loading conditions
are available.

• PFM is an energetic approach and it can be viewed as the gen-
eralization of Griffith’s theory of LEFM. Unlike other fracture
models, the PF variable 𝑑, ranging from 0 (intact material) to 1
(broken material), avoids the explicit representation of the crack
and eliminates the geometrical discontinuities in the model. For
this reason, the PFM is an effective approach to model fracture in
the case of complex geometries and loading conditions compared
with the traditional approach of LEFM or the CZM model. Further-
more, unlike the LEFM model, the PFM can be applied without
assuming pre-existent cracks.

• CZM allows modeling both elastic and plastic materials, with
respect to the previous models. The non-physical stress singularity
at the crack tip is eliminated by assuming that the stress cannot
overcome the threshold value of the cohesive strength. The open-
ing of the crack is evaluated on the basis of the TSL, depending on
the material. After the cohesive strength is overcome, the cohesive
traction, which binds the two faces of the crack, decreases as
long as the crack opens and finally drops to zero, resulting in the
crack extension. Unlike the LEFM and PFM models, the CZM is
based on the cohesive law to model the fracture behavior of the
material, which is difficult to be obtained experimentally, limiting
the reliability of the results.

. Numerical implementation of fracture mechanical models ap-
lied to LIBs

The numerical implementation of the fracture models for LIBs cov-
red in Section 3 is described in this Section. The propagation of a
rack in active material particles of electrodes leads to a significant
iscontinuity in the displacement and stress fields. Dealing with this
iscontinuity is cumbersome from the modeling point of view and
ifferent numerical methods have been proposed in literature over
he years. Some models follow a discrete approach and deal with
iscontinuity, others follow a continuum approach to work around
he problem. Furthermore, crack propagation is in general simulated
umerically, and the analytical approach can be used only in the case
f simple geometry and loading conditions.

.1. Analytical

The analytical approach can be used to solve the fracture problem
nly for simple geometry and loading conditions. In this case, tabulated
eometric factor (𝑌 ) is often employed to compute the SIF (𝐾) [64–66],
12
according to Eq. (23). However, closed-form solutions for 𝐾 are not
directly available for arbitrary cracks in complex structures or under
complex loading conditions, such as for cracks in LIBs. In this case, the
weight function method can be employed to compute 𝐾.

Then, Eq. (32) is employed to evaluate crack propagation due to a
single (de)lithiation, once the SIF is computed. Alternatively, Paris’ law
expressed in Eq. (37) is used to model the crack growth due to repeated
charge/discharge cycles.

4.1.1. Weight function method
The SIF (𝐾) due to an arbitrary load is computed using a weight

function 𝑤 obtained from a simpler load case, taken as a reference.
he weight function 𝑤 does not depend on the stress distribution and

s known for the geometry of the model of interest. Practically, the
IF is computed by multiplying the weight function 𝑤 by the arbitrary

stress distribution and integrating along the crack length, as expressed
in Eq. (63).

𝐾 = ∫

𝑎

0
𝜎(𝑥)𝑤(𝑥, 𝑎)𝑑𝑥 (63)

Where 𝜎(𝑥) is the stress distribution normal to the crack surface in
he uncracked body, 𝑤(𝑥, 𝑎) is the weight function, 𝑥 is the coordinate
arallel to the crack direction and 𝑎 is the crack length. The weight
unction 𝑤 is computed from a reference case, according to Eq. (64).

(𝑥, 𝑎) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸
𝐾ref

𝜕𝑢ref (𝑥, 𝑎)
𝜕𝑎

plane stress

𝐸
(1 − 𝜈2)𝐾ref

𝜕𝑢ref (𝑥, 𝑎)
𝜕𝑎

plane strain
(64)

Where 𝐾ref and 𝑢ref (𝑥, 𝑎) are the reference SIF and the corresponding
displacement at the crack tip, respectively.

Some works used the weight function method to compute the mode
I SIF (𝐾𝐼 ) due to the hoop stress arising in spherical active material
particles during lithium insertion and extraction. A summary of the
feature of the models is given in Table 2.

The effect of mechanical–diffusive coupling was neglected in earlier
works, such as [59,60,63]. However, the most recent works, such
as [61,62], computed the hoop stress with a coupled mechanical–
diffusive model.

Different electrode materials and crack geometries were modeled,
such as LiMn2O4 (LMO) [59–61], LiFePO4 (LFP) [62] and Silicon [63],
superficial cracks [59–61], edge cracks on the phases interface [62] and
radial cracks [63].

𝐾ref and 𝑢ref were obtained from an approximated geometry since
they are not available for the geometry of the particle. For example,
the spherical particles with superficial crack in [59] and radial crack
in [63] were approximated as equivalent plates with semielliptical edge
cracks, whereas the spherical particles with superficial crack in [61]
and crack at phases interface in [62] were approximated as circular
disks with edge cracks. Clearly, this approximation may affect the
accuracy of the 𝐾𝐼 computation. This is the reason why numerical
approaches are often preferred to compute the SIF.
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Fig. 3. (a) Collapsed quarter point elements for 2D model. Standard 8-nodes quadrilateral elements are represented on the left and collapsed quarter point elements are represented
on the right. (b) Crack growth modeling with CZM. Cohesive elements are depicted in blue and join together the crack surface according to the TSL. When 𝛿 < 𝛿𝑐𝑜, the material is
undamaged, whereas the damage accumulates irreversibly as 𝛿 > 𝛿𝑐𝑜, then the stiffness of cohesive elements decreases, as well as the cohesive traction. When the failure separation
𝛿𝑓 is reached, the traction drops to zero, the cohesive element is deleted, and the crack is formed. (c) Typical XFEM mesh of a cracked body. The nodes of the elements cut by
the crack are represented by red squares and are enriched with the Heaviside functions, whereas the nodes at the crack tip are represented by blue circles and are enriched with
the crack tip asymptotic functions. (d) Flowchart of the Newton–Raphson method to solve PFM Equations for fracture in LIBs. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
4.2. FEM

FEM is generally employed to solve more complex crack problems
since closed-form solutions of SIF (𝐾) exist only for a few simple crack
configurations and loading conditions. Thus, FEM represents a valid
alternative to the analytical approach to model fracture in LIBs due to
single (de)lithiation, as well as repeated cycles.

4.2.1. Mesh
The main issue is the representation of the singularity of displace-

ment and stress fields at the crack tip because the polynomials used
to approximate the solution are not able to reproduce the 1∕

√

𝑟𝑐
singularity at the crack tip.

Barsoum et al. [67] showed that the singularity of the stress field
can be accurately modeled using the so-called collapsed quarter point
elements. These elements are obtained by collapsing one side (the
one containing the nodes 4, 7, 3 on the left in Fig. 3a) to a single
point (located at the crack tip and represented in red on the right
in Fig. 3a), and shifting the mid-side nodes near the crack tip to a
quarter position (the nodes 6 and 8 represented in green on the right
in Fig. 3a). Collapsed quarter point elements are frequently employed
in crack simulations and they are implemented in several commercial
FE software, such as ANSYS, ABAQUS, and COMSOL.
13
4.2.2. Numerical implementation
The fracture mechanics models presented in Section 3 (LEFM and

CZM) have been implemented using FEM to compute crack growth.

LEFM. Fracture parameters, such as SIF, energy release rate 𝐺 or J-
integral are computed at each time step of the simulation. The fracture
criteria summarized in Section 3.1.4 are used to determine the oc-
currence and direction of crack propagation due to static loading. On
the other hand, Paris’ law is often employed to simulate fatigue crack
growth. In this case, the SIF range 𝛥𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 is computed nu-
merically for the maximum load. Then, the number of cycles required
to increase the crack length of a fixed 𝛥𝑎 is estimated through Paris’
law expressed in Eq. (37).

Once the crack propagates due to static or cyclic loading, the crack
geometry and mesh are updated, considering that the crack increment
𝛥𝑎 is usually predefined and kept fixed during the simulation. Then,
the procedure described above is repeated for the successive time step
or cycle.

Re-meshing generally consists of four steps: (1) the existing mesh
around the crack is removed; (2) the geometry of the crack is modified
according to the determined crack length increment and direction; (3)
quarter-point elements are created around the crack tip; (4) a new mesh
is generated in the remained not meshed area.

Re-meshing is highly cumbersome, especially if the model is 3D
and the geometry and the crack path are complex and not known
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Table 3
Summary of the main works existing in the literature using CZM in FEM framework to model fracture in electrode active materials.
Active material Geometry Goals Operation Chemo-

mechanical
coupling

Ref.

Graphite Anisotropic
cylindrical particle

Analysis of the location and
orientation dependent crack
propagation

Cycling charging Yes [73]

NMC Spherical particle
made of several
primary particles

Intergranular cracking simulation Single charge/
discharge cycle

No [68]

NMC Spherical particle
made of several
primary particles

Intergranular cracking simulation
including the effect of lithium
embrittlement on crack
propagation

Cyclic charge/
discharge cycles

Yes [74]

NMC Spherical particle
made of several
primary particles

Intergranular cracking simulation
to assess the influence of the
fracture energy

Single and cyclic
charge/
discharge cycles

No [69]

NMC Spherical particle
made of several
primary particles

Intergranular cracking simulation
to assess the influence of primary
particle sizes, regularities,
interfacial strength, current rates
and fracture energy

Single charge/
discharge cycle

No [71,72]

LMO Thin film
polycrystalline

Development of a coupled
mechanical-diffusive CZM fracture
model

Single charge/
discharge cycle

Yes [75]

NMC Spherical particle
made of primary
particles

Development of a coupled
mechanical–diffusive CZM model
which estimates intergranular
cracking and its influence on
lithium transport

Single discharge Yes [70]
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in advance. In addition, modeling fracture in LIBs requires solving a
multiphysics problem which further increases the computational effort
of the simulation. For this reason, this kind of approach is not widely
employed in literature, whereas other numerical methods, such as the
XFEM or the PFM, are preferred.

Cohesive zone model. In contrast to LEFM theory, no pre-existent cracks
nd singular elements at the crack tip are needed in the CZM, and both
rittle and ductile fractures can be simulated.

A layer composed of zero-thickness cohesive elements is introduced
t the interface between standard elements, in the areas where the
rack is supposed to propagate. Material damage and separation occur
nly within the cohesive elements layer, whereas the surrounding
tandard elements are damage-free.

Cohesive elements apply a traction force which joins the adjacent
tandard elements based on the specific TSL. The damage starts to
ccumulate irreversibly when the stress within the element exceeds the
ohesive strength 𝜎𝑐𝑜, thus the cohesive elements lose their stiffness, as
he traction decreases according to the TSL. Finally, traction drops to

when the fracture separation 𝛿𝑓 is reached, then standard elements
re disconnected and the crack increment occurs (Fig. 3b).

The CZM was employed as an alternative to the LEFM to study
he crack propagation in electrode active materials due to single
de)lithiation [68–72], as well as repeated charge/discharge cycles [68,
1,72]. Table 3 summarizes the main works existing in the literature.

The main drawback of the CZM implemented in the FEM framework
s that re-meshing is still necessary when the crack path is not known
n advance because the crack can propagate only along the cohesive
lements layer. Furthermore, the CZM requires some material parame-
ers, such as cohesive strength 𝜎𝑐𝑜, fracture separation 𝛿𝑓 and cohesive
nergy 𝛤𝑐 , which are still difficult to determine.

