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Abstract—Quantum Machine Learning has gained significant
attention in recent years as a way to leverage the relationship
between quantum information and machine learning. Principal
Component Analysis (PCA) is a fundamental technique in ma-
chine learning, and the potential for its quantum acceleration
has been extensively studied. However, an algorithmic end-to-end
implementation remains challenging. This paper covers quantum
PCA implementation up to extracting the principal components.
We extend existing processes for quantum state tomography to
extract the eigenvectors from the output state, addressing the
challenges of dealing with complex amplitudes in the case of
non-integer eigenvalues. Finally, we apply our implementation to
a practical quantum finance use case related to interest rate risk,
and present the results of our experiments.

Index Terms—quantum computing, quantum machine learn-
ing, principal component analysis, quantum tomography, interest
rate risk, quantum finance

I. INTRODUCTION

Quantum Machine Learning (QML) is a broad definition
encompassing many techniques that have garnered significant
attention within the scientific community in the last decade
[1]–[5]. Two distinct outlooks emerge from the literature: near-
term QML, which replaces a machine learning model with a
generic quantum computation, and a fault-tolerant machine
perspective that evaluates algorithms based on asymptotic
computational complexity. The latter focuses on improving
existing methods (rather than developing new ones) by explor-
ing how a quantum computer could perform the same com-
putation asymptotically faster than classical machine learning
techniques [6].

A popular strategy in this context applies quantum routines
for solving linear algebraic problems. Many algorithms that
involve inverting matrices or finding eigenvalues and eigen-
vectors can be reduced to these problems. The underlying
principle of the linear algebra approach in QML is to encode
the matrix into a quantum state and apply various methods to
process it efficiently [6].

Reference [7] was the first to propose a quantum algorithm
for Principal Component Analysis (PCA) by combining some

of the most promising techniques in this field. In particular, by
employing density matrix exponentiation and quantum matrix
inversion [8], the authors derive a quantum PCA approach
that, applied to an unknown low-rank density matrix, reveals
the matrix’s eigenvectors and eigenvalues in quantum form,
providing an exponential advantage. A variation of this algo-
rithm was later employed in [9] to propose the application
of quantum PCA in pricing financial derivatives. Moreover,
proposals based on the Quantum Singular Value Thresholding
(QSVT) algorithm [10] have emerged in recent years [11],
[12].

Despite these progresses, the quantum PCA algorithm still
misses an end-to-end implementation. One of the challenges
resides in building a generalized algorithmic approach for the
quantum state tomography process used to extract multiple
eigenvectors, especially in the presence of complex amplitude
states. Additionally, some of the most efficient implementa-
tions of quantum PCA cannot deal with matrices with non-
integer eigenvalues [12]. To advance the field, a coherent and
general code implementation that deals with these shortcom-
ings, is needed.

In this paper, we briefly introduce the main concepts
regarding Quantum PCA in Section II, then in Section III
we present a detailed implementation based on the open-
source Qiskit SDK [13] that can handle matrices with arbi-
trary eigenvalues. Our implementation includes the necessary
state tomography process for extracting multiple eigenvectors
from the output state, extending and adapting the approach
presented in [14]. We provide a detailed description of this
process, addressing the challenges of dealing with complex
amplitude states. Section IV contains the complexity analysis
for the resulting methodology. Finally, in Section V we apply
our implementation to a practical and relevant quantum finance
use case [15] and summarize our conclusions in Section VI.

II. QUANTUM PRINCIPAL COMPONENT ANALYSIS

PCA is a multivariate statistical technique for data reduction
and pattern recognition in complex datasets. The method is
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based on a linear transformation of the original data into a
new coordinate system, where the variables are uncorrelated
and sorted in order of importance, allowing for dimensionality
reduction while preserving most of the variability of the
original data [16]. The transformed variables called principal
components are calculated as linear combinations of the orig-
inal ones. PCA is widely used in various fields, such as image
processing, finance, and biology. In order to perform PCA, it is
necessary to compute the eigenvalues and eigenvectors of the
input matrix containing the original dataset. The eigenvectors
represent the directions of maximum variance in the data,
while the eigenvalues represent the variance each eigenvec-
tor explains. This process can be computationally intensive,
particularly for large datasets.

