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Abstract15

Heating, Ventilation and Air Conditioning (HVAC) optimization for energy consumption reduction is becoming

ever more a topic of the utmost environmental and energetic concerns. The two most employed methodologies

for optimizing HVAC systems are Model Predictive Control (MPC) and Reinforcement Learning (RL). This paper

compares three different RL approaches to HVAC optimization: one based on a black-box system identification

model trained on historical data, one based on a white-box model of a building and one online method based on

an imitation learning pretraining phase on historical data. The three approaches are compared with a literature

baseline and an EnergyPlus baseline. Results show that the overall best method in terms of energy consumption

reduction (65% decrease) and thermal comfort increase (25% increase) is the approach based on the white-box

model. However, the proposed methodology, based on online and imitation learning, demonstrates remarkable

efficiency, achieving comparable improvements in energy consumption after just a few months of online training,

while maintaining thermal comfort at around the same level as the baseline. These results prove a direct online RL

approach, which avoid the use of costly simulations, can provide a reliable and inexpensive solution to the problem

of HVAC optimization.

Keywords: Reinforcement Learning, Deep Deterministic Policy Gradient, System Identification, Imitation

Learning

1. Introduction

More than half of the world’s population now lives in metropolitan regions. According to United Nations esti-

mates, urban areas would host roughly 68% million people by 2030, with one-third of them living in municipalities20

with populations of at least half a million (United Nations, b). According to the United Nations Habitat Divi-

sion (United Nations, a), urbanization is largely energy intensive. Cities consume and create approximately 75%

of world’s primary energy supply and 50-60% of world’s greenhouse gas emissions. Thanks to the advancement in

Information Communication Technologies and with the spread deployment of Internet of Things, it is possible to

monitor buildings and to develop new fine-grained algorithms for energy consumption optimization (Wigle, 2014).25

Heating, Ventilation and Air Conditioning (HVAC) systems are among the highest energy consumption appliances

in today’s urban scenarios, making them one of the most important objects of research.

On top of traditional methods, based on the control of Proportional Integral Derivative (PID) parameters

(Soyguder et al., 2009), the two most employed methodologies for HVAC optimization are Model Predictive Control

(MPC) (Drgoňa et al., 2020) and Reinforcement Learning (RL) (Wang & Hong, 2020). The two methods differ30

mainly in the fact that MPC requires a detailed model of the target environment in order to perform the optimization
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and choose the optimal action. On the contrary, a vast class of RL algorithms are model-free, meaning that they can

be applied to any environment, even with scarce or no information regarding its functioning. RL (Vázquez-Canteli

& Nagy, 2019) and in general Machine Learning methods have been successfully applied to HVAC optimization and

in general building or smart grid control (Tiwari et al., 2022).35

This paper thus aims at tackling the problem of reducing energy consumption in HVAC systems. This problem

consists in the task of optimizing the overall energy expenses or consumption of the building HVAC systems,

maintaining unvaried the internal comfort of its users.

Our goal with the present work is that of providing a practical solution to HVAC control, which can be readily

applied to target buildings and use-case scenarios. The main limitation of model-free RL algorithms relies on the40

training phase because the agent needs to try several actions before converging on the optimal policy. Hence, in the

training phase, the agent will apply several actions that may cause an improper state of the environment, that in

a building HVAC system might cause an increase in energy consumption or discomfort for the user. To solve this

issue, literature solutions propose the usage of a simulated environment to train the model-free RL agent and then

apply the agent to the real building. Such solutions rely on costly white-box modelling of the target building or need45

other auxiliary measures, such as wall temperature monitoring, to develop data-driven system identification models.

Both approaches can disrupt the time and cost-effectiveness of the solutions. Our novel methodology, however, is

readily applicable to any target use-case scenario with few or none preparatory work. As explained in more detail

in this paper, our proposed approach relies on a fully continuous RL agent. The agent undergoes an Imitation

Learning (IL) phase, which consists of a training methodology in which the agent is exposed to building historical50

data, comprehensive of the actions performed by a standard controller and their consequences on the environment,

and actively learns without having to directly perform any action itself. After this pre-training phase, the agent

is ideally deployed on the target building HVAC system. For simplicity, a simulated model in EnergyPlus (Zhang

& Lam, 2019), one of the most renowned building energy simulation programs (Yang & Becerik-Gerber, 2014),

is adopted as our real-case building, meaning that all constraints that would apply to a real building have also55

been considered in our simulated scenario. Results show that our approach is sound and effective, surpassing the

standard rule-based control systems already in the very first weeks of adoption.

The paper is structured as follows: Section 2 presents a review of the most recent literature about reinforcement

learning approaches regarding optimal control of HVAC systems, also detailing the novelties that our approach

brings to the current state of the art. Section 3 describes the three approaches investigated in this paper, namely,60

the system identification model, the white-box modelling environment and the fully online system. This section

also fully describes the reinforcement learning algorithm of choice, which is the Deep Deterministic Policy Gradient

(DDPG). Section 5 presents results for each different methodology. At last, in Section 6, an overview of the proposed

work is given and final remarks are discussed.

2. State of the art65

In what follows, a literature review of the state of the art on HVAC optimization through Reinforcement Learning

techniques is presented. As shown, several attempts to adopt different methodologies have been utilized. Most

solutions employ model-free algorithms that work on continuous action space for single-zone problems, consisting
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in optimization tasks in which an agent has to discover the optimal HVAC strategy (i.e. temperature setpoint, air

mass flow rate) to maximize one or more target objectives (i.e. thermal comfort, energy cost) in an environment70

built of one whole thermal zone. The most preferred method for the optimization task is the DDPG algorithm.

When the action space is discrete, the most common option is the Deep Q-Network (DQN) algorithm or some

kind of variation of it. All works target either the overall energy consumption, the overall energy cost, the thermal

comfort or a combination of these.

A work presented in (Kou et al., 2021) compares a data-driven approach, that is one in which the optimal75

strategy arises as a consequence of gathered data, based on a model-free DDPG algorithm, with a rule-based

approach and a Model Predictive Control (MPC) methodology. The latter requires the adoption of a detailed

model of the building and accurate indoor air temperature predictions, while the data-driven approach requires a

smaller amount of inputs. The control actions space consisted of the simple on/off switch of the HVAC system.

