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Abstract This article explores the importance of neuronal firing patterns in
transmitting information within the human brain. These patterns are unique
to each group of neurons and play a crucial role in understanding their diverse
behavior. The article introduces various activation functions for neurons and
develops a 4D discrete fractional-order Hopfield neural network model to show-
case the complex dynamics involved. Additionally, the neurons exhibit non-
linear behavior in their self synaptic weight functions due to external stimuli.
The article examines the dynamics of the network with and without external
stimulus, presenting bifurcation diagrams that illustrate the transition between
chaotic and stable states. The research also investigates the region of chaos
in relation to the fractional order and the non-linear synaptic function. The
largest Lyapunov exponents are used to illustrate this chaotic region. It also
demonstrates the network’s sensitivity to even the smallest changes in param-
eter values, visualizing different firing patterns. This research emphasizes how
the choice of activation functions, fractional order, and external input greatly
influence the equilibrium and behavior of the network’s state variables. By
analyzing the system’s dynamics and changes in equilibrium states over time,
the study sheds light on the diverse dynamical characteristics exhibited by the
system.
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1 Introduction

The human brain, as the core of the nervous system, is responsible for control-
ling various bodily activities by processing sensory information. To understand
the intricate information processing in the brain, researchers have developed
artificial neural network models that mimic the behavior of neurons, which
are the fundamental units of these models. These neural network models have
found significant applications in diverse fields such as image and speech recog-
nition, machine learning, medical diagnosis, stock market prediction, air pa-
trols, drone control, weather forecasting, and more [10], [4], [23]. One of the
key advantages of these models is their ability to learn from data samples
to produce output, making them cost-effective alternatives to working with
complete datasets. To comprehend the dynamics of the brain through these
models, several scientific contributions have focused on analyzing the nonlinear
characteristics and chaotic responses of these neural network models. These
models, built on the foundation of neurons as the core computing units, employ
activation functions that determine whether a neuron should fire and trans-
mit signals to subsequent layers. These architectures have been extensively
utilized in neural network designs featuring multiple hidden layers, with each
layer possessing its specific activation function. Readers interested in stability
and Hopf bifurcation in delay network models can refer to [38], [9], [14]. Li et
al. [19] investigated a complex-valued model for neural networks and its dy-
namics with delay, while Cheng et al. [13] discussed stability and bifurcation in
three-triangle network models. Those seeking an understanding of the chaotic
behavior of neural networks can refer to [6], [40]. However, classical calculus-
based models have certain limitations, such as the local nature of derivatives
and the failure to consider past events, which can impact the accuracy and
realization of these models.

Fractional calculus has emerged as a powerful tool in the twentieth century
for accurately describing real-life processes compared to traditional derivative
techniques. It involves generalizing the concept of derivative order to real or
complex numbers. While the interpretation of these mathematical concepts
was initially unclear, advancements in computing technology and theoreti-
cal knowledge have led to an increasing number of applications for fractional
derivatives. Fractional derivatives have found applications in various fields such
as physical and chemical engineering, ecology, medical research, security and
communication networks, and electrical engineering. For instance, Shida et al.
[28] applied fractional derivatives for climate prediction, Yang et al. [39] used
them in image processing, and Magin [22] explored their utility in bioengi-
neering. These applications demonstrate the capacity of fractional derivatives
to incorporate memory factors into real-life models, making them particularly
relevant for neural networks due to their association with memory. Researchers
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have actively investigated the use of fractional derivatives in neural network
models. Noteworthy contributions in this area include Xu et al. [37], who
compared classical and fractional derivatives in neural networks, and studies
analyzing the dynamical behavior of neural networks modeled with fractional
derivatives [26], [31], [18], [17], [20]. Fractional differential neural networks
have been particularly significant in system identification [5], [32], [21], while
Zhang et al. [41] explored stability analysis in delay models, and Chen et al. [12]
investigated global stability in terms of Mittag-Leffler stability. Overall, the
integration of fractional derivatives into neural network models has garnered
significant attention due to their ability to capture memory effects, leading to
improved modeling and analysis capabilities in various domains.

Over the past two decades, discrete-time fractional calculus has experi-
enced significant development and has become a focus of scientific interest for
creating new models. The theory of discrete calculus has been supported by the
works of Atici and Eloe [8], Goodrich [15], and Ostalczyk [24]. Furthermore,
the discussion on tempered discrete fractional operators by Abdeljawad [3]
and their applications in physical, biological, and chemical systems [27], [33],
[34] have contributed to advancing the field. Regarding the application of dis-
crete fractional operators in the modeling of neural network models, relevant
literature includes [30], [7], where authors discuss and explore the dynamics
of neural networks with discrete fractional operators. The work of [16] intro-
duces variable-order discrete fractional operators and investigates their impact
on network dynamics. Abbes et al. [1] analyze chaos in neural networks with
incommensurate order operators, while Wu et al. [35] examine stability with
respect to Mittag-Leffler functions. Additionally, the application of discrete
fractional neural networks in heat transfer modeling is explored [29]. Most of
the neural network models in literature are constructed with identical activa-
tion function to the network. Activation function introduces non-linearity to
the neuron’s output, allowing the network to learn and model complex rela-
tionships in the data. Considering two different activation functions in a neural
network can offer several benefits. Some of the advantages are

1. Different activation functions possess distinct non-linear properties, and
incorporating a variety of them enables the network to capture a broader
range of non-linear patterns present in the data.

2. Various activation functions exhibit different characteristics and behaviors.
Utilizing multiple activation functions allows the network to adapt and
respond differently to different types of inputs, enhancing its capability to
model diverse features and relationships within the data.

3. The choice of suitable activation functions can significantly impact the
overall performance of the network. Certain activation functions may excel
in specific scenarios or aid the network in overcoming particular challenges.
By combining different activation functions, the network has the potential
to achieve enhanced performance and accuracy.

4. The selection and arrangement of activation functions depend on the prob-
lem, network architecture, and data characteristics. Integrating different
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activation functions in various ways enables customization to suit the spe-
cific requirements of the given task.

With a growing interest in the application of non-integer order operators in
discrete time for network modeling, this article seeks to contribute to the exist-
ing literature by constructing a neural network model with discrete fractional
operator. The primary goal is to explore the dynamical nature of network
systems by incorporating different activation functions and nonlinear weight
functions. The specific contributions of this article are as follows:

– The construction of a 4D neural network model that incorporates nonlin-
ear self-synaptic weight functions and employs heterogeneous activation
functions for the neurons.