In this regard, a quantum algorithm with exponential advan-
tage for PCA of non-sparse density matrices was proposed [7]
and later extended to non-Hermitian and non-square matrices
via embedding matrices [17]. We now proceed to illustrate its
main steps.

A. Data Loading

First, it is necessary to prepare the initial quantum state
through amplitude encoding of the input matrix A ∈ RN×N

with tr [A] = 1.

|ψA⟩ =
N∑
i=1

N∑
j=1

Aij |i⟩|j⟩ =
r∑

k=1

σk |uk⟩ |uk⟩ (1)

where r is the rank of the matrix, σk are the singular values
and uk are the singular vectors of A. The second equality
is true due to the Gram-Schmidt decomposition. Note that if
tr [A] ̸= 1, it is sufficient to add a classical preprocessing step
and normalize the matrix with respect to its trace and then,
postprocess the output multiplying the obtained eigenvalues
by the trace itself.

B. Unitary Transformation

A core operation is the efficient construction of the unitary
transformation e−iAt, fundamental for phase estimation. In
this regard, there are proposals for an efficient preparation that
works with low-rank matrices [7], [17]. It assumes the ability
to access multiple copies of A, which is true in our case. Under
this assumption, the technique allows to efficiently generate
e−iAt with accuracy ϵ in O

(
t2ϵ−1

)
steps.

C. Phase Estimation

At this stage, it is possible to apply the quantum phase
estimation algorithm [18] to get the eigenvalues and, subse-
quently, the eigenvectors of the input matrix. To determine the
eigenvalues with an n-bit precision, we will need an n-qubit
counting register E.

|0⟩E |ψA⟩M
UPE−→

r∑
k=1

σk |λk⟩E |uk⟩ |uk⟩ (2)

Figure 1 illustrates the corresponding quantum circuit and the
steps of the phase estimation algorithm [19].

Reg. E |0⟩ −/ H • QFT †

Reg. M |ψA⟩ −/ e−iAt ⊗ I

Fig. 1. The circuit that performs phase estimation [19] to produce the state∑r
k=1 σk |λk⟩E |uk⟩ |uk⟩.

At this point, what we obtain in the output state is a
superposition of the eigenvalues and eigenvectors in the E and
M registers, respectively. State tomography is then required to
extract the principal components.

D. Quantum State Tomography

Quantum state tomography is a technique used to determine
the quantum state of a system [19].

There is a lack of clear and general approaches in the
literature for quantum PCA that address the issue of principal
component reconstruction. To fill this gap, we start from
the tomography proposed in [14] that illustrates a working
methodology for the reconstruction of pure states with real
amplitudes when we have an efficient unitary to prepare
the states. However, if the eigenvalues of the matrix are
not integers, an exact representation is impossible. Thus, the
tomography must be extended to fit the new constraints.

III. METHODOLOGY

In the following Sections, we will illustrate the main con-
tributions of our work.

A. Extended Quantum Tomography Approach

Here, we describe our general version of the algorithm pro-
posed in [14] that can handle states with complex amplitudes.

The extended algorithm includes two main steps: Probabil-
ity Estimation (1) and Sign Estimation (2). Step (1) provides
an estimate of the probability pi of each basis state composing
the output quantum state. Then, step (2) provides the sign for
each amplitude of probability value regardless of the nature of
the statevector (real or complex). This approximation works
fine because, even in the case of complex amplitudes (due to an
approximate representation of non-integer eigenvalues),

√
pi is

the modulus of the amplitude (|z| =
√
Re(z)2 + Im(z)2). In

this case, we have the contribution of the imaginary part that
could, in principle, affect the reconstruction of the principal
components. However, if the resolution, intended as the size
of the output registers E (rPE qubits), is sufficiently high, the
imaginary component will be sufficiently small (with respect
to the real one) to be safely approximated to zero.