.3. XFEM

The extended finite element method (XFEM) is based on the Parti-
ion of Unit Method (PUM) [76] and represents a valid alternative to
vercome the issues associated with the standard FEM-based modeling
14

f

f fracture. Indeed, the XFEM method does not require a conforming
esh to obtain a good estimation of the stress and displacement sin-

ularity at the crack tip, being suitable to simulate an unknown and
omplex crack growth path.

The reader can refer to specific works available in the literature,
s [77,78] for a more general and detailed explanation of the XFEM
ethod.

The XFEM method adopts a uniform mesh neglecting the geometric
iscontinuity introduced by the crack. The so-called enriched functions
𝑒(𝒙) are used to estimate the singularity of the solution at the crack tip.
herefore, all the nodes of the elements cut by the crack are enriched
ith additional degrees of freedom as compared to the standard FEM,
s depicted in Fig. 3c.

The general expression of the enriched displacement 𝒖𝒉(𝒙) is re-
orted in Eq. (65).
𝒉(𝒙) =

∑

𝑖∈
𝑁𝑖(𝒙)�̂�𝑖 +

∑

𝑗∈ 𝑒𝑛𝑟

𝑁𝑗 (𝒙)(𝐹𝑒(𝒙) − 𝐹𝑒(𝒙𝑗 ))�̂�𝑗 (65)

here  is the set of all nodes of the FE mesh,  𝑒𝑛𝑟 is the set of
nriched nodes, 𝑁𝑖(𝒙) is the standard shape function for node 𝑖, �̂�𝑖 is
he standard nodal displacement vector, 𝑁𝑗 (𝒙) is the standard shape
unction for the enriched node 𝑗, 𝐹𝑒(𝒙) is the enrichment function and
𝑒(𝒙𝒋) is its value at the node 𝑗, 𝑥𝑗 is the spatial coordinate of the node
and �̂�𝑗 is the enriched displacement of node 𝑗.

Two types of enrichment functions are commonly used in the LEFM
heory, namely the Heaviside jump function and the asymptotic crack
ip function.

The Heaviside jump function is expressed in Eq. (66) and allows
odeling the discontinuity in the displacement field due to the crack.
ll the nodes of the elements cut by the crack are enriched with the
eaviside jump function.

(𝒙) =

{

1, above the crack
−1,below the crack

(66)

The asymptotic crack tip function is used to enrich the degrees of

reedom of the node at the crack tip to properly describe the singularity
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of the displacement field, according to Eq. (67).

𝐹 (𝑟𝑐 , 𝜃) = {𝐹1, 𝐹2, 𝐹3, 𝐹4} =

= {
√

𝑟𝑐 sin
𝜃
2
,
√

𝑟𝑐 cos
𝜃
2
,
√

𝑟𝑐 sin
𝜃
2
cos 𝜃

2
,
√

𝑟𝑐 cos
𝜃
2
sin 𝜃} (67)

Where 𝑟𝑐 and 𝜃 are spatial coordinates of a polar system with the origin
at the crack tip.

The enriched displacement 𝒖ℎ expressed in Eq. (65) can be rewritten
substituting the enriched functions expressed in Eqs. (66) and (67),
obtaining the standard XFEM approximation of the displacement field
reported in Eq. (68).

𝒖ℎ(𝒙) =
∑

𝑖∈
𝑁𝑖(𝒙)�̂�𝑖 +

∑

𝑗∈ 𝑑𝑖𝑠

𝑁𝑗 (𝒙)(𝐻(𝒙) −𝐻(𝒙𝑗 ))�̂�𝑗

+
∑

𝑘∈ 𝑡𝑖𝑝

𝑁𝑘(𝒙)
4
∑

𝛼=1
(𝐹𝛼(𝒙) − 𝐹𝛼(𝒙𝑘))�̂� 𝛼𝑘 (68)

Where  is the set of all nodes of the mesh,  𝑑𝑖𝑠 is the set of
nodes of elements cut by the crack and enriched by the Heaviside
function,  𝑡𝑖𝑝 is the set of nodes of the elements containing the crack
tip and enriched by the asymptotic functions, �̂�𝑖 is the standard nodal
displacement vector, �̂�𝑗 is the enriched displacement nodal vector
associated with the Heaviside enrichment function at node 𝑗, �̂� 𝛼𝑘 is
the enriched displacement nodal vector associated with the asymptotic
functions at node 𝑘.

The XFEM can include other fracture models in addition to LEFM,
such as the CZM. In this case, only the Heaviside enrichment function is
employed and the crack tip nodes are not enriched since the singularity
in the displacement field is no longer present. On the other hand,
cohesive elements and TSL are employed similarly to the standard FEM.

The XFEM can be used to model crack propagation in LIBs both
during single (de)lithiation [79–81] and repeated cycles, following the
same procedure described in Section 4.2 for the standard FEM. The only
difference is that re-meshing is not necessary, and just the enrichment
of nodes of elements cut by the crack needs to be updated based on the
crack tip position.

4.4. Phase-field model

The set of governing equations reported in (53) solving fracture
mechanics in LIBs according to PFM constitutes a system of coupled
non-linear partial differential equations (PDEs) in the unknown fields
𝐮, 𝑐 and 𝑑. These equations are solved numerically according to the FE
discretization.

First, the system of Equations in (53) is formulated in the weak
form, as reported in Eq. (69). For the sake of clarity, the ideal solution
with the coupled model is adopted in (69)c.

∫𝛺
𝛿𝐮(∇ ⋅ [𝑔(𝑑)𝝈])𝑑𝛺 = 0 (69a)

∫𝛺

[

𝐺𝑐𝑟

(

𝑑𝛿𝑑
𝑙0

+ 𝑙0∇𝑑 ⋅ ∇𝛿𝑑
)

− 2(1 − 𝑑)𝛿𝑑
]

𝑑𝛺 = 0 (69b)

∫𝛺

(

𝛿𝑐 𝜕𝑐
𝜕𝑡

+𝐷∇𝑐 ⋅ ∇𝛿𝑐 − 𝐷𝛺𝑐
𝑅𝑇

∇𝜎ℎ𝛿𝑐
)

𝑑𝛺 = 0 (69c)

Where 𝛿𝐮, 𝛿𝑑 and 𝛿𝑐 are the test functions for the displacement field
(𝐮), PF variable (𝑑), and concentration (𝑐), respectively.

Then, the weak form in Eq. (69) is discretized according to FEM,
pproximating 𝐮, 𝑑 and 𝑐 with shape functions according to their nodal
alues, as reported in Eq. (70).

=
𝑛
∑

𝑖
𝑁𝑖𝐮𝑖, 𝑑 =

𝑛
∑

𝑖
𝑁𝑖𝑑𝑖, 𝑐 =

𝑛
∑

𝑖
𝑁𝑖𝑐𝑖 (70)

Where �̂�𝑖, 𝑑𝑖, 𝑐𝑖 are the nodal values of the displacement, PF and
oncentration respectively, 𝑛 is the total number of nodes per element
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i

and 𝑁𝑖 is the corresponding shape function. The strain and gradient
erms are approximated according to Eq. (71).

=
𝑛
∑

𝑖
[𝐁𝑢𝑖 ]�̂�𝑖, ∇𝑑 =

𝑛
∑

𝑖
[𝐁𝑖]𝑑𝑖, ∇𝑐 =

𝑛
∑

𝑖
[𝐁𝑖]𝑐𝑖 (71)

here the matrices [𝐁𝑢𝑖 ] and [𝐁𝑖], expressed in Eq. (72), are the deriva-
ive of the shape functions.

𝐁𝑖]𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝑖
𝜕𝑥 0 0

0 𝜕𝑁𝑖
𝜕𝑦 0

0 0 𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥 0

0 𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑧 0 𝜕𝑁𝑖

𝜕𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, [𝐁𝑖] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(72)

The stress tensor �̂� is approximated according to Eq. (73).

�̂� =
𝑛
∑

𝑖
[𝐂0]

{

[𝐁𝑢𝑖 ]�̂�𝑖 −𝑁𝑖𝑐𝑖
𝛺
3
[𝑰]

}

(73)

Where [𝐂0] is the linear elastic stiffness matrix or elastic moduli, [𝐈]
s the identity matrix.

Then, the governing equations (Eq. (69)a-c) are written as a function
f nodal values with Eqs. (70), (71) and (73). The resulting system of
quations is expressed in Eqs. (74)a-c.

∫𝛺
𝑔(𝑑)[𝐁𝑢𝑖 ]

𝑇 �̂�𝑑𝛺 = 𝐑𝑢𝑖 = 0 (74a)

∫𝛺

[

𝐺𝑐𝑟

(

𝑑𝑁𝑖
𝑙0

+ 𝑙0[𝐁𝑖]𝑇∇𝑑
)

− 2(1 − 𝑑)𝑁𝑖

]

𝑑𝛺 = 𝑅𝑑𝑖 = 0 (74b)

∫𝛺

(

𝑁𝑖
𝜕𝑐
𝜕𝑡

+ [𝐁𝑖]𝑇𝐷∇𝑐 − [𝐁𝑖]𝑇
𝐷𝛺𝑐𝑛

𝑅𝑇
∇𝜎ℎ

)

𝑑𝛺 = 𝑅𝑐𝑖 = 0 (74c)

Where 𝐑𝑢𝑖 , 𝑅
𝑑
𝑖 and 𝑅𝑐𝑖 is the residual vector of 𝐮, 𝑑 and 𝑐, respec-

tively.
The aim is to find a value of 𝐐 = {𝒖, 𝑑, 𝑐} so that 𝐑(𝐐) =

[

𝐑𝑢𝑖 (𝐮), 𝑅
𝑑
𝑖 (𝑑), 𝑅

𝑐
𝑖 (𝑐)

]

= [𝟎, 0, 0]. Since Eqs. (74)a-c are coupled and
non-linear, then the Newton–Raphson method is used to solve them
iteratively.

First, an initial guess solution 𝐐1 is considered. If 𝐑(𝐐1) ≠ 0, it is
necessary to find 𝛥𝐐1 so that 𝐑(𝐐1+𝛥𝐐1) ≈ 0. 𝐑(𝐐1+𝛥𝐐1) is expressed
ccording to Eq. (75) using Taylor series.

(𝐐1 + 𝛥𝐐1) = 𝐑(𝑸1) + [𝐒(𝑸1)]𝛥𝐐1 (75)

here [𝐒(𝑸1)] is the iteration matrix, which is defined according
o Eq. (76).

𝐒(𝑸1)] =
𝜕𝐑
𝜕𝐐

|

|

|

|𝐐1

(76)

The increment 𝛥𝑸1 which would make 𝐑(𝐐1 + 𝛥𝐐1) equal to
ero is computed with Eq. (77)a and added to the solution according
o Eq. (77)b.

𝐒(𝐐1)]𝛥𝐐1 = −𝐑(𝐐𝟏) (77a)

𝐐2 = 𝐐1 + 𝛥𝐐1 (77b)

Then, it is checked if 𝐐2 satisfies 𝐑(𝐐2) = 0. If not, the procedure is
epeated so that the residue tends to zero.

The expression of the iteration matrix in Eq. (76) for the generic 𝑘-th
teration can be rewritten as reported in Eq. (78), considering that the
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Table 4
Summary of the numerical implementation of PFM for fracture in LIBs.
Active material Particle geometry Approach Time integration Software Ref.