The model-free algorithm showed good performances in terms of computational speed and cost reduction, however,80

the MPC method performed the best, despite being more time and resource-consuming. In (Du et al., 2021b), a

2-zone building optimization is performed, comparing a DDPG algorithm with a discrete DQN model and a rule-

based approach. As in (Du et al., 2021a), the agent controls the indoor temperature setpoint. The DDPG method

showed the best performance in terms of energy cost reduction and thermal comfort violation. A DDPG algorithm

is also used in (Rahimpour et al., 2020) for heating optimization, and compared with a model-based RL approach85

consisting of an Approximate Dynamic Programming (ADP) model. The model uses as a control action the on/off

switching of the HVAC system. The DDPG compared similarly to the ADP, while not requiring a model of the

environment. In (Gao et al., 2020), a DDPG algorithm is compared with a DQN and simpler RL approaches, for

a control task concerning the definition of the HVAC indoor air temperature and relative humidity setpoints. The

proposed DDPG method showed an increase in thermal comfort of up to 10% and a decrease in energy cost.90

Authors of (Ding et al., 2019) propose a holistic approach, in which an innovative Deep Reinforcement Learning

algorithm, the Branching Dueling Q-Network, is employed to optimize over the energy consumption and the user

thermal comfort. It is then compared with a traditional Dual Deep Q-Network (DDQN) and a rule-based approach.

The action space consists in controlling the HVAC traditional systems and several other building subsystems, such

as lights, blinds and window systems. The proposed method obtains a reduction up to 12% in energy consumption.95

In (Du et al., 2021a), a Deep Deterministic Policy Gradient (DDPG) algorithm is trained on both cooling and

heating seasons and compared with a standard rule-based approach. The DDPG algorithm controls the indoor air

temperature setpoint on a continuous scale, and shows a reduction in overall electricity cost and consumption with

only modest comfort temperature violations (around 0.6°C). In (Brandi et al., 2020), a DQN algorithm is used to

optimize the control over the supply water temperature of a building. The action space is discrete and consists of a100

set of water temperature increments. The proposed method achieves a significant reduction in energy consumption,

setpoint violation and overall thermal comfort, compared with a traditional rule-based approach. In (Barrett &

Linder, 2015), an intelligent thermostat based on a DQN algorithm is developed. The action space is discrete and

consists of the on/off switching of both cooling and heating HVAC systems. Slight cost reduction and improved

thermal comfort are obtained, compared to a traditional scheduled thermostat. In (Zhang et al., 2019), a black105

box approach based on a neural network is employed, in which the network learns the system identification by
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continuous interaction with the target building modelled in EnergyPlus. Then, an MPC approach is compared with

a model-free Proximal Policy Optimization (PPO) algorithm, showing that the model-based approach can achieve

up to 10x improvements in energy consumption and thermal comfort with respect to the RL algorithm.

In (Wei et al., 2017), a DQN algorithm is employed for discrete action-space, consisting of several multiple110

choices of air flow rate control, over a multi-zone HVAC system. The exponentially large action space is dealt with

the help of custom heuristics for computational reduction purposes. Reduction in energy cost and maximization of

thermal comfort are the goals of the algorithm, which is tested on an EnergyPlus environment. In (Fu & Zhang,

2021) an innovative Twin Delayed Deep Deterministic Policy Gradient algorithm and Model Predictive Control

(TD3-MPC) is introduced and compared with a standard DDPG algorithm for continuous control over indoor air115

temperature setpoint, aimed at energy cost reduction and thermal comfort maximization. The novel TD3-MPC

scores around 15% better than its DDPG counterpart. In (Solinas et al., 2021) a hybrid approach to demand side

management optimization is presented, in which a system identification model is adopted to realistically represent

a target building thermodynamic response, based on only historical data gathered from a standard controller.

Then, three methods are compared: a rule-based approach, an MPC and a DQN algorithm, with the objective120

of reducing energy consumption, and respecting thermal comfort. The action space consists in a discrete set of

supply air temperature increments. This approach showed clear advantages in terms of overall results and real-world

applications, as historical data are the only requirements for training the proposed agent.

Table 1 reports the above-mentioned, most relevant works in the literature on this topic. The table details

the target of the optimization, the control actions, the kind of algorithm or methodology employed, the kind and125

size of the dataset over which the system is trained, the kind of environment used for training and testing, if the

RL agent utilized is based on a model-free or model-based approach and finally if the target use-case scenario

consists of a single or a multi-zone building (and the corresponding number of different thermal zones). Most of

the studies focus on optimizing energy consumption or cost, while maintaining thermal comfort, revealing a strong

trend towards sustainability and user comfort. The control actions primarily involve manipulating HVAC settings,130

emphasizing their key role in energy management. The table shows a strong preference for model-free RL methods,

with DDPG and DQN being commonly used. However, a few studies employ both model-free and model-based

approaches, indicating a potential benefit of combining both techniques. The duration and focus of the studies vary,

reflecting the diversity of applications and climates. Most studies apply to single-zone scenarios, but a few extend

to multi-zone, showing an increasing complexity in the research field.135

This paper expands on the work of (Solinas et al., 2021) by implementing a more complex use-case scenario

and introducing three distinct approaches to system modelling. In the cited work, the authors focused on using a

system identification model to represent system dynamics. Our first approach also employs a system identification

model for simulating the building’s thermal response, providing a useful comparison on a common baseline. Our

second approach uses detailed white-box modelling to simulate the target building, an approach often adopted in140

the discussed literature. While this method can yield more accurate thermal responses, it often incurs high costs

due to the need for comprehensive modelling. The third and most innovative approach is the application of a

fully online agent to the target building without any preceding model-based simulation. We use a building model

simulated in EnergyPlus as a proxy for a real building, subject to the same constraints such as thermal comfort and
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energy costs. The agent undergoes an Imitation Learning pre-training phase, a novel method in the field of HVAC145

system optimization that we believe significantly improves the practicality and efficiency of the solution. To the

best of our knowledge, this practical-centered approach, coupled with an imitation learning pre-training phase, has

never been proposed before in the literature and represents a strong novelty in the field of optimization for HVAC

systems.

3. Methodology150

The present work targets the optimization of the heating consumption of an HVAC system. The heating flow

Qheating of an HVAC system, and its related energy consumption, can be expressed with the following equation:

Qheating = mdot · cp · (Tair − Tin) (1)

where mdot is the air mass flow rate, cp is the specific heat capacity, Tair is the air temperature from the HVAC

system and Tin is the indoor air temperature. Hence, w.r.t to the reviewed literature, the action space is extended

to include air mass flow rate control, in addition to air temperature control. Three main methodologies are then155

explored: the first one, similar to (Solinas et al., 2021), is based on a black-box system identification model which

simulates the building thermodynamics. In the second one, a white-box model based on the EnergyPlus building

energy simulation program is adopted to provide a more realistic building response. The third methodology presents

a novel online learning approach, adopted to overcome the shortcomings of both previous methods. The rest of this

section will describe these approaches. Due to the lack of real buildings in which we could test the three different160

approaches we have chosen to use the software EnergyPlus (Crawley et al., 2000). Such software is a building

simulation program commonly used by researchers and designers and is applied in this work to compare and test

the three different methods and to generate a historical dataset of an expert system for the control of HVACs.