– Consideration of both periodic (sine) and non-periodic (tanh) functions as
activation functions for the neurons within the network.

– Analysis of stability and bifurcation phenomena to investigate the complex
dynamical behavior of the system, supported by numerical simulations.

– Exploration of various firing patterns exhibited by the neural network
model, including periodic and chaotic patterns. Additionally, investigation
of the equilibrium shifting behavior of the network models.

The remaining sections of the article are organized as follows: Section 2
provides the necessary mathematical prerequisites for the study, establishing
the foundational concepts required to understand the subsequent analysis. In
Section 3, the mathematical formulation of the neural network model is pre-
sented, including its model structure represented in the form of a topological
diagram. The qualitative nature of the proposed 4D model is analyzed us-
ing numerical simulations in Section 4 and Section 5. These sections examine
the behavior and characteristics of the model, shedding light on its dynamics
and properties. Section 6 focuses on the sensitivity behavior of the model, ex-
amining how small changes in parameter values impact its performance and
behavior. Section 7 presents the investigation of various patterns exhibited by
the model, specifically exploring bursting neurons and the switching of equi-
librium states.

2 Prerequisites

In this section, we provide the essential mathematical definitions and theo-
rems that are required for the analytical analysis in the article. Let Nα =
{α, α+ 1, α+ 2, · · · } such that α ∈ R.

Definition 1 [2] Consider a function φ : Nα → R. υ− th order fractional sum
is

∆−υα φ(ω) =
1

Γ (υ)

ω−υ∑
r=α

(ω − r − 1)(υ−1)φ(r), (1)

where ω ∈ Nα+υ, υ > 0.
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Definition 2 [2]For φ : Nα → R, the Caputo difference of arbitrary order υ
is

C∆υ
αφ(ω) =∆

−(η−υ)
α ∆ηφ(ω)

=
1

Γ (η − γ)

ω−(η−υ)∑
r=α

(ω − r − 1)(η−υ−1)∆ηφ(r),
(2)

where η = [υ] + 1, υ > 0, ω ∈ Nα+η−υ.

Theorem 1 [25] Consider a fractional discrete time system of order υ

C∆υ
αφ(ω) =G(ω + υ − 1, φ(ω + υ − 1)),

∆ηφ(α) =φη, δ = dυe+ 1, η = 0, 1, 2, . . . , δ − 1,
(3)

then corresponding numerical form is

φ(ω) =φ0(ω) +
1

Γ (υ)

ω−υ∑
r=α+δ−υ

(ω − r + 1)(υ−1)

G(r + υ − 1, φ(r + υ − 1)), ω ∈ Nυ+δ,

(4)

with

φ0(ω) =

δ−1∑
η=0

(ω − α)(η)

Γ (η + 1)
∆ηφ(α). (5)

Remark 1 Choosing the discrete kernel function
ω−υ∑

r=α+δ−υ
(ω − r + 1)(υ−1) as

Γ (ω − r)
Γ (υ)Γ (ω − r − υ + 1)

with assumption α = 0 and r + υ = α, the numerical

formula when υ ∈ (0, 1) is obtained as

φ(ω) = φ(0) +
1

Γ (υ)

ω∑
α=1

Γ (ω − α+ υ)

Γ (ω − α+ 1)
G(α− 1, φ(α− 1)). (6)

Theorem 2 [11] Let υ ∈ (0, 1) and the fractional difference system be given
by

∆υΘ(ω + 1− υ) = ΛΘ(ω), n = 0, 1, 2, · · · , (7)

where Λ ∈ Rk×k. Let

Uυ =
{
β ∈ C : |β| <

(
2 cos

(
|argβ| − π

2− υ

))υ
and |argβ| > υπ

2

}
. (8)

If all β ∈ Uυ, then the system (7) is asymptotically stable and if β ∈ C\cl(Uυ)
for any β then the system (7) is unstable.
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Fig. 1: Topological structure of 4D Hopfield Neural Networks with external
stimuli

3 Discrete fractional Hopfield neural networks (HNN) model

Hopfield neural networks(HNNs) are most commonly employed for discussion
on dynamics of brain.

General mathematical representation of the fractional order HNNs model
[18] is given by

Dυyi(ω) = −diyi(ω) +
n∑
j=1

sijhj(yj(ω)) + Fi, (9)

where Dυ denotes the fractional operator, self regulatory factors of each neu-
ron is denoted by di, connection strength between the ith and jth neuron are
represented by sij and the activation of neurons are represented by hj : R→ R.

We now proceed with constructing a 4-D neural network model, as depicted
in Figure 1, incorporating nonlinear synaptic weights. Synaptic weights in neu-
ral networks represent the strength of the connections between two neurons,
and in a biological context, they play a crucial role in illustrating the influence
of one neuron on another. To investigate the nonlinear dynamical character-
istics of neuron behavior within the network, we will introduce non-linear
activation functions to neuron 2 and neuron 4. These activation functions will
demonstrate the input voltage levels in the neurons. In contemporary neu-
ral networks, popular activation functions include tanh, sigmoid, and ReLU,
among others. However, for this study, we will introduce two different acti-
vation functions: tanh, a non-periodic function, and sine, a periodic function.
The sine activation function holds significance as it introduces non-linearity
when employed in a neural network, enabling the model to learn intricate pat-
terns and relationships within the data. It proves advantageous in scenarios
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where the data exhibits periodic or oscillatory patterns. The sine activation
function excels in capturing periodic behavior, making it well-suited for tasks
such as time series analysis or signal processing. Its ability to capture periodic-
ity makes it a valuable tool in modeling and understanding cyclic phenomena
within the data. The activation functions are given by h1(z) = h3(z) = sin z
and h2(z) = h4(z) = tanh(z). Implementing the above consideration to the
model (9) for four neurons, we get

Dυy1(ω) =− y1 + s12 tanh(y2) + s13 sin(y3) + s14 tanh(y4) + F1,

Dυy2(ω) =− y2 + s21 sin(y1) +G1(y4) tanh(y2) + s23 sin(y3) + F2,

Dυy3(ω) =− y3 + s31 sin(y1) + s32 tanh(y2) + s33 sin(y3) + F3,

Dυy4(ω) =− y4 + s41 sin(y1) +G2(y3) tanh(y4) + F4,

(10)

where nonlinear weight functions are G1(y4) = (1−α1 tanh(y4)) and G2(y3) =
(α2−α3 sin(y3)), where α1, α2, α3 are real numbers and external stimuli F2 =
0, F3 = 0 with F1, F4 are positive real numbers. Article focuses on discussing
the characteristics of the model with discrete fractional operator and discretiz-
ing (10) with Caputo fractional difference operator yields the model as follows.

