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A B S T R A C T

The major limitations of district cooling systems are the high capital costs, which make design optimization
tools necessary to maximize the potential benefits. Decision makers when designing district cooling have to
handle cost and demand uncertainties that further increase the investment risks. On the other hand, the possible
evolution of cooling demand during the years, shall be taken into account in the first design stages, in order
to allow network expansion in the future. In this paper, a novel two-stage stochastic programming model is
therefore proposed for the optimal design of district cooling networks under demand and cost uncertainty.
The model was also applied to a case study and the results showed that it is more convenient to build smaller
district cooling networks (and eventually enhance them in the future if the cooling demand and electricity
costs will increase) rather than building larger systems from the beginning. In addition, it was found that the
uncertainties in electricity cost and cooling demand are the ones that most influence the optimal solution. The
impact of the stochastic model was evaluated with respect to deterministic approaches, resulting up to 5% less
expensive in terms of expected cost and with a three years lower payback time. A second model formulation
was also implemented, with more rigid constraints, which limit the amount of pipes that can be installed in
a single branch. With this formulation, the model tends to connect more buildings and to install larger pipes
from the beginning, but the solution in terms of expected cost is only 0.4% more expensive than the more
flexible one. Lastly, it was analysed the impact of asset residual value at the end of project life, revealing that
neglecting it would lead to connecting more buildings initially, but in most scenarios the network would not
be expanded in the future.
1. Introduction

Building sector is responsible for 40% of global energy consump-
tions [1] and 33% of greenhouse gas emissions [2]. In particular, 18%
to 73% of building energy consumption is represented by the demand
for heating and cooling [3]. The latter has increased by more than twice
since 1990, being nowadays responsible for 8.5% of global electricity
consumption [4]. In addition, cooling demand during heat waves can
reach large peaks that affect the stability of the electrical grid. Demand
for space cooling is continuing to rise and currently accounts for 20% of
building electricity consumption. Moreover, it is expected that by 2050
more than 60% of households will be equipped with air conditioning
systems, since they are becoming more accessible, especially in emerg-
ing economies [5]. However, users tend to buy units whose efficiency is
about 50% lower compared to the best available technology. According
to the International Energy Agency, cooling sector is not on track
and requires major interventions in order to reach the sustainable
development goals. More actions are required to improve the efficiency
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of air conditioning systems and to promote energy saving measures
such as the implementation of passive cooling solutions or the proper
insulation of the building envelope with innovative materials [6]. In
this context, solar energy can also be effectively exploited to reduce
the electricity demand required for cooling, thanks to the integration
with absorption chillers [7,8] or desiccant cooling systems [9].

District cooling represents a suitable alternative to conventional
cooling systems, as they are estimated to be 40% more efficient and
can lead to 20% reduction of total life-cycle costs [10]. What is more,
if integrated with renewable energy sources additional savings can
be obtained [11]. In particular, cold water from lakes, rivers or seas
can be used to provide free cooling or to increase the efficiency of
the chillers [12]. Moreover, waste heat from industrial plants or data
centres can be converted into cooling through absorption chillers [13].
Thanks to cold energy storage, district cooling systems can also be
used to stabilize the electrical grid using power-to-cool technologies.
In these cases the chillers produce cooling power when the demand is
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Nomenclature

Indices

𝑐𝑒𝑛𝑡𝑟 Node of the centralized chiller
𝑗 Generic branch of the graph
𝑚 Generic pipe diameter
𝑠1 Generic first period scenario
𝑠2 Generic second period scenario
𝑡 Used to generalize 𝑡1 and 𝑡2
𝑡1 First time period
𝑡2 Sedond time period
𝑢 Generic building node
𝑣 Generic inner node

Input parameters

𝛥𝑇 Temperature difference between supply and
return lines (K)

𝜂𝑝𝑢𝑚𝑝 Pump efficiency (%)
𝜋𝑠1 Probability of scenario 𝑠1 (%)
𝜌 Water density (kg/m3)
𝐴 Incidence matrix of the graph (nondimen-

sional)
𝑎𝑖𝑗 Generic element of incidence matrix, where

𝑖 represents a generic node and 𝑗 an edge of
the graph considered (nondimensional)

𝑐𝑝 Water specific heat [kJ/(kg*K)]
𝑐𝑠1𝑐ℎ𝑖𝑙𝑙,𝐷𝐶 Capital cost of centralized chillers per unit

of power in scenario 𝑠1 (e/kW)
𝑐𝑠1𝑐ℎ𝑖𝑙𝑙,𝑖𝑛𝑑 Capital cost of individual chillers per unit of

power in scenario 𝑠1 (e/kW)
𝑐𝑠1𝑒𝑙 Electricity cost in scenario 𝑠1 (e/kWh)
𝑐𝐸𝑇𝑆,𝑢 Capital cost of the energy transfer station in

