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Abstract: Good sleep quality is of primary importance in ensuring people’s health and well-being.
In fact, sleep disorders have well-known adverse effects on quality of life, as they influence attention,
memory, mood, and various physiological regulatory body functions. Sleep alterations are often
strictly related to age and comorbidities. For example, in neurodegenerative diseases, symptoms
may be aggravated by alterations in sleep cycles or, vice versa, may be the cause of sleep disruption.
Polysomnography is the primary instrumental method to investigate sleep diseases; however, its use
is limited to clinical practice. This review aims to provide a comprehensive overview of the available
innovative technologies and methodologies proposed for less invasive sleep-disorder analysis, with a
focus on neurodegenerative disorders. The paper intends to summarize the main studies, selected
between 2010 and 2022, from different perspectives covering three relevant contexts, the use of
wearable and non-wearable technologies, and application to specific neurodegenerative diseases.
In addition, the review provides a qualitative summary for each selected article concerning the
objectives, instrumentation, metrics, and impact of the results obtained, in order to facilitate the
comparison among methodological approaches and overall findings.

Keywords: neurodegenerative diseases; sleep monitoring; sleep disorders; Parkinson disease; de-
mentia; Alzheimer Disease; wearable sensors; inertial sensors; video analysis; Internet of Things

1. Introduction

Sleep plays a fundamental role in the lives of many animals, from some invertebrates to
humans. It has both physiological and behavioral connotations and, although its functions
and evolutionary significance are not yet fully known, its fundamental role in the main-
tenance of homeostasis and the adverse effects due to its sub-optimality are well-known
in humans. Indeed, it influences attention, memory, mood, blood pressure, immune and
inflammatory response, and stress response [1–3]. Under physiological conditions, a sleep
phase and a wakefulness phase alternate in a regular manner, constituting the sleep–wake
circadian rhythm. The sleep phase is a dynamic process aimed at obtaining the required
neurophysiological states at certain times, according to circadian and homeostatic needs
and despite external or internal interfering stimuli. Moreover, the so-called macrostruc-
ture of sleep, as recorded by electroencephalography (EEG) during polysomnography
(PSG), is characterized by a chain of regular and predictable events (cyclic alternation of
rapid eye movements (REM) and non-REM (NREM) sleep stages). The process shows an
intrinsic variability and has to finely modulate itself in order to maintain the maximum
adaptability while preserving sleep macrostructure. In this context, peculiar transient EEG
patterns (sleep microstructure) are supposed to play the main role in the building up of
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EEG synchronization and in the flexible adaptation against perturbations. Alterations in
sleep macro- or microstructure provoke sleep disruption, sleep instability and loss of sleep
quantity and quality [4,5]. Sleep and wakefulness influence each other; therefore, sleep
quality degradation, when persisting over time, may translate into severe and irreversible
symptoms, taking the form of a pathological framework. Therefore, it is very important
to create the best possible sleeping conditions and to intervene promptly when sleep dis-
turbances occur, both in their diagnosis and eventual treatments. Even though sleep time
and quality lessen with age, sleep disorders are related to comorbidities rather than age [6].
In particular, sleep disorders have a high incidence in neurodegenerative diseases (ND)
and are known to influence well-being and quality of life [7]. Indeed, the symptoms of
the NDs may be worsened by the sleep disorders, but, at the same time, the latter may be
caused or augmented by the neurodegenerative disease, creating a more complex clinical
picture. Optimized, sometimes individualized, treatments are being developed in clinical
practice [8]. The relationship between sleep abnormalities/disorders and NDs is so close
that sleep disorders can be used as criteria for the diagnosis of specific NDs [9]. As an ex-
ample, stridor co-occurs with multiple system atrophy (MSA), while a REM-sleep behavior
disorder may discriminate between Alzheimer’s disease (AD) and dementia with Lewy
body (DLB). The most interesting discovery in the field is that, in some cases, especially in
Parkinson’s disease (PD), the onset of sleep disturbance could reflect early alterations in the
neural pathways involved, thus constituting a prodromal symptom [10]. This allows earlier
intervention in treatment and follow-up; moreover, it will be crucial when neuroprotective
drugs become available [11]. The assessment of sleep macro- and microstructure, move-
ments, respiratory pattern or other neurophysiological changes that occur during sleep is
essential to verify the quality of sleep and detect sleep disorders. For clinical purposes, PSG
is the gold standard for the assessment of sleep disorders, and guidelines are available for
recommended uses. In PSG, selected electrophysiological signals are recorded along with
other biological signals of interest, such as airflow, oxygen saturation, chest movements
or snoring. The type and number of signals that are recorded depends on the reported
symptoms and the aim of the PSG. EEG, plectrooculography (EOG), electrocardiography
(ECG), and electromyography (EMG) are required for sleep staging, whereas in the detec-
tion of sleep apnea, for instance, the primary focus is on oxygen saturation, airflow, and
thorax and abdominal movements [12]. Complete polysomnographic examinations are
very complex and invasive; they need cumbersome instrumentation, a proper location,
night-time assistance by experienced personnel, time, money and they bring discomfort
for the patient as well. The medical inspection of the signals (many hours of recording)
needs to be performed by qualified experts and it is, however, subjected to inter- operator
variability [13,14]. For these reasons, PSG can only be performed in proper settings and
usually for in-patients, mainly when precise diagnosis is essential for targeting therapy.
Therefore, many alternatives have been proposed in the research to cope with this limi-
tation, in particular for screening or monitoring purposes. They exploit, in general, new
technologies and automatic algorithms to reduce the invasiveness of the instrumentation
required and the intervention of specialized personnel. This would allow a much more
frequent, if not continuous, assessment of the patients’ condition with reduced cost and
discomfort, providing the conditions for optimized diagnosis and treatments. Research in
this area has several objectives:

• To update and simplify the work of medical staff by automating or semi-automating
certain procedures—such as sleep staging or sleep disorders diagnosis—through
new instrumentation.

• To verify medical treatment efficacy and, eventually, to optimize it, through sleep
monitoring.

• To ensure frequent or continuous follow-up by providing instrumentation and proto-
cols to be used in non-hospital settings.

This review wants to explore the available new technologies for minimally invasive
sleep monitoring, specifically applied to the field of the NDs, focusing on wearable and
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non-wearable solutions. The paper is organized as follows. The next Sections 1.1 and 1.2
provides a general background on clinical aspects of sleep monitoring and an overview
on the use of technological approaches in NDs. Section 2 provides the description of the
methodology employed for the paper selection in this review, Section 3 illustrates results
and, lastly, Sections 4 contains discussion and conclusions.

1.1. Background of Sleep Monitoring in Neurodegenerative Diseases

In NDs, the progressive loss of neurons in particular structures of the central nervous
system (CNS) causes dysfunctions of neural pathways, leading to the symptoms typical
of each disease. In some cases, treatments are available for symptoms relief, but the
neurodegeneration process is unstoppable and irreversible. AD and PD are among the
most common neurodegenerative disorders worldwide, with a high incidence in the elderly
population [15]. In fact, aging is one of the main risk factors in developing NDs, even
though their etiology can vary, and are not completely understood. Moreover, genes and
environment are believed to be together responsible of these diseases’ onset. Other less
common NDs are Huntington disease, DLB, amyotrophic lateral sclerosis (ALS), Friedreich
ataxia, and MSA. A brief description of the principal symptoms and characteristics is
provided in Table 1, with a focus on the diseases’ effects on sleep. In fact, these pathologies
have a complex relationship with the sphere of sleep. Sleep disruption and disorders can
be commonly found in patients with ND and may constitute an early biomarker. Iranzo
in [11] highlights the frequent occurrence of the subsequent sleep disorders in ND:

• Insomnia.
• Excessive daytime sleepiness (EDS).
• Rapid eye movement (REM) sleep behavior disorder (RBD).
• Periodic leg movements in sleep (PLMS).
• Restless legs syndrome (RLS).
• Central or obstructive sleep apnea (CSA, OSA).
• Sleep disordered Breathing (SDS).
• Nocturnal stridor.
• Circadian rhythm disorders.