The task of finding the best action pair of indoor air temperature increase and air mass flow rate can be described

as a Markov Decision Process (MDP) and thus tackled through reinforcement learning algorithms. The optimal165

control problem is then modelled similarly to our previous work (Solinas et al., 2021), in which an agent has to

perform a control action u in a state s, to receive a reward r, transitioning to a new state s′. The goal of the agent

is that of finding the best control action in every state, maximizing the expected total reward.

The reward r is defined as the distance of the indoor air temperature xt of the building to the predetermined

setpoint xsetpoint, plus the cost ct of performing a particular control action pair utemp,t, umdot,t, respectively the170

control actions over the temperature and the mass flow rate of the air that is provided by the HVAC system to the

building.

r = −(β · (xt − xsetpoint)
2 + ρ · ct) (2)

where

ct = utemp,t · umdot,t (3)

and where β and ρ are variable to weigh the two sides of the equation, the respect of the temperature setpoint on one

side, and the energy consumption reduction on the other one. The choice of the cost function is based on the direct175
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Study Target

Control

Actions Methodologies

Data and

Season Period

Model

Free/Based

Single/Multi

Zone (n. of zones)

(Kou et al., 2021) Energy cost, ther-

mal comfort, and

utility-level load vi-

olation

Switching the

HVAC on/off

(continuous)

DDPG, Alter-

nating Direction

Method of Multi-

pliers (ADMM),

Rule-based

30 Sum-

mer Days,

Cooling

Model-Free Single-Zone

(Du et al., 2021b) Energy cost, ther-

mal comfort

Temperature set-

point (continuous)

DDPG, DQN,

Rule-based

1 month,

Heating

Model-Free Multi-Zone (2)

(Du et al., 2021a) Energy cost, ther-

mal comfort

Temperature set-

point (continuous)

DDPG, Rule-based 1 month,

Heating and

Cooling

Model-Free Multi-Zone (2)

(Rahimpour

et al., 2020)

Energy cost, ther-

mal comfort

Switching the

HVAC on/off

(continuous)

DDPG, Approx-

imate Dynamic

Programming

(ADP), Rule-based

294 days,

Heating

Model-Free,

Model-Based

Single-Zone

(Gao et al., 2020) Energy cost, ther-

mal comfort

HVAC temperature

and humidity set-

points (continuous)

DDPG, Q-

Learning, SARSA,

DQN

10,000 hours,

Heating and

Cooling

Model-Free Single-Zone

(Ding et al., 2019) Energy consump-

tion, thermal

comfort, visual

comfort and indoor

air quality

HVAC setpoint,

lighting, blind

slat angle and

open % of window

(discrete)

Branching Dueling

Q-Network (BDQ),

DDQN, Rule-based

10 years,

Heating and

Cooling

Model-Free Single-Zone

(Brandi et al.,

2020)

Energy consump-

tion, thermal

comfort

Supply water tem-

perature (discrete)

DQN, Rule-based 3 months,

Heating

Model-Free Single-Zone

(Barrett & Lin-

der, 2015)

Energy cost, ther-

mal comfort

Switching Heating

and Cooling on/off

(discrete)

Q-Learning, Rule-

based

150 days,

Heating

Model-Free Single-Zone

(Zhang et al.,

2019)

Energy consump-

tion, thermal

comfort

HVAC setpoint

temperature, air

mass flow rate

(continuous)

Model-Based RL,

PPO, Rule-based

65 days,

Heating

Model-Free,

Model-Based

Single-Zone

(Wei et al., 2017) Energy cost, ther-

mal comfort

Air flow rate (dis-

crete)

Deep Q Learning,

Q Learning, Rule-

based

100 months,

Heating and

Cooling

Model-Free Single-Zone,

Multi-Zone (up

to 5)

(Fu & Zhang,

2021)

Energy cost, ther-

mal comfort

Indoor air tempera-

ture setpoint (con-

tinuous)

TD3-MPC, DDPG 100 days,

Heating

Model-

based,

Model-Free

Multi-Zone (5)

(Chen et al.,

2019b)

Energy consump-

tion, thermal

comfort

Supply indoor

air temperature

(discrete)

PPO-MPC 100 days,

Heating

Model-

based,

Model-Free

Single-Zone

(Solinas et al.,

2021)

Energy consump-

tion, thermal

comfort

Supply indoor

air temperature

(discrete)

DDQN, MPC,

Rule-based

3 months,

Heating

Model-Free Single-Zone

Proposed solution Energy consump-

tion, thermal

comfort

Supply air temper-

ature, air flow rate

(continuous)

DDPG, DDQN,

Rule-based

3 months,

Heating

Model-Free Single-Zone

Table 1: RL optimization studies
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proportionality of each of these control actions to the system’s energy consumption. Specifically, an increase in the

supply air temperature or the air mass flow rate leads to a corresponding increase in the energy consumption by the

HVAC system coil and the ventilation system, respectively. This allows the agent to optimize the reward quantity

by minimizing the use of the control actions as much as possible, thereby reducing the HVAC system’s energy

consumption. As in (Solinas et al., 2021) state s includes: the difference xsetpoint,t − xt (°C) between the setpoint180

and the indoor air temperature, with a 4 periods lag; the difference xsetpoint,t−xoutdoor,t (°C) between the setpoint

and the outdoor air temperature; the outdoor relative humidity RHoutdoor (%); the wind speed Windspeed (m/s);

the wind direction Winddir (degrees); the diffracted solar radiation Raddiff (W/m2); the direct solar radiation

Raddirect (W/m2); the number of hours before the start or the end of the next or the ongoing occupancy period,

Occstart and Occend (h) respectively. All inputs are pre-processed according to the MinMax normalization rule.185

The set of control actions ut, which the DDPG agent can perform, consists in the supply indoor air temperature

and the corresponding air mass flow rate.

Differently to what had been presented in (Solinas et al., 2021), however, the action space is now more complex

as it includes not only the air temperature control but also the air mass flow rate. Because of this increased

complexity, it has been deemed necessary to implement an algorithm for continuous action spaces, namely the190

Deep Deterministic Policy Gradient (Lillicrap et al., 2015). The DDPG algorithm can be considered a DDQN

(Mnih et al., 2015) for continuous action space. As shown in Algorithm 1, the DDPG is composed of two main

networks, a critic network Wω, which is just a Q network as in the DDQN model, and an actor-network µθ, which

is responsible for sampling actions around a certain mean µ. Both networks have their respective target networks

for training stabilization purposes. The parameter γ plays in the DDPG model a similar role than in a DDQN,195

as already noted in (Solinas et al., 2021). γ is employed to mediate between the two terms in the target Q∗

value calculation (line 11 in Algorithm 1), namely, the immediate reward rt and the expected long term reward

Qω(st+1, argmaxuQω′(st+1, µθ′(st+1))). Higher values for γ, close to 1, favour the maximization of long-term

reward, while lower values of γ, around 0.8, favour the maximization of immediate reward.