building 𝑢 (e)
𝑐𝑚𝑝𝑖𝑝𝑒 Cost per unit of pipe length, for pipes with

diameter 𝑚 (e/m)
𝐶𝑂𝑃𝐷𝐶 Coefficient of performance for centralized

chillers (nondimensional)
𝐶𝑂𝑃𝑖𝑛𝑑 Coefficient of performance for individual

chillers (nondimensional)
𝐺𝑒𝑥𝑡𝑢 Mass flow rate requested by building 𝑢

(kg/s)
𝑖𝑛𝑐𝑟𝑠1 Cooling increase rate in scenario 𝑠1 (%)

lower, that is stored and released when the cooling demand is larger.
This strategy allows not only to stabilize the electrical grid, but also
to install smaller chillers and reduce operation costs [14]. In district
cooling systems, chilled water is produced in one or more central plants
through electrical or absorption chillers or by using a natural cooling
source, as a large water basin. Through a piping system the chilled
water is distributed to the building substations. There the excess heat
is transferred to the chilled water, which then returns back to the
central plant through the return line [15]. These systems are usually
more efficient than individual cooling because they can easily exploit
renewable sources and are equipped with larger industrial chillers,
which have higher coefficients of performance. Moreover, thanks to the
cooling load diversity, the total demand curve is smoother with lower
peaks. As a consequence, the chillers in district cooling systems are
not oversized and can operate closer to design conditions, with better
2

performances, for most of the time [16]. t
𝐿𝑗 Length of branch 𝑗 (m)
𝑁ℎ𝑡1𝑢 Number of full load hours for building 𝑢 at

year 0 (h)
𝑝𝑚𝑖𝑛 Minimum pressure in the network (bar)
𝑄0

𝑢 Yearly cooling demand of building 𝑢 at year
0 (kWh)

𝑟 Discount rate (%)
𝑅𝑚
𝑗 Fluid dynamic resistance per unit of mass

flow rate (Pa*s2/kg2)

Sets

𝐸 Set of branches of the graph
𝐼 Set of all nodes in the graph
𝑀 Set of pipe diameters
𝑆1 Set of first period scenarios
𝑆2 Set of second period scenarios
𝑇 Union of first and second stages
𝑈 Set of building nodes
𝑉 Set of inner nodes in the graph

Model variables

𝛥𝑝𝑡2,𝑠1𝑗 Pressure drop in branch 𝑗 in the second time
period if scenario 𝑠1 occurred (Pa)

𝛥𝑝𝑡1𝑗 Pressure drop in branch 𝑗 in the first time
period (Pa)

𝐺𝑡2,𝑠1
𝑗 Peak mass flow rates flowing in branch 𝑗 in

time period 𝑡2 after revelation of scenario 𝑠1
(kg/s)

𝐺𝑡1
𝑗 Peak mass flow rates flowing in branch 𝑗 in

time period 𝑡1 (kg/s)
𝐺𝑐𝑒𝑛𝑡𝑟𝑡1 Mass flow rate flowing from centralized

chiller in the first time period (kg/s)
𝐺𝑐𝑒𝑛𝑡𝑟𝑡2,𝑠1 Mass flow rate flowing from centralized

chiller in time period 𝑡2 if scenario 𝑠1
occurred (kg/s)

𝐺𝑝𝑁ℎ𝑡1 Product between 𝐺𝑐𝑒𝑛𝑡𝑟𝑡1 𝑝𝑡1𝑐𝑒𝑛𝑡𝑟 and the ini-
tial number of full load operating hours
(kg/s*Pa*h)

𝐺𝑝𝑁ℎ𝑡2,𝑠1 Product between 𝐺𝑐𝑒𝑛𝑡𝑟𝑡2,𝑠1 𝑝𝑡2,𝑠1𝑐𝑒𝑛𝑡𝑟 and the
number of full load operating hours at
the end of first time period if scenario s1
occurred (kg/s*Pa*h)

𝑝𝑡1𝑖 Relative pressure at node 𝑖 in the first time
period (Pa)

𝑝𝑡2,𝑠1𝑗 Relative pressure at node 𝑖 in the second
time period, if scenario 𝑠1 occurred (Pa)

𝑆𝑖𝑧𝑒𝑡1𝑐𝑒𝑛𝑡𝑟 Capacity of centralized chiller installed in
the first time period (kW)

𝑆𝑖𝑧𝑒𝑡2,𝑠1𝑐𝑒𝑛𝑡𝑟 Capacity of centralized chiller installed in
the second stage if scenario s1 occurred
(kW)

The temperature difference between supply and return in district
cooling systems ranges between 6.7 ◦C and 11 ◦C, which is sensibly
ower than in district heating systems [17,18]. As a consequence, larger
ass flow rates, pipe diameters and pumping power are required.
onsequently, the capital and operation expenditures are larger for a
istrict cooling system. For this reason, district cooling is economically
easible in areas with large energy density(e.g thermal demand for
quared kilometre of land) [19]. If not properly planned and operated,

he advantages of this technology would be limited [20]. Optimization
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𝑆𝑖𝑧𝑒𝑡1𝑖𝑛𝑑,𝑢 Installed capacity of individual chiller for
building 𝑢 in the first decision stage (kW)

𝑆𝑖𝑧𝑒𝑡2,𝑠1𝑖𝑛𝑑,𝑢 Installed capacity of individual chiller for
building 𝑢 in the second decision stage if
scenario s1 occurred (kW)