Further, sleep-quality impairment, sleep-time reduction, and presence of abnormal
movements (both excessive and impaired) are other typical features. Sleep symptoms
derive from multifactorial causes, including the deterioration of sleep–wake regulatory
circuitries caused by the neurodegeneration itself and altered neural pathways, movement
or respiratory symptoms specific to each pathology or several indirect mechanisms [16].
Sleep has, in turn, an influence on the neurodegeneration process, realizing a complex
bi-directional relationship that could lead to new targeted interventions [17]. For instance,
sub-optimal sleep—e.g., lack of sleep, disturbed sleep, sleep disorders—was found corre-
lated to cognitive-impairment severity in AD patients and in the elderly, thus constituting
a possible risk factor for the onset of cognitive impairment [18,19]. Lately, the discoveries
regarding this relationship have been translated in the clinical practice, renovating dis-
ease diagnostic criteria and treatments [20]. However, sleep-related symptoms are still
under-reported by patients and under-diagnosed by healthcare professionals. This is a flaw
in optimized diagnosis and intervention, because of the reduced descriptive power of a
complete clinical framework that considers these aspects. The result is a reduced quality of
life for patients, sub-optimal treatments, and, sometimes, late diagnosis or misdiagnosis. In
clinical practice, these sleep disruptions and disorders, including abnormal movements, are
assessed through different tools, such as individual interviews (anamnesis), sleep diaries,
sleep questionnaires, clinical scales, reduced or complete PSG, sleep diaries, and clinical
scales; moreover, clinical protocols establish assessing procedures [21,22]. Typical sleep
symptoms and main clinical assessing protocols are described in Table 2. PSG is the most
complete clinical examination, able to evaluate every aspect of sleep and derive quantita-
tive measures, constituting the gold standard in assessment and diagnosis of sleep-related
problems. Sleep staging, REM sleep without atonia, apneas, oxygen saturation, sleep
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microstructure including the cyclic alternating pattern (CAP), and sleep parameters compu-
tation can be investigated by PSG. Some of the typical sleep parameters employed, besides
sleep-stages descriptors, are total sleep time (TST), sleep latency, sleep efficiency, wake after
sleep onset (WASO), and REM latency [23]. Standardized semiquantitative evaluation of
symptom severity and quality-of-life reduction is provided by clinical rating scales, such
as those shown in Table 2. The latter are employed for various sleep disturbances and
disorders, including restless legs syndrome (RLS), insomnia, nocturia, breathing disorders,
and daytime sleepiness [24]. It must be considered that each subject’s clinical history deeply
influences the sleep evaluation tools; in fact, perception of symptoms is subjective and can
be influenced by the clinical framework. As an example, in dementia, cognitive impairment
can make it difficult to obtain a subject’s collaboration in clinical interviews and physical
exams [25]. In synucleinopathies—such as PD, DBL, and MSA—RBD assessment is par-
ticularly relevant because its idiopathic occurrence is known to be a prodromal symptom
that can anticipate any other symptom by decades [26]. In contrast, RBD developing after
the onset of other symptoms may indicate a particular disease phenotype. For this reason,
RBD screening and diagnosis have attracted much clinical attention in the last years.

Table 1. Neurodegenerative diseases (ND) and sleep-related symptoms, and sleep disorders incidence
(sleep disorders incidence (SD)) [11].

ND Symptoms Sleep Symptoms SD

Parkinson’s disease [27,28]

Motor: tremors, postural issues,
bradykinesia, ON/OFF states, dystonia,

rigidity, dyskinesias. Non-motor:
orthostatic hypotension, depression,

gastrointestinal symptoms, speech and
writing change

RBD (also prodromal), sleep-disordered
breathing, EDS, Insomnia, RLS, PLMS 60–90%

Multiple system atrophy [29] Parkinsonism, breathing problems RBD, fragmented sleep, insomnia, stridor,
EDS 80–100%

Dementia with Lewy body [30] Dementia, parkinsonism, fluctuations, and
visual hallucinations

Insomnia, circadian rhythm disorder,
RBD 1 (also prodromal), confusional

awakenings, EDS
80%

Alzheimer’s Disease [31] Cognitive impairment, dementia. Altered
behavior, confusion, aggressiveness

Frequent daytime napping, difficulty in
falling asleep and early wakeups, sleep
fragmentation, reduced deep and REM
sleep amounts, OSA, circadian rhythm

alterations, slowdown of sleep
EEG rhythms.

45%

Huntington Disease [32] (genetic) Dementia, psychiatric disturbances

Sleep quality loss, insomnia, sleep
fragmentation, EDS, circadian rhythm
sleep disorders, reduced NREM and

REM sleep.

87%

Amyotrophic lateral sclerosis [33] Weakness, muscle atrophy, spasticity,
respiratory dysfunction

Sleep-disordered breathing, nocturnal
hypoventilation, nocturia, cramps,

insomnia, EDS
17–76%

Friedreich ataxia [34] (genetic) Impaired gait, balance, coordination,
and speech RBD, RLS, OSA 50%

1 OSA: obstructive sleep apnea; EEG: electroencephalography; RBD: REM behavior disorder; EDS: excessive
daytime sleepiness; RLS: restless leg syndrome. PLMS: periodic limb movements during sleep.
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Table 2. Clinical assessing methods in sleep investigation.

Sleep Investigation Clinical Assessing Methods

Sleep quality [35]
Anamnesis, diaries such as Consensus Sleep Diary (CSD), clinical scales such as Pittsburgh Sleep Quality
Index (PSQI) for sleep disturbances, sleep duration, sleep latency, sleep efficiency, use of sleep
medication, daytime dysfunction, and sleep-quality subjective evaluation in the past months.

SD: restless leg syndrome (RLS) [36] Anamnesis, PSG for detecting associated PLMS, International Restless Legs Scale (IRLS).

SD: REM behavior disorder (RBD) [37]
Anamnesis; PSG 1 with sleep staging and REM sleep without atonia scorings; Video-PSG; screening
questionnaires; rating scales: RBD Screening Questionnaire (RBDSQ), RBD Single-Question Screen
(RBD1Q).

Sleep-related problems severity in PD Rating scales: Parkinson’s disease sleep scale (PDSS), ESS, SCOPA-SLEEP; PSG.

Nocturnal movements in PD [24]

Anamnesis; PSG; Video-PSG, Actigraphy; rating scales:

• PDSS for leg or arm restlessness when resting, urgency to move when resting, getting out of bad for
urination, nocturnal hypokinesia, painful posturing of the arms or legs, fidgeting.

• MDS-UPDRS for turning in bad, getting out of bad.
• NMSS for urgency to move when resting.
• NMSQ for getting out of bed for urination, acting out dreams, urgency to move when resting.
• PSQI, RLS and RBD scales.

Sleep disturbances in AD [25] Anamnesis (manifestations of the sleep disorders can be atypical, cognitive impairment can make it
difficult); RLS and breathing-disorders assessment; PSG; Actigraphy.