In the following three proposed implementations, the only changes to the illustrated algorithm regards the200

state-transition function fϕ and the number of episodes for which the agent is allowed to train.

The state-transition function fϕ represents the system dynamics and maps a set of inputs yt into the next state

st+1:

fϕ(yt)→ st+1 (4)

fϕ is the core of the proposed environment as it is necessary in order to provide accurate feedback to the learning

agent regarding the effects of its action on the world.205

It will be shown how different configurations provide different advantages and shortcomings for HVAC systems

optimization. As shown in Figure 1, three configurations are presented differing from one another by the way

they treat the fϕ state-transition function. In the first approach, a black-box model based on a neural network

is used to learn fϕ from historical data and predict new states accordingly. The black-box model is then used as

the environment to receive agent actions and output corresponding rewards and next states. In a second approach,210

a simulated building modelled in EnergyPlus is used to approximate fϕ and provide virtual data to the agent.

7



Algorithm 1 The DDPG algorithm for HVAC optimization.

1: Random initialize parameters ω, θ of critic network Qω and actor-network µθ, parameters ω′ ← ω of target critic network Qω′ and

parameters θ′ ← θ of target actor network µθ′

2: Initialize replay memory D, learning rate α and target network update parameter τ

3: while Episode < EPmax do

4: while Steps < Stepsmax do

5: Observe state st and sample action ut+1 = µθ(st) + ϵ where ϵ ∼ OU

6: Perform action ut+1 in the environment, get the reward rt+1, calculate the new temperature xt+1 = fϕ(st, ut) and observe

next state st+1 = [xt+1, dt+1]

7: Store (st, ut, rt, st+1) in the replay memory D

8: end while

9: while Update Steps < Update Stepsmax do

10: Sample a batch (st, ut, rt, st+1) of size Bs from memory D

11: Compute target Q value: Q∗(st, ut) = rt + γ ·Qω(st+1, argmaxuQω′ (st+1, µθ′ (st+1)))

12: Update Qω performing gradient descent step on (Q∗(st, ut)−Qω(st, ut))2

13: Update µθ performing gradient ascent step on Qω(st, µθ(s))

14: Update Qω′ parameters: ω′ ← τ · ω + (1− τ) ∗ ω′

15: Update µθ parameters: θ′ ← τ · θ + (1− τ) ∗ θ′

16: end while

17: end while

The training process thus happens directly on the simulated building. For both the black-box and the white-box

models, the testing has been performed on a simulated building taking the role of the actual real building. In

the last configuration, a simulated building is treated in all concerns as if it was a real-world building, providing

ground-truth values for the fϕ state-transition function. In this last approach, first an Imitation Learning phase215

based on historical data is adopted, acting as expert data for this pre-training phase. Then the agent is directly

deployed in an online fashion on the real building.

3.1. Black-Box Model

The most evident advantage of performing a system identification based on historical data from the target

building is that of creating a fast and reliable simulated model which can provide a good approximation of the220

state-transition function fϕ.

Compared to (Solinas et al., 2021), the environment under study is more complex as the air mass flow rate

control action has been introduced. For this reason, a more powerful system identification method has been deemed

necessary for better capturing the system dynamics.

More specifically, a neural network model has been implemented for approximating the non-linear state-transition225

function, mapping the initial internal temperature of the building xt, the set of control actions ut, namely the

distributed air temperature and the air mass flow rate, and a set of disturbances dt, consisting in the outdoor

temperature and the occupancy status of the building, into the following internal temperature x̂t+1

fϕ(xt, ut, dt)→ x̂t+1 (5)

The model consists of three stacked fully connected layers with Rectified Linear Unit (ReLU) activation function,

modelled in PyTorch.230
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Figure 1: Sequence diagram of the three proposed approaches

3.2. White-Box Model

Compared to a black-box modelling tool such as the system identification described in the previous section,

white-box modelling has the advantage of being based on an analytical thermodynamics simulation of the system.

The white-box model, in fact, simulates the real building in its most relevant thermal characteristics and behaviours.235

The main advantage is that such kind of modelling is more accurate in approximating the real-world state-transition

9



function fϕ. However, the development of such a model is a time-consuming and costly process, which involves

a thorough investigation of the target premises and a careful analysis of its structure, which has to be accurately

replicated in the chosen simulator.

When a white-box model is available, it is however the best option to approximate the building’s thermal240

response, without actually having to connect the learning agent to the target structure. For the purpose of this

project, the model has been implemented in EnergyPlus (Crawley et al., 2000), following the structure of Gym-like

environments (Brockman et al., 2016).

3.3. Online Learning

Due to the difficulties regarding the system identification model for the presented environment with a more245

complex action space, and the impracticability of simulating a white-box model for every new test building, a

different approach to HVAC optimization is presented here.

This approach is based on an online learning technique, in which the RL agent responsible for choosing the

correct action pair of temperature and air mass flow rate is directly connected to the target building, can perform

an action on the actual system and receive real-time feedback from it. By doing so, it is possible to gather the250

real thermodynamic response from the environment, overcoming the difficulties of a system identification model

and avoiding the need of costly and time-consuming white-box modelling. On the other hand, this approach brings

several shortcomings to be appropriately tackled. The agent, indeed, needs to quickly learn an effective strategy

to at least match the performance of the existing baseline controller. If this does not happen quickly enough, the

training cost regarding energy consumption and thermal comfort might be too high in the very first weeks or months255

for practical implementation. This would be an expected outcome as in the very first stages of learning RL agents

are basically clueless regarding what the optimal action is and tend to explore a lot of possibly inefficient strategies.

In a nutshell, compared to the two other kinds of methodologies, during online learning, the agent has to reach

a satisfactory level of performance in a very short time frame compared to the offline training methods described

previously.260

To overcome such difficulties, the online approach is integrated with a pre-training phase, where the agent is

exposed to historical data regarding the existing controller of the building and the system dynamics. This is based

on an Imitation Learning methodology (Hussein et al., 2017) which has been proven useful in robotics (Schaal, 1999),

3D navigation tasks (Hussein et al., 2018) and many other applications. At first, an expert system (a standard

rule-based HVAC controller, in our case) is recorded in order to generate a historical dataset representing a first-265

hand experience of the real-world dynamics for the learning agent. More specifically, the main feature of Imitation

Learning is that during this training phase, the agent cannot choose its own actions, but these are determined by

what the existing controller did during the recorded period. The agent is thus fed with expert actions and their

real consequences on the environment as recorded in the historical dataset, that is, the action set ut and consequent

state s′t are predetermined at each timestep by the historical real-world process. Once this pre-training phase is270

completed, the agent acts and learns in the simulated environment just as before.
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4. Experimental Setup

To rigorously evaluate the efficiency of HVAC control models, a comprehensive testing methodology is employed.