∆υ
κy1(ω) =− y1(ω + υ − 1) + s12 tanh(y2(ω + υ − 1))

+ s13 sin(y3(ω + υ − 1)) + s14 tanh(y4(ω + υ − 1)) + F1,

∆υ
κy2(ω) =− y2(ω + υ − 1) + s21 sin(y1(ω + υ − 1))

+G1(y4(ω + υ − 1)) tanh(y2(ω + υ − 1)) + s23 sin(y3(ω + υ − 1)),

∆υ
κy3(ω) =− y3(ω + υ − 1) + s31 sin(y1(ω + υ − 1))

+ s32 tanh(y2(ω + υ − 1)) + s33 sin(y3(ω + υ − 1)),

∆υ
κy4(ω) =− y4(ω + υ − 1) + s41 sin(y1(ω + υ − 1))

+G2(y3(ω + υ − 1)) tanh(y4(ω + υ − 1)) + F4,

(11)

where ∆υ
κ represents the Caputo difference operator of order 0 < υ ≤ 1,

y1, y2, y3, y4 ∈ R4, ω ∈ Nκ+1−υ. The main advantage of choosing the Caputo
fractional difference operator over the Riemann-Liouville operator is that mod-
els constructed with the Caputo operator utilize integer order initial states,
whereas the Riemann-Liouville operator requires fractional order initial states.
We now employ fractional sum equations [25] with κ = 0 to obtain the numer-
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ical form as

y1(ω) =y1(0) +
1

Γ (υ)

ω∑
r=1

Γ (ω − r + υ)

Γ (ω − r + 1)

(
− y1(r − 1) + s12 tanh(y2(r − 1))

+ s13 sin(y3(r − 1)) + s14 tanh(y4(r − 1)) + F1

)
,

y2(ω) =y2(0) +
1

Γ (υ)

ω∑
r=1

Γ (ω − r + υ)

Γ (ω − r + 1)

(
− y2(r − 1) + s21 sin(y1(r − 1))

+G1(y4(r − 1)) tanh(y2(r − 1)) + s23 sin(y3(r − 1))

)
,

y3(ω) =y3(0) +
1

Γ (υ)

ω∑
r=1

Γ (ω − r + υ)

Γ (ω − r + 1)

(
− y3(r − 1) + s31 sin(y1(r − 1))

+ s32 tanh(y2(r − 1)) + s33 sin(y3(r − 1))

)
,

y4(ω) =y4(0) +
1

Γ (υ)

ω∑
r=1

Γ (ω − r + υ)

Γ (ω − r + 1)

(
− y4(r − 1) + s41 sin(y1(r − 1))

+G2(y3(r − 1)) tanh(y4(r − 1)) + F4

)
, ω = 1, 2, · · · .

(12)

The actual performance and advantages of a 4-neuron model over a 3-neuron
model would need to be evaluated empirically in the context of a particular
problem. But some advantages of considering 4-neuron network model are
presented as follows.

1. Enhanced Complexity: By including an extra neuron, the model becomes
capable of representing more intricate patterns and processing data in a
more sophisticated manner.

2. Improved Representation: Neural networks with a higher number of neu-
rons have the potential to capture a broader range of input data, leading to
a more comprehensive understanding of the information being processed.

3. Flexibility and Optimization: The inclusion of an additional neuron allows
for greater flexibility in adjusting the model’s architecture and optimizing
its performance for specific tasks, enabling more effective fine-tuning.

4 Neural network model without external stimulus

This section depicts the results on qualitative behavior of the HNNs (11) with-
out external stimulus, as in Figure 2, via stability conditions from eigenvalues
at their equilibrium position, transition of states of the model with bifurca-
tion diagrams for fractional order (υ) and α2 together with largest Lyapunov
exponents using Jacobian matrix method proposed in [36].
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Fig. 2: Topological structure of 4D Hopfield Neural Networks with F1 = F4 = 0

4.1 Stability Analysis

Stability analysis of the neural network model presented in (??) without exter-
nal inputs (F1 = F4 = 0) is performed by numerical evaluation of eigenvalues
at their equilibrium states. Let the parameters take the values α1 = −0.5,
α2 = 1, α3 = 0.5, s12 = −0.4, s13 = 0.2, s14 = 3, s21 = −0.5, s23 = 1.3,
s31 = 1, s32 = −0.8, s33 = 0.2, s41 = 1.4 with initial state (0.8, 0.3, 0.4, 0.6)
and fractional order υ = 0.7. The equilibrium states of the system for the
assumed parameters value are
1. P0 = (0, 0, 0, 0),
2. P1 = (−2.71954,−0.26150,−0.25563,−1.61402),
3. P2 = (2.56077, 0.71928, 0.06940, 1.66706).

Jacobian matrix of the system (11) at P2 is obtained as

H(P2) =


−1 −0.24798 0.19951 0.39880

0.41800 −0.09138 1.29686 0.04097
−0.83601 −0.49597 −0.80048 0
−1.17041 0 −0.46446 −0.87167

 (13)

and the corresponding eigenvalues are β1,2 = −0.9376828045± i 1.023807399,
β3,4 = −0.4440857426± i 0.4519528532. We have a pair of conjugate complex
eigenvalues and following conditions from Theorem 2 has to be verified.

(E1) |β| <
(
2 cos

(
|argβ|−π

2−υ

))υ
,

(E2) |argβ| >
υπ

2
.

Absolute values of the eigenvalues are

|−0.9376828045± i 1.023807399| =1.388319355,

|−0.4440857426± i 0.4519528532| =0.6336193876.
(14)
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and (
2 cos

(
|argβ1,2| − π

1.3

))0.7

=1.392941487(
2 cos

(
|argβ3,4| − π

1.3

))0.7

=1.412082905

(15)

Hence, from (14) and (15) condition E1 is satisfied. For the case of E2,

|argument(−0.9376828045± i 1.023807399)| =2.31231,

|argument(−0.4440857426± i 0.4519528532)| =2.34741.
(16)

and with υ = 0.7, we have
0.7π

2
= 1.1. Therefore, it is evident that |argument(β1,2,3,4)| <

1.1 and condition E2 is satisfied. Numerical evaluation supports the condition
for stability proposed in Theorem 2 and system (11) is asymptotically stable
at equilibrium state P2 as visualized in Fig 3. The stability nature of the other
two equilibrium states are presented in Table 1.
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Fig. 3: Asymptotic stability at equilibrium state P2.