EDS [38] Anamnesis, PSG, Multiple sleep latency test (MSLT), Maintenance of wakefulness test (MWT), Epworth
sleepiness scale (ESS)

1 PSG: polysomnography; SD: sleep disorder; SCOPA-Sleep: Scales for Outcomes in Parkinson’s Disease-Sleep
Disturbances; MDS-UPDRS: Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease
Rating Scale; NMSQ: Non-Motor Symptoms Questionnaire; NMSS: Non-Motor Symptoms Scale

1.2. Overview of Technologies for Neurodegenerative Diseases

Thanks to the progression of technology, many new-generation devices are available
to the medical field. Reduction in costs and dimension for greater computational perfor-
mances is the main followed trend in the hardware technology. This trend is influencing
every aspect of medicine, from in-vitro studies to surgery, passing through virtual reality
and robotics [39–42]. In particular, the development of good-quality low-cost sensors
determined the development of new possible applications. In addition, the growing world
population and the increase in life expectancy created new challenges that technologies,
sensors, devices, and algorithms may help to resolve. Technologies in this field are being
used to guarantee objectivity, continuity of care and massive screening for lower prices,
employing wearable sensors, sensors networks, wireless communication, and automatic
algorithms [43].

Companies are also riding the wave, in fact, many consumer products, including
smartphones and smartwatches, integrate health monitoring tools and are available at
affordable prices for the general population, providing new means for screening and
the optimization of self-care. The information provided by this kind of technology does
not usually have the aim of substituting standard clinical practice and is targeted to
healthy population use; therefore, it is rare for these devices to comply with medical
regulations. Nevertheless, some applications, such as heart-rate monitoring and movement
analysis, have been proposed as medical tools and obtained American Food and Drug
Administration (FDA) approval [44,45]. The gaming industry followed, as well, with the
introduction of exergames for physical- and cognitive-health assistance and rehabilitation
in neurodegenerative pathologies [46–48]. Sleep monitoring tools are also usually included
in smartphones, smartwatches, and consoles, due to the well-known effects of sleep in
cognitive and physical performances, as well as quality of life. However, the reliability of
these devices in this field is not well-known yet [49,50]. Nevertheless, sleep monitoring is a
wide field, where many aspects must be considered depending on the required observation
(e.g., movements, sleep staging) and the final aim (e.g., diagnosis, screening) and it is
influenced by many factors. Hence, it is very difficult to generalize results from general-
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purpose instrumentation, especially in the presence of diseases altering sleep characteristics.
The latter is the case for NDs, for which sleep disturbances and disorders are important
to consider, as presented in the previous section, but which manifest themselves through
physical and cognitive symptoms which could influence monitoring tools in unknown
and often unpredictable ways. From this perspective, a smaller portion of the research
explores this declination, both for single-symptom assessment and generic care of the eldery
or frail people. activity of daily living (ADL) recognition and assessment is one of the
most interesting topics, because they allow continuous monitoring beyond clinic facilities
and provide a multi-potential tool in the wide field of smart homes and assisted living.
This is the main objective of Internet of Things (IoT) applications for the elderly. Indeed,
due to the incidence of comorbidities in the elderly and their constantly growing number,
management of their multiple needs will be possible only through new technologies. In
the case of dementia and other NDs, this is one of the followed paths [51–56]. Besides
ADLs monitoring, sleep patterns, disease diagnosis and progression assessment, vital
signs, agitation, social interactions, compliance with medication intake, movement and
fall detection/prevention are interests of these applications. Smart-home applications
use a wide range of technological aids—such as radio frequency identification (RFID),
wireless communication protocols, global positioning system (GPS), sensors, and cameras—
frequently organized in a mixed architecture including wearable and non-wearable sensors.
Studies on smart-home monitoring for NDs are reviewed in the dedicated results section
(see Section 3.2).

Another trending topic in new technologies for sleep monitoring is the simplifica-
tion of PSG. PSG is the gold-standard sleep-monitoring exam in clinical facilities. In its
conventional set up, it involves multiple high-quality signals recordings. However, the
instrumentation is cumbersome and uncomfortable for the subject to wear. In addition, the
examination is long to carry out and to analyze, since clinicians have to deal with hours
of recordings. This creates an imperative need for an intervention to simplify the whole
procedure through new technologies. Moreover, the polysomnogram evaluation involves
anomaly identification (REM sleep without atonia, arousals, apneas) and sleep staging
which are subjected to intra- and inter-rater variability [13]. Simpler devices and methods
are widely proposed in the literature: sleep staging through single-channel physiological
recordings, actigraphy, respiratory dynamics and video were attempted [57–60]. Auto-
matic sleep-staging solutions for NDs are reviewed in the dedicated results section (see
Section 3.1).

Moreover, a wide range of unobtrusive sensors is employed in the literature for other
aspects related to sleep monitoring, including wearables [61–65] or camera-based [66–69]
systems. In PD and AD, sensors are widely used in symptoms management and assess-
ment, also with a view to early diagnosis [70–80]. In these disorders, sleep is frequently
investigated, especially in studies that focus on motor symptoms, such as the bradykinesia
(BK) or dystonia in PD, which can lead to pain or create problems in changing positions or
turning in bed. Actigraphy, which provides acceleration recordings from a wrist-worn unit,
is already approved by the FDA in the medical field since it enables continuous monitoring
(beyond single PSG evaluation). This approach is suitable for the evaluation of excessive
daytime sleepiness (EDS), insomnia, and circadian-rhythm sleep disorders, where analysis
of time spent in bed and asleep is more relevant. However, its boundary of use in sleep
studies is still to be drawn and still a hot topic in the literature, such as in the assessment of
NDs’ sleep symptoms. In this framework, studies dedicated to NDs compliant with the
inclusion criteria of this review are reported in the results section.

2. Materials and Methods

To provide a general overview of the main recent technological approaches used for
the analysis of sleep disorders in NDs, an extensive search of the literature was performed
through the online databases Web of Science and PubMed over the last 12 years. The
search focused on published studies concerning the NDs listed in Table 1 and on the more
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exploited unobtrusive approaches for sleep monitoring. To this end, the following search
criteria were set through:

• Customized queries using keywords and Boolean operators in the form “(Neurode-
generative Disorder OR Parkinson OR Alzheimer OR Huntington OR Lewy Body
OR amyotrophic lateral sclerosis OR Ataxia OR Dementia OR Tremor) AND (sleep
monitoring) AND (sensor OR IoT OR smart sensor OR environmental sensor OR
inertial sensor OR wearable sensor OR optical sensor OR camera OR bed sensor)”.

• Year range restriction to 2010–2022.
• Exclusion of pharmacology, veterinary and construction engineering categories.
• Writing language limitation to English.

No criterion was applied on the characteristics of studies participants, as long as the
application proposed was explicitly aimed at use on ND-affected subjects.

3. Results

The total records found on Web of Science and PubMed were 142, of which 43 dupli-
cates were excluded. Screening of the titles and abstracts reduced the records to 58. In the
end, the full-text analysis of the remaining records led to a total of 26 articles. The selection
procedure is shown in Figure 1.

Figure 1. Article selection process.

The selected articles were then categorized considering the three main application
domains: automatic sleep staging, at-home sleep monitoring and sleep-quality and move-
ment analysis tools. The papers’ distribution according to this categorization is shown
in Figure 2a. Moreover, a qualitative synthesis is provided for each article, containing
the main aim of the article, the instrumentation, the metrics and obtained results. The
instrumentation employed in selected papers largely depended on the application and
aims. Figure 2b shows the distribution of articles according to the use of wearable and
non-wearable approaches, as well as the tested-sample-size type (e.g., PD-affected patients,
healthy subjects). In addition, the collection of the sensors used in the reviewed paper
was assessed; it includes: bed sensors, 3D cameras, infrared cameras, inertial sensors,
smartwatches, headbands and novel tattooed electrodes. A pie chart summarizing sensors’
employment is shown in Figure 3.
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Figure 2. Distribution of selected papers according to chosen categorization. (a) Pie chart reporting
the percentage of articles for the three mainly investigated categories in the literature; (b) bar plots
of the distribution of the articles in the three categories of aim, considered sensor type (wearable or
non-wearable) and type of targeted population.