In this section, we present the simulation environment, training data, evaluation metrics, and specific setup for each

of the three models under examination: Black-box model, White-box model, and the Online Learning model.275

4.1. Simulation Environment

The experimental setup hinges on the EnergyPlus (E+) simulator, a top-tier building energy modelling (BEM)

software. For all testing, an EnergyPlus model, retrievable here (Chen et al., 2019a) and employed in (Chen et al.,

2019b), is used. This model is composed of a five thermal zones building, which is treated as a unique thermal zone

for the purpose of our work, that is, at each timestep t the average of the indoor air temperature of the five zones280

is computed and employed as xt, one of the primary component of state st. The proposed methods will be tested

against an EnergyPlus rule-based approach, a standard controller which performs predefined actions based on a

fixed schedule, depending on the time of the day, the day of the week and the season of the year. The EnergyPlus

(Crawley et al., 2000) baseline was chosen due to its comprehensive and accurate simulation capabilities, being

a state-of-the-art tool, developed by the U.S. Department of Energy for simulating buildings’ thermal dynamics.285

It provides a valuable benchmark for comparing and evaluating the performance of our proposed HVAC control

approach.

In all cases, two possible control actions are available for the proposed DDPG agent: continuous supply air

temperature increases, given the constraints of a minimum value of 0°C and a maximum of 6°C, and continuous air

mass flow rate provision, from a minimum of 0 m3/s to a maximum of 3.5 m3/s. When, for comparison purposes,290

the tests involve the DDQN algorithm, the control actions set is constructed as a combination of seven possible

temperature increments [0,1,2,3,4,5,6] and four air mass flow rate actions [0,1,2,3.5], making a total action space of

28 different action pairs.

4.2. Key Performance Indicators

To compare the results achieved by the three different approaches between them and w.r.t to the EnergyPlus295

baseline, we adopted the following KPIs that are i) the Percentage People Dissatisfied (PPD), ii) Coil Power and

iii) HVAC Power. Such KPIs are widely adopted in the literature presented in Section 2 to compare and validate

the algorithms w.r.t. baseline e.g. (Chen et al., 2019b; Ding et al., 2019). PPD is a metric that indicates the average

percentage of people that would be dissatisfied in certain thermal conditions. Anything below 20% is considered to

be acceptable by the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), which300

sets the standards on thermal comfort (American Society of Heating & Air Conditioning Engineers , Atlanta(2017).

Coil Power expresses the energy consumed by the heating coil in terms of kWh, while HVAC Power indicates

the overall energy consumption of the whole system. In a nutshell, a strategy that tends to supply warmer air

temperature at a lower mass flow rate will proportionally increase the Coil Power consumption, and vice versa a

strategy that mainly relies on the supply air mass flow rate is going to keep coil consumption at lower levels.305
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4.3. Black-box Model Setup

The Black-box model is a data-driven approach that learns the thermal dynamics of the building based on

historical data. For training and testing, one year of hourly data from E+ simulations was utilized. This dataset

includes a wide range of variables, from external and internal temperatures to solar radiation. Performance was

evaluated using two metrics: Percentage of People Dissatisfied (PPD) and HVAC system’s energy consumption310

(in kWh). Lower values in both metrics indicate better performance. The training data consists in the historical

dataset as created by a standard EnergyPlus scheduled rule-based controller, which acts as the baseline and the

expert system here. The neural network is a fully connected three layers model, of 32 neurons each with Rectified

Linear Unit (ReLU) activation function, modelled in PyTorch. Learning rate is set to 0.001 and batch size to 32.

4.4. White-box Model Setup315

The White-box model makes use of physical laws and architectural details of the building to simulate the

building’s thermal behaviour. It employs the same training and testing data, which can be retrieved at (Chen

et al., 2019a), as the Black-box model, obtained from one year of EnergyPlus simulations. Performance evaluation

is identical to the Black-box model, employing PPD and energy consumption as metrics.

The proposed algorithm (DDPG) is tested against the model (DDQN) presented in (Solinas et al., 2021) which320

acts on discrete action spaces only. For a fair comparison, models are trained and tested on the same 3-months data

used in (Solinas et al., 2021). Both are tested on various levels of the γ hyper-parameter. As before, the EnergyPlus

scheduled controller is adopted as the baseline. This literature baseline was chosen because it represents our previous

work in the development of control strategies for a similar, albeit less complex, HVAC system. This allows us to

evaluate the progress and improvements made in our current work compared to our previous methodologies.325

Two scenarios are presented in which internal loads are modelled differently. Internal loads are all those en-

dogenous factors, apart from the HVAC system itself, that contribute to the heating of the building, such as the

electrical appliances and the presence of people inside the building’s areas. In the first scenario, no internal loads

are modelled, showing the algorithm’s ability in learning how to optimize the building energy distribution without

additional factors. In the second scenario, internal loads are present and strongly influence the internal thermody-330

namics of the system, allowing the RL agent to exploit their presence by consuming significantly less energy than

in the previous case.

4.5. Online Learning Model Setup

The Online Learning model employs an iterative process to learn and improve its performance over time.

For simplicity, the white-box EnergyPlus model acts here as the real building on which the methods are tested335

online. In a real world scenario, the building simulated with EnergyPlus can be easily replaced by a real world

building equipped with Internet of Things devices that monitor the environmental conditions and report the needed

data.

Two scenarios are proposed in which the chosen algorithm (DDPG), is tested in an online setting without

previous training and with previous offline imitation learning training. In the latter case, the RL algorithm is340

shown one year of baseline EnergyPlus controller actions, which enables it to start the online training phase with

previous, though limited, knowledge of the environment.
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Compared to tested Black-box and White-box models, the whole year is considered in this experimental cam-

paign. This has been proven useful for increasing the learning capabilities of the online RL agent. Despite this,

the action space is the same as the other tested approaches, for the whole year. As only increments in the supply345

indoor air temperature are possible in the proposed methodology, cooling actions were not allowed for neither the

rule-based approach nor the RL agent, resulting in poorer performances in terms of thermal comfort for both ap-

proaches during the summer months. For this reason, despite showing results for the whole period, we will focus

the discussion of the results on the heating season.

5. Results350

In this section, results are presented for the three proposed approaches, namely the offline learning based on the

system identification black-box model, the offline learning based on a white-box model and an online and Imitation

Learning approach.