Probability Estimation: This step is essentially similar to
that described in the original implementation [14]: for a unit
vector x ∈ Rd, Nc copies of the state |x⟩ that we want to
reconstruct are needed (with Nc = 36d ln d

δ2 dependent on the
length of the statevector and on δ, where ∥x̃ − x∥2 <

√
7δ

with high probability [14]).
In our case, we use the circuit resulting from the encoding

part of the input matrix and the PE operator and measure its
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registers (whose state will represent |x⟩) Nc times. In this
way, we obtain the estimates of the absolute value of the
probability amplitudes using a frequentist approach, namely as√
pi =

√
counti/Nc, where counti corresponds to the number

of times we observe the ith outcome,
Sign Estimation: To estimate the signs, it is necessary to

use a control qubit to create Nc copies of the state

1√
2
|0⟩

∑
i∈[d]

xi|i⟩+
1√
2
|1⟩

∑
i∈[d]

√
pi|i⟩ (3)

To obtain this state, we need two unitary operators, Ux and
Up, that, when applied to a target qubit |0⟩, allow us to obtain
Ux |0⟩ = |x⟩ and Up |0⟩ = |p⟩ (with |p⟩ =

∑
i∈[d]

√
pi |i⟩).

Starting with a circuit with t target qubits, we add a control
qubit and apply an H gate to put it in superposition. We now
have the state |+⟩ |0⟩t. Then, conditioned on the control qubit,
we apply operator Up or Ux to the target registers |0⟩t.

Then, we apply an additional H gate to the control qubit to
obtain the following state:

1

2

∑
i∈[d]

[(xi +
√
pi) |0, i⟩+ (xi −

√
pi) |1, i⟩] (4)

with the sums and differences on the target qubits (sums if
the control qubit assumes value 0, differences if it assumes
value 1). This construction recalls the well-known concept of
the Hadamard test [6].

Finally, we measure all qubits, including the control one.
we only consider counts relative to the control qubit being 0
and check for each ith state whether the number of counts
is greater than 0.4 · pi · Nc. Based on the result, we assign
a positive (if greater) or negative sign to the corresponding
value of

√
pi.

B. Principal Components Reconstruction

The next step is to focus on the qubits related to the
eigenvalues. Thus, we take the last rPE qubits and aggregate
the various pi for each eigenvalue. Then, we analyze the
resulting aggregated values to find the k biggest local maxima
(where k is the number of eigenvalues of the matrix). Those
are the estimated eigenvalues.

Moreover, we obtained the input circuit’s reconstructed
statevector. From register M, we can now get the eigenvec-
tors (factoring out the opportune coefficients) since they are
encoded in the register’s output distribution, as reported in
Equation 2.

C. Qiskit Implementation

All the code related to the implementation of the proposed
methodologies and their respective experiments is available in
a dedicated repository [20].

1) Initialization: The ideal approach would involve a
qRAM that loads the input matrix, as suggested in [11],
[12], [17]. Despite continuous progress [21]–[23], this protocol
still needs a more straightforward and efficient implementa-
tion [24], out of the scope of this work. Our initialization
protocol is instead based on the method illustrated in [25],

which is the basis of the StatePreparation class in Qiskit
[26]. Therefore, the second approach serves as a placeholder
for experiments on a reduced scale. Currently, the scientific
community is actively working on alternatives with potentially
non-exponential scaling for data loading [27], [28] and on
techniques for significant reduction of circuit depth [29], which
are showing progress in overcoming the limitations related to
efficient scaling. In future works, the authors intend to select
the most promising emerging techniques and test them on the
current implementation.