𝑢𝑝𝑡1𝑐𝑒𝑛𝑡𝑟 Product between the variables 𝑝𝑡1𝑐𝑒𝑛𝑡𝑟 and 𝑦𝑡1𝑢
(Pa)

𝑢𝑝𝑡2,𝑠1𝑐𝑒𝑛𝑡𝑟 Product between the variables 𝑝𝑡2,𝑠1𝑐𝑒𝑛𝑡𝑟 and
𝑦𝑡2,𝑠1𝑢 (Pa)

𝑥𝑚,𝑡1𝑗 Binary variable that indicates if the diame-
ter 𝑚 is selected for branch 𝑗 in the first time
period (nondimensional)

𝑥𝑚,𝑡2,𝑠1𝑗 Binary variable that indicates if the diame-
ter 𝑚 is selected for branch 𝑗 in the second
stage for scenario 𝑠1 (nondimensional)

𝑥𝑧𝑠1𝑗 Auxiliary variable used to linearize the
product between 𝑥𝑡1𝑗 and 𝑧𝑠1𝑗 (nondimen-
sional)

𝑌 𝑡1
𝑗 Inverse of fluid dynamic resistance per unit

of mass flow rate in pipe installed in the first
stage in branch 𝑗 (kg*m)

𝑌 𝑡2,𝑠1
𝑗 Inverse of fluid dynamic resistance per unit

of mass flow rate in pipe installed in branch
𝑗 in the second stage for scenario 𝑠1 (kg*m)

𝑦𝑡1𝑢 Binary variable that indicates weather the
user 𝑢 is connected to the network in the
first time period (nondimensional)

𝑦𝑡2,𝑠1𝑢 Binary variable that indicates weather the
user 𝑢 is connected to the network in
the second stage if scenario 𝑠1 occurred
(nondimensional)

𝑧𝑡2,𝑠1𝑗 Binary variables that indicate weather a
new pipe is installed in branch 𝑗 in
the second stage, if scenario s1 occurred
(nondimensional)

tools are therefore necessary to support engineers and decision makers
in the planning of district cooling systems in order to minimize the costs
and the greenhouse gas emissions.

Different models have been developed and implemented for the
optimization of district heating and cooling systems. Concerning oper-
ation optimization, different models have been developed to optimize
the most impactful variables: the schedule of chillers and storages,
the pumps working conditions and the supply temperatures. Powell
et al. [21] developed a dynamic programming algorithm to optimize
the chillers and storage schedule in district cooling networks. The
results showed that thanks to this methodology it is possible to reduce
by 9.4% the energy consumption and to save up to 17.4% in terms of
electricity expenditures. Wang et al. [22] developed a hybrid model
for chiller operation and optimized it with a genetic algorithm. They
analysed the impact of each variable on the optimization and proposed
flexible search bounds in order to limit the range of the least influencing
variables. Zhang et al. [23] proposed an alternative operation strategy
consisting in providing a variable chilled water supply temperature.
The authors showed that the strategy would allow to reduce electricity
consumption by 19%. Chiam et al. [24] developed a hierarchical model
to optimize the operation of district cooling systems. The tool is formed
by a genetic algorithm at master level and a MILP at inferior level. This
model can optimize the whole system and compared to an optimization
limited to chillers operation, it allows to achieve further savings. Cox
et al. [25] developed a model predictive control strategy coupled with
3

a genetic algorithm to optimize the operation of a district cooling
network with thermal storage in real-time. The model allowed to save
up to 16% of the operation cost.

Regarding the design optimization of district heating and cooling
systems, models are used to optimize the layout, pipe diameters and the
position and size of pumps, central plants and storages. Zaw et al. [26]
developed an optimization tool, based on the interior point method,
to optimize the design and operation of chillers and thermal storages
in district cooling networks. They applied their model to the Singapore
case study and observed that it would allow to reduce the payback time
up to 20%. Mazzoni et al. [27] developed a platform for the master
planning of polygeneration systems and their optimal scheduling. By
testing the platform on a district cooling case study, they showed that
it would achieve up to 30% reduction of capital costs and up to 12%
of primary energy savings. Lo et al. [28] implemented a mathemat-
ical model to select the optimal pumping configuration in a district
cooling system. Compared to a baseline scenario, the optimal setup
would allow to reduce the pumping costs by 23%. Guelpa et al. [29]
developed a genetic algorithm to optimize the position of chillers
in a district cooling network, with the goal of minimizing the costs
for piping installation and pumping. Chan et al. [30] implemented a
genetic algorithm integrated with a local search approach to optimize
the layout of a district cooling network. They started from a graph
where the nodes are all connected to each others and determined the
spanning tree that minimizes piping and pumping costs. Zeng et al. [31]
implemented a genetic algorithm to select the optimal pipe diameters
in a district heating and cooling load. Moreover, they performed a
sensitivity analysis, which showed that electricity cost has low impact
on the optimal pipe sizes. Soderman [32] developed a MILP model to
optimize the position of chillers and storage in a district cooling net-
work that connects buildings with different demand profiles. Al-Noaimi
et al. [33] implemented a MINLP model to optimize the design of a
district cooling system. The objective of their optimization was to select
the network layout, the pipe diameters and the locations of chillers
and storages. The authors linearized non-linearities using reformulation
linearization techniques. The optimization results evidenced the posi-
tive impact of thermal energy storage on district cooling systems. Other
authors solved the network layout optimization problem using heuristic
approximate approaches, such as the minimum spanning tree [34,35]
or shortest path algorithms [36]. Others focused on the optimization of
the buildings to be connected to a district heating and cooling network.
Chow et al. [37] developed a genetic algorithm to find the optimal
percentages of different building types that in a district cooling system
would maximize the diversity factor and flatten the total demand curve.
Bordin et al. [38] optimized the expansion of an existing district heating
system with a MILP model. Pressure drops were approximated with
piecewise linear functions of mass flow rates, while pumping costs were
not considered, but lower and upper bounds were set to the pressure
variables.