5.1. Black-Box Model

In this section, results are presented for the offline learning methods based on the newly developed system355

identification model (see Section 3.1).

Figure 2: Training loss on historical data for the system identification model

The neural network is capable of quickly learning from the provided historical dataset. Indeed, after just 30

epochs, the loss on the training- and the test-set gets as low as 0.34 °C. No hyperparameters optimization campaign

has been carried out, because the model performs in a satisfactory way on the testing dataset, while lacking to

transpose these results when employed as the state-transition function fϕ during the training of the RL agent.360
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In fact, despite the good performance on the historical dataset as observable in Figure 2 for both the training

and test loss, the system identification seems to not be able to accurately represent the state-transition function

fϕ for all action pairs that the agent implements during its training phase, as shown in Table 2. The agent is

completely not able to match the performance of the rule-based controller in terms of thermal comfort, meaning

that the state-transition function, upon which the thermal response and thus its reward is calculated, led it strongly365

off the path. On the contrary, the energy consumption term in the reward function does not depend on the state-

transition function, but it is simply represented as the cost of performing a certain action proportionally to its

intensity, making the agent much more able to perform efficiently in that regard.

E+
Proposed DDPG

γ = 0.8 γ = 0.9 γ = 0.99

PPD 19.33% 45.76% 41.01% 42.89%

Coil Power 6317 kWh 1209 kWh 1320 kWh 1660 kWh

HVAC Power 10076 kWh 5309 kWh 6471 kWh 6850 kWh

Table 2: Results Comparison for Black-Box Model and EnergyPlus (E+) baseline

The poor performances of the system identification model are most likely due to the fact that adding a second

control variable, namely the mass air flow rate, made the environment significantly more complex and thus harder370

to encompass with a system identification model. On top of that, the historical data upon which the model is

trained exhibits a very narrow action space. This is due to the rule-based controller routine scheduling, which often

chooses the same action pairs for getting the building’s internal temperature to the required setpoint, and thus

does not allow the system identification model to really encompass all possible action pairs and their effects on the

system thermal dynamics. A larger historical dataset, consisting of a much greater variety of control action pairs375

and their direct consequences on the building thermal response would most likely allow significant improvements

to the system identification model introduced here. This greater variety of actions is however seldom available and,

in most cases, unfeasible to collect as it would require, in real-case scenarios, that the standard controller performs

many potentially inefficient control action pairs.

5.2. White-Box Model380

This section presents results where the RL algorithm is directly trained on a white-box model such as that of

EnergyPlus (see Section 3.2). This is a perfectly viable approach whenever detailed modelling of the target building

is present.

When no internal loads are present, the agent can fulfil its task only by relying on temperature increments in

the supplied air, as no other internal factor helps raising the temperature. Results for different values of γ are385

shown in Table 3: higher γ favours thermal comfort, lower γ favours energy saving, as observed and discussed more

extensively in (Solinas et al., 2021). The observed results clearly indicate how the DDPG algorithm is doing a

better job at both respecting the thermal comfort of users and reducing energy consumption than the rule-based

approach and the DDQN algorithm. More specifically, Table 3 shows how the proposed method can reach up to 50%

overall energy consumption reduction with respect to the EnergyPlus standard controller, and up to 29% reduction390
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E+
Proposed DDPG DDQN(Solinas et al., 2021)

γ = 0.8 γ = 0.9 γ = 0.99 γ = 0.8 γ = 0.9 γ = 0.99

PPD 25.11% 26.97% 23.85% 21.89% 27.12% 30.40% 27.82%

Coil Power 12765 kWh 5672 kWh 6617 kWh 9400 kWh 8311 kWh 9582 kWh 12816 kWh

HVAC Power 15132 kWh 7508 kWh 8471 kWh 11278 kWh 10509 kWh 11835 kWh 14838 kWh

Table 3: Results Comparison for White-Box Model, EnergyPlus (E+) baseline and DDQN baseline, no Internal Loads

with respect to the DDQN literature baseline, respectively from 15132 kWh for the EnergyPlus controller and from

10509 kWh for the DDQN baseline to 7508 kWh. These results are obtained by keeping the thermal comfort (PPD)

increase under 8% with respect to the rule-based controller, from a PPD of 25.11% to 26.97%, while even slightly

improving thermal comfort over the literature baseline. On top of that, if thermal comfort is considered as the

main goal of the optimization, thus selecting a higher value for γ, a PPD increase of almost 10% is achievable with395

respect to the baseline controller, from 25.11% to 21.89%, while still reducing the energy consumption of around

26%.

E+
Proposed DDPG DDQN(Solinas et al., 2021)

γ = 0.8 γ = 0.9 γ = 0.99 γ = 0.8 γ = 0.9 γ = 0.99

PPD 19.33% 14.58% 16.38% 16.95% 21.13% 20.90% 19.89%

Coil Power 6317 kWh 931 kWh 1511 kWh 3109 kWh 2090 kWh 932 kWh 4890 kWh

HVAC Power 10076 kWh 3265 kWh 4200 kWh 5975 kWh 5378 kWh 4296 kWh 7589 kWh

Table 4: Results Comparison for White-Box Model, EnergyPlus (E+) baseline and DDQN baseline, with Internal Loads

More surprisingly, when internal loads are present, as shown in Table 4, the agent is actually capable of making

use of this variable by drastically reducing the coil energy consumption by 85% with respect to the EnergyPlus

baseline, from 6317 kWh to a mere 931 kWh, while also increasing the thermal comfort by around 25% with respect400

to the EnergyPlus and the literature baseline, from a PPD of respectively 19.33% and 20.90% to 14.58%. The

proposed DDPG agent is capable of achieving such results by exploiting the fact that, in the specific use-case

scenario, electrical appliances and people present in the building already provide all the heat required to warm

the building up to the target setpoint, and not much additional heating power is needed. The agent mainly relies

on supply air mass flow rate, in order to maintain good thermal conditions and account for possible overheating,405

therefore reducing the overall HVAC’s consumption less drastically by around 65% and 24% with respect to the

two baselines, from respectively 10076 kWh for EnergyPlus and 5378 kWh for the DDQN to 3265 kWh for the

proposed DDPG method.

In general, it can be observed that the DDQN results are generally worse than that of DDPG, considering

each different set of values for the hyperparameter γ. This might be due to the fact that the added control action410

variable, the supply air mass flow rate, severely increased the discrete action-space employed by this kind of RL

agents, thus making the optimization harder to achieve with the same level of performance. Also, discrete action

spaces allow for less fine-grained control over the HVAC system, reducing the overall effectiveness of the agent.
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5.3. Online Learning

This section presents the results achieved by the proposed online learning (see Section 3.3), directly connected415

to the target building.