Si Nanowire Hybrid Newmark MATLAB [82]
LMO Cylindrical Isotropic Backward Euler PETSc [83]
Si Spherical Hybrid Not specified MATLAB [84]
LiMn2O4 Spherical and cylindrical Hybrid Backward Euler method PARDISO solver and COMSOL [85]
LMO Spherical and cylindrical Anisotropic Backward Euler FE library deal.II v8.1 [86]
LMO Spherical and cylindrical Hybrid Backward Euler libMesh and PETSc [87]
LMO 2D and 3D from SEM image Isotropic Backward Euler Not specified [44]
Si Spherical Isotropic Not specified COMSOL [88]
LFP Platelet Isotropic Not specified FEniCs [89]
Generic Cylindrical Anisotropic Backward Euler FEAP [90]
residual 𝐑 can be split into two components, namely 𝑅 = 𝑅𝑡𝑘(𝐐)+𝑅𝑡𝑐 (�̇�)
epending on 𝐐 and �̇� respectively.

𝐒(𝑸𝑘)] =
𝜕𝐑𝐭𝐤
𝜕𝐐

|

|

|

|𝐐𝑘
+
𝜕𝐑𝐭𝐜
𝜕𝐐

|

|

|

|𝐐𝑘
=
𝜕𝐑𝐭𝐤
𝜕𝐐

|

|

|

|𝐐𝑘
+
𝜕𝐑𝐭𝐜

𝜕�̇�
|

|

|

|𝐐𝑘

𝜕�̇�
𝜕𝐐

(78)

Where 𝜕�̇�
𝜕𝐐

= 𝜏 is a coefficient depending on the integration scheme,

hich is equal to 𝜏 =
𝛾
𝛽𝛥𝑡

for the Newmark integration scheme, 𝛥𝑡 is
he time integration step, 𝛽 and 𝛾 are constant parameters, usually set
qual to 𝛽 = 𝛾 = 0.5. Finally [𝐒(𝑸𝑘)] in Eq. (78) is written in matrix
orm according to Eq. (79).

𝐒(𝑸𝑘)] = [𝐊(𝑸𝑘)] + [𝐂(𝑸𝑘)]𝜏 (79)

Where [𝐊(𝑸𝑘)] and [𝐂(𝑸𝑘)] are the tangent stiffness and damping
matrices, whose expressions are given in Appendix A.1.

The flowchart reported in Fig. 3d summarizes the procedure to
compute the solution of the system of Eqs. (74). At the 𝑖-th time step,
an initial guess solution 𝑸𝒊 is made on the basis of the solution 𝑸𝒊−𝟏

btained from the Newton-Raphson iteration of the previous time step,
ccording to the chosen time integration scheme. Then the residual is
omputed and the convergence is checked. If the residual is greater
han the tolerance, the solution is corrected according to Eq. (77),
amely the increment 𝛥𝑸1 is added to the previous solution 𝑸𝑖

1, to
et a new solution 𝑸𝑖

2. Then, a new residual is computed with the
ew solution 𝑸𝑖

2 and so on. When the residual is beneath the chosen
olerance, the solution 𝑸𝑖

𝑘 is the solution of that time step, then the time
s incremented and a new guess solution of the following time step 𝑸𝒊+𝟏

s made on the basis of 𝑸𝑖
𝑘, and so on.

In the literature, several works adopting the PFM approach to
imulate fracture in LIBs were proposed. A brief summary of the
umerical implementation of the PFM solving fracture in LIBs is given
n Table 4. Both isotropic, anisotropic and hybrid formulations are
sed, and different time integration methods are adopted. Moreover,
ifferent commercial software is employed, namely MATLAB, COMSOL,
BAQUS, FeniCs, FEAP.

.5. Concluding remarks

• FEM. Pro: All the models presented in Section 3 can be solved
with FEM. It is an established method, and fracture mechanics
is already implemented in most of the FE commercial software.
Cons: Crack growth simulation requires updating the geome-
try of the crack and the mesh according to the crack path,
which significantly increases the computation time and the code
complexity.

• XFEM. Pro: This method does not require the re-mesh stage,
which is complex and time-consuming, thus it overcomes the
issues hindering the use of FEM for crack growth. Enriched el-
ements are inserted along the supposed crack path. Cons: Few
commercial software supports XFEM, and sometimes does not
allow multiphysics modeling.

• Phase-field. Pro: Crack growth is simulated without the need for
a pre-existent crack. The geometric discontinuity is eliminated
16
by using the PF variable and singular elements are not needed.
Complex and unknown crack paths can be simulated as the re-
meshing is not necessary. Cons: Few commercial software have
the phase-field model already implemented.

5. Results of fracture mechanics applied to LIBs

5.1. Phenomena linked to fracture - Fracture relaxation and Li-
embrittlement

Mechanics and transport fields influence each other. In particular,
lithium is driven by stress from compressive to tensile areas. Then,
lithium ions are driven to the crack tip, because it is subjected to
significantly higher tensile stress, according to the SIF definition given
in Section 3.1.1, with respect to the neighboring areas. The increase in
lithium concentration at the crack tip causes an increase in the chemical
term of deformation reported in Eqs. (1)a. Assuming that the total
deformation is constant, the elastic component of deformation (the first
term of Eqs. (1)a) decreases, causing the stress relaxation effect [91].

Some authors measured the fracture toughness of different active
materials and noted that it is dependent on the concentration of lithium
ions. In particular, high concentration causes an increase in fracture
toughness in NMC, LCO, and silicon [92–94]; on the other hand, high
lithium concentration causes a decrease in fracture toughness in carbon
nanotube because of the reduction of C–C bonds, then it may be
assumed that graphite has the same behavior [74,95].

5.2. Static loading — single (de)lithiation

Most of the works in the literature dealt with crack growth in active
material particles of LIBs due to single (de)lithiation, thus neglect-
ing fatigue effects. The numerical models were implemented accord-
ing to Section 4 and fracture mechanics failure criteria reported in
Section 3.1.4 were employed.

Active material particles were modeled as spherical or platelet-like
bodies, and the cracks were supposed to open according to mode I in
most of the works. Thus, the tensile hoop stress induced by lithium dif-
fusion or by the lattice mismatch between phases with different lithium
concentrations is the driving force for crack propagation. However,
some works dealt with the mixed-mode case as well. Earlier works
neglected the mechanical–diffusive coupling, which has been taken into
account in the most recent works.

The literature concerning fracture mechanical modeling in LIBs can
be grouped according to the three main objectives:

• Study of the factors influencing fracture, including charge/
discharge current rate, size and shape of the active material
particles, and initial crack length.

• Study of the crack growth stability.
• Study of the crack propagation path.

The main features and results of these numerical models will be ex-

plained in the following sections.



Journal of Power Sources 566 (2023) 232875F. Pistorio et al.

.

Table 5
Summary of the main works existing in the literature dealing with the influence of the operating conditions and geometric properties on fracture in LIBs due to single (de)lithiation

Particle
geometry

Electrode Material Mode Driving force Numerical
implementation

Addressed topic Ref.

Platelet and
equiaxed

LFP I Stress due to
phase transition

𝐺 computation with
FEM in ABAQUS

Determination of the
critical size and current
rate for crack growth

[96]

Equiaxed LCO I Diffusion
induced stress

𝐺 computation with
FEM in ABAQUS

Determination of the
critical size for crack
growth

[97]

Platelet LFP I and II Stress due to
phase transition

𝐺 computation with
FEM in ANSYS

Fracture evaluation
under mixed-modes

[98]

Spherical and
Ellipsoidal

LMO I Diffusion
induced stress

XFEM in ABAQUS Fracture map [79]

Spherical LMO I Diffusion
induced stress

Analytical computation
of 𝐾𝐼

Fracture map [59]

Spherical LFP I Stress due to
phase transition

Analytical computation
of 𝐾𝐼

Fracture map [62]

Spherical LMO I Diffusion
induced stress

𝐾𝐼 computation with
FEM in ANSYS

Evaluation of the
effects of geometric
factor and current rates
on fracture

[11]
5.2.1. Influence of the operating condition and geometric factors
The fracture behavior of active materials is affected by the oper-

ating conditions, such as charge/discharge current rate, as well as by
geometric factors, such as the size and shape of active material particles
and the initial length of micro-flaws. Indeed, these factors influence the
stress level within active material particles and the fracture behavior in
turn.

The main works dealing with the influence of the operating condi-
tions and geometric properties on fracture are summarized in Table 5.

Different active materials were modeled, such as LFP [62,96,98],
LCO [97] and LMO [11,59,79]. Thus, two driving forces for crack
propagation were considered according to the type of active material:
the stress caused by phase transformation and the diffusion induced
stress due to the lithium concentration gradient. For example, crack
growth in LFP particles is mainly caused by the transition from Li-poor
to the Li-rich phase occurring during (de)lithiation, which generates
mismatch strains and stresses at the phase boundary. On the other
hand, cracks in LMO and LCO particles propagate due to the stress
induced by the lithium concentration gradient.

Pre-existent cracks were considered in all the models and they were
placed where the stress driving the crack propagation is maximum.
Cracks in LFP particles are inserted both in the 𝑎𝑐 and 𝑏𝑐 planes of
the crystal structure, which is the phase boundary orientation [17],
whereas superficial or central cracks were considered in LMO and LCO
particles.

The mechanical–diffusive coupling explained in Section 2 was often
neglected. Thus, the lithium transport equation was solved separately
from the fracture computation. Then, the diffusion induced stress was
obtained by replacing the lithium concentration with an equivalent
temperature distribution, according to the thermal analogy [11,97,
98]. The transport equation was not solved in some works, and the
mismatch strains derived from the experimental measurements of the
crystalline lattice parameters of Li-rich and Li-poor phases were applied
as thermal strains [96].

Finally, fracture parameters were computed as the stress distribu-
tion is got. Most of the models were implemented with FEM, which is
a convenient tool as long as crack propagation is not considered and
re-meshing is not needed. Few works used XFEM and others used the
analytical approach.

The critical size of active material particles and the current rate
which cause crack growth were determined by computing the energy
release rate [96,97,99] or the SIF [11] from the J-integral, according to
Section 3. The main conclusion achieved in all works was that smaller
17
particles with smaller initial crack lengths and (de)lithiated at lower
current rates are less detrimental from the fracture point of view.

Fracture maps provide an effective visualization of fracture-safe and
fracture-likely conditions according to geometric factors and current
rates. Fig. 4 shows the fracture maps determined by Zhu et al. [79],
Woodford et al. [59] and Chen et al. [62], considering spherical and
elliptical LMO particles with central crack during discharge, spherical
LMO particle with superficial crack during charge and LFP particle with
a crack at phase boundary interface during charge, respectively.

The fracture map obtained by Zhu et al. [79] reported in Fig. 4a
shows that spherical particles with bigger radius and lithiated at higher
current density are more detrimental from the fracture mechanics point
of view. A similar trend was also obtained by Woodford et al. [59]
and Chen et al. [62], showing that fracture is more likely to occur in
bigger particles and at higher current rates, according to Fig. 4c and d.
Furthermore, the fracture is triggered based on the fracture toughness
value, which is often difficult to measure.

Zhu et al. [79] studied the influence of the particle shape on fracture
and their results, reported in Fig. 4b, are consistent with the stress trend
reported by Clerici et al. [8], highlighting that the axis ratio ranging
between 1 and 2 amplifies the stress, and then the SIF, with respect to
the spherical case.

