
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RLVNA: a Platform for Experimenting with Virtual Networks Adaptations over Public Testbeds / Angi, Antonino; Sacco,
Alessio; Alberti, Enrico; Marchetto, Guido; Esposito, Flavio. - ELETTRONICO. - (2023), pp. 406-411. (Intervento
presentato al convegno 2023 IEEE International Mediterranean Conference on Communications and Networking
(MeditCom) tenutosi a Dubrovnik (HR) nel 4 - 7 September 2023) [10.1109/MeditCom58224.2023.10266633].

Original

RLVNA: a Platform for Experimenting with Virtual Networks Adaptations over Public Testbeds

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MeditCom58224.2023.10266633

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982674 since: 2023-10-10T14:21:36Z

IEEE

RLVNA: a Platform for Experimenting with Virtual
Networks Adaptations over Public Testbeds

Antonino Angi ∗ Alessio Sacco ∗ Enrico Alberti ∗ Guido Marchetto ∗ Flavio Esposito †
∗ Department of Control and Computer Engineering, Politecnico di Torino, Italy

† Computer Science Department, Saint Louis University, USA

Abstract—Network emulators and simulation environments
traditionally support computer networking and distributed sys-
tem research. The continued use of multiple approaches high-
lights both the value and inadequacy of each approach. To this
end, several large-scale virtual networks testbeds, such as GENI
and CloudLab, have emerged, allowing testing of a networked
system in controlled yet realistic environments, focusing in par-
ticular on facilitating the test of network management schema in
Software-Defined Network (SDN) scenarios. Nevertheless, setting
up those experiments first and integrating machine learning
models later in these deployments is challenging. In this paper,
we propose designing and implementing a web-based platform
that integrates Reinforcement Learning (RL)-based models with
a virtual network experiment using resources acquired within
a real-world testbed, e.g., GENI. Users are able to reserve the
network resources (links, switches, and hosts) and configure
them through our intuitive interface with little effort. The
RL algorithm is then launched to learn how to steer traffic
dynamically and according to diverse traffic network conditions.
Such a model can be easily customized by the user, while our
architecture enables fast reprogramming of the Open Virtual
Switches via the SDN controller instantiated. We experimented
with trace-based traffic to validate this user-friendly platform
and evaluated how centralized and decentralized RL algorithms
can effectively lead to self-driving networks. While in this paper,
the system focuses on the deployment of experiments for virtual
network adaptation, the platform can be easily extended to
other network management mechanisms and machine learning
algorithms.

I. INTRODUCTION

Next-generation networks are envisioned as the solution
for network operators and service providers who wish to
upgrade their existing infrastructures and introduce a versatile
platform that can support a wide range of telecommunication
businesses and services. These networks are considered key
enablers for delivering new data-intensive applications, e.g.,
augmented/virtual reality, industrial 4.0, or healthcare [1], [2].
The presence of new requirements, such as high reliability,
zero packet loss, and real-time interaction, posed by these new
services exacerbates the need for more performant, scalable,
resilient, and self-adapting networks. Moreover, as the number
of nodes increases, management becomes increasingly com-
plex and impossible for a single person or team to manually
configure and handle what is happening in real time [3], [4]. To
support such applications, there is a need to rethink the design
of both networks and applications, creating more intelligent
and autonomous networks.

It is thus appearing that there is an increasing interest
in equipping networks with autonomous run-time decision-

making capabilities incorporating distributed machine learning
(ML) algorithms, to foster automation in network configura-
tions, network management, and network resiliency [5]. While
AI/ML technologies continue to evolve at a rapid pace, moving
from a paradigm of supervised learning towards distributed
self-learning requires solving several challenges in the design
and (above all) deployment of wide-scale networks. Among
those challenges, two of them are particularly relevant to the
requirements of the next-generation networks: the scalability
of AI/ML models for network management, and the robustness
of learning solutions in practical deployments. In particular,
while the use of Reinforcement Learning (RL) can lead to
automated networks [6]–[8], the entire design and experimen-
tation process is still tedious. One common challenge these
solutions face is the difficulty of testing them on real networks
with actual traffic. While most solutions are evaluated using
simulation tools like Mininet [9] or ns-3 [10], it is important
to conduct experiments on real-world testbeds like GENI [11],
FABRIC (which is still under development) [12], Chameleon
Cloud [13], and CloudLab [14], which provide platforms for
conducting replicable experiments. While these platforms are
accessible in multiple countries and allow node reservation
for research purposes, they often lack intuitive user-friendly
interfaces for conducting large-scale ML-based network plan-
ning experiments. Configuring the desired scenario can be
tedious, forcing the research to deal with low-level details of
virtualized and real hardware, and efficient resource allocation
is not always immediately attainable.