Figure 3: Three years comparison between the EnergyPlus (E+) baseline and the proposed approach without pretraining,

in terms of monthly average PPD

In Figure 3 and 4, it is possible to observe the results for the online training process without previous Imitation

Learning. It is evident how the online DDPG agent performs worse than the baseline in the whole first year in

terms of PPD (see Figure 3), and for the most part of the year in terms of energy consumption (see Figure 4).

Only during the third year of training, the RL agent gets closer to the performance of the rule-based approach in420

terms of energy consumption, while the training has to get to its second year to match the performance in terms of

thermal comfort.

When considering the agent that went through a previous Imitation Learning phase on historical data, it is

immediately evident how this greatly enhances the agent performance since the very first moments of action. As

shown in Figure 5 the DDPG agent performs slightly worse than the baseline in terms of PPD, in the heating425

period, especially during its first month of training, while improving from the second month onward. Figure 6

shows significantly more promising results as the agent is able to drastically reduce the energy consumption from

the very first day of action and especially so in the whole heating season.

Table 5 reports the overall results after the first year of training for the rule-based EnergyPlus controller, the

online DDPG algorithm without pre-training and with Imitation Learning pre-training. It is evident how the430

Imitation Learning technique provides significant benefits in terms of both PPD reduction and especially energy

consumption with respect to the same online algorithm without the pre-training phase. Similarly, when compared

with the EnergyPlus controller, the proposed DDPG and Imitation Learning approach is able to reduce energy

consumption from the very first year by around 35%, from 20056 kWh to 13033 kWh, while only slightly increasing

the PPD by less than 10%, from 26.92% to 29.43%.435
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Figure 4: Three years comparison between the EnergyPlus (E+) baseline and the proposed approach without pretraining,

in terms of monthly total energy consumption

Figure 5: Three years comparison between the EnergyPlus (E+) baseline and the proposed approach with Imitation Learning

pretraining, in terms of monthly average PPD

E+
Proposed DDPG

No Imitation Learning Imitation Learning

PPD 26.92% 35.85% 29.43%

Coil Power 11102 kWh 18954 kWh 5821 kWh

HVAC Power 20056 kWh 33319 kWh 13033 kWh

Table 5: Results for the RL online training scenario on 1 year data

Figure 7 displays the monthly rewards achieved by the DDPG agent, both with and without the Imitation

Learning phase. Figure 8 shows the cumulative rewards over time for both agents. The cumulative reward is a
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Figure 6: Three years comparison between the EnergyPlus (E+) baseline and the proposed approach with Imitation Learning

pretraining, in terms of monthly total energy consumption

measure of the total reward that the agent has accumulated over time, and it can provide an understanding of

the overall performance of the agent. The reward metric has been presented in Section 3 in Eq. 2. The blue

line represents the agent that was pre-trained with Imitation Learning, while the red line represents the agent440

without any pre-training. It can be again observed from the monthly rewards that the agent performing Imitation

Learning achieves higher rewards especially in the very first months of training, compared to the agent without

Imitation Learning. This further highlights the impact of the Imitation Learning on helping the agent grasp a good

understanding of the dynamics of the HVAC system. Again, it is possible to note the seasonal nature of the data,

with the agent being constrained to perform poorly during the summer months (from May to September) because445

no cooling action can be performed.

It is thus clear how the proposed method allows for a quick and efficient HVAC control of buildings, where

energy consumption is reduced from the first few weeks of operation with respect to the traditional scheduled

controllers. Furthermore, in this approach, the RL agent only requires a historical dataset in order to perform an

offline Imitation Learning phase, and is capable of being deployed online on the target real-world building without450

the need for costly energy white-box modelling of the structure.

E+
Proposed DDPG DDQN

(Solinas et al., 2021)
System

Identification

White

Box

Online

Imitation Learning

PPD 19.33% 45.76% 14.58% 21.09% 20.90%

Coil Power 6317 kWh 1209 kWh 931 kWh 1229 kWh 932 kWh

HVAC Power 10076 kWh 7508 kWh 3265 kWh 4316 kWh 4296 kWh

Table 6: Comparison of results for the three proposed approaches and the two baselines on 3 months data

Table 6 presents an overall comparison of all the approaches presented in this work, including an EnergyPlus
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Figure 7: Monthly Rewards for the DDPG agent with and without Imitation Learning

Figure 8: Cumulative Rewards over Time for the DDPG agent with and without Imitation Learning

baseline and a literature baseline (Solinas et al., 2021). Results have been gathered by a testing phase on 3 months

of data, in order to be consistent with the literature baseline. The online learning algorithm has been pre-trained

following the Imitation Learning methodology and then directly deployed on the building. Its results correspond455

then to its very first 3 months of actual learning. Despite being the best performer in terms of both thermal comfort

and energy consumption reduction, the approach based on a white-box modelling of the target building is costly,

in terms of both computational resources and time, and thus not always feasible in all scenarios. The last proposed

approach, based on an Imitation Learning pre-training phase on historical expert data and online learning on the
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target building is less performing overall but carries significant advantages in terms of being able to be almost460

immediately deployed on the target real building with negligible loss in terms of performance.

6. Concluding Remarks

This paper has presented three different approaches to HVAC optimization through Reinforcement Learning

techniques. In the first approach, a system identification model is adopted in which a neural network is trained on a

3-months historical dataset, and a DDPG agent is trained receiving thermal response feedback on the actions taken465

directly by the trained system identification model. This approach did not provide satisfactory results, as opposite

to what is shown in (Solinas et al., 2021). This is most likely due to the increased complexity of the action space

in the proposed use-case scenario and the possible overfitting of the historical training dataset.

In the second approach, a white-box model is used to simulate the building thermal response and train the

DDPG agent. As anticipated, this method led to superior outcomes as the simulation accurately represents the470

state-transition function that governs the system’s thermodynamics. Theoretically, the white-box model holds a

clear edge due to its close approximation of the physical system, which enables optimal energy consumption and

comfort outcomes. However, despite this theoretical superiority, it is often impractical in real-world applications due

to the extensive costs and time demands. Thorough modelling of each building and their HVAC systems—necessary

for control and optimization—can be prohibitively expensive and time-consuming, limiting the approach’s overall475

feasibility. Thus, while the white-box model approach provides the best performance in a controlled setting, its

implementation costs highlight the necessity for alternative, more practical solutions.