4.2 Fractional order dependent Chaotic dynamics

In this section, we analyze the chaotic behavior of the network model (??) in
the absence of external inputs. We interpret this behavior by studying bifur-
cation diagrams while varying the fractional order (υ). The parameter values
remain fixed as discussed in section 4.1, and we explore fractional orders within
the range 0 < υ ≤ 1. By examining the bifurcation diagrams, we observe the
dynamic changes in the qualitative characteristics of the system due to the
influence of the fractional order. Figure 4 illustrates the bifurcation diagrams
for each state variable, depicting the system’s behavior as the fractional order
varies. The chaotic zones are demonstrated with largest Lyapunov exponents
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Table 1: Stability nature at equilibrium states

Fixed point Eigenvalues Nature of stability

P0

β1 = −2.745650252

Unstable

arg(1.63825) = 0
β2 = 1.63825

β3 = −0.34630 + i 0.92258 (E2) fails
β4 = −0.34630− i 0.92258

P1

β1 = −0.83959 + i 1.18960

Unstableβ2 = −0.83959− i 1.18960
(
2 cos

(
|argβ1,2|−π

1.3

))0.7
=1.31679

β3 = −0.72957 + i 0.61182 abs(β1,2) = 1.45604
β4 = −0.72957− i 0.61182 (E1) fails

(a) (b) (c) (d)

Fig. 4: Bifurcation diagrams with varying fractional order 0 < υ ≤ 1.
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Fig. 5: Largest Lyapunov exponent corresponding to bifurcation diagrams in
Fig 4.

in Fig 5. The neural network system with fractional order υ close to zero ex-
hibits a stable behavior and switches to chaos for gradual increase of υ. In
Figure 4, the chaotic region is depicted using scattered plots in the bifurcation
diagram. Additionally, a phase space view is presented in Figure 6(b). When
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Fig. 6: Phase plane plots for bifurcation diagrams Fig 4.

the fractional order υ exceeds 0.5, the system undergoes a transformation into
a stable region, as evidenced by the largest Lyapunov exponents shown in Fig-
ure 5. An interesting observation is that as the fractional order approaches 1,
the system exhibits a shift in behavior from a stable spiral phase plane to the
formation of closed orbits, as depicted in Figure 6(d).

4.3 Dynamics based on parameter α2

(a) (b) (c) (d)

Fig. 7: Bifurcation diagrams with varying −3 < α2 ≤ 2.

While examining the qualitative aspects of the system’s behavior based on
a common parameter for all state variables, it is important to note that it
does not provide a complete narrative of the inter-relationships between the
connected neurons. To gain a deeper understanding of these associations, we
focus our discussion on the influence of the parameter α2 within the nonlinear
weight function of neuron y4. In order to explore this topic, numerical simu-
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lations are conducted using the same parameter values as in section 4.1, with
υ = 0.6 and α2 varying within the range of [−3, 2].
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Fig. 8: Largest Lyapunov exponent corresponding to bifurcation diagrams in
Fig 7.

(a) (b) (c) (d)

Fig. 9: Amplification of bifurcation diagrams with varying −2.3 < α2 ≤ −1.8.

The parameter α2, which defines the nonlinear synaptic weight of neu-
ron y4, introduces interesting qualitative changes to the system, as depicted
in Figure 7. When α2 lies within the range of [−3, 0.4), the system exhibits
symmetric bifurcation about the origin, merging together and displaying com-
plex dynamics. For values of α2 between [−0.4, 2], the system’s behavior is
characterized by a single large region of bifurcation. The symmetric behavior
observed in the bifurcation diagrams can be further observed in the phase plane
plots shown in Figure 10. When examining the phase plane plot in Figure 11,
the system follows an equilibrium position, indicating the uniform oscillatory
nature of the neural network. These complex dynamics exhibited by the sys-
tem are supported by the largest Lyapunov exponents shown in Figure 8. The
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Fig. 10: Phase plane plots corresponding to bifurcation diagrams in Fig 7 for
α2 = −1.725.

1.4 1.6 1.8 2 2.2
0.8

0.9

1

1.1

1.2

y
1
(ω)

y
2
(ω

)

(a)

1.4 1.6 1.8 2 2.2
0.6

0.7

0.8

0.9

1

y
1
(ω)

y
4
(ω

)

(b)

1.4 1.6 1.8 2 2.2
0.25

0.3

0.35

0.4

0.45

0.5

y
1
(ω)

y
3
(ω

)

(c)

Fig. 11: Phase plane plots corresponding to bifurcation diagrams in Fig 7 for
α2 = −0.5.

periodic doubling characteristics of the neural network system are explored
through an amplified version of the bifurcations, as presented in Figure 9.

4.4 Coexisting bifurcation and attractors

Investigation of the coexistence behaviour of the attractors illustrates the dy-
namical evolution of the system with variation in parameters and initial states
of the state variables of the dynamical system. Coexistence of the system states
is investigated with fixed values of parameters as α1 = 0.2, α2 = 0.4, α3 = 0.5,
s12 = −0.4, s13 = 0.2, s14 = 1.72, s21 = −1, s23 = 1.3, s31 = 0.6, s32 = 0.8,
s33 = 0.9, s41 = 1.4 varying fractional order υ between 0 and 1. Bifurcations
in Fig 12 are simulated for two initial states: Y0 = (1, 2, 0.8, 0.6) represented
in red colour and Y1 = (0.8, 1.2,−1.4, 0.6) in blue colour. The following obser-
vations are made from the coexisting bifurcations:
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(a) (b) (c) (d)

Fig. 12: Coexisting bifurcation diagrams with different initial conditions.

1. The proposed model, in the absence of external inputs or stimuli, exhibits
high sensitivity to changes in initial conditions.

2. Under the initial state Y0, the system gradually transitions from a chaotic
state to stable behavior, forming periodic windows, as shown in Figure 12
(indicated in red).

3. When considering the system under the initial state Y1 with the same set
of parameters, a sudden switch from chaotic dynamics to stability can be
observed for υ ∈ [0.2, 0.4]. After achieving stability, the system experi-
ences abrupt excitation leading to the formation of periodic windows and
gradually returning to stability.

