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MULTI-LEVEL FUSION FOR BURST SUPER-RESOLUTION
WITH DEEP PERMUTATION-INVARIANT CONDITIONING

Martina Cilia, Diego Valsesia, Giulia Fracastoro, Enrico Magli

Politecnico di Torino
Department of Electronics and Telecommunications

Turin, Italy

ABSTRACT

Developing deep learning techniques for super-resolving bursts of
images acquired by mobile cameras is a topic that has recently
gained significant interest. This topic fits the general problem of
learning-based multi-image super-resolution (SR), which, contrary
to its sibling single-image SR, has so far received little attention
despite its potential. In this work, we introduce a neural network
architecture for burst SR, called MLB-FuseNet (Multi-Level Burst
Fusion Network), that is capable of extracting features in a manner
that is invariant to permutations in the burst and to progressively
condition features extracted from a reference image. Permutation
invariance is desirable as it is known that the order of images in
a burst does not matter in this problem, but its study has so far
been neglected. Moreover, we also introduce a module exploiting
a polyphase decomposition to improve feature extraction from mo-
saiced raw images. Results show an improvement over the state of
the art on the BurstSR dataset – a recent and popular benchmark for
this problem.

Index Terms— burst super-resolution, convolutional neural net-
works, multi-level fusion, self-attention, demosaicing

1. INTRODUCTION

Super-resolution (SR) is a widely studied image processing prob-
lem, that aims at reconstructing a high resolution (HR) image from
low resolution (LR) ones. Even if the problem is ill-posed, the re-
search community has achieved impressive results using deep con-
volutional networks [1][2][3] [4]. However, a single image does not
contain enough information to estimate high frequency details, and
it has been proved that it is beneficial to combine multiple LR obser-
vations, conveying complementary information thanks to sub-pixel
shifts [5], employing Multi-Image Super Resolution (MISR) tech-
niques. Several model-based approaches [6, 7] have addressed the
problem in the past, seeking to carefully model the disparities among
the multiple images and define priors for the HR image.

Today, deep-learning methods have revolutionized the field of
image super-resolution [8], but deep learning research on MISR is
still in its infancy. Existing works have been mostly focused on re-
mote sensing problems [9, 10] and only recently interest in MISR
from burst captures of mobile cameras has arisen, also owing to the
availabity of a new carefully curated dataset [11]. Indeed, mobile
cameras are significantly limited in the capabilities of their optics
and sensors, often leading to a lack of sharpness on the captured
images. Computational photography solutions processing a burst of
images to enhance the spatial resolution are therefore highly desir-
able. A few learning-based techniques have been proposed for burst

SR. Deep Burst Super-Resolution [11] is the first work introducing
the MISR setting in the context of computational photography with
deep learning. In this work, the authors also introduce a new dataset,
called BurstSR, that contains for each set of LR smartphone burst
captures a corresponding HR photo captured using a DSLR camera.
A few works have recently improved over the approach presented
in [11]. In [12] the authors introduce a registration technique in the
feature space and a long-range concatenation network to improve
the reconstruction. Lecouat et al. [13] present an architecture de-
signed from the unrolling of the iterations of an optimization prob-
lem for reconstruction. Finally, Bhat et al. [14] reparametrize the
classic maximum-a-posteriori reconstruction formulation to model
image formation in a latent space.