Figure 3. Pie chart reporting the distribution of sensors employed in the reviewed articles.

3.1. Automatic Sleep-Staging Techniques

Various systems for simplifying the sleep-staging procedure are proposed in the litera-
ture, whether based on PSG or innovative instrumentation; however, few of these studies
consider the peculiar condition of NDs, which, as already mentioned, can have a strong
influence on the feasibility of the proposals and the generalizability of the results. Moreover,
these diseases, together with their associated sleep disruptions, often require the observa-
tion of peculiar phenomena, to which the proposed new systems need to provide sensitivity.
The gold-standard PSG or video-PSG procedure is the most descriptive and complete exam
used in these cases. The research challenge is to reduce the cumbersome instrumentation
needed, without losing the fundamental information for sleep-stage recognition and abnor-
mality identification (e.g., k-complexes, sleep spindles, delta burst, apneas, muscle tone,
eyes movements). To do so and understand the best configuration, automatic sleep-staging
algorithms are also needed. From this perspective, the literature search provided four
articles. Their qualitative analysis is displayed in Table 3.
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Table 3. Qualitative summary of the selected articles proposing automatic sleep staging.

Article Subjects Instrumentation Methods Results

Casciola et al. [81] 12 healthy subjects
(12 nights)

(W 1) two-channel EEG
headband (HB)

DL approach to overcome
low-quality signals from
EEG HB in sleep staging.
Manual and automatic
corrupted-epoch
recognition and discard.
Data augmentation. DL
training in CNN plus LSTM
configuration.

Accuracy: 74 ± 10 % with
EEG HB signals, 77 ± 10 %
with PSG signals.

Shustak et al. [82] 9 healthy subjects (5 nights)

(W) temporary tattooed dry
electrode array: two

submental EMG, two EOG
and four forehead EEG

electrodes. The signals were
acquired through a

customized wireless
recording system and

Bluetooth connection. See
Figure 4a.

Assessment of sensing
performance in three ways:
by observing signal
behavior in typical facial
expression; in comparison
with standard video-PSG,
through qualitative and
correlation measures; and
in-home settings for
feasibility and
electrode-stability
evaluation. In addition, the
opinions of sleep
technicians were collected.

Signals recorded with the
temporary tattoo and the
10–20 system were visually
similar (e.g., eye blinking,
k-complexes, sleep
spindles), making them
easily interpretable for sleep
technicians. Amplitude
signal parameters and noise
were evaluated in the
presence of artifacts such
rolling in bed or blinking.

Yi et al. [83] 5 healthy subjects (1 night) (NW) hydraulic bed sensor.

74 features extraction from
cardiac and respiratory
signals. Classification into
awake, REM, and non-REM
stages by SVM and k-NN.
Accuracy referred to
manual PSG scoring.

Accuracy 85% with
0.74 kappa, in the detection
of awake, REM, and
non-REM stages.

Ko et al. [84]

30 healthy subjects, 27 PD
patients divided into two
subgroups: 15 PD patients
taking clonezepam (PDcC),

12 PD patients without
clonezepam (PDnC)

(W) Smartwatch (PPG). See
Figure 4b.

Quantification analysis of
light sleep, deep sleep,
REM, and abnormal REM
sleep. Classification into
sleep/awake, light/deep
sleep and REM sleep using
Cole–Kripke algorithm and
k-means clustering.
Definition of abnormal REM
epochs. Comparison
between control group and
PD group was conducted in
the quantitative analysis of
sleep stages.

Statistically significant
differences between PD and
controls were measured in
the percentage of deep sleep
and abnormal REM.
Abnormal REM sleep was
also able to distinguish
between PDcC and PDnC.

1 W: wearable; NW: non-wearable; ML: machine learning; EEG: electroencephalography; EOG: electrooculo-
gram; CNN: convolutional neural network, LSTM: long short-term memory; SVM: support vector machine;
PSG: polysomnography; PD: Parkinson diseases; REM: rapid eye movements; PSG: polysomnography; PPG:
photoplethysmogram.

Some potential solutions were explored by Casciola et al. in [81], Shustak et al. in [82]
and Yi et al. [83], on healthy subjects, whereas Ko et al., in [84], tested the capability of the
proposed system for abnormal REM detection on PD patients. Casciola, in [81], considered
the condition of dementia in AD, where cumbersome instrumentation is a critical issue,
due to the typical patient behavior (fear, confusion, aggressive behavior [85,86]). From this
perspective, portable EEG headbands (HB) could provide a solution. The authors wanted to
overcome the typical reduced signal quality in HB through a deep learning (DL) approach.
Their approach was tested on EEG HB and simultaneous PSG recordings. Accuracies of
their automatic scoring algorithm were calculated according to manual scoring of PSG in the
two cases (HB and PSG signals). The signal processing of HB included band pass filtering
and corrupted-epoch manual identification and removal. This cleaning procedure was
further deepened through an automatic identification of corrupted epochs using correlation
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metrics between channels and amplitude values. Data were augmented exploiting windows
overlapping, and a DL model, based on convolutional neural network (CNN) and long
short-term memory (LSTM), was developed and applied. Authors also implemented
traditional sleep-staging techniques for performance comparison. In the end, the proposed
DL sleep-staging model achieved 74% accuracy on low-quality HB EEG data and 77% with
gold-standard PSG with respect to manual scores. Moreover, the balanced accuracy of the
proposed DL method increased by almost 20% compared to any other machine-learning
sleep-staging method attempted by them. To better understand the power of their method
in the NDs’ framework, their approach should be tested on a bigger and differentiated
population, comprehending pathological subjects. Yi et al., in [83], proposed an automatic
sleep-staging algorithm that exploits bed-sensor recordings consisting of four hydraulic
bed transducers under the mattress. Their method aimed to classify sleep in awake, REM
and NREM stages by computing 74 features and classifying them usingk-nearest neighbour
(k-NN) and support vector machine (SVM) classifiers. Features related to temporal and
frequency domains of heartbeat and respiration were considered (ballistocardiography
signal analysis). The SVM classifier provided the best performances (accuracy 85.3%) and
was also used in a hierarchical fashion (binary asleep–wake classification plus binary REM
or NREM classification). In contrast, the other classifiers considered in this study showed
inferior and similar performance when compared to the PSG manual score.

Regarding instrumentation developments, Shustak et al., in [82], proposed a wearable
setup for sleep staging composed of temporary tattooed dry electrodes: two submental
EMG, and two EOG and four forehead EEG electrodes. Data amplification and transfer
to a laptop exploited a compact wireless recording system (a customized printed circuit
board, a Bluetooth low-energy chip, and a battery). The electrode array employed is
shown in Figure 4a. Signals were classically band-pass filtered, and a notch filter was also
applied. The authors tested their system in three ways: firstly, they validated effectiveness
of EOG, EMG, and EEG recordings using typical facial movements (e.g., smiling, blinking
swallowing); secondly, they compared their EEG recordings to the gold-standard systems
and, lastly, they assessed the feasibility in home environments. The tattooed electrodes
provided signals visually similar to the ones from an EEG system with 10–20 international
standard. It was possible to observe sleep spindles and k-complexes, and the recordings
were easily interpretable for sleep technicians. Stable recordings were achieved both in a
hospital environment and in home settings, where subjects reported good reviews and no
impairments in sleep.