2) Probability estimation: We implement the phase estima-
tion using the dedicated PhaseEstimation class in Qiskit [30].
We provide as parameters the number of qubits we will use to
encode the eigenvalues (which will determine the resolution
of the estimated values) and the unitary transformation e−iAt.
Regarding the latter, the authors emphasize that they are
unaware of any implementation in Qiskit (or other SDKs) of
the method proposed in [7] and [17]. Therefore, in terms of
code, the operator is precomputed, similarly to what happens
for existing code implementations of analogous algorithms
[31].

3) Sign estimation: In regard to sign estimation, we lever-
age the properties of the QuantumCircuit class [32] to generate
a controlled operator with the circuit used for absolute value
estimation, which corresponds to Ux. Conversely, we reuse
the StatePreparation class to load the

√
pi and then create the

controlled operator Up. The final step is to add a control qubit
and apply these two operators to create the circuit shown in
Figure 2.

IV. COMPLEXITY ANALYSIS

Here, we will provide details on both space and time
complexity for each step of the Quantum PCA algorithm.

A. Space Complexity

1) Initialization: To encode the elements of an N × N
matrix, we will need N2 configurations. Therefore, the ini-
tialization step will require a register M with O(log(N2))
qubits.

2) Phase Estimation: As mentioned in Section II-C, using a
register E with n qubits we can determine the eigenvalues with
a resolution of 1

2n . Again, when performing phase estimation
on non-integer quantities, choosing an appropriate resolution
for the number of qubits is crucial. If the resolution is not
high enough, the imaginary part of the amplitudes may not
be negligible, leading to incorrect estimations. Therefore, the
appropriate choice of resolution is critical for the success of
phase estimation.

3) Sign Tomography: As can be evinced from Figure 2, this
step will require a register with a number of qubits equal to the
sum of those needed for the previous two steps (O(log(N2)+
n)) plus an additional control qubit.

B. Time Complexity

Here, the focus is on the number of operations required to
execute the quantum PCA algorithm.
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Reg. E |0⟩ /

Ux Up

Reg. M |0⟩ /

Control |0⟩ H X • X • H

Fig. 2. The circuit that performs sign estimation using the controlled operators Ux and Up plus a control qubit adequately prepared.

1) Initialization: Previous works assumed that matrix ele-
ments are stored in M via qRAM, which presents a time to
run the circuit proportional to O(log(N2)) where A ∈ RN×N .
Our Qiskit implementation makes use of the StatePreparation
class, whose peculiarities we discussed in Section III-C.

2) Unitary Transformation: Using the methodology in [7],
[17], if A is low-rank, e−iAt can be simulated using O(t2ϵ−1)
copies of A, where ϵ is the error of the Hamiltonian simulation.
Thus, we need T = O(t2ϵ−1) copies of A to implement e−iAt

to accuracy ϵ in time O(t2ϵ−1 log(N2)).
3) Phase Estimation: The complexity of the Quantum

Fourier Transform (QFT) needed for phase estimation is
O(n2) or O(n log(n)), which is significantly lower in compar-
ison to the Hamiltonian simulation. Therefore, the time com-
plexity for obtaining UPE is dominated by the contribution
described above: O(t2ϵ−1 log(N2)) an not by QFT.

4) Tomography: Ux will share the same complexity as
the base quantum PCA algorithm, again dominated by the
Hamiltonian simulation. For Up, we can use the same ap-
proach we used in B.1 to encode the estimated amplitudes
on a total of log(N2) + n qubits. As mentioned in Section
III-A, we need Nc = 36d ln d

δ2 copies of the sign estimation
circuits. Thus, the overall complexity for this step will be
O( 36d ln d

δ2 t2ϵ−1 log(N2)).

V. EXPERIMENTS

The authors deemed it valuable to propose a practical
use case for the experiments conducted. For this reason, we
use quantum PCA for a well-known process in the financial
domain: generating the evolution of interest rate curves.