Most of the ideas in state-of-the-art works on burst SR originate
from video applications. Despite the similarities between videos and
bursts, the former typically displays a coherent temporal evolution,
making frame ordering important. However, burst captures do not
typically possess this property, as noted in earlier works on burst
captures [8], and ordering within the burst should not matter in pro-
ducing the SR image. However, this issue is currently neglected by
methods proposed for burst SR. This means that those models need
to learn this important property from the data, resulting in a sub-
optimal use of the (limited) training examples and ultimately lower
performance. In this paper, we conceive a neural network for the
burst SR problem, called MLB-FuseNet, that is, by construction,
able to estimate features that are invariant to a temporal permuta-
tion. These features are derived from T − 1 images in an T -length
burst and serve to augment the features extracted from an image that
is considered as reference for the SR process. Designing the net-
work layers to be mathematically invariant to temporal permutation
of the T −1 images is the key feature that allows to improve the net-
work performance. This is especially true for real bursts that are not
synthetically generated from one image, where the network should
efficiently use the often limited data. These permutation-invariant
features are then progressively fused with those of the reference im-
age in a slow, multi-level process. Moreover, an added benefit of
our design with respect of existing methods is that bursts of arbi-
trary length can be processed by the same model. Finally, similarly
to other state-of-the-art works, MLB-FuseNet works on raw images
and integrates demoisacing in the network functionality. However,
we improve upon existing techniques by designing a feature extrac-
tion block better suited for mosaiced data, called Mosaiced Convo-
lution Feature Extractor (MCFE). The MCFE design is based on a
polyphase decomposition to allow easier learning of suitable con-
volutional kernels, as each kernel only processes a specific Bayer
pattern instead of mixed ones as it strides. These contributions allow
MLB-FuseNet to reach state-of-the-art performance on the BurstSR
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Fig. 1. MLB-FuseNet overview.

dataset, providing comparable quality to models with significantly
more parameters in the synthetic burst setting and superior quality in
the real burst setting.

2. PROPOSED METHOD

We propose a network, called MLB-FuseNet, that takes as input a
burst of T raw LR images, registered at a precision of one LR pixel,
and generates a corresponding HR image. As illustrated in Figure
1, the proposed architecture is divided into two branches: the one
on top processes one of the T images, taken as reference frame x0,
through a single-image SR network; the one at the bottom processes
the remaining images all at once in a permutation-invariant fashion
with the goal of extracting features that are used to augment the fea-
tures of the top branch. This allows to draw features from the burst
that are referenced to x0, and particularly to extract features related
to subpixel misalignments between the reference and the rest of the
burst. At the same time, the network treats the remaining T − 1 im-
ages in a permutation-invariant way, without enforcing an arbitrary
temporal order that does not carry meaningful information. Both
branches exhibit as first block a Mosaiced Convolution Feature Ex-
tractor to improve feature extraction from the raw mosaiced data.
Then, the features estimated by the two branches are fused at multi-
ple levels of the processing chain. Finally, the Pixel Shuffle (PS) [2]
block generates the super-resolved image. A skip connection pro-
vides a basic demosaicing operation [15] and bilinear upsampling so
that the network only learns a residual correction.

2.1. Mosaiced Convolution Feature Extractor

We introduce a novel convolutional block, namely MCFE, in order
to improve feature extraction from mosaiced sensor data. The in-
put to the network is a raw burst of images at low resolution xLR ∈
R1×2H×2W , where pixels are acquired according to the Bayer pat-
tern of the camera. The idea of the MCFE is to extract high level
features without disrupting the Bayer color arrangement. In partic-
ular, when a convolutional kernel slides over the mosaiced image
with a stride equal to 1, it observes different Bayer patterns at every
stride. This is undesirable because the learned weights in the kernel
would converge to a value that is a compromise for all the different
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Fig. 2. MFCE principle. Separate convolutional kernels process the
4 phases with stride of 2 so that the pattern observed by the kernel is
consistent throughout all spatial locations.

combinations. We instead propose to use a polyphase decomposi-
tion where different kernels work with a stride of 2 with 4 different
offset arrangements. This ensures that each kernel only sees a con-
sistent pattern. For example, following the depiction in Figure 2 for
an RGGB Bayer pattern and 3×3 kernels, the first phase kernel will
always see the RGRGBGRGR pattern. To accomplish this, we apply
a 3×3 filter with stride equal to 2, and a different offset of either 0 or
1 pixels in the vertical and horizontal direction, resulting in 4 phase
branches. As shown in the central part of Fig. 2, each branch gen-
erates a set of F channels with halved spatial dimensions. Finally,
we combine the features generated by each kernel, considering the
correct spatial position in the original Bayer grid. When multiple im-
ages have to be processed, as in the permutation-invariant pipeline
working on T − 1 images, the same kernels are shared across the
time dimension. Multiple MFCE layers can be used in sequence and
in our MLB-FuseNet we use two of them.