4. It is evident that the network model undergoes complex dynamical changes
depending on its initial state.

To further expand our understanding of the coexisting behavior of the state
variables, we investigate the changes that occur with varying system parame-
ters. Using the same parameter set mentioned above, we study 3-dimensional
phase plane plots for the initial states Y0 and Y1 while fixing υ = 0.2. The
plots are shown in Figure 13(a),(b) for α2 = −1 and in Figure 13(c),(d) for
α2 = −2. Figure 13(c),(d) demonstrates the switching behavior between two
equilibrium states, represented along the positive and negative axes, respec-
tively. By increasing the fractional order to υ = 0.3, 0.4, 0.5 and considering
different pairs of α2 values, coexisting attractors are presented in Figures 14,
15, 16 in the y1 − y2 − y3 plane and the y2 − y3 − y4 plane, respectively. The
purpose of constructing various pairs of coexisting attractors is to investigate
the dynamical changes of the neurons and their sensitivity to different initial
states. The observation of coexisting attractors reveals that as the fractional
order increases, the combined wings of the attractors split up, transitioning
from υ = 0.3 to separated attractors for υ = 0.5. The study of coexisting
attractors provides a better understanding of the system dynamics under dif-
ferent initial states.
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Fig. 13: Phase plane plots illustrating coexisting behavior (a),(b) υ = 0.2,
α2 = −1 along y1− y2− y3 plane, (c),(d) υ = 0.2, α2 = −2 along y2− y3− y4
plane.

−505 −4
−2

0
2

4−2

−1

0

1

2

y
2
(ω)

y
1
(ω)

y
3
(ω

)

(a)

−5
0

5

−2024

−2

−1

0

1

2

y
4
(ω)y

2
(ω)

y
3
(ω

)

(b)

−5

0

5
−2024

−2

0

2

y
1
(ω)

y
2
(ω)

y
3
(ω

)

(c)

−202
−2024

−2

−1

0

1

2

y
2
(ω)y

4
(ω)

y
3
(ω

)

(d)

Fig. 14: Phase plane plots illustrating coexisting behavior (a),(b) υ = 0.3,
α2 = 0.4 along y1−y2−y3 plane , (c),(d) υ = 0.3, α2 = 0.6 along y2−y3−y4
plane.

5 HNN model with identical external stimulus

5.1 Stability Analysis

Stability analysis of the neural network model presented in (11) with external
inputs (I1 6= 0, I4 6= 0) is performed by numerical evaluation of eigenvalues
at their equilibrium states. Let the parameters take the values α1 = −0.5,
α2 = 1, α3 = 0.5, s12 = −0.4, s13 = 0.2, s14 = 3, s21 = −0.5, s23 = 1.3,
s31 = 1, s32 = −0.8, s33 = 0.2, s41 = 1.4 with initial state (0.8, 0.3, 0.4, 0.6)
and fractional order υ = 0.7. The equilibrium states of the system for the
assumed parameter values in three cases are as follows

Case - I I1 = I4 = 0.01.
– P ′1 = (−0.00713,−0.00616,−0.00275,−0.00634),
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Fig. 15: Phase plane plots illustrating coexisting behavior (a),(b) υ = 0.4,
α2 = 0.4 along y1−y2−y3 plane, (c),(d) υ = 0.4, α2 = 0.65 along y2−y3−y4
plane.
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Fig. 16: Phase plane plots illustrating coexisting behavior (a),(b) υ = 0.5,
α2 = 0.6 along y1− y2− y3 plane, (c),(d) υ = 0.5, α2 = 0.8 along y2− y3− y4
plane.

– P ′2 = (−2.71062,−0.26662,−0.26096,−1.61850),
– P ′3 = (2.57226, 0.70712, 0.06494, 1.66542).

Case - II I1 = 0.1 < I4 = 0.4.
– P ′′1 = (−2.52665,−0.37038,−0.36479,−1.46704),
– P ′′2 = (2.77715, 0.47939,−0.00022, 1.85093),
– P ′′3 = (−0.28369,−0.22974,−0.12402,−0.15089).

Case - III I1 = 0.4 > I4 = 0.1.
– P ′′′1 = (−0.07073,−0.05757,−0.03083,−0.16397),
– P ′′′2 = (−2.41675,−0.41639,−0.43156,−1.99329),
– P ′′′3 = (2.87992, 0.33451, 0.00079, 1.33142).

The numerical result for the stability of the system (11) for Case-II (I4 > I1)
is presented, and the rest of the cases will be tabulated. Jacobian matrix at
PII2 is obtained as
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H(P ′′2 ) =


−1 −0.32051 0.19999 0.28203

0.46716 0.18265 1.29999 0.02095
−0.93432 −0.64103 −0.80000 0
−1.30805 0 −0.47591 −0.90597

 (17)

Eigenvalues corresponding to matrix (17) are β1,2 = −0.8566916615±i 0.9960732964
and β3,4 = −0.4049718290±i 0.4444650264. Our aim is to verify the conditions
(E1) and (E2) defined in Section 4.1.

The absolute values of the eigenvalues are

|−0.8566916615± i 0.9960732964| =1.313804633,

|−0.4049718290± i 0.4444650264| =0.6012913952.
(18)

and (
2 cos

(
|argβ1,2| − π

1.3

))0.7

=1.375226734(
2 cos

(
|argβ3,4| − π

1.3

))0.7

=1.391501628

(19)

Hence, from (18) and (19) condition E1 is satisfied. For the case of E2,

|argument(−0.8566916± i 0.9960732)| =2.28110,

|argument(−0.4049718± i 0.4444650)| =2.30973.
(20)

and with υ = 0.7, we have 0.7π
2 = 1.1. Therefore, it is evident that |argument(β1,2,3,4)| <

1.1 and condition E2 is satisfied. Numerical evaluation supports the condition
for stability proposed in Theorem 2 and system (11) is asymptotically stable
at equilibrium state P2 as visualized in Fig 17. The stability nature of the
other two equilibrium states is presented in Table 2.
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Fig. 17: Asymptotic stability at equilibrium state P2.
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Table 2: Stability nature at equilibrium states

Fixed point Eigenvalues Nature of stability

Case - I (I1 = I4 = 0.01)