Most of the existing papers propose models that address the de-
sign optimization with the logic ‘‘now or never’’. Only few authors
optimized the long-term planning of a district energy system. Butün
et al. [39] proposed an optimization approach for the long-term in-
vestment plan of an industrial district. The approach would guarantee
savings in operation costs up to 27%. Wirtz et al. [40] developed
two multiperiod optimization models for the design of fifth generation
district heating and cooling systems(5GDHC). The results showed that
these models, compared to a single period one, allow to achieve up to
17% of total cost savings.

Moreover, deterministic design optimization can lead to non-optimal
decisions, if real scenarios differ from the initial assumptions made in
the design phase. In this context, stochastic optimization models can
handle uncertainty and support robust decision making by selecting
the solution that works better for the combination of possible sce-
narios. Gang et al. [41] developed a method for the robust optimal
design of district cooling networks, taking into account equipment

reliability and the uncertainty of cooling load. Mavromatidis et al. [42]
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implemented a two-stage stochastic programming model for the design
of a distributed energy system under uncertainty. They considered
different sources of uncertainty, such as heat and electricity demands,
energy prices, solar radiation and the emission factor of the electrical
grid. The model optimized the size and technologies to be installed
(1st stage variables) and on the base of the scenario that occurs, it
optimizes the operation (2nd stage variables). Lambert et al. [43]
developed a multistage stochastic programming model to optimize the
design phasing and expansion of a district heating system. Their model
addressed the uncertainties related to costs and interest rates. Zhou
et al. [44] developed a two-stage stochastic programming model for the
optimal design of distributed energy systems. The peculiarity of their
model is that the first stage variables are optimized through a genetic
algorithm, while the uncertainty and second stage variables are handled
through a Monte Carlo method. Stevanato et al. [45] through a two-
stage stochastic programming model optimized the long-term sizing of
rural microgrid, taking into account uncertainty and load evolution.

None of the existing studies optimize the initial design and the
future expansions of a district cooling network while taking into ac-
count the possible evolution of cooling demand and the uncertainty of
electricity and capital costs, despite this represents a crucial analysis
to ensure low costs for such large investments and long life-cycle
infrastructure. In addition, the uncertainty linked to demand evolu-
tion and electricity cost should be properly handled in order to limit
the risk of oversizing or undersizing the whole network. A decision
maker should indeed plan a district cooling system also based on the
possibility that cooling demand could change in the future. In the
cases of demand increase, buildings that initially are not economically
feasible to be connected to a district cooling network, in a second
stage could be convenient to be connected, due to the higher savings
that district cooling would provide. As a consequence, the decision
makers should consider the possible future connections and network
expansions, already in the first design stage, by installing proper sized
pipes.

In this context, this paper proposes a two-stage stochastic model for
the optimization of district cooling systems under uncertainty. The de-
veloped model optimizes the initial design of a district cooling network
while taking into account for future expansion and the uncertainty of
different parameters, such as demand increase during the years, capital
costs and electricity price. In Section 2 the model is described in detail,
while Section 3 presents the case study used to test the model. The main
results are presented in Section 4 and discussed in Section 5. Finally,
conclusions are drawn in Section 6.

2. Stochastic programming model

The goal of this model is to optimize the design of a district cooling
system under uncertainty while taking into account the possible future
expansion in different scenarios. The model allows to define the initial
network to be installed and the buildings to be connected immediately.
In addition, the model takes into account the uncertainty of the main
parameters and includes the possibility to enhance the network at a
later stage, in case some conditions become particularly convenient for
district cooling. The model, therefore manages the risk of installing an
oversized network, which would be economically unfeasible, in case
of scenarios with lower potential of district cooling(i.e. low cooling
demand or low electricity cost). At the same time, the model, con-
siders the effect of a possible increase of district cooling potential
in the future. The objective is therefore to provide a network design
that can work well in all possible scenarios, as a function of their
probability to occur, and enlarge it in a second stage, if conditions
are sufficiently convenient. The model is formulated with the two-
stage stochastic programming paradigm [46]. This method treats the
uncertainty in a deterministic fashion, by assuming that the number
of possible scenarios is finite and that their probability of occurrence
is known in advance. On the other hand, the values of the uncertain
4