Researchers have initiated the development of systems
aimed at facilitating the allocation of resources on such
testbeds. For example, SAM [15] is a framework that can
semantically represent and process data in a way that is un-
derstandable by machines for managing resources of federated
IoT testbeds. SAM manages the resources’ lifecyle and the
federation of devices, focusing in particular on the federation
of unmanned vehicles (UxVs). The problem of resources’
allocation in networking testbeds is then studied in [16], where
the authors provide an algorithm that optimizes the utility of
the NITOS testbed, a collection of heterogeneous resources
for wired and wireless networks [17]. While valuable attempts
to facilitate network experimentation, users still need to learn
intricate syntax to interact with the allocated resources and it
is challenging to run ML-based (and RL-based in particular)
algorithms to solve typical networking problems.

Trying to fill these gaps, in this paper, we present RLVNA,

a novel system that aims at simplifying the testing and run of
this class of algorithms even for people with little experience
in DevOps, testbeds, and infrastructures. Our focus is on
providing the enabling technologies to project and deploy
RL models, leaving room for the programmers to play with
specific parameters, e.g., the number of steps in the RL process
and number of neurons in the neural network (most RL algo-
rithms make use of it). To validate our system, we conceived a
decentralized RL-based algorithm (that for simplicity we call
RLVNA) that extends an existing auto-scaling approach [6],
which we implemented and tested first on Mininet and then in
our developed platform on GENI [11]. This use case demon-
strates the advantages of this type of proactive algorithms for
network adaptations and the effectiveness of the overall system
for SDN experimentation.

The rest of the paper is structured as follows. Section II
describes the main functionalities proposed by RLVNA, while
Section III presents the experimental results. Finally, Sec-
tion IV concludes the paper.

II. SYSTEM DESIGN

In RLVNA, we designed a user-friendly platform that allows
independent network experiments on a wide range of testbeds.
At startup, the user is only required to choose the topology of
interest and set up the customizing settings for the ML algo-
rithm, while the platform automatically handles the IP address
assignation and resource allocation. This strategy allows even
less experienced users to manipulate their network.

A. Solution Architecture

Fig. 1 provides an overview of our solution, highlighting the
three key components that make up our platform: the front-
end interface, the decision logic application, and the testbed
manager. These elements work together seamlessly to provide
a comprehensive network experimentation environment that is
user-friendly and efficient. Our front-end interface provides a
web interface where the user can specify the solutions’ topol-
ogy and parameters. The decision logic application (DLA)
is the core of our solution and provides the functionalities
for the recourse management schema. It includes our RL
model that is distributed among the number of controllers
specified by the user. Finally, this information is passed to
the testbed manager. The last component, the testbed manager
(TM), receives the topology and model information in input
and dispatches the proper commands. Having a separate com-
ponent with respect to the network management logic allows
separating the concerns: the DLA handles all the network
planning model and logic, and the TM deals with potentially
different platforms, e.g., GENI, Cloudlab, and the diverse
commands needed to turn up the topology desired for the
experiments. This component manages the different commands
that various testbeds may possibly have, and once the user
request is received, it dispatches the opportune command.

During our experimental campaign, we mainly focused on
deploying a topology over a large-scale testbed as GENI and
testing the efficacy of an auto-scaling solution in the two
fashions: centralized and distributed.

Front
end

React

Topology

Model

Settings

TM

Docker

Geni

Chameleon

CloudLab

Fabric

REST APIs

Json

Controller

Settings

DLA

ML/AI

REST APIs

Json

Fig. 1: RLVNA overview. The chosen architecture provides
portability and adaptability to different testbeds.