2.2. Multi-Level Fusion block

The main part of the network is composed of two modules: the
Multi-Level-Fusion (MLF) block in the top branch, and the Equivari-
ant Multi-Level Fusion (EMLF) block in the bottom branch. These
blocks are inspired by the SwinIR network [16] in the use of win-
dowed transformer operations for spatial attention.

In the lower branch, the EMLF module extends the SwinIR Deep
Feature Extraction block to a multi-image setting. The main idea of
EMLF is to extract features that are equivariant to temporal permuta-
tion, i.e., they stay the same but permuted in ordering when the input
is permuted. These features are then used to derive a permutation-
invariant representation via averaging in temporal dimension. In or-
der to make the EMLF temporally equivariant, we use a temporally-
equivariant encoder (EENC), followed by a sequence of K Equivari-
ant Residual Swin Transformer blocks (ERSTBs) and a temporally-
equivariant decoder (EDEC). In each ERSTB, we first extract the
spatial features of each image separately using a sequence of Swin
Transformer Layers (STLs) that exploit the Spatial Multi Head At-
tention (SMHA) in its local-windowed version [16]. Then, we com-
bine the spatial features of the different images using Multi Head



Table 1. Performance comparison on synthetic data

Method #params Synthetic data
PSNR (dB) ↑ SSIM ↑

DBSR [11] 13M 39.17 0.946
DeepRep [14] 12M 41.55 0.964

EBSR [12] 26M 42.98 0.972
MLB-FuseNet (ours) 9M 42.34 0.969

Attention along the temporal dimension (TMHA) [17][18]. This op-
eration allows to mix the features of the different images along the
temporal dimension, in a mathematically equivariant way, i.e., ob-
taining the same output, albeit permuted, from a permuted input.
The EENC is defined in a similar way: a sequence of 2D convolu-
tional layers is applied to each frame separately in order to mix up
the spatial features obtained by the MFCE and combine the pixels
of the Bayer mosaic, then a TMHA combines the features of the dif-
ferent images. Similarly, the EDEC is formed by a sequence of 2D
convolutions and a TMHA.

The MLF module in the upper branch of the network is com-
posed of an Encoder (ENC), 2K Residual Swin Transformer blocks
(RSTBs) interlayed with fusion modules (FUSE) and a final Decoder
(DEC). The encoder and decoder are composed by traditional con-
volutional layers, while the RSTBs consist of a sequence of STLs.
After each RSTB block there is a fusion module that combines the
features of the reference frame x0 obtained in the upper branch with
the ones obtained in the lower branch from the other frames of the
burst. The fusion is performed by averaging the features of the
lower branch along the temporal dimension and merging, through a
1D convolution after channel concatenation. These fusion modules
allow the upper branch to produce a super resolved image guided
by the information extracted from the multiple images in the lower
branch. We use multiple stages of fusion module to slowly incorpo-
rate the features of the burst at various levels of abstraction.

After the MLF module, there is a last fusion block that merges
the final outputs of the MLF and EMLF blocks, and finally a se-
ries of 2D convolutions and pixel shuffling [2] to generate the super-
resolved image.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed super-resolution method
on both synthetically-generated data and real-world data using the
recent BurstSR dataset introduced in [11]. We first train the pro-
posed network on synthetic data. Then, we fine-tune our model on
the real-world BurstSR dataset. In both settings, the model is com-
posed of K = 3 ERSTBs, 1 convolutional layer in all the encoders
and decoders, F = 120 features in the MCFE and the MLF, 90
feature channels in the EMLF and 128 feature channels in the final
FUSE block. We compare the proposed method with DBSR [11]
as baseline and with two additional recent state-of-the-art methods,
DeepRep [14] and EBSR [12], using for both training and evaluation
a burst of size T = 14. Training on the synthetic dataset requires ap-
proximately 200 epochs on 4 Nvidia RTX A6000, while fine-tuning
on the real data is performed for 80 epochs on the same GPUs.