parameters that define the different scenarios are only revealed in a
second moment. The goal of a stochastic programming algorithm is
to optimize the first stage and second stage variables, minimizing the
expected value of the cost function, which in this case is characterized
by the sum of capital and operational expenditures. As a consequence,
the stochastic programming solution is not optimal for every scenario,
but it is the one that works better for the scenarios combination. The
first stage variables are selected in order to guarantee robustness to
the solution, while the second stage variables give flexibility to the
solution. The latter, indeed also called recourse decisions, remediate
on the base of the scenario that occurred. In this case, the first stage
variables refer to the design decisions to be taken immediately, hence
the buildings to be connected and the pipes to be installed from the
beginning. On the other hand, the second stage variables refer to the
future design decisions to be taken depending on the scenario that
will occur. The second stage decisions therefore define how the district
cooling network is expanded in each scenario.

2.1. General assumptions

The model has been built under the following assumptions:

• Thermal losses are neglected, due to the limited temperature
difference between chilled water and the ground. Hence the
difference between supply and return temperature is assumed to
be constant.

• The electricity cost and the capital costs for chillers are uncertain
in the first stage, but they are revealed in the second decision
stage. Indeed when designing a district cooling network the cap-
ital costs for equipment are uncertain. From literature, only the
ranges of these costs is known. Concerning electricity cost, this
is uncertain due to the long-period considered. Over the time, it
could change due to a variation in future energy policies or due
to a change in energy sources.

• The time horizon is divided in two time periods. The first time
period ranges between the first and the second decision stage,
while the second time period ranges from the second decision
stage to the end of the whole time horizon, as shown also in Fig. 1

• In each time period, the cooling demand increases every year by
an uncertain rate.

• In the second stage, at the end of the 1st time period, the cost of
chillers, the electricity price and the increase rate of cooling de-
mand over the 1st time period are known. However, the increase
rate of cooling demand in the next time period is still uncertain.

As a consequence, in the first design stage, it is decided the initial
network to be installed and the buildings to be connected immediately.
At the second decision stage, the scenario of the 1st time period is
revealed and new decisions are taken on the basis of the conditions
of this scenario. On the other hand, at the second decision stage, the
second period scenario is still unknown. Hence, the decisions taken at
the second stage should exploit the knowledge of what happened in the
previous time period, but should also work well for the combination of
new scenarios that can arise from then on.

2.2. Scenario generation

The problem is characterized by different uncertain parameters. The
scenarios are therefore generated by combining all possible values of
all parameters. The uncertainty is present in the cost of electricity, the
capital cost of chillers and the yearly increase rate of cooling demand.
In this subsection the uncertainty parameter and the generation of the
scenarios are described. Since the time horizon is divided into two
periods, separated by the 2nd decision stage, two levels of scenarios are
defined, depending on when they are revealed. First period scenarios
reflect the possible situations that can occur in the first time period.

Which of these occurred, is revealed only at the second decision stage.
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Fig. 1. Time horizon.
Table 1
Values and probabilities for different parameters.
Parameter Value Probability

Electricity cost [e/kWh] [0.1, 0.3, 0.5] [33.3%, 33.3%, 33.3%]
Demand increase rate [%] [0, 3, 4] [25%, 50%, 25%]
Capital cost of centralized chillers [e/kW] [250, 415, 600] [33.3%, 33.3%, 33.3%]
Capital cost of individual chillers [e/kW] [400, 600] [50%, 50%]
Similarly, second period scenarios indicate the possible situations that
can occur in the second time period. Which of the second period
scenarios occurred, is revealed only at the end of entire time horizon.
Hence, there is no recourse action after the scenario relative to the
second period is revealed, since it coincides with the end of project
life. The first period scenarios are generated by properly combining
all possible values that can be assumed by the parameters that are
uncertain in the first stage. Similarly, the second period scenarios
are generated by properly combining the possible values that can be
assumed by the parameters that are uncertain in the second design
stage. The costs of electricity and for the installation of centralized and
individual chillers are uncertain in the first stage, but they are revealed
in the second stage. The increase rate of cooling demand in the first
time period is also unknown and revealed in the second decision stage.
In the second design stage it is still uncertain how the cooling demand
will change within the second time period.

2.2.1. Cost of electricity
The cost of electricity can sensibly vary due to economical or geopo-

litical reasons, as observed in 2022 [47]. In this model it is assumed
that it varies between 100 e/MWh and 500 e/MWh, with an average
of 300 e/MWh. The motivation for these choices is that 100 e/MWh
was the average price in 2021, while, the maximum monthly price
observed in 2022 was 543 e/MWh [48]. Three possible values were
hence considered for scenario generation, representing the average and
the lower and upper bounds, as shown in Table 1.

2.2.2. Capital cost of chillers
The capital cost for the installation of chillers is affected by un-

certainty, as it can range from 250 to 600 e/kW [49]. Moreover,
the cost of manpower influences the installation cost, which therefore
is dependent on the country. The model distinguishes two types of
chillers: centralized and individual ones. For the first type the cost can
vary between 250 and 600 e/kW, while the cost for the second type
varies between 400 and 600 e/kW, as shown also in Table 1.