These fracture maps can provide only an approximated estimation
of factors leading to crack propagation during charge/discharge be-
cause the full coupling between mechanical, lithium diffusion, and
fracture was neglected. This means that the reduction of the crack driv-
ing force due to lithium accumulation at the crack tip was not modeled,
thus the occurrence of fracture was overestimated. Furthermore, the
accuracy of the fracture maps can be improved using experimental
values of the critical energy release rate 𝐺𝑐𝑟 and fracture toughness
𝐾𝑖,𝑐𝑟. Indeed, all the works mentioned above guessed these material
properties, as performing experimental measurements is challenging
and only a few studies measured critical fracture parameters with
nanoindentation [92,101–104].

5.2.2. Stability of the crack growth
The crack growth is unstable when its length increases without

increasing the load, leading to rapid failure. Then, it is essential to find
the combination of factors that avoid unstable crack growth to prevent
rapid LIBs degradation.

The occurrence of stable or unstable crack growth in active mate-
rials during charge and discharge can be determined according to the

following approaches:
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Fig. 4. Fracture map based on the results of [79]: (a) Spherical LMO particle with central crack during discharge and (b) Elliptical LMO particle with central crack during
discharge. (c) Fracture map based on the results of [59]: LMO particle with superficial crack during charge. (d) LFP particle with crack at phase boundary interface during charge,
where 𝐼𝐸𝛽

𝐹𝐷(1−𝜈)
is proportional to the current density. Reprinted with permission from [62].
• Comparison between the crack driving force curve and the re-
sistance curve (R-curve). The crack driving force curve can be
expressed as the energy release rate (𝐺) or SIF (𝐾) variation with
respect to the crack extension (𝜕𝐺∕𝜕𝑎 or 𝜕𝐾∕𝜕𝑎). Similarly, the R-
curve is the critical energy release rate 𝐺𝑐𝑟 or fracture toughness
𝐾𝑐𝑟 variation with respect to the crack extension (𝜕𝐺𝑐𝑟∕𝜕𝑎 or
𝜕𝐾𝑐𝑟∕𝜕𝑎) [31]. Crack grows unstably when: 𝐺 ≥ 𝐺𝑐𝑟 and 𝜕𝐺∕𝜕𝑎 ≥
𝜕𝐺𝑐𝑟∕𝜕𝑎 (or 𝐾 ≥ 𝐾𝑐𝑟 and 𝜕𝐾∕𝜕𝑎 ≥ 𝜕𝐾𝑐𝑟∕𝜕𝑎).
In the mechanical field, the SIF is proportional to the crack length
and 𝐺𝑐𝑟 (or 𝐾𝑐𝑟) is constant, as represented in Figure S4a. Thus,
the crack propagates unstably once that 𝐺 ≥ 𝐺𝑐𝑟 (or 𝐾 ≥ 𝐾𝑐𝑟)
because the crack driving force curve is always higher than the
R-curve, which is 0. On the other hand, the crack driving force
curve and the R-curve may have different behavior when both
mechanical and diffusive phenomena are present, as shown by
Woodford et al. [59] and Xu et al. [74] and represented in Figure
S4b. Namely, 𝐺 (or 𝐾) are not directly proportional to the crack
length (𝑎) and 𝐺𝑐𝑟 (or 𝐾𝑐𝑟) can depend on 𝑎.

• Monitoring the crack length variation over time. Unstable crack
growth occurs when crack length suddenly increases. This ap-
proach was adopted by Zhang et al. [80], Klinsmann et al. [86,
100] and Mesgarnejad et al. [87].

It was demonstrated that the crack growth stability in active mate-
rial depends on geometric factors, such as particle size and initial crack
length, as well as operating conditions, such as current rate, as these
factors influence the driving force for crack growth.

Woodford et al. [59] analyzed the influence of the initial crack
length on the crack growth stability (Fig. 5a-b). 𝐾 was computed
18

𝐼

as a function of the crack length, considering a superficial crack in
LMO spherical particle during delithiation. They concluded that smaller
cracks are more detrimental since they undergo unstable crack growth,
resulting in an increase in the 𝐾𝐼 as the crack length increases. Then,
the crack can extend by a noticeable distance, and the crack tip can
overcome the compressive regions which would cause the crack to
arrest, leading to rapid breakage occur. On the other hand, larger
cracks grow stably until arresting when 𝐾𝐼 = 𝐾𝐼,𝑐𝑟, as shown in
Fig. 5b. This is because the tensile hoop stress decreases and becomes
compressive, going from the particle surface to the center. Thus, larger
cracks experience lower stresses than smaller cracks, as the crack tip of
larger cracks is deeper and away from the surface.

Klinsmann et al. [100] modeled axisymmetric LMO cylindrical par-
ticles with a superficial crack during delithiation. Referring to Fig. 5c,
they showed that the crack does not grow if the initial length is shorter
than a critical threshold 𝑎𝑐 , then it becomes suddenly unstable as soon
as the initial crack length is slightly higher than 𝑎𝑐 . On the other hand,
the crack growth becomes stable when the initial length is larger than a
threshold value (𝑎 > 𝑎𝑠), which depends on the geometry and operating
conditions.

In general, stable propagation follows unstable propagation, de-
pending on the combination of initial crack growth, current rate, and
particle radius. Klinsmann et al. [100] demonstrated the existence of
a minimum C-rate (𝐶𝑚𝑖𝑛) below which crack propagation does not
occur, depending on the particle radius and initial crack length. As
the C-rate increases above 𝐶𝑚𝑖𝑛, the critical threshold 𝑎𝑐 triggering
unstable crack growth decreases because of the higher stress. The
threshold value for the stable crack growth 𝑎𝑠 decreases as well, then,

the unstable crack growth regime is shorter at higher C-rate. Finally,
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Fig. 5. Crack propagation stability. (a) Schematic representation of crack growth stability based on the initial crack length. (b) 𝐾𝐼 as a function of the crack length. The particle
radius is 21 μm and C-rate is 5 [59]. (c) Crack length increment during unstable crack growth as a function of the initial crack length 𝑎. The particle radius is 𝑟 = 5μm and the
C-rate is 5 [100]. (d) Fracture map as a function of particle diameter and current density. Reprinted with permission from [81].
Klinsmann et al. [100] determined the critical particle radius leading
to crack growth with fixed initial crack length and C-rate. 𝑎𝑐 , 𝐶𝑚𝑖𝑛 and
𝑎𝑠 decrease in particles with a larger radius, thus only stable crack
growth can occur in larger particles at a higher C-rate or with a longer
initial crack. However, the results of Klinsmann et al. [100] for lithium
extraction do not agree with other results in the literature.

On the other hand, Klinsmann et al. [86] explained that during
lithium insertion unstable crack growth occurs in larger particles and
at higher current rate. Smaller crack length leads to unstable crack
growth, as during extraction. They derived an approximated stability
law expressed in Eq. (80).

1
2

√

𝑟
𝛾

1 − (𝑎∕𝑟)𝛾

(𝑎∕𝑟)𝛾−1∕2
≤ 1 (80)

Where 𝛾 ≥ 1 is the convexity exponent of lithium distribution, propor-
tional to the current rate. Eq. (80) provides the relation between factors
influencing the crack propagation stability, although it underestimates
the range of crack length undergoing stable propagation.

Zhang et al. [69] recognized three crack growth regimes in LMO
cylindrical particles during insertion, namely no crack propagation,
stable crack propagation, and stable followed by unstable crack propa-
gation. Furthermore, they showed that unstable crack growth is more
likely to occur when the particle radius is larger and at higher C-rates,
which is in agreement with Klinsmann et al. [86].

Three crack growth regimes in lithiated silicon nanowires were also
recognized by Grantab et al. [91], namely no crack growth, stable crack
growth, which means that crack partially grows across the nanowire
but it arrests ultimately, and unstable crack growth. The arrest of the
crack is attributed to the accumulation of lithium ions at the crack tip,
relaxing the stress and the crack driving force. The results show that
unstable crack growth is more likely to occur at a higher C-rate and in
larger particles, on the other hand, a combination of C-rate and particle
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radius which does not lead to complete particle failure exists. Finally,
a lower C-rate or smaller particle radius can prevent crack growth.

Zhu et al. [81] studied the initiation and propagation of cracks in
NMC particles during lithium extraction, varying the current density
and particle size. Differently from the works discussed above, no pre-
existent cracks were assumed in the model. Three cracking stages were
recognized, based on the combination of current density and particle
size: (a) the safe region, where the stress is not high enough to induce
crack initiation, (b) the stable crack propagation region, and (c) the
unstable crack propagation region, which rapidly leads to particle
failure. The combination of particle size and current density giving rise
to the three cracking stages is reported in Fig. 5d.

5.2.3. Crack propagation path
Several works dealt with the prediction of the crack propagation

path during (de)lithiation. A summary of the main works existing in
literature is provided in Table 6. The fracture models and the numerical
implementation were generally chosen according to the type of active
material and the corresponding fracture mechanism.

Some works modeled the intergranular fracture occurring at the
grain boundary of NMC primary particles [69,71,72,74,81]. Zhang
et al. [69] modeled crack nucleation and initiation along NMC primary
particles during charge/discharge. It was found that the crack initiates
at the particle center, then it grows toward the particle surface and
branches in two directions, with additional minor cracks appearing
near the two initial branches of the main crack, as shown in Fig. 6a.
This behavior is consistent with experimental studies [106].

Tian et al. [71,72] employed the model developed in [69] to ana-
lyze the effects of fracture toughness and C-rate on the intergranular
cracking in NMC particles during lithiation. The results show that the
fracture toughness and C-rate variation modify the crack propagation
pattern and crack distribution as well, as depicted in Fig. 6b.
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Table 6
Summary of the main models in the literature describing the crack propagation path in different electrode active materials during single charge/discharge
cycle.
Electrode material Fracture mechanism Fracture model Implementation Software Ref.

NMC Intergranular cracking CZM FEM ABAQUS [69]
NMC Intergranular cracking CZM FEM ABAQUS [72]
NMC Intergranular cracking CZM FEM ABAQUS [71]
NMC Intergranular cracking CZM FEM COMSOL [105]
NMC Fracture during lithiation/delithiation CZM XFEM ABAQUS [81]
LMO Fracture during lithiation FEM PFM Not specified [44]
LFP Phase transformation and fracture FEM PFM Not specified [89]
Silicon Fracture during lithiation FEM PFM COMSOL [88]
Fig. 6. (a) Crack evolution in NMC particle during charge/discharge. Reprinted with permission from [69]. (b) Crack evolution in NMC particle during charge/discharge as a
function of the C-rate and fracture energy. Reprinted with permission from [72]. (c) Crack evolution in NMC particle during delithiation. The insets in the plot represent the
principal stress at various delithiation times and the corresponding crack morphologies indicated by the red arrows. Reprinted with permission from [74]. (d) Crack initiation and
propagation in single-crystal NMC particle due to lithiation and delithiation with a current density of 0.37A∕m2. Reprinted with permission from [81]. Crack evolution in LMO
particle during potentiostatic charge. The cracked elements are represented in red in the Figure. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Xu et al. [74] modeled intergranular cracking in NMC during
delithiation. Based on the experimental measures reported in [92],
fracture toughness dependent on lithium concentration was considered
in the model. The lower the lithium ion concentration, the lower
the fracture toughness and the more likely the crack propagation.
Xu et al. [74] showed that during delithiation cracks form first on
the particle surface due to the higher stress, consistent with DIS
calculation [7]. At the beginning of delithiation, the crack grows fast
due to the rapid decrease in the fracture toughness caused by the
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lower lithium concentration, as shown in Fig. 6c. As the delithiation
proceeds, several cracks are triggered in the particle due to the drop
in the fracture toughness. Furthermore, as the crack proceeds toward
the particle center, the tip encounters higher lithium concentration and
the fracture toughness is higher, whereas the tensile stress driving the
crack growth decreases or becomes compressive. As a result, the crack
grows less quickly, until it arrests.
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Finally, Zhu et al. [81] studied the crack evolution in NMC single-
crystal spherical particles without pre-existent cracks during lithiation–
delithiation, as reported in Fig. 6d. It is shown that the crack initiates
and grows where the tensile stress is maximum, i.e. at the core of the
particle during the lithiation phase and on the particle surface in the
following delithiation, consistent with DIS computation [7]. The results
show that the surface and internal cracks grow and merge ultimately at
the end of delithiation, leading to the complete fracture of the particle.