3.1. Synthetic data

The synthetic raw bursts used for training and testing are generated
from the Zurich RAW to RGB dataset [19], respectively from the
training and test split, using the inverse camera pipeline described in

Table 2. Performance comparison on real BurstSR

Method #params BurstSR data
PSNR (dB) ↑ SSIM ↑

DBSR [11] 13M 47.70 0.984
DeepRep [14] 12M 48.33 0.985

EBSR [12] 26M 48.23 0.985
MLB-FuseNet (ours) 9M 48.66 0.986

[20]. Each burst comprises a reference image x0 and its variations,
created applying random translation and rotations. To train our net-
work, we extract crops of dimension 48× 48 and we use an already
trained PWC-Net [21] to align the burst to the reference frame, as a
preprocessing operation. Notice that, each raw image is represented
as a 4-channel image because of the Bayer CFA pattern in this stage.
After the alignment, we flatten the color channels, to obtain a burst
of dimensions T × 96 × 96, and we crop these images by 8 pixels
per side, to remove border effects created by the pixel translation.
Thus, the final dimension of the input image is T × 80× 80. At this
point, the neural network model will take care of the demosaicing
process and target a SR factor equal to ×4. It is important to notice
that state-of-the-art techniques adopt a trainable alignment block in-
side the neural network. Instead, we use preprocessing to align the
multiple frames at a precision of a single LR pixel. We consider
this preferable for two main reasons: i) reduced computational com-
plexity of the network; ii) improved robustness to geometric pertur-
bations outside the trained range. In the training phase we use the
entire training split from the Zurich dataset. We employ Adam op-
timizer with learning rate 10−4, a batch size of 56 and an L1 loss
function ignoring the boundary pixels to prevent learning boundary
artifacts. During the testing phase, we repeat all the preprocessing
steps used in training and we further improve the performance using
an ensembling technique, i.e., we average the SR prediction with an
additional one, obtained transposing the images in the burst, as also
done by the other methods.

The results on the synthetic dataset are shown in Table 1. As
we can see, our method significantly outperforms both DBSR and
DeepRep, which have a comparable number of parameters, and it
shows competitive performance with respect to EBSR which, on the
contrary, is a significantly larger model with almost three times the
number of trainable parameters.

3.2. Real data

In this section, we analyze the performance of our model on the real
BurstSR data. This dataset contains a collection of 200 LR photo
bursts, and a corresponding HR photo for each burst. The LR im-
ages are acquired using a handheld smartphone camera, while the
HR one is captured using a DSLR camera. Given the different acqui-
sition device, the main challenge of the BurstSR dataset is the lack
of alignment between the LR photos and the HR ground truth. In
order to deal with the misalignment, we employ the same approach
as proposed in [11]. That is, the network output is registered with the
ground truth via optical flow methods before the calculation of the
pixel-wise loss function or quality metrics. Since the alignment may
not be perfect, only a valid subset of the pixels is actually used for
the calculation. This procedure is applied both during the training
phase on the loss function and in the testing phase, for all methods
considered in the experiments.

As in the synthetic framework, we register the T frames in ad-
vance and we crop the images, to remove the undesired borders.



Fig. 3. Qualitative comparison on the BurstSR test set. Top to bot-
tom: ground truth, DBSR [11], DeepRep [14], EBSR [12], MLB-
FuseNet (ours).

Table 3. Impact of MCFE: test on synthetic data
Synthetic data

PSNR (dB) ↑ SSIM ↑
MLB-FuseNet 42.34 0.969

No MCFE 39.98 0.955

However, during our experiments we observed that the results on
the real data benefit from bigger training patches. For this reason,
the input to our network during training is an image of dimension
112×112 after alignment and cropping. Instead, for testing, we uti-
lize the entire available LR image having dimension 144× 144. To
train the network we use Adam optimizer with learning rate 10−5, a
batch size of 28 and the aligned L1 loss from [11] described above.