2.2.3. Yearly increase rate of cooling demand
The life-time of the system is assumed to be 30 years. However, this

time horizon has been split in two parts in order to be able to enhance
the network after the first period, depending on the scenario that shows
5

up. Moreover, the life-time of an individual chiller is typically around
15 years, hence splitting the time horizon in two equal parts results
to be a reasonable choice. In this way, if a building is equipped with
an individual cooling system, the model decides weather to connect
it to a district cooling system only at the end of chiller life-time. In
this work it is considered that in each of the two time periods the
cooling demand increases with a fixed yearly rate, which however can
vary from the first to the second period. The second stage decisions are
taken after the scenario relative to the first period is revealed. However,
the conditions of the second period are still uncertain when these
decisions are taken. In particular, after the second stage decisions are
taken, different scenarios may appear, depending on if and how cooling
demand increases in the second time period. For both time periods,
three different increase rates were chosen with different probabilities,
as shown in Table 1. The probability of having a yearly increase rate
equal to 3% was set as the highest one. This decision was taken after
having evaluated the cooling demand in 2020 and in 2050 in residential
buildings. The latter was evaluated using a tool [50] that predicts
the variation of the typical meteorological year (TMY), due to climate
change. From the analysis it emerged that cooling demand is expected
to more than double in the next 30 years. If this demand increase
follows an exponential behaviour with a fixed yearly rate, this would
be about 3%. The two other values of yearly increase rate(0% and
4%) were added to take into account the uncertain nature of demand
increase. It is assumed that in each time period the cooling demand
increases with a constant yearly rate. However, this rate could vary
between the two time periods. As an example, at first, the cooling
demand could increase with a 4% ratio, but in the second time period
it could remain stable. All possible evolutions of cooling demand in
the two periods are reported in Fig. 2. In thirty years the demand, can
therefore either remain constant or increase up to more than two times.

2.2.4. Scenario generation
By combining all the possible parameter values, it results that there

are 54 possible scenarios for the first time period, as shown in Fig. 3.
At the second decision stage, only the increase of the cooling demand
that will occur in the second time period is unknown. Hence, since
three possible values have been considered for this parameter, each of
the 54 first period scenarios can evolve in three different scenarios in
the second time period, for a total of 162 scenarios in the entire time

horizon, as shown in Fig. 4.
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Fig. 2. Possible demand evolutions in the first and second time periods.

Fig. 3. Definition of 1st period scenarios.

2.3. Input parameters

All the variables and parameters of the model are defined and
described in the Nomenclature Section. The values of the input param-
eters used in the model are defined in Table 2.

2.4. Cost function

In a stochastic programming model the objective is to minimize
the expected value of the cost function under all possible scenarios.
In this case, the objective function is therefore defined as the sum of
investment and operation costs in all possible scenarios, weighted by
the probability of scenario occurrence.

𝑂𝑏𝑗 = 𝐼𝑛𝑣𝑡1 +
𝑆1
∑

𝑠1
𝑂𝑝𝑠1 ∗ 𝜋𝑠1 +

∑

𝑠1
𝐼𝑛𝑣𝑡2,𝑠1 ∗ 𝜋𝑠1

+
𝑆1
∑

𝑠1

𝑆2
∑

𝑠2
𝑂𝑝𝑠1,𝑠2 ∗ 𝜋𝑠1 ∗ 𝜋𝑠2 − 𝐴𝑠𝑠𝑒𝑡𝑠𝑣𝑎𝑙𝑢𝑒 (1)

where 𝐼𝑛𝑣𝑡1 refers to the investments to be taken immediately, 𝐼𝑛𝑣𝑡2,𝑠1
refers to the cost of investments made in the second decision stage if
6

Fig. 4. Generation of 2nd period scenarios.

scenario 𝑠1 occurred, while 𝜋𝑠1 and 𝜋𝑠2 are the probabilities relative to
scenarios 𝑠1 and 𝑠2. The term 𝑂𝑝𝑠1 refers to the actualized operation
costs relative to the first period, if scenario 𝑠1 appears, while 𝑂𝑝𝑠1,𝑠2

refers to the operation costs in the second period, if scenario 𝑠2 oc-
curs, after the occurrence of scenario 𝑠1 in the first period. The term
𝐴𝑠𝑠𝑒𝑡𝑠𝑣𝑎𝑙𝑢𝑒 refers to the market value of the assets at the end of the time
range. Some of the assets, indeed, are installed in a second moment,
hence these will have a residual life-time at the end of the time horizon.

2.4.1. Investment costs
The investment costs are defined as the sum of the costs for piping,

energy transfer stations and chillers.