Lastly, Ko et al. in [84], provided a method for sleep staging and abnormal REM
recognition using cardiac and acceleration signals provided by a smartwatch, see Figure 4c.
The authors applied a hierarchical classification through machine-learning techniques,
classifying firstly sleep/awake conditions with the Cole–Kripke algorithm, then deep and
light sleep based on the G-value and, lastly, identifying REM through k-means clustering.
They also defined identification criteria of abnormal REM stages, to be sensitive to REM
parasomnias such as EDS typical in PD and MSA. They verified sleep-staging results in a
clinical trial, comparing sleep stages and abnormal REM percentages in healthy-control
versus PD patients treated with therapy for REM sleep behavior disorder (RBD) versus
untreated PD patients. Although the classification accuracies were not very high, the results
showed statistically significant differences between healthy-control and PD patients in the
percentage of deep sleep. In addition, abnormal REM was found to be significantly different
between PD patients with and without RBD therapy (in particular, using clonazepam).
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Figure 4. Examples of sensors employed for automatic sleep staging. (a) Electrodes array system,
adapted from electromyography, electrooculography and electroencephalography, adapted from [82].
(b) Smartwatch for cardiac and inertial evaluation, adapted from [84].

3.2. At-Home Sleep Monitoring

The elderly population presents multiple needs simultaneously, since they are usually
affected by several diseases with different symptoms. To cope with their conditions,
more and more emphasis is being placed on wide-ranging monitoring over time within
the home setting. In this way, various parameters can be monitored in a customized
manner responding to multiple objectives: to verify health status; to assess the risks for
the subject; to make preventive interventions; to diagnose diseases and observe their
possible progression; ti check compliance with treatment and, finally, verify the effects
of treatments. Such multi-approach monitoring is even more suitable in the presence of
a diagnosed ND; in fact, significant efforts are focused on this line of research. Many of
these studies include sleep monitoring in their set-up, given its importance for quality-
of-life and symptom monitoring. Usually, these systems rely on a network of sensors,
wearable and/or non-wearable, which transmit data to cloud services or platforms. In this
way, subjects, caregiver, and clinicians can access the data and observe long-term results.
Sometimes, these platforms provide custom-made analysis algorithms or they provide
a summary of the outputs of the commercial/custom sensors employed. The literature
search produced 11 articles in this framework; their summary description is presented
in Table 4, where emphasis is placed on the advancement of the sleep-related study and
instrumentation adopted.

Regarding cognitive impairment, a smart-home environment for continuous moni-
toring of elders with dementia is presented by Lazarou et al. in [87]. The article presents
the architecture developed in the framework of the Dem@Care FP71 project [88,89]. In
the Dem@Care project, the monitoring of sleep, physical activity and ADL were the main
goals. In their setup, also used in [90], a commercial under-mattress sensor was employed
that was able to determine sleep duration and stages. The proposed solution also involved
the integration of the automatic evaluation of daily activity and anomalies by a wide
range of sensors, with the assessment and final opinion of clinical experts to target the
treatment. In Ref. [87], the authors wanted to verify that their system and the adapted
clinical interventions could have positive effects on the physical and cognitive functions of
participants. Results concerning sleep included reports of four use cases where, in general,
a reduced number of sleep interruptions and increased deep sleep and REM phases were
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found. Detailed data of sleep patterns were presented for the four subjects (use cases).
In Ref. [90], the long-terms effects of the use of the system were evaluated on a bigger
subject sample (twelve mildly cognitive-impaired subjects and six subjects with AD): the
results confirmed the previous observations: reporting better sleep quality. The effects
of this system installation, along with a personalized non-pharmaceutical intervention
suggested by the system, were compared with a control group that underwent traditional
interventions and with a second control group that did not receive neither personalized
nor traditional interventions. Thomas et al., in [91], proposed an at-home smart moni-
toring system able to assess treatment efficacy for AD. Part of the platform is shown in
Figure 5. They considered sleep monitoring using a smartwatch, evaluating TST and
compliance to wearing the watch. Specifically, they found that the watch was worn more
during the day than at night (compliance 60%), and that subjects often forgot to put the
watch back on their wrist when they put it away for some reason. This last result may
suggest that wearable solutions, such wrist bands, may not be optimal for continuous
sleep monitoring in elders, especially with any kind of memory impairment such as in
mild cognitive impairment (MCI) or dementia. Kikhia et al., in [92], focused on nursing
homes and proposed the DemaWare@NH monitoring framework system. The aim was
to assess behavioral and psychological symptoms of dementia. Concerning sleep, they
employed a smart clock connected with a smartphone able to detect respiration signals
and movements. The system provided sleep staging in terms of awake, light-sleep and
deep-sleep periods, and a 1–100 sleep score. The clinical staff accepted the system, but the
smart-clock recordings were made difficult by patients who frequently interacted with the
clock-phone system, moving it during the day or pulling cables. This forced the clinical
stuff to set up the sensor only during the night. However, the clinical stuff considered
the data provided informative on the status of the subjects. Rose et al., in [93], dealt with
symptom assessment in AD. Specifically, they analyzed the correlation between nighttime
agitation, sleep disturbances and urinary incontinence outside of the clinical setting. Even
in this case, the authors designed a multiple-sensor network. To perform sleep monitoring,
they used an under-mattress sensor, a microphone, and TEMPO nodes on wrists, i.e., a
wireless inertial sensor net. They were able to detect the aforementioned symptoms and to
find a correlation between them.

Table 4. Selected articles that present a system dedicated to neurodegenerative diseases in a smart-
home monitoring framework, which includes sleep monitoring.

Article Stage Instrumentation Subjects Results

Dem@Care FP71 project
[87,90]

Platform tested on
patients

(NW 1) Commercial
under-mattress sensor

providing sleep duration
and stages

4 in [87]; 22 MCI + 4AD in
[90];

Adaptation of treatment
based on clinicians’
observation of the
platform output resulted
in the improvement of the
sleep quality, also
comparing the results with
subjects who received a
standard intervention.

Thomas et al. [91] System feasibility
(W) Smartwatch and

automatic measures. See
Figure 5.

30 AD + 30 spouses

Evaluation of feasibility,
compliance in wearing
watch, and total
sleep-time extraction.

Kikhia et al. [92] System feasibility and
preliminary results

(NW) Smart clock with a
smartphone (movement

and respiration detection)
able to provide sleep

staging (awake, light sleep
and deep sleep) and a

sleep score.

4 subjects with Dementia

Good acceptability of the
system by clinical staff,
who were able to assess
patients based on the
output of the system.
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Table 4. Cont.

Article Stage Instrumentation Subjects Results

Rose et al. in [93] Platform tested on
patients

(NW) Matress sensor,
TEMPO nodes on wrists
and a microphone, from

which data are transmitted
to an online platform

where automatic event
detection is performed
and available for users’

consultation.

12 AD subjects

Monitoring and
correlation of symptoms,
such as nighttime
agitation and incontinence
in AD, were performed.
The correlation inference
process showed a pattern
for the time occurrence of
symptoms.

Hayes et al. [94] Platform tested on
patients

(NW) Passive infrared
sensors with custom
automatic algorithm

extracting sleep features
(ORCATECH platform)

45 seniors, including 16
MCI (amnestic, aMCI, and

non-amnestic MCI,
naMCI) over 6 months

The comparisons of
self-reported and platform
measures in the three
groups (healthy seniors,
aMCI, naMCI) showed
that movement in bed
during the night, wake
after sleep onset, and
times up during the night
were significantly
different.

