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Abstract—Exploring exoplanets has transformed our under-
standing of the universe by revealing many planetary systems
that defy our current understanding. To study their atmospheres,
spectroscopic observations are used to infer essential atmospheric
properties that are not directly measurable. Estimating atmo-
spheric parameters that best fit the observed spectrum within a
specified atmospheric model is a complex problem that is difficult
to model. In this paper, we present a multi-target probabilistic
regression approach that combines deep learning and inverse
modeling techniques within a multimodal architecture to ex-
tract atmospheric parameters from exoplanets. Our methodology
overcomes computational limitations and outperforms previous
approaches, enabling efficient analysis of exoplanetary atmo-
spheres. This research contributes to advancements in the field of
exoplanet research and offers valuable insights for future studies.

Index Terms—deep learning, exoplanets, atmospheric retrieval

I. INTRODUCTION

Exploring exoplanets has revolutionized our knowledge of
the universe, unveiling a diverse range of planetary systems
that challenge our existing notions [1]. These exoplanets span
a wide spectrum, ranging from Earth-like habitable worlds [2]
to searing hot-Jupiters [3] and everything in between. Their
existence offers profound insights into the mechanisms gov-
erning planetary formation and evolution.

To deepen our understanding and contextualize our own
solar system within the broader galactic landscape, the Eu-
ropean Space Agency (ESA) is collaborating with NASA and
JAXA to develop the Ariel Space Mission [4]. This ambitious
endeavor aims to extensively investigate the atmospheres of
hundreds of exoplanets in close proximity using a meter-class
telescope in L2. By analyzing spectra and photometric data
in the visible and infrared range, Ariel will extract chemical
compositions and study the thermal properties of exoplanetary
atmospheres. The mission’s open data policy will allow rapid
access to high-quality exoplanet spectra for scientific research.

While the Ariel mission promises groundbreaking discover-
ies, it faces a formidable hurdle in the complex modeling of
exoplanetary atmospheres. These atmospheres exhibit intricate
chemistries, cloud formations, and dynamic processes, making
their characterization a highly intricate task. The traditional
approach of forward modeling, which involves simulating
atmospheric spectra based on predefined models, is com-
putationally intensive and unsuitable for efficient fitting or

sampling techniques such as Markov Chain Monte Carlo or
Nested Sampling [5].

This paper presents our proposed solution to the Ariel
Machine Learning Data Challenge1, which involves addressing
the multi-target probabilistic regression problem of extracting
critical atmospheric parameters of exoplanets on the Ariel Big
Challenge (ABC) dataset [6]. We propose an innovative mul-
timodal architecture that leverages deep learning and inverse
modeling techniques to map observed atmospheric signatures
to the underlying planetary characteristics. In addition, we
incorporate a modeling approach where the target output is
treated as a Gaussian distribution with a full covariance matrix.
This enables us to predict and estimate the parameters µ
(mean) and Σ (covariance matrix) that define the distribution.
By employing a data-driven approach, our method aims to
overcome the limitations of conventional forward modeling
and expedite the characterization process, enabling rapid anal-
ysis of exoplanetary atmospheres.

Our contributions are as follows:
• We introduce a novel deep learning multimodal ap-

proach that addresses the multi-regression problem of
determining key atmospheric parameters of exoplanets,
outperforming previous approaches.

• We overcome the computational limitations of traditional
forward modeling techniques by leveraging data-driven
methodologies. Our approach allows for faster and more
efficient analysis of exoplanetary atmospheres.

• Our work contributes to the broader field of exoplanet
research by providing a more efficient and accurate
method for characterizing exoplanetary atmospheres.

The insights gained from our approach have practical im-
plications for future space missions, including the Ariel Space
Mission. Our methodology, which achieved the 8th position in
the highly competitive competition with over 250 participants,
provides a promising approach to accelerate the analysis
of exoplanetary atmospheres. This approach enables quicker
and more thorough characterization of numerous exoplanets,
contributing to advancements in the field.

The remainder of the paper is organized as follows. We
first examine the related works and highlight the difference
between the present work and existing approaches (Section II).

1https://www.ariel-datachallenge.space/

https://www.ariel-datachallenge.space/


We then detail the problem we have to address (Section III)
and the dataset utilized for the experiments, and we discuss
the methodology employed in our approach (Section IV). In
Section V, we present our experimental results and finally
highlight the implications and potential applications of our
findings (Section VI).