Miehe et al. [44] modeled the crack propagation during potentio-
static charge in LMO particles without assuming pre-existent cracks,
considering a 2D geometry in plane strain conditions and a 3D geome-
try with an irregular shape. The crack pattern in the 2D model is quite
smooth, several cracks initiate and propagate in the particle, but no
crack branching is recognized, as shown in Figure S5a. On the contrary,
complex 3D crack surfaces appear in the 3D model, as shown in Figure
S5b.

O’Connor et al. [89] examined the phase transformation and frac-
ture arising in LFP particles with plate-like shapes during charge/
discharge. The crack propagation path follows the regions of high
stress, which are located at the phase boundary interface, and crack
kinking and branching occur according to the phase boundary inter-
face evolution. This mutual interaction between the crack path and
the phase boundary evolution was also confirmed by experimental
studies [107].

Finally, Liu et al. [88] employed the PFM to describe the crack
evolution within silicon nanoparticles during lithiation. Their results
are quite in agreement with the experimental TEM images, as shown
in Figure S5c.

5.3. Cyclic loading

Active material particles are subjected to repeated charge/discharge
cycles during battery operation thus experiencing fatigue damage. Al-
though the static numerical models presented in the previous sections
are suitable to model fracture due to a single (de)lithiation, they cannot
track the crack growth due to cyclic loading.

Paris’ law is the most common approach to account for fatigue crack
growth in LIBs because of the straightforward implementation. On the
other hand, the models in literature based on Paris’ law cannot capture
complex fracture mechanisms occurring in the active material particles.
The main reasons are summarized as follows:

• Stand-alone particles with idealized geometry (spherical) were
considered.

• Paris’ law was not implemented in a FEM (or XFEM) frame-
work, thus the crack increment was computed analytically using
Eq. (37) without modeling the evolution of the crack path.

• The SIF was computed analytically, using the geometric factor
of the plates, which is far from the case of active material par-
ticles. This allows dealing with crack propagation completely
analytically but the accuracy is affected.

• Paris’ coefficients were fitted or guessed, without knowing how
far the true values are. It would be necessary to obtain such
parameters experimentally.

• Paris’ law can predict crack growth in the stable region. It is
unsuitable to model crack nucleation and unstable crack growth.

Few works modeled fracture in LIBs caused by repeated charge/
ischarge cycles [74,85,108]. Boyce et al. [108] and Ai et al. [85]
dopted the PFM, on the other hand, CZM implemented in a FEM
ramework was employed by Xu et al. [74].

Boyce et al. [108] predicted fracture occurring in the active ma-
erial particles of NMC622 by combining the advanced X-ray com-
uted tomography imaging with a coupled electro-chemo-mechanical
odel and PFM. This approach gives a realistic prediction of fracture
21

s it allows considering the electrochemistry of the whole LIB, the
mechanical–diffusive coupling, as well as overcoming the hypothesis
of the stand-alone active material particles with idealized geometry.

Boyce et al. [108] showed that the occurrence of fractures depends
on:

• Particle location across the electrode thickness. The fractures
occur more often in particles near the separator rather than
near the current collector. This is mainly caused by diffusion-
limited transport, which leads to inhomogeneous lithium ions
distribution throughout the electrode, especially at higher current
rates, influencing the mechanical stress distribution and fracture
ultimately. Particles near the separator are subjected to a greater
lithium flux, leading to a greater concentration gradient, stress,
and fracture ultimately.

• Electrode thickness. Fracture is distributed more uniformly
throughout the electrode microstructure when the electrode is
thinner, on the other hand, fracture appears concentrated espe-
cially near the separator in thicker electrodes.

• Particle size. Larger particles experience larger tensile stresses
than smaller particles, affecting their fracture behavior.

• Current rate. A higher current rate increases the concentration
gradient within the active material particles, leading to higher
mechanical stress.

• Electrochemical cycling. Most of the damage occurs during the
first cycle and larger voltage ranges increase cracking, as shown
in Fig. 7a.

The model developed by Boyce et al. [108] gives practical sugges-
tions and defines the operating conditions which can limit mechanical
degradation and performance decay. Despite this, some points are
still lacking in the model, such as considering only void-driven frac-
ture and neglecting both the intergranular and intragranular cracking,
although several experimental observations demonstrated that these
fracture mechanisms typically occur in NMC [17,106]. Furthermore,
few charge/discharge cycles were simulated, with respect to the LIB
life cycle.

Xu et al. [74] modeled the intergranular cracking in NMC due to
repeated charge/discharge cycles, considering that fracture toughness
decreases with increasing the number of cycles, according to exper-
imental measures reported in [92] and resumed in Fig. 7c. On the
other hand, fracture toughness is considered constant during one cycle.
Xu et al. [74] showed that the crack evolution has a ‘‘grow-stagnate-
grow’’ behavior, as evidenced in Fig. 7d, which reports the crack length
increment as a function of the number of cycles. The crack starts to
grow when the decrease in the fracture toughness is enough to trigger
the crack propagation. Then, the crack growth is slowed down because
of crack kinking at the joints of the grain boundaries, and finally the
crack growth rate increases again because of the significant decrease in
the fracture toughness after a large number of cycles.

The estimated crack growth trend appears quite in agreement with
the recent in-situ SEM experimental measurements performed by Chen
et. [109], who monitored the crack growth in NMC particles during
charge/discharge cycles, as shown in Fig. 7e.

Ai et al. [85] accounted for the fatigue crack growth in LMO
particles during repeated charge/discharge cycles by combining a
mechanical–diffusive model for lithium transport with a PFM for fa-
tigue fracture. Hundreds of charge/discharge cycles were simulated,
in contrast with the works mentioned above, which considered a
smaller number of cycles. Crack growth in LMO particles with ideal
spherical and cylindrical shapes, as well as a realistic ellipsoid with a
central pre-existent crack, were simulated. Multiple crack interactions,
such as merging, appeared when the particle with realistic geometry
was considered, as reported in Fig. 7b. Furthermore, Ai et al. [85]
demonstrated that cycling operations are more detrimental from the

mechanical degradation point of view, as the critical values of C-rate,
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Fig. 7. (a) Fracture evolution in NMC particle cycled over 5 cycles in terms of PF variable, considering two voltage ranges, i.e. 3–4.3 V and 2.8–4.5 V. Reprinted with permission
from [108]. (b) Crack evolution in LMO particle with a realistic elliptical shape. Reprinted with permission from [85]. (c) Fracture toughness (𝐾𝑐𝑟) variation with lithium
concentration and the number of cycles, where 𝐾𝑐𝑟,0 is the initial fracture toughness and (d) Intergranular crack increment in NMC particle as a function of the number of cycles.
Reprinted with permission from [74]. (e) Experimental measurement of the intergranular crack evolution with in-situ SEM analysis. The increment in crack length and area is
plotted as a function of the number of cycles. Reprinted with permission from [109].
particle size and initial crack length to avoid fracture are lower than
the ones reported in literature according to the static fracture models.

5.4. Concluding remarks

A fundamental distinction is made on the basis of the applied load:
static (single (de)lithiation) and cyclic (a large number of charge/
discharge cycles). Although the static load is not representative of real
usage of the battery, it is meaningful for the following purposes:

• Creating fracture map, providing the conditions (current rate,
particle radius, and fracture toughness) which cause fracture or
not. Fracture is triggered with a high current rate and particle
radius, and low fracture toughness.

• Predicting the stability of the crack. Contrary to what one might
expect, longer cracks ensure stability. This happens because stress
is not constant within the particle, and the tip is away from
the area subjected to the maximum stress where the crack was
nucleated. Most of the works agree that lower current, smaller
particle radius, and longer initial crack lead to stability, with few
exceptions.

• Predicting the crack path. More complex models aimed to es-
timate the crack propagation path, even in reconstructed ge-
ometries and particles made of aggregated primary grains. It is
difficult to find a consistency between the results of the different
models, as they significantly depend on the initial assumption and
the type of model.

Very few works considered a cyclic load and fatigue fracture, although
it well represents the usage of LIBs. Interestingly, Xu et al. [74] modeled
the crack growth along the grain boundaries of a NMC particle, found-
ing a good correspondence with experimental measurements [109].
22
6. Degradation modeling

Many degradation models have been proposed to predict the capac-
ity fade of LIBs caused by electrochemical and mechanical processes.
Models can be empirical, machine-learning, or physics-based. The first
two can be effective, but the former lacks in generality, as it is ap-
plicable just in the same conditions and with the same LIB chemistry
used in the tests, and the latter has poor interpretability and requires a
large amount of data to be effective. On the other hand, physical-based
models mathematically describe the processes causing the capacity fade
with PDEs. They are robust and general, but the difficulty in measuring
or estimating the physical parameters involved in the equations, and
their complexity, are significant limitations.

This section explains the most popular approach to deal with degra-
dation in LIBs, avoiding excessive complexity but guaranteeing good ac-
curacy. The most common processes causing capacity fade are: (a) iso-
lation of active material, (b) solid electrolyte interphase (SEI) growth,
(c) surface cracking, (d) active material dissolution, (e) lithium plating.
The effects of these processes are just two: the loss of lithium inventory
(LLI) and the loss of active material (LAM), both causing capacity fade
ultimately.

To be coherent with the topic of the review, just the processes
linked to fracture will be covered, namely surface cracking, SEI growth
and isolation of active material. The reader is suggested to refer to
specific works for more details concerning the other degradation mech-
anisms [110,111] and their modeling [112,113].

6.1. Loss of lithium inventory (LLI)

The loss of lithium inventory (LLI) is caused by the SEI formation
and growth, limited to the degradation processes considered in this
work. All the models in the literature considered SEI growth over
graphite, as far as the authors know, but side reactions are known
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to occur even at the interface between electrolyte and cathode active
materials [17,114,115].

SEI is commonly considered to be made of lithium ethylene dicar-
bonate ((CH2OCO2Li)2) that is formed by the reaction between ethylene
arbonate (EC), which is a solvent contained in the electrolyte, lithium
ons and electrons on the electrode surface, according to the reaction
cheme in Eq. (81)a-c [116].