P ′1

β1 = −2.74433

Unstable

arg(1.64017) = 0
β2 = 1.64017

β3 = −0.34885 + i 0.92342 (E2) fails
β4 = −0.34885− i 0.92342

P ′2

β1 = −0.83981 + i 1.18590

Unstableβ2 = −0.83981− i 1.18590
(
2 cos

(
|argβ1,2|−π

1.3

))0.7
=1.31781

β3 = −0.73079 + i 0.60878 |β1,2| = 1.45315
β4 = −0.73079− i 0.60878 (E1) fails

P ′3

β1 = −0.93599 + i 1.02866

Stableβ2 = −0.93599− i 1.02866 E1 and E2

β3 = −0.43861 + i 0.45444 are satisfied
β4 = −0.43861− i 0.45444

Case - II (I1 = 0.1 < I4 = 0.4)

P ′′1

β1 = −0.82631 + i 1.14498

Unstable

(
2 cos

(
|argβ1,2|−π

1.3

))0.7
=1.32353

β2 = −0.82631− i 1.14498 |β1,2| = 1.41201
β3 = −0.72658 + i 0.66185 (E1) fails
β4 = −0.72658− i 0.66185

P ′′3

β1 = −2.64761

Unstableβ2 = 1.62741 arg(1.62741) = 0
β3 = −0.43266 + i 0.92300 E2 fails
β4 = −0.43266− i 0.92300

Case - III (I1 = 0.4 > I4 = 0.1)

P ′′′1

β1 = −2.70339

Unstable

arg(1.62761) = 0
β2 = 1.62761

β3 = −0.41001 + i 0.92922 (E2) fails
β4 = −0.41001− i 0.92922

P ′′′2

β1 = −0.84845 + i 1.03475

Stableβ2 = −0.84845− i 1.03475
β3 = −0.79853 + i 0.40292 E1 and E2

β4 = −0.79853− i 0.40292 are satisfied

P ′′′3

β1 = −0.92286 + i 1.30818

Stableβ2 = −0.92286− i 1.30818
(
2 cos

(
|argβ1,2|−π

1.3

))0.7
=1.31665

β3 = −0.21253 + i 0.57089 |β1,2| = 1.60094
β4 = −0.21253− i 0.57089 (E1) fails

5.2 Dynamics based on parameter α2

This section focuses on the results of the model with varying external inputs,
specifically α2, in relation to the complex dynamics discussed in Section 4.3.
Bifurcation diagrams, depicted in Figure 18, are constructed using the same
parameter values as in Section 4.1, where the external inputs F1 and F4 are
set to 0.2. To provide a more detailed analysis, the amplification of different
bifurcation regions is presented in Figures 20 and 21. Examining Figure 20,
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(a) (b) (c) (d)

Fig. 18: Bifurcation diagrams with varying −3 < α2 ≤ 2 and F1 = F4.

which covers the range of α in [-2.3,1.8], it can be observed that the bifurcations
exhibit symmetry around 0. A complete cycle of system transitions, starting
from a stable state and progressing to chaos through periodic oscillations, and
vice versa, can be observed for values of α2 ranging from [-2.08,-1.9]. Following
this complete transformation, five bifurcations occur for α2 within the range
of [-1.4,-1.37].
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Fig. 19: Largest Lyapunov exponent corresponding to bifurcation diagrams in
Fig 18.

The presence of chaotic regions in the system is accompanied by the emer-
gence of periodic windows, leading to a systematic shift in the behavior of the
system. This regular shift can be observed by examining the largest Lyapunov
exponents shown in Figure 19. In Figure 22, the chaotic response at α2 = −1.7
and the uniform oscillatory response at α2 = 1 are presented. These figures
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(a) (b) (c) (d)

Fig. 20: Amplification of bifurcation diagrams with varying −2.3 < α2 ≤ −1.8
and F1 = F4

(a) (b) (c) (d)

Fig. 21: Amplification of bifurcation diagrams with varying −1.4 < α2 ≤ −1.1
and F1 = F4

provide visual representations of the dynamics observed in the system, high-
lighting the coexistence of chaotic and oscillatory behaviors for different values
of α2.

The results comparing the complex dynamics of neural networks with dis-
tinct external stimuli are illustrated as follows:

1. In Section 5.2, the bifurcations are explored for the case of equal stimuli,
where F1 = F4 = 0.2. However, a question arises regarding the impact of
distinct stimulus values. To address this question, a series of bifurcation
diagrams for each state variable is presented in Figure 23. The external
stimuli F1 is varied in the range of [0, 1], while F4 is fixed at values of
0.05, 0.2, and 0.5. The remaining parameters are held constant: α1 = 0.2,
α2 = 0.5, α3 = 0.5, s12 = −0.4, s13 = 0.2, s14 = 1.72, s21 = −1, s23 = 1.3,
s31 = 0.6, s32 = 0.8, s33 = 0.9, s41 = 1.4. The system’s initial state is set
to (0.8, 1.2, 0.4, 0.6), and the fractional order is υ = 0.3.



22 Shaobo He et al.

−6 −4 −2 0 2 4 6

−2

−1

0

1

2

y
1
(ω)

y
2
(ω

)

(a)

−6 −4 −2 0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

y
1
(ω)

y
3
(ω

)

(b)

−2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5

y
1
(ω)

y
2
(ω

)

(c)

−2 0 2 4
−1.5

−1

−0.5

0

0.5

1

y
1
(ω)

y
3
(ω

)

(d)

Fig. 22: Phase plane plots corresponding to bifurcation diagrams in Fig 18 –
(a),(b) for α2 = −1.7 (c), (d) for α2 = 1.

2. A detailed analysis of the multiple 2D bifurcations presented in Figure 23
emphasizes the significance of external stimuli in controlling chaos. It is
observed that smaller values of the stimulus lead to more chaotic behavior
in the system, while higher stimulus values result in stabilization of the
network model for the given parameter values. This interpretation provides
a broader understanding of the impact of the parameters. Further analysis
will be conducted under different scenarios to gain more insights.

3. The interpretations based on the external inputs for the given parameter
values are as follows:
– Scenario I: Assuming identical inputs for neurons 2 and 4, the system

exhibits chaotic responses when F1 = F4 < 0.35, while stability behav-
ior is observed when F1 = F4 > 0.35.

– Scenario II: Allowing for non-identical inputs, contrasting values of in-
puts are required to exhibit chaotic or stable behavior. For the system
to be chaotic, an increase in F1 within the range of (0, 0.5] should be
accompanied by smaller values of F4. For example, if F1 = 0.5, the
system is chaotic for F4 ∈ (0, 0.15). Similarly, for F4 = 0.05, the system
exhibits chaos for any choice of F1 ∈ (0, 0.5]. The system remains stable
for other combinations of input values.