Finally, an approach is presented in which the DDPG agent is trained directly on the target building, follow-

ing an offline phase of imitation learning where it is exposed to a historical dataset gathered from a traditional

rule-based controller operating on the building. This online approach demonstrates that, after only a few days of480

training, the proposed agent can match and even surpass the performances of the baseline controller in terms of

energy consumption reduction, while maintaining user thermal comfort. Our proposed methodology addresses a

key gap in the current state-of-the-art HVAC optimization research. Traditional RL methods are limited by the

need to use extensive and costly simulations for training before practical application to mitigate the risk of, when

applied to real-world systems, taking numerous suboptimal actions that might impair system efficiency and user485

comfort. Conversely, our approach incorporates an offline imitation learning phase, enabling the agent to start

immediate interaction with the target real-world environment with good efficiency, without the need for complex

modelling simulations. Although this method’s performance may be slightly lower than the white-box model due to

the inherent limitations in directly capturing the physical system’s nuances, this minor trade-off in accuracy is more

than offset by the substantial gains in efficiency and applicability. This approach is therefore viable for real-case490

scenarios where only historical data concerning the target building is typically available, and the agent needs to

rapidly learn an optimal strategy to minimize time spent exploring ineffective and costly strategies.

In future work, we plan to refine our system identification model by investigating the impact of various hy-

perparameters, such as the number of connected layers in the neural network and learning rates, on the model’s495
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performance. This examination will contribute to better understanding why our current model fell short of expec-

tations and will provide a basis for improvement. Additionally, we aim to explore more complex scenarios involving

multiple thermal zones, which would enhance the realism and applicability of our approach. Moreover, through

the utilization of Internet of Things capabilities for environmental variable monitoring and control, we intend to

conduct a practical application of our approach to a real-world building. This would offer a more robust validation500

of its effectiveness and help identify any potential shortcomings. We believe that this iterative and critical approach

to refining our methodology will result in substantial improvements in HVAC optimization, paving the way for more

efficient and comfortable building environments.
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Rahimpour, Z., Verbič, G., & Chapman, A. C. (2020). Actor-critic learning for optimal building energy

management with phase change materials. Electric Power Systems Research, 188 , 106543. URL: https:

//www.sciencedirect.com/science/article/pii/S0378779620303473. doi:https://doi.org/10.1016/j.

epsr.2020.106543.555

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3 , 233–242.

Solinas, F. M., Bellagarda, A., Macii, E., Patti, E., & Bottaccioli, L. (2021). An hybrid model-free reinforcement

learning approach for hvac control. In 2021 IEEE International Conference on Environment and Electrical

22

https://www.sciencedirect.com/science/article/pii/S0378779620307574
http://dx.doi.org/https://doi.org/10.1016/j.epsr.2020.106959
https://www.sciencedirect.com/science/article/pii/S030626192031535X
http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2020.116117
http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2020.116117
http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2020.116117
http://dx.doi.org/10.1109/ACCESS.2021.3114161
http://dx.doi.org/10.1109/JIOT.2020.2992117
http://dx.doi.org/10.1109/OAJPE.2021.3075426
https://www.sciencedirect.com/science/article/pii/S0378779620303473
https://www.sciencedirect.com/science/article/pii/S0378779620303473
https://www.sciencedirect.com/science/article/pii/S0378779620303473
http://dx.doi.org/https://doi.org/10.1016/j.epsr.2020.106543
http://dx.doi.org/https://doi.org/10.1016/j.epsr.2020.106543
http://dx.doi.org/https://doi.org/10.1016/j.epsr.2020.106543


Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)

(pp. 1–6). doi:10.1109/EEEIC/ICPSEurope51590.2021.9584805.560

Soyguder, S., Karakose, M., & Alli, H. (2009). Design and simulation of self-tuning pid-type fuzzy adap-

tive control for an expert hvac system. Expert Systems with Applications, 36 , 4566–4573. URL: https:

//www.sciencedirect.com/science/article/pii/S0957417408002200. doi:https://doi.org/10.1016/j.

eswa.2008.05.031.

Tiwari, S., Jain, A., Ahmed, N. M. O. S., Alkwai, L. M., Dafhalla, A. K. Y., & Hamad, S. A. S. (2022). Machine565

learning-based model for prediction of power consumption in smart grid-smart way towards smart city. Expert

Systems, 39 , e12832.

United Nations (a). Energy, UN-Habitat. URL: https://unhabitat.org/urban-themes/energy/.

United Nations (b). World Urbanization Prospects, Population Division. URL: https://population.un.org/wup/.

Vázquez-Canteli, J. R., & Nagy, Z. (2019). Reinforcement learning for demand response: A review of algorithms570

and modeling techniques. Applied energy , 235 , 1072–1089.

Wang, Z., & Hong, T. (2020). Reinforcement learning for building controls: The opportunities and challenges.

Applied Energy , 269 , 115036.

Wei, T., Wang, Y., & Zhu, Q. (2017). Deep reinforcement learning for building hvac control. In In Proc. of DAC

2017 (pp. 1–6).575

Wigle, L. (2014). How the internet of things will enable vast new levels of efficiency alan rose, intel corporation dr.

subramanian vadari, modern grid solutions, .

Yang, Z., & Becerik-Gerber, B. (2014). Coupling occupancy information with hvac energy simulation: A systematic

review of simulation programs. In Proceedings of the Winter Simulation Conference 2014 (pp. 3212–3223).

doi:10.1109/WSC.2014.7020157.580

Zhang, C., Kuppannagari, S. R., Kannan, R., & Prasanna, V. K. (2019). Building hvac scheduling using reinforce-

ment learning via neural network based model approximation. In In Proc. of BuildSys ’19 BuildSys ’19 (p.

287–296). New York, NY, USA: Association for Computing Machinery. URL: https://doi.org/10.1145/

3360322.3360861. doi:10.1145/3360322.3360861.

Zhang, Z., & Lam, K. P. (2019). Gym-eplus. https://github.com/zhangzhizza/Gym-Eplus.585

23

http://dx.doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584805
https://www.sciencedirect.com/science/article/pii/S0957417408002200
https://www.sciencedirect.com/science/article/pii/S0957417408002200
https://www.sciencedirect.com/science/article/pii/S0957417408002200
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2008.05.031
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2008.05.031
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2008.05.031
https://unhabitat.org/urban-themes/energy/
https://population.un.org/wup/
http://dx.doi.org/10.1109/WSC.2014.7020157
https://doi.org/10.1145/3360322.3360861
https://doi.org/10.1145/3360322.3360861
https://doi.org/10.1145/3360322.3360861
http://dx.doi.org/10.1145/3360322.3360861
https://github.com/zhangzhizza/Gym-Eplus

	Introduction
	State of the art
	Methodology
	Black-Box Model
	White-Box Model
	Online Learning

	Experimental Setup
	Simulation Environment
	Key Performance Indicators
	Black-box Model Setup
	White-box Model Setup
	Online Learning Model Setup

	Results
	Black-Box Model
	White-Box Model
	Online Learning

	Concluding Remarks