C + e− ⟺ EC− (81a)

EC− + 2Li+ ⟺ (CH2OCO2Li)2 + C2H4 (81b)

S + 2e− + 2Li+ ⟺ 𝑆𝐸𝐼 (81c)

Where 𝑆 stays for solvent (EC). As a result, two lithium ions are
onsumed per SEI molecule produced, as resumed in Eq. (81)c.

The formation of the SEI layer occurs predominantly during the
irst cycles when the electrode surface is exposed to the electrolyte
or the first time. Once the SEI layer is formed, it decreases further
ide reactions, because it acts as a passivation layer that allows the
ransport of lithium ions only, and prevents direct contact between the
lectrode and electrolyte. However, the SEI layer is porous and allows
he diffusion of some of the solvents contained in the electrolyte. This
auses the side reactions to occur during each charge/discharge cycle,
hickening the SEI continuously. Anyway, a thicker SEI layer hinders
he diffusion of the electrolyte components, decreasing the rate of SEI
ormation. As a result, a high rate of SEI growth occurs during the first
ycles, which progressively decreases as a function of time. The same
rend is experimentally observed on the capacity fade, which usually,
ut not always, has a trend proportional to 𝑡0.5 at low current rates or
hen no current is applied (the so-called calendar aging) [113,117–
20]. When cycling at higher current rates, steeper capacity fade
ccurs, suggesting that other mechanisms occur, accelerating the SEI
rowth and causing LAM potentially. Further details concerning the SEI
ormation, morphology, features, and characterization, can be found in
he comprehensive review by An et al. [121].

It has been shown that cracks propagate because of battery oper-
tion in Section 5, as well as observed in [17], making new active
aterial surfaces exposed to the electrolyte, where further SEI de-

omposition can occur. As a consequence, capacity fade due to SEI
recipitation can be split into three contributions:

1. SEI growth on the nominal electrode surface (calendar aging).
2. SEI formation on the new surfaces created by cracks.
3. SEI growth on the new surfaces created by cracks.

1) Generally speaking, the formation of SEI can occur following two
echanisms: the reaction is controlled by kinetics and by the diffusion

f the solvent through the porous SEI layer. In the former case, the
olvent diffusion is extremely fast; in the latter, the reaction kinetic is
uch faster than the diffusion. In some cases, both the reaction kinetics

nd solvent diffusion can matter in a similar magnitude.
Then, the SEI growth on the surfaces of active material particles,

hich is independent of fractures, has been commonly modeled in the
iterature according to three approaches: (a) kinetic-limited [113,122,
23], (b) solvent diffusion-limited [112,113,124] and (c) more general
ixed-mode models considering both kinetic and diffusion [113,116,
25–129].

The SEI growth rate ( 𝑑𝐿𝑆𝐸𝐼𝑑𝑡 ) is a function of the current density of
he SEI side reaction (𝑖𝑆𝐸𝐼 ), according to Eq. (82).

𝑑𝐿𝑆𝐸𝐼
𝑑𝑡

=
𝑉𝑆𝐸𝐼
𝑛𝑆𝐸𝐼𝐹

𝑖𝑆𝐸𝐼 (82)

Where 𝑉𝑆𝐸𝐼 = 𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

is the SEI molar volume, 𝑀𝑆𝐸𝐼 and 𝜌𝑆𝐸𝐼 are
the molar mass and the density of the SEI, 𝑛 is the ratio between
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𝑆𝐸𝐼
the moles of lithium ions consumed and SEI produced and 𝐹 is the
Faraday’s constant.

In the more general mixed-mode model, the SEI growth rate is
controlled both by the reaction kinetics on the surface of the particles
(Eq. (83)) and the diffusion of the solvent, which follows the mass
conservation law (Eq. (84)).

𝑖𝑆𝐸𝐼 = −𝐹𝐾𝑆𝐸𝐼 𝑐
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
𝑠𝑜𝑙𝑣 exp

(

−
𝛽𝐹
𝑅𝑇

𝜂𝑆𝐸𝐼

)

(83a)

𝜂𝑆𝐸𝐼 = 𝑈 − 𝜂 −
𝐿𝑆𝐸𝐼
𝐾𝑆𝐸𝐼

𝑖 (83b)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑐𝑠𝑜𝑙𝑣
𝜕𝑡

−𝐷𝑠𝑜𝑙𝑣
𝜕2𝑐𝑠𝑜𝑙𝑣
𝜕𝑟2

+
𝑑𝐿𝑆𝐸𝐼
𝑑𝑡

𝜕𝑐𝑠𝑜𝑙𝑣
𝜕𝑟

= 0

−𝐷𝑠𝑜𝑙𝑣
𝜕𝑐𝑠𝑜𝑙𝑣
𝜕𝑟

|

|

|

|𝑟=𝑅
+
𝑑𝐿𝑆𝐸𝐼
𝑑𝑡

𝑐𝐴𝑀𝑠𝑜𝑙𝑣 =
𝑖𝑆𝐸𝐼
𝐹

𝑐𝑠𝑜𝑙𝑣|𝑟=𝑅+𝐿𝑆𝐸𝐼 = 𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒𝑠𝑜𝑙𝑣

(84)

Where 𝐾𝑆𝐸𝐼 is the reaction rate constant, 𝑐𝑠𝑜𝑙𝑣, 𝑐𝐴𝑀𝑠𝑜𝑙𝑣 and 𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒𝑠𝑜𝑙𝑣
are the solvent concentration in the SEI layer, on the active material
particles surface and in the electrolyte, respectively (Figure S6). 𝛽 is
the transfer coefficient, 𝜂𝑆𝐸𝐼 is the overpotential of the side reaction,
𝑈 and 𝜂 are the OCV and the overpotential of the electrode respectively,
𝑖 is the total current density, 𝐿𝑆𝐸𝐼 is the thickness of the SEI layer and
𝐷𝑠𝑜𝑙𝑣 is the diffusion coefficient of the solvent in the SEI layer.

Some authors [124,126] assumed a linear diffusion across the SEI
layer and a constant solvent concentration in the electrolyte (Figure
S6), thus the term 𝛿𝑐𝑠𝑜𝑙𝑣

𝛿𝑟 is linearized, and the flux of the solvent at the
EI/electrolyte interface reported in the second of Eq. (84) is rewritten
ccording to Eq. (85).

𝐷𝑠𝑜𝑙𝑣
𝛥𝑐𝑠𝑜𝑙𝑣
𝐿𝑆𝐸𝐼

+
𝑑𝐿𝑆𝐸𝐼
𝑑𝑡

𝑐𝐴𝑀𝑠𝑜𝑙𝑣 =
𝑖𝑆𝐸𝐼
𝐹

(85)

Where 𝛥𝑐𝑠𝑜𝑙𝑣 = 𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒𝑠𝑜𝑙𝑣 −𝑐𝐴𝑀𝑠𝑜𝑙𝑣 . Finally, the SEI thickness growth rate
( 𝑑𝐿𝑆𝐸𝐼𝑑𝑡 ) is expressed according to Eq. (86) combining Eqs. (82), (83),
(85) and considering that 𝑐𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒𝑠𝑜𝑙𝑣 = 𝛥𝑐𝑠𝑜𝑙𝑣 + 𝑐𝐴𝑀𝑠𝑜𝑙𝑣 . Eq. (86) considers
the diffusion and kinetic driving forces equally significant in the growth
of the SEI layer.

𝑑𝐿𝑆𝐸𝐼
𝑑𝑡

=
𝑉𝑆𝐸𝐼 𝑐

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
𝑠𝑜𝑙𝑣

[

𝐾𝑆𝐸𝐼 exp
(

− 𝛽𝐹
𝑅𝑇 𝜂𝑆𝐸𝐼

)]−1
+

[

𝐷𝑠𝑜𝑙𝑣
(

1−𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

𝑐𝐴𝑀𝑠𝑜𝑙𝑣
)

𝐿𝑆𝐸𝐼

]−1
(86)

The term
(

1 − 𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

𝑐𝐴𝑀𝑠𝑜𝑙𝑣
)

, which comes from the convective term
caused by the growth of the SEI layer thickness ( 𝑑𝐿𝑆𝐸𝐼𝑑𝑡 𝑐𝐴𝑀𝑠𝑜𝑙𝑣 ) in the mass
conservation law (Eq. (84)), is often considered as negligible. In this
case, Eq. (86) has the same form as the one reported in [113,127].

The term 𝐾𝑘 =
[

𝐾𝑆𝐸𝐼 exp
(

− 𝛽𝐹
𝑅𝑇 𝜂𝑆𝐸𝐼

)]−1
at the denominator of

q. (86) takes into account for the reaction kinetics, on the other

and, the term 𝐾𝑑 =

[

𝐷𝑠𝑜𝑙𝑣
(

1−𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

𝑐𝐴𝑀𝑠𝑜𝑙𝑣
)

𝐿𝑆𝐸𝐼

]−1

considers the solvent

diffusion. Thus, the general mixed-mode model of the SEI growth
reaction in Eq. (86) can be further simplified according to Eq. (87) if
one mechanism is predominant with respect to the other.

𝑑𝐿𝑆𝐸𝐼
𝑑𝑡

=

⎧

⎪

⎨

⎪

⎩

𝑉𝑆𝐸𝐼 𝑐
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
𝑠𝑜𝑙𝑣 𝐾𝑆𝐸𝐼 exp

(

− 𝛽𝐹
𝑅𝑇
𝜂𝑆𝐸𝐼

)

Kinetic-limited: 𝐾𝑑 ≪ 𝐾𝑘

𝑉𝑆𝐸𝐼 𝑐
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
𝑠𝑜𝑙𝑣

𝐷𝑠𝑜𝑙𝑣
(

1− 𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

𝑐𝐴𝑀𝑠𝑜𝑙𝑣
)

𝐿𝑆𝐸𝐼
Diffusion-limited: 𝐾𝑘 ≪ 𝐾𝑑

(87)
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In general, the SEI thickness is obtained by integrating Eq. (86), as
reported in Eq. (88) [127].

𝐿𝑆𝐸𝐼 (𝑡) =
−1 +

√

1 + 𝐴𝑡
𝐵

(88a)

=
2𝑉𝑆𝐸𝐼 𝑐

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
𝑠𝑜𝑙𝑣

(

1 − 𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

𝑐𝐴𝑀𝑠𝑜𝑙𝑣
)

𝐷𝑠𝑜𝑙𝑣
𝐾2
𝑆𝐸𝐼

[

exp
(

−
𝛽𝐹
𝑅𝑇

𝜂𝑆𝐸𝐼

)]2
(88b)

=

(

1 − 𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

𝑐𝐴𝑀𝑠𝑜𝑙𝑣
)

𝐷𝑠𝑜𝑙𝑣
𝐾𝑆𝐸𝐼 exp

(

−
𝛽𝐹
𝑅𝑇

𝜂𝑆𝐸𝐼

)

(88c)

In the extreme cases of kinetic or diffusion-limited process, Eq. (87)
an be directly integrated instead of Eq. (86). In those cases, the SEI
hickness is expressed according to Eq. (89).