The last and most crucial work is the development of a
generalized RLVNA algorithm. The RL algorithm we designed
has two central cores. The first core is the presence of a
Ryu controller [18] for configuring and querying the switches.
The second core is the ML model, which, once received
the measurements from the Ryu controller, evaluates whether
activating or deactivating the support switches along with their
paths is better. The algorithm’s purpose is clearly to scale
up and down, reducing the congestion in the network when
it occurs while simultaneously avoiding energy consumption
when not needed.

B. Web Interface for the User

The main functionality offered by the project’s frontend
includes the creation of custom topologies and the ability
to run machine learning algorithms for network management
within them. While the frontend is designed to be intuitive
for the end user, we also include text boxes for additional
information and explanations of the settings.

We report in Fig. 2a the web page presented to the user
during the network and model deployment. Given that the
main purpose of the frontend is to allow users to request
resources, customize the reinforcement learning algorithm’s
settings, and test their algorithms in custom topologies using
our platform, we can observe the two main sections that
compose this web page: Topology definition at the top, and
Machine Learning settings customization at the bottom of the
page. The topology definition section features a large box
where users can draw the topology they wish to test, while the
second half of the page is dedicated to the reinforcement learn-
ing algorithm settings. These settings are designed to align
with the parameters expected by the RLVNA algorithm we
implemented. The necessary steps for running an experiment
using our platform are as follows: (i) define and draw the
custom topology, selecting among types of nodes available,
i.e., switch, hosts, and SDN controller, (ii) configure and run
the SDN controller, (iii) configure the ML model, (iv) demand
for resource reservation, (v) in case of positive response,
obtaining the ssh command to directly log inside the nodes.

By clicking on the “Create Topology” button, the drawn
topology is parsed and converted into JSON format, then
sent to the Testbed Manager via a REST API. The response
type (affirmative or negative) and the response time clearly
depend on the underlying testbed, but we assume it may
take a few minutes. When such a response is received, we
display a simple modal popup containing descriptive text and

(a)

(b)

Fig. 2: Screenshots of RLVNA’s web platform

the specification file, e.g., RSpec and Manifest files, reporting
the node descriptions, MAC and IP addresses, and physical
locations used in the topology.

These topology customizations are closely linked to the
parameters of the reinforcement learning algorithm, which
means that different machine learning algorithms can be
tested very easily in the settings. As shown in Fig. 2b, each
subpart (SDN controller, RL model, ssh) is accompanied by
an information box that provides details on the expected
parameters and the purpose of the subsection. For instance,
the Ryu controller configuration requires the list of supported
switches and the frequency at which the Ryu controller should
request switch statistics. On the other hand, the ML model
is highly customizable and needs the number of supportive
switches, the data frequency, the overprovisioning penalty, and
the list of helped switches. To enable researchers to run various
experiments, we provide ssh access to all nodes, including the
controller, switches, and hosts.
C. Testbed Manager

Our platform can easily be used even by researchers with
a strong background in machine learning but no prior net-
working knowledge, because the resource deployment and
continuous monitoring is carried out by our testbed manager
(TM) rather than the user. In particular, we designed the TM of
our system to perform the necessary operations for reserving

and configuring nodes in different testbed environments. This
involves interacting with the platform, e.g., GENI, Cloudlab,
to select the aggregate, slice, node types, and networking
configurations, such as IP addresses. The TM configures each
node, which can be a controller, switch, or host, and then
returns a status string indicating whether the operation was
successful or not. This process enables researchers to test their
ML-based solutions in general, and RL-based in particular, in
the selected SDN environment without the burden of handling
specific commands.

D. Reinforcement Learning for Virtual Network Adaptations

In this study, we focus on a specific use case where RL
finds great applicability: virtual network adaptations [6]–[8].
We thus want to validate the effectiveness of the RLVNA
algorithm for optimizing network performance and energy
consumption in a possible variety of networks. To achieve
this goal, we have dockerized the RLVNA algorithm from the
backend and inserted it into a compact and isolated container
in the controller nodes. In our setting, all switches in the
network will send their statistics to the controller with a
particular frequency, and the controller will implement the
RLVNA algorithm to optimize the network.