II. RELATED WORKS

The field of exoplanet studies has evolved from detect-
ing exoplanets to characterizing their atmospheres through
retrieval techniques. Retrieval is an inverse modeling approach
that compares forward models of a planet’s spectrum to
observational data, allowing for the estimation of atmospheric
parameters [7], [8]. Atmospheric retrieval is thus crucial in
helping astronomers understand and analyze individual obser-
vations acquired through spectroscopy during transit, eclipse,
and phase curves. This retrieval technique applies to both low
and high-resolution data [9]–[13], making it an indispensable
tool for astronomers in interpreting the atmospheric properties
of exoplanets.

Bayesian methods are commonly used to retrieve noisy ex-
oplanet spectra, providing posterior distributions that constrain
model parameters and determine their statistical significance,
leveraging sampling techniques such as Markov Chain Monte
Carlo (MCMC) or Nested Sampling [5]. However, traditional
Bayesian retrieval methods can be computationally expensive
and time-consuming [14]. As the volume of exoplanetary data
increases, driven by missions like the James Webb Space
Telescope (JWST) [15] and Ariel [4], alternative approaches
to computing posterior distributions are needed.

Machine learning (ML) and deep learning (DL) techniques
have been applied to many areas within exoplanetary science,
including data detrending [16], [17], debris removal [18], [19],
and planet detection and characterization [20]–[23]. Various
ML and DL approaches, such as random forests, generative
adversarial networks (GANs), convolutional neural networks
(CNNs), and Bayesian neural networks, have been employed
to improve retrieval efficiency while significantly reducing
computational time. Although these approaches show promise,
as computational time is reduced, the accuracy of the posterior
estimation decreases due to substantial approximations made
during Bayesian inference.

In contrast to previous approaches, our methodology in-
corporates a multimodal 1D-CNN that combines information
from both the spectral data and auxiliary data related to
stellar and planetary parameters. This novel approach allows
us to achieve favorable results in approximating the posterior
distribution while maintaining remarkably low computational
time.

III. PROBLEM STATEMENT

Exoplanets are discovered using various methods, but the
most commonly used techniques are radial velocity and tran-
sit [6]. Transit is an indirect method to monitor changes in the
brightness of the host star. During a transit event, the planet
passes in front of the star, causing a reduction in the amount

of light observed from Earth. By studying these transit events
at different wavelengths, astronomers can gain insights into
the atmospheric properties of the exoplanet.

The exoplanetary atmosphere affects the transit depth by ab-
sorbing stellar light wavelength-dependently. This absorption
profile is influenced by the composition (molecular species,
clouds, hazes) and characteristics (thermal structure) of the
atmosphere. Astronomers employ simplified models to analyze
the observed signal, known as a spectrum, and investigate
the underlying atmospheric processes occurring in exoplanet
atmospheres.

The study of exoplanetary atmospheres relies on spectro-
scopic observations to infer fundamental atmospheric proper-
ties that cannot be directly measured. This process is known
as the inverse problem [24], where one tries to deduce the at-
mospheric properties based on the observed effects. However,
the observed effects are often corrupted due to factors such as
noise and limited spectroscopic coverage, leading to a loss of
information, which can, in turn, result in model degeneracy.

The main objective of atmospheric retrieval is to estimate
the parameters that best explain the observed spectrum under a
given atmospheric model. This is typically approached using
a forward model, which incorporates assumptions about the
atmosphere and an optimizer. In the Bayesian framework, the
goal is to determine the posterior distribution, which represents
the conditional distribution of the model parameters given the
observed data.

In our case, the aim of the Ariel Machine Learning Data
Challenge is to predict the conditional joint distribution (or the
Bayesian posterior distribution) of 7 atmospheric properties
given the observed spectrum, namely planet radius (in Jupyter
radii), temperature (in Kelvin), and the log-abundance of five
atmospheric gases: H2O, CO2, CO, CH4, and NH3. The
probability densities of these variables (θ = θ1, θ2, ..., θn)
given the observed data (D) are collectively referred to as
the posterior distribution, P (θ|D).

A. Dataset

To develop and validate our approach, we utilize the Ariel
Big Challenge (ABC) Database [6], encompassing simulated
atmospheric spectra, ground-truth models, and Bayesian poste-
rior distributions for a total of 6,766 exoplanets. The database
is generated using the powerful Alfnoor [25] framework com-
bining the TauREx 3 [26] atmospheric modeling suite and the
ArielRad [27] instrument simulator. The dataset comprises two
types of data, namely spectral and auxiliary data. Additionally,
the target data is available in the form of tracedata.

Spectral data. Each entry in the dataset consists of an atmo-
spheric spectrum with 52 data points. Each of them contains
information about the intensity measure (transit depth), the
corresponding wavelength of light, the spectral resolution
(wavelength bin size), and the associated measurement un-
certainty. Figure 1 represents the spectrum for one of the
exoplanets available in the training set.
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Fig. 1. Spectral information available for each exoplanet. The quantity
(Rp/R∗)2 represents the ratio between the planet’s radius, and that of the
orbited star since the measured dip can be quantified in terms of a ratio of
the areas of the two entities involved.