𝑆𝐸𝐼 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝑉𝑆𝐸𝐼 𝑐
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
𝑠𝑜𝑙𝑣 𝐾𝑆𝐸𝐼 exp

(

− 𝛽𝐹
𝑅𝑇

)]

⋅ 𝑡 Kinetic-limited: 𝐾𝑑 ≪ 𝐾𝑘
√

√

√

√

[

𝑉𝑆𝐸𝐼 𝑐
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
𝑠𝑜𝑙𝑣 𝐷𝑠𝑜𝑙𝑣

(

1− 𝑀𝑆𝐸𝐼
𝜌𝑆𝐸𝐼

𝑐𝐴𝑀𝑠𝑜𝑙𝑣
)

]

⋅
√

𝑡 Diffusion-limited 𝐾𝑘 ≪ 𝐾𝑑

(89)

At the first cycles, the SEI layer is thin, then the kinetic contribution
revails on the diffusive one (Eq. (89)). As a result, the SEI layer
rows linearly with time (𝐿𝑆𝐸𝐼 ∝ 𝑡), as observed by [120]. As the
EI layer increases, the two contributions matter in a similar way,
ccording to Eq. (88). Finally, when the SEI layer is thick, the diffusive
ontribution prevails because thicker SEI hinders the diffusion of the
lectrolyte components (Eq. (89)). As a result, the SEI thickness grows
ith the square root of time (𝐿𝑆𝐸𝐼 ∝

√

𝑡), as observed by [119].
Finally, the rate of capacity fade caused by calendar aging is com-

uted according to Eq. (91). The increase of SEI thickness with time
𝑑𝐿𝑆𝐸𝐼
𝑑𝑡

)

is replaced by
𝑑𝐿𝑆𝐸𝐼
𝑑𝑁

according to Eq. (90) to compare
the SEI growth rate due to calendar aging to other sources of damage
proportional to the number of cycles.

𝑑𝐿𝑆𝐸𝐼
𝑑𝑁

=
𝑑𝐿𝑆𝐸𝐼
𝑑𝑡

𝑡𝑁 (90)

Where 𝑡𝑁 is the time required for one cycle.

𝑑𝑄
𝑑𝑁

|

|

|

|1
=
𝑛𝑆𝐸𝐼𝐹𝜌𝑆𝐸𝐼
𝑀𝑆𝐸𝐼

𝐴0
𝑑𝐿𝑆𝐸𝐼
𝑑𝑁

(91)

Where 𝐴0 = 4𝜋𝑅2(1 + 2𝜌𝑐 𝑙𝑐𝑎0) is the initial particle surface, con-
idering pre-existent cracks with initial length 𝑎0, 𝜌𝑐 is the crack den-

sity, namely the number of cracks per surface unit and 𝑙𝑐 is the
crack width. Then, 𝐴0

𝑑𝐿𝑆𝐸𝐼
𝑑𝑁

is the increase in volume of the SEI

layer, 𝐴0
𝑑𝐿𝑆𝐸𝐼
𝑑𝑁

𝜌𝑆𝐸𝐼 is the increase in mass of the SEI layer and
𝐴0

𝑑𝐿𝑆𝐸𝐼
𝑑𝑁 𝜌𝑆𝐸𝐼
𝑀𝑆𝐸𝐼

is the moles increase of the SEI. Then, Eq. (91) tells
the amount of charge of lithium ions consumed per unit of SEI layer
thickness created.

(2) Cracks make new surfaces of active material available for SEI
formation. Then the amount of SEI formation increases as long as cracks
grow.

The rate of capacity fade caused by the formation of SEI layer on
the cracks surfaces is computed in Eq. (92).

𝑑𝑄
𝑑𝑁

|

|

|

|2
=
𝑛𝑆𝐸𝐼𝐹𝜌𝑆𝐸𝐼
𝑀𝑆𝐸𝐼

𝐿𝑆𝐸𝐼,0
𝑑𝐴𝑐
𝑑𝑁

(92)

Where 𝐿𝑆𝐸𝐼,0 is the thickness of the SEI layer which is assumed to
orm instantaneously on the cracks surfaces. 𝑑𝐴𝑐

𝑑𝑁 is the increase of the
cracks surfaces as a function of the number of charge and discharge
24
cycles, and is computed in Eq. (93)a.

𝑑𝐴𝑐
𝑑𝑁

=
𝑑𝐴𝑐
𝑑𝑎

𝑑𝑎
𝑑𝑁

(93a)

𝐴𝑐 = 2𝑎𝑠𝑣𝜀𝑎𝐴𝑒𝐿𝑒𝑎𝜌𝑐 𝑙𝑐 (93b)
𝑑𝑎
𝑑𝑁

= 𝐶𝛥𝐾𝑚 = 𝐶(𝜎𝜃,𝑚𝑎𝑥𝑏
√

𝜋𝑎)𝑚 (93c)

Where 𝐴𝑐 is the area of a single crack and is computed in Eq. (93)b.
𝑠𝑣 is the surface-to-volume ratio of the active material particles (𝑎𝑠𝑣 =
∕𝑅 assuming a spherical shape). 𝐴𝑒 ⋅𝐿𝑒 is the volume of the electrode
ayer (𝐴𝑒 is the area and 𝐿𝑒 is the thickness) and 𝜀𝑎 is the percentage

of active material in the electrode volume. 𝑎 and 𝑙𝑐 are the crack length
and width, respectively.
The increase of crack length ( 𝑑𝑎𝑑𝑁 ) is computed in Eq. (93)c according
to Paris’ law explained earlier in Section 3.1.4. It is highlighted that
the geometric factor of an infinite plate is commonly considered (𝑏

√

𝜋
ith 𝑏 = 1.12), which is a considerable simplification.

(3) Finally, the rate of capacity fade due to SEI growth on the
cracks surfaces is considered in Eq. (94). It is computed similarly to
the calendar aging reported in Eq. (91), which quantifies the rate of
capacity fade due to the SEI growth on the initial particle surface, but
the increasing surfaces created by cracks are considered instead of the
initial area of the particle surface.

𝑑𝑄
𝑑𝑁

|

|

|

|3
=
𝑛𝑆𝐸𝐼𝐹𝜌𝑆𝐸𝐼
𝑀𝑆𝐸𝐼

𝑁
∑

𝑖=1

(

𝑑𝐴𝑐
𝑑𝑁

)

𝑖

(

𝑑𝐿𝑆𝐸𝐼
𝑑𝑁

)

𝑁−𝑖
(94)

Where 𝑖 is the 𝑖-th charge/discharge cycle.
The total rate of capacity fade for a single electrode particle is got

adding together the three contributions reported in Eqs. (91), (92) and
(94), as explained in Eq. (95).
𝑑𝑄
𝑑𝑁

|

|

|

|𝐿𝐿𝐼
= 𝑑𝑄
𝑑𝑁

|

|

|

|1
+ 𝑑𝑄
𝑑𝑁

|

|

|

|2
+ 𝑑𝑄
𝑑𝑁

|

|

|

|3
(95)

Then, the total amount of capacity fade in terms of lithium inven-
tory (LLI) due to the calendar and cycling aging is computed integrating
Eq. (95) and dividing by the initial capacity of the single electrode
particle after the formation cycle (𝑄𝑖𝑛𝑖𝑡), as reported in Eq. (96).

𝐶𝐹 |𝐿𝐿𝐼 =
∫

𝑁

1

𝑑𝑄
𝑑𝑁

|

|

|

|𝐿𝐿𝐼
𝑑𝑁

𝑄𝑖𝑛𝑖𝑡
=

∫

𝑁

1

𝑑𝑄
𝑑𝑁

|

|

|

|𝐿𝐿𝐼
𝑑𝑁

𝑞𝑟𝑄𝑒
(

4
3𝜋𝑅

3𝜌𝑒
) (96)

Where 𝑞𝑟 is a formation cycle efficiency, which is assumed to be
0.9 [35], 𝑄𝑒 and 𝜌𝑒 are the specific capacity and density of the electrode
active material, respectively.

The dependence of the capacity fade on temperature was considered
by some authors considering Arrhenius dependent Paris coefficient (𝐶)
and SEI growth rate (𝐾𝑆𝐸𝐼 ), according to Eqs. (97)a-b.

𝐶 = 𝐶0𝑒
−
𝐸𝑎,1
𝑅𝑇 (97a)

𝐾𝑆𝐸𝐼 = 𝐾𝑆𝐸𝐼,0𝑒
−
𝐸𝑎,2
𝑅𝑇 (97b)

Where 𝐸𝑎,1 and 𝐸𝑎,2 are the activation energies.
Most of the works considered just the damage coming from the

anode, computing the capacity fade caused by the LLI due to the SEI
growth on the particles and its cracks as reported in Eqs. (91)–(96) [35,
37–40,118,130].

However, LLI due to the irreversible reactions at the interface
between the electrolyte and particle surface is reported to occur in
the cathode as well [17,114,115], affecting the capacity degradation
of the LIB ultimately. Thus, the LLI occurring both in the anode and
cathode needs to be included in the degradation models to achieve an
accurate prediction of the LIB capacity decay. However, just few works
considered the capacity loss due to cathode fracture [131], although
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neglecting the fracture of the anode. Therefore, a complete degradation
model combining the performance decay of the anode and cathode is
still lacking in the literature. Alternatively, some works estimated the
capacity fade due to fracture using empirical models [125,131–133].

6.2. Loss of active material (LAM)

Recently, O’Kane et al. [112] built a model considering capacity loss
both from positive and negative electrodes. Besides LLI, the LAM due
to particle fracture (according to [134]) was considered. LAM due to
particle cracking is modeled estimating the decrease in the accessible
volume fraction of active material (𝜀𝑎) as a function of the hydrostatic
tress, according to Eq. (98) [113,134].

𝜕𝜀𝑎
𝜕𝑡

=
𝛽2
𝑡𝑁

(𝜎ℎ,𝑚𝑎𝑥 − 𝜎ℎ,𝑚𝑖𝑛
𝜎𝑐

)𝑚2
𝜎ℎ,𝑚𝑖𝑛 > 0 (98)

here 𝛽2 and 𝑚2 are fitting parameters.
Alternatively, Delacourt and al. [135] developed an empirical model

here the accessible volume fraction decreases as a function of the total
urrent density 𝑖, as expressed in Eq. (99).
𝜕𝜀𝑎
𝜕𝑡

= 𝑘1(𝑇 )|𝑖| + 𝑘2(𝑇 )
√

|𝑖| (99)

here 𝑘1(𝑇 ) and 𝑘2(𝑇 ) are fitting parameters that depend on tempera-
ture.

Narayanrao et al. [136] modeled LAM by decreasing the specific
surface area 𝐴𝑎 rather than the accessible volume fraction of active
material 𝜀𝑎, according to Eq. (100).
𝜕𝐴𝑎
𝜕𝑡

= −𝑘𝐴𝑎 = −𝑘
3𝜀𝑎
𝑅

(100)

Where 𝑘 is a fitting constant.
The reduction of the effective active material volume causes a

ecrease in the available capacity.
Finally, Park et al. [131] modeled the effect of LAM modifying the

ffective electronic conductivity (𝜎𝑠,𝑐𝑟𝑎𝑐𝑘) according to Eq. (101), based
n the normalized perimeter change of the cracked particle, which is
he index of fracture impact and is experimentally determined.

𝑠,𝑐𝑟𝑎𝑐𝑘 = 𝜎𝑠,0(1 + 𝑘1𝑡𝑐 ) (101a)

𝑐 = 𝑡𝑘2𝑒
(−𝐸𝑎+𝑘3𝐶𝑟𝑎𝑡𝑒 )

𝑅𝑇
∑

(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑐ℎ𝑎𝑛𝑔𝑒)𝑘4 (101b)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 =
(𝐶𝑦𝑐𝑙𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
(101c)

here 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are fitting parameters, 𝜎𝑠,0 is the initial
lectronic conductivity, 𝑡𝑐 is a degradation factor adopting a power law
elationship with time 𝑡, 𝐸𝑎 is the activation energy, and 𝐶𝑟𝑎𝑡𝑒 is the

current rate.