Our proposed solution employs a Deep Reinforcement
Learning (DRL) approach where the agent observes the net-
work’s state and generates an action that alters the environ-
ment. Each action is rewarded with a scalar value to learn the
best policy to actuate. The DRL agent selects the best action,
uses the reward value to evaluate the chosen action’s goodness,
and continuously repeats this process. To increase stability
during training, we use the Deep Q-Learning algorithm, which
employs two neural networks with different weights to map
input states to pairs of (action, Q-value). During training,
we use the Epsilon-Greedy policy to balance exploration
and exploitation.The state space is based on link load, and
action space determines whether supporting switches should
be powered on or off. The reward function considers net-
work performance and penalizes over-provisioning, promoting
resource allocation that maximizes network-aware rewards.
The average network throughput minus the power consumed
by each activated supporting switch constitutes the reward
equation. The next step is obtaining the shortest path between
one host and the others. We created two data structures,
one that contains the shortest path considering the support
switch and another data structure that contains the shortest
path without considering these switches. It evaluates a reward
function and, depending on the value decides the action to
send to the controller. We defined two possible actions: support
switch ON or support switch OFF. This process is repeated for
all the supportive switches existing in the topology, and the
action that the ML sends to the controller is an array with the
combination of ON/OFF of all the support switches.

When an action is received by the Ryu controller, it triggers
a series of operations. If the action involves enabling a
“support switch”, the first step is to identify the neighboring
switches that require flow modification. In addition, the hosts

that can benefit from a new path through the target switch are
determined using the shortest path algorithm. Half of these
hosts are then directed to use the new path, while the other half
continue using the old path. The use of the “support switch”
results in an improvement in network performance, which will
be discussed in the evaluation section. At the same time, if
the action involves disabling a “support switch”, the target
switches become redundant, and their energy consumption can
be reduced. In this case, the first step is to locate the neighbors
of the target switch along with their associated hosts. Half of
the previously enabled hosts are then redirected to use a path
without the target switch, while the remaining half continue
using the same path without modification.

To deal with possibly large networks, we modified this in-
stance and defined a distributed framework based on Raft [19],
a consensus algorithm that allows a group of machines to be
resilient even if some of them fail. We adopted Raft as its
capacity to enable technology to reach consensus in multi-
controller topologies. In this setting, we set controllers to have
a consistent network-wide view by exchanging metrics of local
networks through Raft to all the controllers.

III. RESULTS

The main goal of our experiments is two-fold: validating the
architecture provided via the web interface, and assessing the
feasibility and validity of adopting a centralized or distributed
approach for network management decisions. The tests run
both over a Mininet and GENI testbed, due to its easiness in
deploying SDN architectures.
GENI-based platform. The GENI testbed offers a wide
range of aggregate spread across the US, allowing for flexible
and customized resource reservation. However, while being
extensively used, GENI has many limitations, and collecting
statistics and reserving resources proved to be challenging.
Even in well-equipped aggregates, node reservation often
fails, and configuring simple topologies with four switches
could take minutes or hours. This limitation affects the data
collection process and the number of configurations we could
set up. Our proposed solution moves towards an easier to use
testbed. To effectively operate with the GENI environment,
in RLVNA our testbed manager (TM) uses the geni-lib
library for choosing the aggregate, defining the node type, and
their networking configuration, such as the IP addresses. The
resource reservation is indeed the most significant operation
the backend executes. In particular, it deletes the previous
allocation in the slice, parses the frontend request, creates the
Rspec request, stores the manifest response, configures the
machines, and stores ssh command for future use.

In Fig. 3 we show the response time of our web server in
receiving user requests and reserving appropriate demanded
resources. It must be noted that this latency is largely affected
by the time spent by GENI in reserving the resources. We can
observe how our TM component can effectively dispatch the
requests and generate opportune responses for the operations
even when the number of resources to handle is considerable
and the user asks for a topology composed of 60 nodes.

10 20 30 40 50 60
Number of nodes

500

750

1000

1250

1500

R
es

po
ns

e
tim

e
[s

]

Fig. 3: Service response time of our web server for a GENI
backend when the size of requested topology increases.

0.2 0.4 0.6 0.8 1.0
Network Utilization

0

20

40

60

80

100

%
O

ri
gi

na
lN

et
w

or
k

Po
w

er

Mininet Centralized

(a)

0.2 0.4 0.6 0.8 1.0
Network Utilization

200

300

400

500

A
vg

.T
hr

ou
gh

pu
t[

M
bp

s] Mininet Centralized
No logic

(b)

Fig. 4: Mininet experiments. Performance evaluation in terms
of (a) power saving and (b) throughput. RLVNA is an effective
auto-scaling solution in a local environment.