6 Sensitivity behavior of the neural network model

The results obtained on the sensitivity of the proposed model align with the
focus of this section of the article. In Section 4.3, bifurcation diagrams are
analyzed to understand the qualitative changes in the system as the parameter
α2 is varied. Interestingly, the system exhibits significant dynamical changes
in its behavior even with a very slight change in the parameter value, such as
α2 + 0.0001. To investigate these dynamics, time-varying plots are simulated
for each state variable of the proposed model (11). The parameter values used
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(a) (b) (c) (d)

Fig. 23: Sequence of bifurcation diagrams for non-identical external stimulus
F1 6= F4.

for the simulation are as follows: α1 = −0.5, α3 = 0.65, s12 = −0.4, s13 = 0.2,
s14 = 3, s21 = −0.5, s23 = 1.3, s31 = 1, s32 = −0.9, s33 = 0.2, s41 = 1.4 with
initial state (0.8, 0.3, 0.4, 0.6) and fractional order υ = 0.5. The value of α2 is
varied starting from 0.3478 with an increment of α2 + 0.0001 till 0.3483 and
the numerical outputs are displayed in Fig 24.

The sensitivity of the system to the parameter α2 is evident from the chang-
ing patterns of oscillations observed in each state variable. The time-varying
plots highlight a common behavior characterized by oscillations around two
equilibrium states. As the value of α2 increases, the time required for the tran-
sition between these states decreases. Additionally, the transient time between
subsequent bursts of neurons varies for different values of α2. In Figure 24(a),
(b), (c), (d), it can be observed that the initial time taken for the firing pattern
to appear is significantly longer compared to Figure 24(e) and (f).

7 Firing patterns and equilibrium shifting behavior

This section of the article aims to investigate the firing patterns exhibited
by the neural network model and the switching behavior of the equilibria.
The analysis is conducted in three different cases, each with distinct param-
eter choices, in order to gain a comprehensive understanding of the system’s
dynamics. One crucial aspect under discussion is the nature of equilibrium
switching observed in the state variables. The study further compares the in-
fluence of external stimuli in the following sub-cases within each of the three
main cases:

1. No external stimulus (F1 = F4 = 0).
2. Identical stimulus F1 = F4 = 0.1.
3. Non-identical stimulus F1 6= F4

– F1 = 0.1 < F4 = 0.2,
– F1 = 0.2 > F4 = 0.1.
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Fig. 24: Phase plane plots illustrating sensitivity for (a) α2 = −0.3478 (b)
α2 = −0.3479 (c) α2 = −0.3480 (d) α2 = −0.3481 (e) α2 = −0.3482 (f)
α2 = −0.3483.

In order to bring in the factor of fractional order into the analysis, the study
is performed for two different fractional orders υ = 0.5, 0.6.

7.1 Case- I

In this specific scenario, the parameters are set as follows: α1 = −0.5, α2 = 0.5,
α3 = 0.65, s12 = −0.4, s13 = 0.2, s14 = 3, s21 = −0.5, s23 = 1.3, s31 = 0.5,
s32 = −0.5, s33 = −0.2, s41 = 1.4. The initial state is (0.8, 0.3, 0.4, 0.6). In
Figure 25, the oscillation patterns of each state variable are depicted, where
(a), (b), (c), and (d) correspond to υ = 0.5, and (e), (f), (g), and (h) correspond
to υ = 0.6. When υ = 0.5, the system exhibits regular bursting behavior, with
a shift in oscillation from the positive axis to the negative axis after a certain
period of time. It is observed that the switch in oscillation takes a longer time
when the external stimulus on neuron y4 is higher than the stimulus on neuron
y1.
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Fig. 25: Phase plane plots illustrating sensitivity for (a)F1 = F4 = 0, υ = 0.5
(b) F1 = F4 = 0.1, υ = 0.5 (c) F1 = 0.1 < F4 = 0.2, υ = 0.5 (d) F1 = 0.2 >
F4 = 0.1, υ = 0.5 (e)F1 = F4 = 0, υ = 0.6 (f) F1 = F4 = 0.1, υ = 0.6 (g)
F1 = 0.1 < F4 = 0.2, υ = 0.6 (h) F1 = 0.2 > F4 = 0.1, υ = 0.6.

7.2 Case- II

In this particular scenario, three parameters are varied while keeping the rest
of the parameters fixed at the same values as in the previous case (Case - I).
The modified parameter values are as follows: α2 = 0.35, s31 = −0.5, and
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s32 = −0.7. The dynamics of the network model undergo significant changes
compared to the previous case, as depicted in Figure 26.
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Fig. 26: Phase plane plots illustrating sensitivity for (a)F1 = F4 = 0, υ = 0.5
(b) F1 = F4 = 0.1, υ = 0.5 (c) F1 = 0.1 < F4 = 0.2, υ = 0.5 (d) F1 = 0.2 >
F4 = 0.1, υ = 0.5 (e)F1 = F4 = 0, υ = 0.6 (f) F1 = F4 = 0.1, υ = 0.6 (g)
F1 = 0.1 < F4 = 0.2, υ = 0.6 (h) F1 = 0.2 > F4 = 0.1, υ = 0.6.

It is evident from the figures that the system exhibits different patterns
of behavior, including shifts in the oscillation axes. When there is no external
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Fig. 27: Phase plane plot visualizing the shift in equilibrium for Case II cor-
responding to Fig 26(a).

stimulus or when identical stimuli close to zero are applied, the system displays
a typical behavior, with the only difference being the time taken for the shift
in the oscillation axis. The contrasting dynamics between υ = 0.5 and υ = 0.6
are evident in Figure 26(a), (b), (e), (f).

When the stimuli are non-identical, the system undergoes significant changes
in behavior. For instance, when F1 < F4, the system exhibits a uniform
bursting pattern along the positive axis (y1, y3, y4) and the negative axis (y2)
as shown in Figure 26(c). However, when the stimuli are non-identical and
υ = 0.6, the system approaches stability, as seen in Figure 26(h), while the
state variables undergo high regular bursting for υ = 0.5 as depicted in Fig-
ure 26(d). To illustrate the equilibrium shift in the state variables, a 3D phase
portrait corresponding to Figure 26(a) is presented in Figure 27. The uni-
form oscillations of the state variables after ω > 400 lead to the formation
of a closed-form spiral. The initial regular bursts are highlighted within the
rectangular region in Figure 27.