Au-Yeung et al. [95] Case study with existing
platforms

(NW) Aging & Technology
(ORCATECH) platform +

Emerald device

2AD, 1 frontotemporal
dementia, and a major

neurocognitive disorder
affected subjects.

Sleep-score comparison in
the presence/absence of
drug administration.
Night-time agitation and
PLM assessment.

Rawtaer et al. [96] Feasibility study

(NW) Bed-occupancy
sensor based on fiberoptic

technology, providing
sleep duration and quality

metrics (sleep duration,
number of sleep
interruptions)

28 MCI and 21 healthy
controls (>65 years)

subjects (HC)

Comparison of sleep
duration and
interruptions between
MCI and HC subjects.

Abbate et al. [97] Feasibility study (W+NW) Bed sensor +
EEG HB . -

General discussion on the
feasibility of sleep studies
based on Enobio EEG HB
and inference of risk of
fall.

Branco et al. [98] Feasibility study
(W) Inertial sensor

included in the Datapark
platform

22 PD subjects in
rehabilitation center, for

2 months

Report of changes in sleep
position and wakeups
were provided to
clinicians and patients
along with other measures
of general activity. Good
acceptability of the
system.

Silva de Lima [99] Study presentation and
beginning of recruiting (W) Smartwatch + app To be: 1000 PD subjects

The system aims to
provide sleep-movement
analyses.

1 W: wearable; NW: non-wearable; MCI: mild cognitive impairment, AD: Alzheimer disease; EEG: Electroen-
cephalography; HB: Headband; HC: healthy controls; PD: Parkinson disease; HB: headband.

Regarding continuous monitoring of AD, Oregon Center for Aging and Technology
(ORCATECH) at the Oregon Health and Science University have been developing a home
monitoring system since 2004. Their platform was meant to assess disease progression and
intervention efficacy, relying on passive IR motion sensors and wireless magnetic-contact
sensors. The project design and application are described in detail in [19]. Between the
various activity recognition and evaluation, the findings regarding sleep by Heyes, in [94],
are within the scope of this review. In this last study, the authors used a previously validated
algorithm to automatically assess sleep, extracting sleep duration and permanence in bed
features (e.g., WASO; TST; settling time: time from getting into bed until the start of the
first 20 min period of no movement; times up at night: when the participant actually
got out of bed; and total movement in bed at night). Authors also collected subjective
sleep assessments and compared elderly volunteers with amnestic MCI and with non-
amnestic MCI subjects. Passive sensing for dementia monitoring were also employed by
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Au-Yeung in [95]. Their study evaluated only four subjects, two with the ORCATECH
platform and two with the Emerald platform (Emerald Innovations Inc., Cambridge, MA,
USA), which provides movement, location, and activity info from radio-wave sensors.
They compared sleep scores, as provided by the two systems, in different pharmacological
interventions. They were able to detect periodic leg movements, associated with drug side
effects, providing a tool for modifying interventions and treatments.

Figure 5. Example of an at-home smart platform for broad-spectrum assessment, including sleep. The
Figure is adapted from [91], where a platform for the assessment of treatment efficacy in Alzheimer’s
disease is presented.

The works of Rawtaer et al. in Ref. [96] and of Abbate et al. in [97] were focused on
the field of prevention and early detection. In Ref. [96], the authors evaluated the duration
and quality of sleep with a sensor able to detect bed occupancy in terms of sleep duration
and interruptions, both on healthy controls and subjects with MCI. The monitoring system
reported a worse sleep quality in MCI subjects, in agreement with clinical questionnaires
and almost all participants reported good acceptability (41 out of 49). In Ref. [97], the
authors proposed a platform exploiting passive and physiological sensing. The study does
not report any results on a specific group of subjects, but it claims the feasibility of sleep
studies based on Enobio EEG HB (Starlab®, Neuroelectrics, Barcelona, Spain). From sleep
data, they also intended to infer the risk of fall. Part of the presented platform architecture
is shown in Figure 5a. Regarding Parkinson disease, Branco et al., in [98], presented a data
platform (DataPark) able to collect continuous data from an accelerometer. The platform
includes quantification algorithms of sleep and physical activity. They obtained preliminary
results in a group of PD patients living in a rehabilitation clinic, observing sleep-position
changes and wake-ups. In addition, authors reported that patient and personnel feedback
were positive, especially regarding physical activity and sleep monitoring. Finally, Silva
de Lima, in [99], presented their project and platform, feasibility study and recruiting
procedure. Their system relied on a smartwatch connected to a smartphone to detect and
analyze sleep movements.

3.3. Sleep Quality and Movement Analysis

In the literature, studies focused on sleep-quality evaluation and movements in sleep
were found mainly addressed to PD, Friedreich ataxia and AD. The selected articles in
this scope are shown in Table 5. Regarding PD, research focused on analyzing abnormal
nocturnal movements during sleep. Those disturbances commonly affect PD patients
because of disease-related symptoms or sleep disorders and are clinically assessed by PSG
or video-PSG. Actigraphy is also commonly used for this purpose and is FDA-approved,
while accelerometers and inertial sensors in various configurations have been gaining
ground in this field in recent years [24,100].
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Table 5. Selected articles that present a system dedicated to neurodegenerative diseases for sleep-
quality and nocturnal-movements assessment.

Article Subjects Instrumentation Methods Results

Boroojerdi et al.
in [101] 21 PD subjects (W 1) NIMBLE patch contains an

accelerometer and an EMG

Tremor, postural instability, and
sleep-quality-measures
computation with different patch
locations. Comparison with
standard clinical scales. Feasibility
evaluation.

No correlation between sleep
measures and sleep diaries.
General good usability and
acceptability of the system.

Klingelhoefer in [102]
30 PD subjects with

EDS and 33 PD
subjects without EDS

(W) PKG (Parkinson’s
Kineti-Graph)

Bradykinesia and dyskinesia
scores to determine disturbed
nights. Comparison of the two
groups by PKG and sleep-diary
data (immobility, sleep duration,
sleep interruptions).

In the PD-EDS group, correlation
between subjective sleep reports
and PKG parameters for quantity
and quality of sleep. No
correlation in the other group.

Xue in [103] 29 PD subjects, 17 with
IBM (W) multisite inertial sensors

Sleep-quality measure with
traditional measures (total sleep
time and sleep efficiency) and
inertial sensors (acceleration,
angular velocity, wakeups,
turning in bad, limbs movements).
Comparison between the two
groups.

Negative correlation between
turning-over events and disease
duration. Positive correlation
between TST and sleep-efficiency
parameters and the number of
turns in bed. Significant
correlation between the number of
turns and TST.

Bhidayasiri et al.
in [104]

6 PD subjects and 6
spouses (W) Inertial sensors

Night-time movement analysis,
hypokinesia, rolling over
description (degrees, duration,
velocity, and acceleration) and
wakeups

Impairment in turning in PD
subjects (less frequent, slower,
smaller).

Mirelman et al.
in [105]

305 PD + 205 HC
subjects (W) Accelerometer

Nocturnal symptom assessment
through lying, turning, and
upright time.

Advanced PD subjects showed
more upright periods, and a
reduction in the number and
velocity of their turns. Correlation
between the reduction in
nocturnal movements and
increased PD motor severity,
worse dysautonomia and
cognition, and dopaminergic
medication.

Gavriel et al.
in [106,107] 9 F.Ataxia subjects (W) 1 or 4 of wireless BSN nodes

(inertial).

Extraction of biomarkers of Ataxia
and Ataxia progression from
segmentation of acceleration. They
are based on movements and
stillness intervals and were
correlated to SARA (traditional
Ataxia assessment method).