A. Planning schema performance on Mininet

To better understand the results obtained with GENI, we
start by running the RLVNA algorithm over the local testbed
of Mininet. During our experiments, we used iperf3 to generate
traffic to measure throughput and netperf to measure latency,
while tcpdump was used for analyzing the packets of the
communication. iperf3 is also used to generate background
traffic to face different network utilization in the experiments.
The SDN controller is a Ryu node [18] that interacts with the
Docker container that carries the RL algorithm. To evaluate
our platform, we considered a randomly generated topology
composed of 13 switches and 18 hosts, where the links have
a bandwidth of 1Gbps and we simply refer to this topology as
“large topology”. In this simulation, the clients send traffic at
a varying throughput, starting with 10Mbps and scaling up to
a total of 1Gbps each, to simulate congestion by reaching a
specific network utilization quota, defined as the average of the
load over all links weighted by their capacity. In other words,
this is the sum of the link flows over the entire network divided
by the sum of link capacities. For each setting we repeat the
experiment for twenty iterations, averaging the values for a
2-minutes communication.

After setting up our simulation environment, we focused
on the impact of adopting RLVNA compared to an imple-
mentation with no logic at varying of the network load in
Mininet emulator (Fig. 4). The results show that, when the
network utilization is not excessive, an auto-scaling approach
can decrease the power by deactivating unused resources. For
example, when the network is utilized at 50%, with RLVNA
we can save about 50% of the power in a solution with
no logic (Fig. 4a). At the same time, when the network is
congested, our solution can create more links, re-direct the
traffic, and preserve some throughput. Compared to a network

0.2 0.4 0.6 0.8 1.0
Network utilization

2

4

6

8

10

R
T

T
[m

s]

RLVNA
Baseline

(a)

0.2 0.4 0.6 0.8 1.0
Network utilization

2.5

5.0

7.5

10.0

12.5

15.0

R
T

T
[m

s]

RLVNA
Baseline

(b)

0.2 0.4 0.6 0.8 1.0
Network utilization

20

40

60

T
hr

ou
gh

pu
t[

M
bp

s]

RLVNA
Baseline

(c)

0.2 0.4 0.6 0.8 1.0
Network utilization

10

20

30

T
hr

ou
gh

pu
t[

M
bp

s]

RLVNA
Baseline

(d)

Fig. 5: GENI experiments. RTTs measurement for (a) the small topology (b) and for the large topology. Throughput
measurement for (c) the small topology (d) and for the large topology.

20 30 40
Throughput [Mbps]

0.2

0.4

0.6

0.8

1.0

C
D

F

RLVNA
Baseline

(a)

20 25 30
Throughput [Mbps]

0.4

0.6

0.8

1.0

C
D

F

RLVNA
Baseline

(b)

Fig. 6: CDF measurement. Experiments at 50Mbps in (a) the
small topology and (b) the large topology.

in the absence of auto-scaling logic, we can observe that our
solution stably achieves higher throughput (Fig. 4b).

B. Planning schema performance on GENI

We then experimented over a real-world testbed as GENI,
where the links are at 100 Mbps. With the methodology
described before, we considered the performance at varying of
the link load to show the benefits of the auto-scaling solution
and compared the configuration where the RLVNA model is
running and when is not. The need to experiment in a genuine
environment, rather than an emulated one, was a key driving
force behind our decision to undertake this project. Although
Mininet is a valuable tool that allows experimenting with
networks, it still remains an emulator, and results may be mis-
leading. For this reason, we computed the performance metrics
that RLVNA achieved in the GENI testbed, focusing on the
Round Trip Time (RTT) and throughput, as shown in Fig. 5.
To also study how the algorithm and our implementation can
deal with diverse topology, we utilize a network comprising of
5 switches and 10 hosts, called “small topology”, in addition
to the large topology described earlier.