6.3. Model results

The main results of physics-based damaging models are reported
in Fig. 8. All the results consider only the LLI according to Eqs. (91)–
(96) and are quite consistent. Dong et al. [40] modeled capacity fade
due to storage and cycling conditions according to the framework
explained in this review, but considering a significantly more complex
approach. Electron tunneling through the SEI layer is considered rate-
limiting in the SEI growth process, making the capacity fade in storage
conditions dependent on SOC and temperature. Anyway, SEI growth
and the capacity fade in storage conditions follows a logarithmic trend
similar to Eq. (89)b. Furthermore, the stress causing crack growth
was considered dependent both on the depth of discharge (DOD) and
the current rate, making the capacity fade during cycling dependent
on DOD and C-rate ultimately. The higher complexity of the model
results in a higher number of fitting parameters and complex model
calibration. The model was calibrated and validated with empirical
25
laws extrapolated from experimental measurements. It is highlighted
that some controversial results come from the model calibration, such
as a negative exponential term of Paris’ law, which is meaningless [32,
34]. The results of their model compared with empirical law based on
experimental tests are shown in Fig. 8a.

Deshpande et al. [35] and Li et al. [38] (Fig. 8b) estimated the
capacity fade of LFP/graphite cells with constant current (C/2) at
different temperatures, finding consistent results.

Verma et al. (Figures 3 and 4 in [37]) and Purewal et al. [118]
(Fig. 8c) plotted the different sources of capacity fade as a function
of the number of cycles and showed that capacity loss follows a trend
∝
√

𝑡 when the C-rate is low according to Eq. (89)b and Eq. (91). The
capacity loss curve becomes steeper when the current rate increases
and the amount of damage due to cracks (Eqs. (92) and (94)) becomes
significant. The model results follow the experimental curve faithfully
for each current rate, confirming that the capacity loss due to crack is
significant and meaningful.

Furthermore, Verma et al. [37] compared the results of the coupled
model (stress affects diffusion) plotted in Fig. 8c, and the uncoupled
model (stress does not affect diffusion). The coupling between stress
and diffusion was explained in Section 2 and resumed in Table 1.
The results (the reader should refer to Figures 7 and 8 in [37]) show
that the uncoupled model overestimates the damaging mechanisms
related to fracture because the uncoupled model does not consider the
stress mitigation due to diffusion, as explained in previous works [7].
Greater stress leads to a greater increase in crack growth rate according
to (93)c, and then greater capacity loss according to the damaging
mechanism 2 and 3 (Eqs. (92) and (94)).

Park et al. [131] proposed a degradation model including the effect
of the cathode fracture on the capacity loss. The electrochemical behav-
ior of the LIB was modeled using the P2D model. Fracture affects the
electrochemical parameters through fitting coefficients which severely
affects the reliability of the model. Furthermore, fracture of the anode
was not considered.

Some physical parameters involved in the presented models are
difficult, if not impossible, to measure. Then, Paris’ law parameters (𝐶,
or 𝐶0 and 𝐸𝑎,1, and 𝑚), SEI growth rate (𝑘𝑆𝐸𝐼 , or 𝑘𝑆𝐸𝐼,0 and 𝐸𝑎,2), and
he crack density (𝜌𝑐) are fitted on the experimental measures in all the
odels.

It is interesting to highlight how these models can capture the effect
f fracture on the capacity fade. Although some key parameters are
itted, the correspondence between the trend of the model and the
xperiments is interesting. A possible improvement of these models is
o consider a proper geometric factor for Paris’ law, the estimation
f the crack density based on experimental observations, e.g. using
EM/TEM analysis, and the estimation of Paris’ law parameters based
n the observation of the crack growth with in-situ SEM/TEM.

.4. Concluding remarks

The effects of fracture on capacity fade are commonly modeled
s loss of lithium inventory because of SEI growth at the negative
lectrode. The source of capacity fade are three:

• Growth of SEI over the nominal particle surface, which is inde-
pendent of cracks.

• Formation of a new SEI layer over the surfaces created by the
cracks.

• Growth of the SEI layer on the cracks surfaces.

he crack growth, necessary to compute the geometric factor of plates
s often used to estimate the SIF. Furthermore, crack density over
he active material particles is guessed. These assumptions hinder the
eliability of the model.
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Fig. 8. Capacity fade as a function of the number of cycles in commercial LIBs: comparison between experimental measures and model. (a) Capacity fade in NMC/graphite
cells. Reprinted with permission from [40]. (b) Capacity fade in LFP/graphite cells at C/2 and different temperatures. Reprinted with permission from [38]. (c) Capacity fade in
LFP/graphite cells, considering the three damaging mechanisms. Reprinted with permission from [118].
However, the trend of capacity fade due to cycling at low C-rate
(cracks do not have influence) and at higher C-rate (cracks affect
capacity fade) is consistent with experimental studies.

Some models considered the loss of active material caused by
cracks as well. The model took into account this mechanism defining a
decrease of electrode porosity proportional to the hydrostatic stress.

7. Comments, lacks, and future developments

7.1. Comments

Fracture in LIBs has been extensively studied in the last ten years
and a large number of works and models were built. Inevitably, they
were defined according to different fracture models, different geome-
tries, and initial assumptions, affecting the consistency among the
models.

Fracture mechanics in LIBs has a strong statistical connotation, as
the geometry of the particles is irregular and random, and the number
and the length of initial defects are unknown and random as well.

Thus, unknown parameters, such as crack density, material proper-
ties (𝐾𝑐𝑟 and 𝐺𝑐𝑟), particle size and shape (thus the geometric factor Y
for SIF computation), and TSL law of CZM, affect the reliability of the
results.
26
Most of the results of the models are not consistent with experi-
mental measurements, especially because approximated geometries are
considered to simplify calculations and because it is difficult to deal
with random properties of the active materials, as explained above.

7.2. Lacks

The main lack is that very few works modeled fatigue fracture due to
repeated charge and discharge cycles. Furthermore, most of the works
with this aim used an analytical approach based on Paris’ law, making
strong hypotheses concerning the SIF computation and guessing Paris’
parameters, which makes the model unreliable.

7.3. Future developments

Considering the reviewed state of the art, the following research
trends are promising and interesting according to the authors:

• A comparison of the fracture behavior of different active mate-
rials is necessary, aiming to identify the material with the best
performance from the fracture point of view.

• A fatigue fracture model describing the effect of cyclic loads
on crack propagation is needed as cracks propagate because of
repeated charge/discharge cycles.
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• Deep study of damaging mechanisms triggered by fracture is
needed to assess the effects of lithium loss inventory caused by
degradation reactions and loss of active material on the perfor-
mance decay of LIBs. Currently, as explained in Section 6, just
the loss of lithium inventory due to the SEI growth on graphite
was considered. Cathode damage has to be taken into account as
well to establish a reliable degradation model.

• A comprehensive correlation between fracture and capacity decay
during cycling is needed on the basis of the damaging mechanisms
explained in the previous point.

• Accurate experimental measurements have a twofold objective:
(a) estimation of the material properties, such as the Paris’ law
coefficients, or fracture toughness 𝐾𝑐𝑟 [92,101–104], which are
generally assumed; (b) validation of the crack propagation and
damaging models. The former can be done by in-situ microscopy
techniques. The latter can be done by performing aging tests and
statistical analyses.

• Once the influence of fracture on LIBs performance is quantified,
it is interesting to investigate how microstructure and operating
conditions affect fracture and LIBs performance to get practical
design advice.
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ppendix A. Additional details of PFM numerical implementation

.1. Newthon-Raphson method tangent matrices

The expressions of the components of tangent stiffness [𝐊] and [𝐂]
atrices resulting from the Newton–Raphson method are provided in
qs. (A.1a)–(A.1i) and (A.2a)-(A.2h), respectively.

𝑢
𝑖𝑗 =

𝜕𝐑𝑢𝑖
𝜕𝐮𝑗

= ∫𝛺
𝑔(𝑑)[𝐁𝑖]𝑇 [𝐂0][𝐁𝑗 ]𝑑𝛺 (A.1a)

𝐊𝑢𝑐
𝑖𝑗 =

𝜕𝐑𝑢𝑖
𝜕𝐜𝑗

= −∫𝛺
𝑔(𝑑)[𝐁𝑢𝑖 ]

𝑇 [𝐂0][𝐈]8𝑁𝑗
𝛺
3
𝑑𝛺 (A.1b)

𝐊𝑢𝑑
𝑖𝑗 =

𝜕𝐑𝑢𝑖
𝜕𝐝𝑗

= 0 (A.1c)

𝑑
𝑖𝑗 =

𝜕𝐑𝑑𝑖
𝜕𝐝𝑗

= ∫𝛺

[(

2 +
𝐺𝑐𝑟
𝑙0

)

𝑁𝑖𝑁𝑗 + 𝐺𝑐𝑟𝑙0[𝐁𝑖]𝑇 [𝐁𝑗 ]
]

𝑑𝛺 (A.1d)

𝐊𝑑𝑢
𝑖𝑗 =

𝜕𝐑𝑑𝑖
𝜕𝐮𝑗

= 0 (A.1e)

𝐊𝑑𝑐
𝑖𝑗 =

𝜕𝐑𝑑𝑖
𝜕𝐜𝑗

= 0 (A.1f)

𝑐
𝑖𝑗 =

𝜕𝐑𝑐𝑖
𝜕𝐜𝑗

= ∫𝛺

(

[𝐁𝑖]𝐷[𝐁𝑖]𝑁𝑗 − [𝐁𝑖]
𝐷𝛺
𝑅𝑇

𝑁𝑗 [𝐁𝑗 ]𝜎ℎ
)

𝑑𝛺 (A.1g)

𝐊𝑐𝑢
𝑖𝑗 =

𝜕𝐑𝑐𝑖
𝜕𝐮𝑗

= −∫𝛺
[𝐁𝑖]𝑇

𝐷𝛺𝑐
3𝑅𝑇

[𝐂0][𝐁𝑢𝑗 ]𝑑𝛺 (A.1h)

𝐊𝑐𝑑
𝑖𝑗 =

𝜕𝐑𝑐𝑖
𝜕𝐝𝑗

= 0 (A.1i)

𝑪𝑢
𝑖𝑗 = 0 (A.2a)

𝑪𝑢𝑐 = 0 (A.2b)
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𝑖𝑗
𝑪𝑢𝑑
𝑖𝑗 = 0 (A.2c)

𝑪𝑑
𝑖𝑗 = 0 (A.2d)
𝑑𝑢
𝑖𝑗 = 0 (A.2e)
𝑑𝑐
𝑖𝑗 = 0 (A.2f)

𝑐
𝑖𝑗 = ∫𝛺

𝑁𝑖𝑁𝑗𝑑𝛺 (A.2g)

𝑐𝑑
𝑖𝑗 = 0 (A.2h)

Where the subscripts 𝑖 and 𝑗 represent the contribution of the 𝑖-th
and 𝑗-th nodes.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jpowsour.2023.232875.
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