Auxiliary data. Each example further encompasses eight ad-
ditional stellar and planetary parameters as auxiliary infor-
mation, including star distance, stellar mass, stellar radius,
stellar temperature, planet mass, orbital period, semi-major
axis, planet radius, and surface gravity. This information is
unique to each planet and is sourced from various exoplanet
datasets.

Tracedata. The target output is provided in terms of sam-
ples from the conditional joint distribution, characterized by
the aforementioned 7 atmospheric properties, referred to as
tracedata. For each planet, an average of 3,938 samples are
available (standard deviation of 654). Figure 2 shows one such
distribution as an example.

IV. METHODOLOGY

We propose adopting a deep learning solution to solve the
Ariel Machine Learning Data Challenge problem. At a high
level, we leverage both the spectral data and the auxiliary data
that has been made available with the adoption of a multimodal
architecture; we additionally model the target output as a full
covariance Gaussian distribution, thus making it possible to
predict the parameters µ and Σ that characterize it. Figure 3
summarizes the proposed approach. The rest of this section
analyzes each component in further detail.

A. Spectral data

As already argued in Subsection III-A, the spectral data
conveys significant information regarding the composition
of the atmosphere of an exoplanet. Since the atmospheric
spectrum is continuous in nature, we consider adopting a 1-
dimensional convolutional (1D-CNN) model to process the
spectrum to be able to characterize local behaviors that can
be found in the spectrum itself. The adoption of 1D-CNN
models has already been adopted in literature with promising
results [22]. We build a representation of the spectrogram as
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Fig. 2. Samples for the atmospheric parameters for one of the available
exoplanets. In blue is the ground truth distribution, in orange the distribution
predicted by the proposed approach.

a dense vector by flattening the feature maps obtained as the
output of the 1D-CNN.

B. Auxiliary data

The auxiliary data available provides information on the
planetary system, including the exoplanet under study and
the orbited star. Based on the intuition that some of the
auxiliary information may have non-linear relationships with
the target outputs, we introduce a non-linear transformation
of these inputs. In particular, we additionally obtain the
inverse of the auxiliary quantities and, from these, we extract
the polynomials up to degree 2. Starting from the original
8 features, we obtain a total of 152 transformed auxiliary
features. The extracted features are then concatenated to the
dense vector that is used to represent the spectral data. In this
way, we produce a vector that represents the entire input both
in terms of atmospheric spectrum and contextual planetary
system information.

C. Parameters estimation

The main goal of this work is to produce samples that are
drawn from an underlying, unknown data distribution. These
samples represent different atmospheric models that make dif-
ferent assumptions (e.g., in terms of atmospheric composition).
We frame the problem by modeling the underlying distribution
to produce the desired samples as a byproduct.

The target available is provided as samples from the ground
truth distribution. Since we aim to predict this distribution, we
need to make an assumption regarding the type of probability
distribution. We assume the distribution to be a multivariate
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Fig. 3. Architecture for the proposed solution. The spectral data is processed through a convolutional model (1D-CNN). The auxiliary data is augmented
and merged with the processed spectral data. A final fully-connected model (FC-NN) maps the processed input to the desired probability distribution. The
parameters for the target distribution are also produced and used when computing the loss function.

Gaussian one with full covariance: based on the intuition
that can be extracted from Figure 2, this is a simplifying
assumption. However, it allows for a simple parametrization
of the distribution. Additionally, it allows for the modeling of
interactions across dimensions thanks to the adoption of a full
covariance.

For each planet, we focus on n target variables θ1, θ2, ..., θn
(for this specific challenge – as discussed – we have n = 7,
but the same approach can be adopted for differently framed
problems). We can defined the mean vector µ ∈ Rn such that
µi = E[Ti] and the covariance matrix Σ ∈ Rn×n such that
Σij = cov(Ti, Tj) and Σii = V ar(Ti).

Since the covariance matrix is symmetric, we can build
a compressed representation using n(n+1)

2 values. When ac-
counting for µ, the overall distribution can be parametrized
with a total of n(n+3)

2 values. We refer to the target represen-
tation for the kth planet as y(k) ∈ R

n(n+3)
2 . We note that we

can freely move from the µ(k),Σ(k) representation to the y(k)

one. Similarly, we refer to the predicted parameters as either
ŷ(k) or as the corresponding µ̂(k), Σ̂(k).