Correlation between the proposed
biomarker and SARA assessment.

Wei et al. in [108]

10 healthy young
subjects, 10 healthy

elders, 8 subjects
affected by Dementia

(W) Smartwatch (accelerometer) +
actigraph and temperature

sensors. See Figure 6.

Confront sleep diaries and
accelerometer data. Sleep onset,
sleep offset, and sleep duration
and nighttime wakeups were
calculated. Interday stability and
intraday variability were
calculated from temperature.

More movement during sleep,
measured by actigraphy, in older
adults than in the young, with an
increasing trend in those with
dementia. In addition, less
temperature variation between
night and day was measured in
the elderly.

1 W: wearable, NW: non-wearable; EMG: electromyogram; EDS: excessive daytime sleepiness; IBM: Impaired
Bed Mobility; TST: Total Sleep Time; HC: Healthy Controls; BSN: Body Sensors Network; SARA: Scale for the
Assessment and Rating of Ataxia; SAS: sleep apnea syndrome; iRBD: idiophatic behavior disorder.

Boroojerdi et al., in [101], and Klingelhoefer, in [102], focus on sleep-quality evaluation
in PD, assessing movements during the night. In particular, Boroojerdi et al., in [101], stud-
ied PD motor symptoms with an EMG patch and an accelerometer, evaluating sleep quality
in terms of time asleep and postural changes. The authors could not find a correlation
between sleep-quality measures and the sleep-diary reports of the subjects. In contrast,
Klingelhoefer et al., in [102], studied the effects of disturbed nights, such as daytime sleepi-
ness, through scores for BK and dyskinesia (DK) during sleep computed from Parkinson’s
KinetiGraphTM (Global Kinectic Pty Ltd, Melbourne Victoria, Australia). The authors
were able to correlate their algorithms for the definition of the quantity and quality of
sleep, derived from immobility-period identification, to self-assessment reports, in the EDS
affected group only. Nocturnal hypokinesia in PD was compared in [103] and [104]. Xue
et al., in [103], compared standard clinical scores, such as Unified Parkinson’s Disease Rat-
ing Scale (UPDRS), Hoehn andYahr (HY), Pittsburg Sleep Quality Index (PSQI), Epworth
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Sleepiness Scale (ESS), Parkinson’s Disease Sleep Scale (PSS), with sleep-quality parameters
extracted from inertial sensor analysis. They mainly considered TST, sleep efficiency and
sleep turnings. In this way, they could find that sleep quality is influenced by turnings
in bed and correlated to UPDRS or scores. Bhidayasiri et al., in [104], detected nocturnal
movements with an inertial sensor as well. Specifically, the authors measured turning
frequency and kinematic turnings parameters (e.g., degrees, velocities, accelerations). In
addition, they compared turns in bed in PD patients and their spouses, finding significant
impairment in PD subjects turnings (fewer, smaller, and slower turnings). The impact of PD
on turning in bed was the main focus of [105] by Mirelman et al. as well. Specifically, the
authors analyzed the influence of PD on sleep, obtaining information on sleep interruptions,
turnings and laying from a single accelerometer, comparing data on 305 PD subjects and
205 healthy controls. In advanced PD, fewer turns, slower turns, and greater upright time
were found, as expected. Moreover, newly diagnosed subjects were similar to controls
in the number of turns, but differed in the speed and amplitude of turning, suggesting
that this type of measurement can be used as a descriptive of disease progression and as a
potential diagnostic tool.

Sleep quality and motion description were also considered relevant topics in Friedreich
Ataxia by Gavriel et al. in ref. [106] and ref. [107], where a kinematic sensor network was
used to assess disease progression and drug effect in an objective manner. Specific kinematic
biomarkers were extracted from movement segmentation and compared with Scale for the
Assessment and Rating of Ataxia (SARA) scores (standard assessing method). Finally, sleep
quality was also explored in the field of dementia, where Wei et al., in [108], compared sleep-
quality measures and outcomes in the presence of a dementia diagnosis and in subjects
of different ages. They employed a commercial wristband together with a custom one
equipped with actigraphy and temperature sensors, as shown in Figure 6a. The authors
found significantly lower sleep and wake temperature difference in older adults with
dementia. Furthermore, movements during sleep increased with age, and even more in the
presence of dementia. Lastly, a group of innovative technologies related to RBD detection
and evaluation were selected. In fact, RBD traditional assessment mainly relies on the
identification of movements during the REM stage. Therefore, it requires the simultaneous
identification of the REM stage and the analysis of EMG recordings, which constitutes one
of the most complex procedures. Given its discovered importance in synucleinopathies,
interest grew around prodromal RBD, also considering the difficulty in distinguishing it
from mimics, i.e., other motor manifestations or parasomnias during sleep. An attempt at
simplification was provided by Cesari and Waser in [109,110], respectively, which exploited
3D video analysis to evaluate limbs movements. They used custom algorithms to identify
limb movements. The video analysis was based on the motion signal, corresponding to
pixel-wise variation in the 3D video frames over time. Specifically, the authors grouped
the automatically identified movements into three regions of interest (upper body, lower
body, and full body) based on their duration, estimated movement features for each group
and, finally, evaluated their accuracy. In addition, they correlated the estimated features,
which could better discriminate isolated RBD- [111] from sleep-disordered breathing (SDB)-
affected patients for each group regarding REM sleep without atonia episodes. Finally,
Filardi et al., in [112], exploited the analysis of rest–wake-cycle analysis obtained from
actigraphy to identify subjects with RBD and to compare their features with those of
subjects presenting with symptoms that mimic RBD. A qualitative summary of these works
is shown in Table 6.
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Figure 6. Custom-built wristband for actigraphy and temperature measures, employed for sleep
quality assessment. The figure is adapted from [108].

Table 6. Selected articles that present a system dedicated to neurodegenerative diseases for nocturnal
movements related to RBD.

Article Subjects Instrumentation Methods Results

Waser et al. in [110]

122 (40 iRBD, 18
prodromal RBD, 64
participants with

mimic symptoms).

(NW1) 3D cameras

Custom algorithm for lower limb
movement identification in REM.
Feature extraction (movements rate,
duration, extent, and intensity) and
comparison with
video-polysomnographic findings.

Significant increase in features
analyzed among subjects with iRBD
and prodromal RBD and mimic
groups. In addition, leg movements
with a duration <2 s discriminated
iRBD with the highest accuracy
(90.4%) from other motor activity
during sleep.

Cesari et al. in [109] 20 RBD, 24 SDB
subjects (NW) 3D cameras

Custom algorithm for lower and
upper limb movement identification
in REM with a max. duration of 5s.
Exclusion of breathing movements.
Feature extraction (3D rate: the
number of movements in REM sleep
per hour of REM sleep, and 3D ratio:
the total movement-duration time in
seconds in REM sleep divided by the
total REM-sleep time in seconds) and
patient classification were performed
(receiver operating characteristic
curve to distinguish iRBD , positive
class from SDB, negative class).

RBD vs. SDB classification provided
an accuracy of 0.91 and F1-score of
0.90

Filardi et al. [112]

19 with iRBD, 19 RLS
and 20 with untreated

SAS and 16 healthy
controls

(W) Micro Motionlogger®

Actigraphy Watch
(Ambulatory Monitoring, Inc.;

NY) + light sensor.

Comparison of video-PSG and
RBD-screening-questionnaires
findings with the analysis of
rest–activity cycles as derived from
actigraphy. Features of rest–activity
rhythm such as bedtime, wake-up
time, midpoint of sleep, estimated
wake after sleep onset (eWASO),
estimated sleep efficiency (eSE) and
activity bouts were extracted.