The results on the BurstSR real dataset are shown in Table 2. We
can observe that on the real data the proposed network outperforms
all the other methods considered in the experimental evaluation. This
result validates that our permutation-invariant approach is indeed ap-
propriate for real burst captures, when the dataset itself does not ex-
hibit an explicit reference as it happens in the synthetic framework.
For a qualitative comparison, Fig. 3 shows a detail of one of the im-
ages in the BurstSR test set. We can see how our proposed method
exhibits sharper details and less artifacts in the super-resolved text
(best seen on a computer screen).

3.3. Ablation: effect of the MCFE

We study the impact of the newly conceived MCFE module, by eval-
uating the performance of the network when the mosaic convolution
is not used. We replace all the MCFE blocks with usual 2D convo-
lutions, which mix up all the 2H × 2W pixels disrupting the Bayer
pattern. Then, we re-train the network following the exact steps de-
scribed in Sec. 3.1 and we evaluate this architecture on the synthetic
test set. The results of this experiment are illustrated in Table 3.
We can observe that the network without MCFE exhibits poorer per-
formance, confirming that the MCFE plays an important role in the
proposed design.

4. CONCLUSIONS

In this paper, we introduce a new neural network, namely MLB-
FuseNet, for burst super-resolution. The network exploits the inher-
ent temporal permutation invariance of the problem, a multi-stage
fusion and a polyphase approach to process mosaiced data. Our
experiments show that the proposed solution achieves competitive
performance on the synthetic test set and it outperforms the state-of-
the-art methods on the BurstSR dataset with real burst captures. In
future works, we will test the stability of the network to perturba-
tions and we will improve the performance by building a model that
does not need a reference,.
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[8] Miika Aittala and Frédo Durand, “Burst image deblurring us-
ing permutation invariant convolutional neural networks,” in
Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 731–747.

[9] Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro,
and Enrico Magli, “Deepsum: Deep neural network for super-
resolution of unregistered multitemporal images,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 58, no. 5, pp.
3644–3656, 2019.

[10] Francesco Salvetti, Vittorio Mazzia, Aleem Khaliq, and Mar-
cello Chiaberge, “Multi-image super resolution of remotely
sensed images using residual attention deep neural networks,”
Remote Sensing, vol. 12, no. 14, 2020.

[11] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Tim-
ofte, “Deep burst super-resolution,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition (CVPR), 2021.

[12] Ziwei Luo, Lei Yu, Xuan Mo, Youwei Li, Lanpeng Jia, Hao-
qiang Fan, Jian Sun, and Shuaicheng Liu, “Ebsr: Feature en-
hanced burst super-resolution with deformable alignment,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), June 2021, pp.
471–478.

[13] Bruno Lecouat, Jean Ponce, and Julien Mairal, “Lucas-kanade
reloaded: End-to-end super-resolution from raw image bursts,”
in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021.

[14] Goutam Bhat, Martin Danelljan, Fisher Yu, Luc Van Gool, and
Radu Timofte, “Deep reparametrization of multi-frame super-
resolution and denoising,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October
2021, pp. 2460–2470.

[15] “Convolutional pytorch debayering,”
https://github.com/cheind/pytorch-debayer.

[16] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte, “Swinir: Image restoration us-
ing swin transformer,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) Workshops,
October 2021.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems (NeurIPS), 2017, vol. 30.

[18] Diego Valsesia and Enrico Magli, “Permutation invariance and
uncertainty in multitemporal image super-resolution,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp.
1–12, 2022.

[19] Andrey Ignatov, Luc Van Gool, and Radu Timofte, “Replac-
ing mobile camera isp with a single deep learning model,” in
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition Workshops (CVPRW), 2020, pp. 2275–
2285.

[20] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dil-
lon Sharlet, and Jonathan T Barron, “Unprocessing images for
learned raw denoising,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2019.

[21] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz,
“PWC-Net: CNNs for optical flow using pyramid, warping,
and cost volume,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.