TABLE I
MEANS AND STANDARD DEVIATIONS FOR ASSET RETURNS

Asset Mean Standard Deviation
Asset A 0.05 0.10
Asset B 0.03 0.08

A. Interest Rate Risk

Quantum finance is an emerging field that explores the
intersection between quantum computing and financial ap-
plications, intending to develop more efficient and accurate
financial models and algorithms [33]. Recently, there has been
an increasing interest in applying quantum algorithms to fields
of finance such as portfolio optimization [34], [35], option
pricing [36], [37], and risk management [38], [39].

Fig. 3. Counts for the phase estimation circuit executed using the IBM ideal
simulator.

Fig. 4. Aggregated probability (resulting from the counts in Figure 3) of
observing each possible eigenvalue.

Another critical concern for financial institutions is the
management of interest rate risk. In this context, a typical
use case consists of taking the daily computed differences
among tenors1 used to describe interest rate curves and use
PCA to reduce the variables and reproduce the same features
of the initial dataset. Essentially, an Autoregressive Moving

1Length of time until a financial instrument, such as a bond or a loan,
reaches maturity or is due to be repaid.
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Fig. 5. Counts for the sign estimation circuit executed using the IBM ideal simulator.

Average (ARMA) model [40] is built for each interest rate
tenor, cleaned from outliers, and the principal component
analysis is applied to residuals to focus on modeling volatility
movements.

For our purpose, we generated a matrix of appropriate
dimensions (2 × 2) with synthetic data validated by domain
experts who confirmed their plausibility.

A =

[
0.6507 0.2122
0.2122 0.3493

]
λ1 = 0.760 u1 =

[
0.889 0.459

]
λ2 = 0.240 u2 =

[
−0.459 0.889

]
In this example, the diagonal entries represent the variances
of each asset’s returns, while the off-diagonal entries represent
the covariance between hypothetical asset A’s and asset B’s
returns. To generate this synthetic data, we simulated 1000
scenarios of returns for each asset over a one-year period and
then calculated the covariance matrix based on these simulated
returns.

B. Results
Ideal simulations were performed using the ibmq qasm

simulator [41]. The parameters used were rPE = 2 (so the
eigenvalues will be estimated with a resolution of 1

22 ) and
Nc = 50000 shots. The experiment required simulating 4
qubits (2 qubits for register M and 2 for register E) for the
circuit related to amplitude estimation and 5 for that related
to sign estimation, which involves adding a control qubit.

The results of the amplitude estimation are shown in Figure
3. As can be seen, most of the executions produced the
expected output states (those related to the eigenvalues 01 and
11, i.e., 1 and 3 in binary, so 1

22 = 0.25 and 3
22 = 0.75

as demonstrated by Figure 4). This is consistent with the
claims in Section III-B Regarding the estimation of the signs
of the approximated amplitudes, Figure 5 shows the output
of the corresponding circuit. We emphasize that here, we are
interested in states where the first qubit from the bottom (the
control qubit) takes on a value of zero.

The authors deemed it essential to conduct experiments also
on actual QPUs. In particular, the tests were carried out using
the IBM Perth quantum machine, which presents 7 qubits and
a quantum volume of 32.

The outcomes of these experiments are available in the
above-mentioned repository [20]. While the results are rea-
sonably close to those of the ideal simulation in the case of
amplitude estimation , the same cannot be said for the sign
circuit. Here, the increase in depth entails a higher runtime
which brings decoherence phenomena.

VI. CONCLUSIONS

This paper proposes a detailed quantum PCA approach for
principal component extraction from covariance matrices. We
extend existing tomography methods to handle cases with
complex amplitudes, assuming that the imaginary part remains
small, which is a reasonable assumption if we use an adequate
resolution. We also present a Qiskit implementation of the
proposed algorithm and apply it to a relevant use case in the
financial domain. The results of our experiments demonstrate
how our method effectively provides the expected outcomes
for small-scale settings. Scaling the algorithm will require
effective error mitigation and correction protocols, as well as
a subsequent increase in quantum resources.

In future work, the authors aim to tackle the considerations
regarding an efficient data loading which remain highly rele-
vant, with recent publications showing promising results [28].
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