7.3 Case- III

In this scenario, the parameter values remain the same as in Case - I, except
for modifications in s31 = −0.35, s32 = −0.7, and s33 = −0.4. The visual
analysis of the system’s dynamics is presented in Figure 28.

Comparing this scenario with Case - I and Case - II, it is observed that
the system undergoes a different dynamical change. The oscillations of the
state variables switch between two equilibrium states, with a small region of
stability in between, as depicted in Figure 28. Notably, when F1 > F2, the
system achieves stability for both fractional orders υ = 0.5 and υ = 0.6. For
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υ = 0.6, the system exhibits similar behavior in all cases, starting with an
initial burst followed by a stable region and a periodic oscillatory zone, except
for the case when F1 > F2.

The qualitative change in behavior is further supported by the phase plane
portrait corresponding to Figure 28(e), shown in Figure 29.
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Fig. 28: Phase plane plots illustrating sensitivity for (a)F1 = F4 = 0, υ = 0.5
(b) F1 = F4 = 0.1, υ = 0.5 (c) F1 = 0.1 < F4 = 0.2, υ = 0.5 (d) F1 = 0.2 >
F4 = 0.1, υ = 0.5 (e)F1 = F4 = 0, υ = 0.6 (f) F1 = F4 = 0.1, υ = 0.6 (g)
F1 = 0.1 < F4 = 0.2, υ = 0.6 (h) F1 = 0.2 > F4 = 0.1, υ = 0.6.
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Fig. 29: Phase plane plot visualizing the shift in equilibrium for Case III cor-
responding to Fig 28(e).

Overall analysis of this section is tabulated in Table 3.

8 Conclusion

The findings of the study highlight an important observation regarding the
impact of external stimuli on the system’s behavior. It is observed that the
absence of external stimuli leads to greater chaotic behavior compared to the
presence of external stimuli. This observation underscores the role of external
stimuli as a control factor in maintaining the system’s stability. The bifurcation
diagrams presented in Figures 7 and 18 support this conclusion by illustrating
the zone of chaos and the transition of system states under parameter changes.
The analysis of the system’s behavior using Lyapunov exponents further pro-
vides evidence of nonlinear phenomena and bifurcations. Under the examined
parameter values, the neural network model exhibits chaotic behavior for lower
fractional orders. To achieve a broader representation of the neural model in
various real-world settings, it is necessary to consider neurons with different
activation functions.

Another intriguing characteristic investigated in this research is the ca-
pacity of the state variables to change equilibrium. This phenomenon reflects
the biochemical processes within neurons, which can adjust their equilibrium
locations to rectify errors that may occur during information transmission.
The equilibrium shift is not constant and varies depending on the situation.
The change in states can be continuous, as demonstrated in Figure 25(e),
(f), (g), when neurons undergo frequent bursting. This exploration of differ-
ent firing patterns provides insights into how neurons can dynamically restore
their functional behavior. Overall, this study offers valuable insights into the
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Table 3: Equilibrium shifting behavior analysis

Sub-case Equilibrium states Shift in states Remarks

Case - I

F1 = 0.1 P1 = (−2.498,−0.023,−0.240,−1.268) All state variables
F4 = 0.1 P2 = (2.572, 0.165, 0.156, 1.206) From P2 to P1 switch from positive

P3 = (−0.093,−0.006,−0.036,−0.063) to negative axis.
F1 = 0.1 P1 = (−2.453,−0.024,−0.254,−1.213) All state variables
F4 = 0.2 P2 = (2.619, 0.164, 0.139, 1.264) From P2 to P1 switch from positive

P3 = (−0.173,−0.012,−0.066,−0.088) to negative axis.
F1 = 0.2 P1 = (−2.452,−0.024,−0.255,−1.335) All state variables
F1 = 0.1 P2 = (2.620, 0.144, 0.147, 1.145) From P2 to P1 switch from positive

to negative axis.
Case - II

F1 = 0.1 P1 = (−2.471, 0.568,−0.041,−1.060) y1, y3, y4 switch from
F4 = 0.1 P2 = (−0.092, 0.122,−0.032,−0.045) From P3 to P1 positive to negative axis

P3 = (2.645,−0.948, 0.233, 0.938) y2 from negative
to positive axis.

F1 = 0.1 P1 = (−0.168, 0.221,−0.057,−0.056) y1, y2, y3, y4
F4 = 0.2 P2 = (−2.420, 0.610,−0.042,−1.007) No shift oscillate about

P3 = (2.693,−0.894, 0.236, 0.981) in states equilibrium P3

F1 = 0.2 P1 = (−2.432, 0.593,−0.039,−1.109) No shift Oscillation about P3 for
F4 = 0.1 P2 = (−0.108, 0.141,−0.036,−0.081) for υ = 0.5 υ = 0.5 & y1, y3, y4 switch

P3 = (2.676,−0.898, 0.230, 0.896) From P3 to P1 from +ve to -ve axis
for υ = 0.6 y2 from negative

to positive axis for υ = 0.6.
Case - III

F1 = 0.1 P1 = (−2.527, 0.451,−0.067,−1.141) y1, y3, y4 switch from
F4 = 0.1 P2 = (−0.087, 0.106,−0.031,−0.046) From P3 to P1 positive to negative axis

P3 = (2.697,−0.865, 0.242, 0.988) y2 from negative
to positive axis.

F1 = 0.2 P1 = (−0.163, 0.196,−0.056,−0.058) No shift Oscillation about P3

F4 = 0.1 P2 = (−2.480, 0.485,−0.071,−1.085) for υ = 0.5 for υ = 0.5 & y1, y3, y4 switch
P3 = (2.745,−0.817, 0.241, 1.035) From P3 to P2 from +ve to -ve axis

for υ = 0.6 y2 from negative
to positive axis for υ = 0.6.

F1 = 0.2 P1 = (−2.487, 0.472,−0.068,−1.196) Initial oscillation about P3,
F4 = 0.1 P2 = (−0.099, 0.118,−0.034,−0.082) From P3 to P1 attains stability

P3 = (2.728,−0.817, 0.237, 0.944) about P1.

qualitative properties of the investigated 4D model, emphasizing the role of
external stimuli, the occurrence of bifurcations, and the ability of neurons to
adapt and recover their equilibrium states in response to varying conditions.
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