Fig. 5a shows that in both topologies, RLVNA and a
baseline approach (in which the controller has no auto-scaling
logic) exhibit similar performance when the network is lightly
congested (0.1 − 0.3 of utilization). However, as the net-
work congestion increases (from 0.4), the benefits brought by
RLVNA become more visible, resulting in lower RTT across
all tested network loads. Fig. 5b exhibits a similar trend, but
due to the larger topology size, RLVNA starts to show lower
RTT at a lower bottleneck level of 30%. The same behavior is
visible when computing the throughput, as reported in Fig. 5c
and Fig. 5d. In this scenario, the small and the large topology
perform better with RLVNA at already low induced congestion

(0.2−0.4) and achieve a higher throughput when compared to
a baseline implementation even at the highest network loads
(from 0.5). For completeness, we also present in Fig. 6 the
Cumulative Distribution Function (CDF) of the throughput
when sending at 50 Mbps. As depicted in Fig. 6a, our solution
demonstrates good results in a small topology, maintaining the
throughput up to 47 Mbps, while the baseline schema can only
reach a maximum of 25 Mbps. Similar results are observed
in the large topology, as illustrated in Fig. 6b. However, our
implementation reaches a maximum of 33 Mbps in this case,
while the baseline implementation is only able to achieve up
to 20 Mbps.

In the previous section, we showed how our solutions can
create almost any request for the network topology. However,
we limit the number of nodes to 60, as this is an intrinsic
limit of available resources on a single site of GENI aggregate
(Fig. 3). This result motivates our hypothesis that to manage
and test large-scale networks, we need to create a multi-
site architecture where the controllers collaborate toward an
efficient global management schema. As such, we studied how
to deploy more (larger) networks over GENI, proposing a dis-
tributed learning phase design based on Raft. To simulate this
scenario, we deployed a topology composed of 20 switches
controlled by 3 SDN controllers, each managing a different
subnetwork. The three controllers share information about the
RL model used for the auto-scaling and adopt the leader-
followers approach typical of Raft. One controller is elected as
leader and maintains the global state, while the others maintain
a replica of this state, following its evolution. By introducing
our RL model, we can observe a simultaneous increase in
throughput and a reduction in transmission delay. This can be
seen in Fig. 7a, which shows that the RTT of a decentralized
solution is significantly lower in RLVNA compared to an
implementation without an ML logic throughout the entire 60-
second tracking period. Additionally, Fig. 7b demonstrates that
RLVNA achieves higher throughput than an implementation
lacking RL support, indicating an optimal behavior.

As a last aspect, we considered the sustainability of our
approach in a large-scale network environment to analyze
how auto-scaling solutions can improve network management
efficiency. In particular, we considered the differences between
centralized and decentralized models for increasing network
utilization. We report in Fig. 7c the energy efficiency computed
by the RL agent for the two alternative approaches. When the

0 10 20 30 40 50
Time [s]

8

10

12

14

16

R
T

T
[m

s]
Decentralized
Baseline

(a)

0 10 20 30 40 50
Time [s]

20

25

30

T
hr

ou
gh

pu
t[

M
bp

s]

Decentralized
Baseline

(b)

0.2 0.4 0.6 0.8 1.0
Network Utilization

0

20

40

60

80

100

%
O

ri
gi

na
lN

et
w

or
k

Po
w

er

Centralized
Decentralized

(c)

Fig. 7: GENI experiments. (a) RTT and (b) throughput evolution over time for the RLVNA model. (c) Comparison of the
RLVNA setting of centralized and decentralized.
network utilization is close to 1.0 (100% of links utilized), then
all links and switches must stay active, preventing the savage
of power. With lower utilization, traffic can be concentrated
over a reduced number of links, and the unused ones can be
switched off. First, this outcome is similar to the one obtained
in the Mininet environment (Fig. 4). Second, the decentralized
approach can further reduce the percentage of original power.

The results confirm: (i) the benefits of a learning-based
management scheme that can scale network resources up
and down, (ii) how distributing the logic allows to control
a larger network. A simple distributing approach, such as our
Raft-based one, can be implemented to manage a possibly
large network sharing the decisions’ logic. In conclusion, the
implementation of our solution through GENI showed that
the initial results obtained over Mininet were accurate and
reliable. The overhead introduced by the consensus algorithm
is negligible and the advantages of the solution are clear.