Lower sleep efficiency, augmented
eWASO and increased frequency of
prolonged activity bouts for subjects
with iRBD compared with those
with RLS and controls; no difference
compared with SAS patients. In
addition, features computed on 24h
recording allowed to distinguish
iRBD subjects better than screening
questionnaires.

1 NW: non-wearable; W: wearable; EMG: electromyogram; REM: Rapid Eye movement; SDB: sleep disordered
breathing; iRBD: idiophatic behavior disorder.
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4. Discussion and Conclusions

As discussed in the introduction section, sleep has an important role in guaranteeing a
good quality of life, influencing cognitive and physical performances in healthy people and
more extensively in the elderly, frail people or subjects with neurodegenerative disorders.
Unobtrusive technologies for sleep monitoring are becoming the focus of many companies
that develops health and well-being monitoring applications. The use of unobtrusive
devices for sleep monitoring would also be of great value in the medical field, especially
if applied to subjects affected by NDs, enabling more convenient and even continuous
assessment of sleep-related disorders. However, analysis of the articles selected by this
review showed that, in the latter area, the multiple proposed solutions still need further
validation before application in clinical practice and in patients’ daily lives. In fact, many
different sensors were used in the reviewed works, showing the feasibility of different sleep
monitoring tools, but, it was infrequently considered how these systems could fit into the
complex consolidated clinical practice related to NDs.

First, the smart-home monitoring approach, even if interesting, requires the integration
of sensors, data and interactions from many stakeholders: the house owner (who is also
probably the end user), the company providing the system and the clinical facility that
relies on the system and provides the medical service through it. At the moment, there
are few healthcare facilities that actually provide these types of telemedicine services.
Moreover, the literature search highlighted many smart-home monitoring solutions aimed
at ND that included sleep monitoring, but most of them involved feasibility studies or only
preliminary results about sleep. Ref. [90] and ref. [94] constitute exceptions, providing
results on a moderate number of subjects with cognitive impairment and AD. However,
the setup employed by these solutions, consisting of a network of several sensors, presents
some drawbacks. For example, the large amount of data collected from all the sensors
in continuous monitoring are very difficult (and expensive) to manage and analyze to
obtain clinically meaningful results. In addition, custom algorithms should consider many
use cases to be robust and subject-oriented, but structured guidelines for continuous
home-monitoring applications are lacking in the literature. Moreover, the overall cost
could be excessively expensive even in the validation phase of the solution, making these
applications apparently suffer from the bottleneck effect typical of many telemedicine
solutions [113,114].

Secondly, when there are multiple needs, as in multi-disease patients, it would not be
feasible to employ a single device to assess each symptom. Therefore, patients and health-
care institutions need to rely on few trusted tools. From this perspective, actigraphy and
inertial sensors are the main solutions for the movement analysis of daytime and nighttime
symptoms, in addition or complementary to PSG. The wide applications of these types
of sensors (e.g., gait analysis, limb movements, bradykinesia, tremor) make them suitable
for integration in patients’ daily life and hospitals. Indeed, they proved to be the most
widespread and validated solutions. Actigraphy or “equivalent FDA approved devices that
uses an accelerometer to measure limb activity associated with movement during sleep for
physiologic applications” have already landed in the clinical sleep-monitoring field [115].
However, their use is always contingent on individual circumstances, such as the presence
of ND. This is confirmed by the fact that the use of inertial sensors for sleep monitoring
in ND is dominant between the reviewed articles, as shown in Figure 2, especially for
sleep-quality assessment and movement analysis in a wearable configuration. The inertial
sensors are mainly used to determine the permanence in bed, the number of sleep inter-
ruptions and the kinematic properties of the movements, such as the turning speed. This
makes them good substitutes for sleep diaries, due to their ability to collect quantitative
and objective information about sleep. In [102–105], inertial wearable sensors showed the
ability of characterizing PD patients with respect to healthy subjects and disease progres-
sion; while in refs. [87,90], they were successfully used for AD treatment optimization and
in refs. [106,107] for Ataxia characterization through the extraction of biomarkers correlated
to standard scores. The feasibility and the importance of sleep evaluations in patients with
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ND is, therefore, undoubtable, but a structured protocol of assessment that exploits these
sensors has still to be established. For instance, hte optimized number and positioning
of inertial sensors in the different disciplines is still to be defined. Fewer sensors would
provide a cheaper and more convenient solution, but may not provide sufficient sensitivity
to events of interest (e.g., the accelerometer on the arm may ignore foot/limb movements),
not to mention that the events of interest depend on the analysis to be performed, which
is not always completely defined a priori. Bed sensors are known to be able to provide
information on bed occupancy and nighttime movements [116], but no articles presenting
their use in ND other than AD were found in the literature search.

A separate discussion should be conducted on movement detection during REM
phase to assess REM sleep without atonia for the diagnosis of RBD. In this literature
search, two main approaches were found in this direction: 3D-video analysis [109,110] and
actigraphy [112]. Both of them showed good performance and are cost-effective solutions.
However, they need prior sleep-stage scoring (such as REM-stage recognition for 3D video
analysis) or manual event tagging (such as day–night stage recognition for actigraphy). The
potential of this type of screening is huge due to the possibility of observing other types of
movements of clinical interest, such as thorax/abdomen movements during breathing, or
turnings in bed. Therefore, these technologies are a promising line of research that should
be further explored, while also considering mixed approaches. Lastly, the selected articles
about automatic sleep staging showed interesting results using several types of sensors.
However, the samples tested are not sufficient to evaluate a trend in this category. For
example, in refs. [81–83], only healthy subjects were enrolled, with sample sizes ranging
from 5 to 12 subjects. In contrast, ref. [84] included PD subjects but did not provide an
accuracy comparison with PSG results.

To conclude, the literature research conducted in this review seems to demonstrate
the feasibility of many different types of unobtrusive methods and technologies for sleep
monitoring in ND, but further exploration needs to be performed to better establish the
possibilities and limitations of these solutions in this specific scenario. Furthermore, a
structured revision of the possible intersection with the actual clinical practice should be
considered in order to select and adapt the possible solutions capable to cover, for each
neurodegenerative disorder, the widest possible number of their clinical needs.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
ADL activity of daily living
ALS amyotrophic lateral sclerosis
BK bradykinesia
CAP cyclic alternating pattern
DK dyskinesia
CNN convolutional neural network
CNS central nervous system
DL deep learning
DLB dementia with Lewy body
ECG electrocardiography
EDS excessive daytime sleepiness
EEG electroencephalography
EMG electromyography
EOG electrooculography
ESS Epworth Sleepiness Scale
FDA American Food and Drug Administration
GPS global positioning system
HY Hoehn andYahr
IoT Internet of Things
k-NN k-nearest neighbour
LSTM long short-term memory
MCI mild cognitive impairment
MSA multiple system atrophy
ND neurodegenerative diseases
NREM non-REM
ORCATECH Oregon Center for Aging and Technology
OSA obstructive sleep apnea
PD Parkinson’s disease
PLMS periodic leg movements in sleep
PSG polysomnography
PSQI Pittsburg Sleep Quality Index
PSS Parkinson’s Disease Sleep Scale
RBD REM sleep behavior disorder
REM rapid eye movements
RFID radio frequency identification
RLS restless legs syndrome
SARA Scale for the Assessment and Rating of Ataxia
SD sleep disorders incidence
SDB sleep-disordered breathing
SVM support vector machine
TST total sleep time
UPDRS Unified Parkinson’s Disease Rating Scale
WASO wake after sleep onset
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