D. Loss function
To compute the proximity of the predicted distribution with

the target one, we considered various possible loss functions.
We empirically observed that computing the KL divergence
leads to a difficult convergence process. In contrast, we obtain
better convergence properties by minimizing the L1 loss
function between the predicted and ground truth values. In
particular, the loss is defined as:

ℓ(y, ŷ) = |y − ŷ| (1)

This is equivalent, in terms of mean vectors and covariance
matrices, as:

ℓ(µi,Σi, µ̂i, Σ̂i) =
∑

0≤i<n

∑
i<j<n

|Σij − Σ̂ij |+∑
0≤i<n

|Σii − Σ̂ii|+
∑

0≤i<n

|µi − µ̂i| (2)

V. RESULTS

In accordance with the policies of the Ariel Machine
Learning Data Challenge, we evaluate the quality of the
obtained results using two terms: the posterior score and
the spectral score. The two metrics complement each other:
the first ensures that the predictions accurately replicate each
individual distribution for the variables involved, while the
second focuses on preserving the physical laws or, more
precisely, the interrelationships (covariance) among different
targets.

We employ the 2 Sample Kolmogorov–Smirnov test (K-S
test) to evaluate the posterior score scenario. The K-S test is
a widely used statistical test determining whether two given
samples are derived from the same continuous distribution
underlying them. The output is adjusted to range from 0 to
1000, where a score of 1000 indicates the highest similarity.

Regarding the spectral score, we compare the “median”
values in spectral space, which consists of the median value
for each wavelength bin, along with their uncertainty bounds
(interquartile ranges of each wavelength bin), against the cor-
responding values obtained from Bayesian Nested Sampling.
We quantify the differences using an inverse Huber loss. The



spectral score is calculated as a linear combination of the
differences between the bounds and the differences between
the median spectra. The maximum score is set to 1000, with
0 representing the lowest similarity.

The final score is computed as a weighted sum of the
spectral loss and posterior loss:

Final = (1− β) · Spectral + β · Posterior (3)

where β is set to 0.8. The value set for β is in accordance
with the one adopted for the Ariel Machine Learning Data
Challenge and reflects the greater importance that is generally
assigned to the posterior score w.r.t. the spectral one. The final
score ranges from a minimum of 0 to a maximum of 1000.

Table I summarizes the results achieved by the baseline
model presented in [22] and by the proposed approach on
a test set obtained as a 20% hold-out on the available data.
For completeness, we include the results obtained by the
proposed methodology when changing the loss function to
another commonly adopted one, the mean squared error (L2).

We show that the proposed approach consistently outper-
forms the baseline model in terms of overall (final) score.
This is the result of a model that performs consistently well
in terms of both posterior and spectral scores. By contrast,
the method proposed in [22] is unbalanced toward performing
significantly well in terms of spectral score with a consistent
drop in performance as far as the posterior score is concerned.

TABLE I
RESULTS ON THE ARIEL BIG CHALLENGE DATABASE IN TERMS OF

POSTERIOR, SPECTRAL, AND FINAL SCORE. BEST RESULTS ARE
HIGHLIGHTED IN BOLD.

Method Posterior Score Spectral Score Final Score
Yip et al. [22] 331.58± 60.57 880.05± 4.75 441.28± 48.97

Ours 611.77± 14.52 658.57± 9.63 621.13± 9.95
Ours w/ L2 610.054± 11.10 640.35± 12.77 616.10± 9.31

Ours w/ L1+L2 613.04± 15.96 637.07± 11.26 617.71± 15.33

A. Qualitative results

Figure 2 shows a ground truth distribution (in blue), along
with the predicted one (in orange). We observe how there
is a reasonably good fit for most variables, considering the
constraints introduced by the Gaussian simplifying assump-
tion. We can also notice how using a full covariance allows
for better modeling of variables that show some degree of
correlation.

However, we note that the proposed model particularly
struggles with predicting the planet’s radius. Indeed, the dis-
tribution of samples for that parameter is rather narrow. In
contrast, the model makes a high-variance prediction: this
produces a non-zero overlap with the target variable, but it
is still far from correct or meaningful modeling.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented a possible solution to iden-
tifying atmospheric parameters in exoplanets. The proposed

solution leverages both spectral data and auxiliary information
available on the planets to produce a meaningful estimate of
the parameters of interest. We show that our methodology
outperforms the baseline model of reference by producing
a balanced prediction regarding both posterior and spectral
scores, allowing us to reach 8th place in the Ariel Machine
Learning Challenge.

By qualitatively inspecting some of the predicted param-
eters, we observe how the model struggles to reconstruct
some of them while performing rather well on others. We
aim to improve the performance of the proposed solution by
addressing this aspect and by exploring whether consistent
patterns exist in the characteristics of the worse reconstructed
exoplanets.
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