IV. CONCLUSION
In this paper, we present a versatile platform that enables

users of all levels of experience to reserve resources and
conduct experiments with machine learning algorithms on real
testbeds. Along with a validation of this platform, the paper
studies the differences in performance between a Mininet and
real-world experimentation, and between a centralized and
decentralized algorithm. While our initial tests were conducted
on the GENI testbed, our long-term plan is to expand our
solution to a multi-cluster version. We believe that upcom-
ing platforms like FABRIC [12] will play a crucial role in
advancing this experimentation to new frontiers. Moreover,
although more advanced methods to train a global model are
available, e.g., Federated Learning and Split Learning, the
results supports the simplicity of our decentralized approach.

ACKNOWLEDGMENT
This work has been partially supported by the European

Commission under the NGI Atlantic initiative, and by the Na-
tional Science Foundation awards # 1908574 and # 2201536.

REFERENCES

[1] A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh,
“Realizing the tactile internet: Haptic communications over next gen-
eration 5g cellular networks,” IEEE Wireless Communications, vol. 24,
no. 2, pp. 82–89, 2016.

[2] A. Sacco, F. Esposito, and G. Marchetto, “Restoring Application Traffic
of Latency-Sensitive Networked Systems Using Adversarial Autoen-
coders,” IEEE Transactions on Network and Service Management,
vol. 19, no. 3, pp. 2521–2535, 2022.

[3] S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “Orchestran: Network
Automation Through Orchestrated Intelligence in the Open RAN,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022, pp. 270–279.

[4] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Partially oblivious
congestion control for the internet via reinforcement learning,” IEEE
Transactions on Network and Service Management, vol. 20, no. 2, pp.
1644–1659, 2022.

[5] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” arXiv preprint arXiv:1710.11583, 2017.

[6] A. Sacco, F. Matteo, Flocco andEsposito, and G. Marchetto, “Supporting
sustainable virtual network mutations with mystique,” IEEE Transac-
tions on Network and Service Management, vol. 18, no. 3, pp. 2714–
2727, 2021.

[7] D. Lee, J.-H. Yoo, and J. W.-K. Hong, “Deep Q-Networks Based Auto-
Scaling for Service Function Chaining,” in International Conference on
Network and Service Management (CNSM). IEEE, 2020, pp. 1–9.

[8] H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin, “Network
planning with deep reinforcement learning,” in Proceedings of the 2021
ACM SIGCOMM Conference. ACM, 2021, pp. 258–271.

[9] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in IEEE Colombian Conference on Communications and
Computing (COLCOM ’14). IEEE, 2014, pp. 1–6.

[10] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM demonstra-
tion, vol. 14, no. 14, p. 527, 2008.

[11] Geni, Exploring Networks of the Future. Accessed: 2023-3-15. [Online].
Available: https://www.geni.net/

[12] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, and P. Ruth, “Fabric: A national-scale programmable ex-
perimental network infrastructure,” IEEE Internet Computing, vol. 23,
no. 6, pp. 38–47, 2019.

[13] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds, the
chameleon cloud testbed, and software defined networking (sdn),” in
International Conference on Cloud Computing Research and Innovation
(ICCCRI ’15). IEEE, 2015, pp. 73–79.

[14] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and
operation of cloudlab.” in USENIX Annual Technical Conference (ATC),
2019, pp. 1–14.

[15] M. Avgeris, N. Kalatzis, D. Dechouniotis, I. Roussaki, and S. Papavas-
siliou, “Semantic resource management of federated iot testbeds,” in
Ad-hoc, Mobile, and Wireless Networks: 16th International Conference
on Ad Hoc Networks and Wireless (ADHOC-NOW 2017). Springer,
2017, pp. 25–38.

[16] D. Stavropoulos, V. Miliotis, T. Korakis, and L. Tassiulas, “Match-
ing theory application for efficient allocation of indivisible testbed
resources,” in NOMS 2020-2020 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2020, pp. 1–7.

[17] Network implementation testbed using open source platforms. Accessed:
2023-4-24. [Online]. Available: https://nitlab.inf.uth.gr/NITlab/nitos

[18] Ryu controller. Accessed: 2023-3-15. [Online]. Available: https://ryu-
sdn.org/

[19] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in USENIX Annual Technical Conference (USENIX ATC
’14), 2014, pp. 305–319.