Piping cost. The piping cost is computed as:

𝑃 𝑖𝑝𝑖𝑛𝑔𝑡1 =
𝐸
∑

𝑗
𝑥𝑚,𝑡1𝑗 ∗ 𝑐𝑚𝑝𝑖𝑝𝑒 ∗ 𝐿𝑗 (2)

where 𝑥𝑡1,𝑚𝑖𝑗 is a binary variable equal to 1, if the diameter 𝑚 is
selected for the pipe 𝑗. New pipes can be installed also at second stage,
depending on the scenario. The investment cost for second stage is
defined as:

𝑃 𝑖𝑝𝑖𝑛𝑔𝑡2,𝑠1 =
𝐸
∑

𝑗
𝑥𝑚,𝑡2,𝑠1𝑗 ∗ 𝑐𝑚𝑝𝑖𝑝𝑒 ∗ 𝐿𝑗 ∗

1
(1 + 𝑟)𝑛𝑦∕2

(3)

where 𝑟 is the weighted average cost of capital, while 𝑛𝑦∕2 represents
the time difference in years between the first and second decision stage.
These parameters are used to actualize the expenditures occurring in
the second decision stage.

Energy transfer stations. The cost for energy transfer stations depends
on the peak cooling demand requested by the different buildings. This
is known, as the demand peak is considered as an input of the problem.
Actually, it is unknown if a building is connected to the network or not.
This cost therefore depends on the variables 𝑦𝑡1 and 𝑦𝑡2,𝑠1. The cost of
𝑢 𝑢
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Table 2
Values of main parameters.

Parameter Value

𝐶𝑂𝑃𝐷𝐶 6.5
𝐶𝑂𝑃𝑖𝑛𝑑 2.5
𝜂𝑝𝑢𝑚𝑝 0.8
𝛥𝑇 7 K
𝑝𝑚𝑖𝑛 2 bar
𝑟 5%

energy transfer stations installed in the first decision stage is calculated
as:

𝑐𝑜𝑠𝑡𝑡1𝐸𝑇𝑆 =
𝑈
∑

𝑢
𝑐𝐸𝑇𝑆,𝑢 ∗ 𝑦𝑡1𝑢 (4)

where 𝑐𝐸𝑇𝑆,𝑢 is the cost to install an energy transfer station in building
𝑢. Similarly, the cost for energy transfer stations installed in the second
stage is defined as:

𝑐𝑜𝑠𝑡𝑡2,𝑠1𝐸𝑇𝑆 =
𝑈
∑

𝑢
𝑐𝐸𝑇𝑆,𝑢 ∗ 𝑦𝑡2,𝑠1𝑢

1
(1 + 𝑟)𝑛𝑦∕2

(5)

Chiller investment cost. The cost for a centralized chiller installed in the
first stage 𝑡1 is calculated as:

𝐶ℎ𝑖𝑙𝑙𝑡1𝐷𝐶 = 𝑆𝑖𝑧𝑒𝑡1𝑐𝑒𝑛𝑡𝑟 ∗
𝑆
∑

𝑠1
𝑐𝑠1𝑐ℎ𝑖𝑙𝑙,𝐷𝐶 ∗ 𝜋𝑠1 (6)

here 𝑆𝑖𝑧𝑒𝑡1𝑐𝑒𝑛𝑡𝑟 defines the capacity of the installed chiller. The terms
n the sum represent the average cost per unit of installed capacity,
hich itself depends on the scenario. Similarly, the capital cost for

hiller installed in the second stage, if the generic scenario 𝑠1 occurs
s defined as:

ℎ𝑖𝑙𝑙𝑡2,𝑠1𝐷𝐶 = 𝑆𝑖𝑧𝑒𝑡2,𝑠1𝑐𝑒𝑛𝑡𝑟 ∗ 𝑐𝑠1𝑐ℎ𝑖𝑙𝑙,𝐷𝐶 ∗ 1
(1 + 𝑟)𝑛𝑦∕2

(7)

he cost for individual chillers installed in the first and second stage is
efined as:

ℎ𝑖𝑙𝑙𝑡1𝑖𝑛𝑑 =
𝑈
∑

𝑢
𝑆𝑖𝑧𝑒𝑡1𝑖𝑛𝑑,𝑢 ∗

𝑆
∑

𝑠1
𝑐𝑠1𝑐ℎ𝑖𝑙𝑙,𝑖𝑛𝑑 ∗ 𝜋𝑠1 (8)

ℎ𝑖𝑙𝑙𝑡2,𝑠1𝑖𝑛𝑑 =
𝑈
∑

𝑢
𝑆𝑖𝑧𝑒𝑡2,𝑠1𝑖𝑛𝑑,𝑢 ∗ 𝑐𝑠1𝑐ℎ𝑖𝑙𝑙,𝑖𝑛𝑑 (9)

.4.2. Operation costs
The operation costs consist in the sum of electricity expenditures to

ower the chillers and the pumps. They are defined as:

𝑂𝑝𝑠1 = 𝐶ℎ𝑖𝑙𝑙𝑠1𝑜𝑝,𝐷𝐶 + 𝐶ℎ𝑖𝑙𝑙𝑠1𝑜𝑝,𝑖𝑛𝑑 + 𝐶𝑠1
𝑃𝑢𝑚𝑝𝑖𝑛𝑔 (10)

𝑝𝑠1,𝑠2 = 𝐶ℎ𝑖𝑙𝑙𝑠1,𝑠2𝑜𝑝,𝐷𝐶 + 𝐶ℎ𝑖𝑙𝑙𝑠1,𝑠2𝑜𝑝,𝑖𝑛𝑑 + 𝐶𝑠1,𝑠2
𝑃𝑢𝑚𝑝𝑖𝑛𝑔 (11)

here:

• 𝐶ℎ𝑖𝑙𝑙𝑠1𝑜𝑝,𝐷𝐶 and 𝐶ℎ𝑖𝑙𝑙𝑠1,𝑠2𝑜𝑝,𝐷𝐶 refer to the operating costs of the cen-
tralized chillers in the first and second time period according to
scenarios 𝑠1 and 𝑠2;

• 𝐶ℎ𝑖𝑙𝑙𝑠1𝑜𝑝,𝑖𝑛𝑑 and 𝐶ℎ𝑖𝑙𝑙𝑠1,𝑠2𝑜𝑝,𝑖𝑛𝑑 refer to the operating costs of individual
chillers according to scenarios 𝑠1 and 𝑠2;

• 𝐶𝑠1
𝑃𝑢𝑚𝑝𝑖𝑛𝑔 and 𝐶𝑠1,𝑠2

𝑃𝑢𝑚𝑝𝑖𝑛𝑔 refer to the pumping cost in the first and
second time period according to scenarios 𝑠1 and 𝑠2.

Centralized chiller operation. The operating costs of the centralized
chiller in the first time period depend on the connected buildings and
on the yearly demand increase rate, which itself is different among the
scenarios. They are therefore defined as:

𝐶ℎ𝑖𝑙𝑙𝑠1𝑜𝑝,𝐷𝐶 =
𝑛𝑦∕2
∑

𝑈
∑

𝑦𝑡1𝑢 ∗ 𝑄0
𝑢 ∗ (1 + 𝑖𝑛𝑐𝑟𝑠1)𝑖 ∗

𝑐𝑠1𝑒𝑙 ∗ 1
𝑖 (12)
7

𝑖=1 𝑢 𝐶𝑂𝑃𝐷𝐶 (1 + 𝑟)
where 𝑄0
𝑢 is the initial yearly cooling demand, while 𝑖𝑛𝑐𝑟𝑠1 and 𝑐𝑠1𝑒𝑙

epresents the increase rate and electricity cost in scenario 𝑠1. Similarly,
the operation costs during the second period depend on the cooling
demand at the end of the first period and on the increase rate in the
new time period. They are defined as:

𝐶ℎ𝑖𝑙𝑙𝑠1,𝑠2𝑜𝑝,𝐷𝐶 =
𝑛𝑦
∑

𝑖=𝑛𝑦∕2+1

𝑈
∑

𝑢
𝑦𝑡2,𝑠1𝑢 ∗ 𝑄0

𝑢 ∗ (1 + 𝑖𝑛𝑐𝑟𝑠1)𝑛𝑦∕2

∗ (1 + 𝑖𝑛𝑐𝑟𝑠2)𝑖−𝑛𝑦2 ∗
𝑐𝑠1𝑒𝑙

𝐶𝑂𝑃𝐷𝐶
∗ 1
(1 + 𝑟)𝑖

(13)

where the product 𝑄0
𝑢 ∗ (1 + 𝑖𝑛𝑐𝑟𝑠1)𝑛𝑦∕2 is the yearly cooling demand

of the generic user 𝑢 at the end of the first time period in scenario 𝑠1,
while 𝑖𝑛𝑐𝑟𝑠2 is the demand increase rate in the second period according
to scenario 𝑠2.

Individual chiller operation costs. Similarly, the operation costs for indi-
vidual chillers in the first and second period are evaluated as:

𝐶ℎ𝑖𝑙𝑙𝑠1𝑜𝑝,𝑖𝑛𝑑 =
𝑛𝑦∕2
∑

𝑖=1

𝑈
∑

𝑢
(1 − 𝑦𝑡1𝑢 ) ∗ 𝑄0

𝑢 ∗ (1 + 𝑖𝑛𝑐𝑟𝑠1)𝑖 ∗
𝑐𝑠1𝑒𝑙

𝐶𝑂𝑃𝑖𝑛𝑑
∗ 1
(1 + 𝑟)𝑖

(14)

𝐶ℎ𝑖𝑙𝑙𝑠1,𝑠2𝑜𝑝,𝑖𝑛𝑑 =
𝑛𝑦
∑

𝑖=𝑛𝑦∕2+1

𝑈
∑

𝑢
(1 − 𝑦𝑡2,𝑠1𝑢 ) ∗ 𝑄0

𝑢 ∗ (1 + 𝑖𝑛𝑐𝑟𝑠1)𝑛𝑦∕2

∗ (1 + 𝑖𝑛𝑐𝑟𝑠2)𝑖−𝑛𝑦∕2 ∗
𝑐𝑠1𝑒𝑙

𝐶𝑂𝑃𝑖𝑛𝑑
∗ 1
(1 + 𝑟)𝑖

(15)

Pumping costs. The pumping energy required to run the pumps is
computed as the product between the peak pumping power and the
equivalent number of full load hours. The pumping power is propor-
tional to the product between mass flow rate and the pressure drop on
the plant node. Since only supply line is modelled, the pressure drops
of the return line are taken into account, by incorporating them with
the pressure drops of the supply line using the method presented by
Sciacovelli et al. [51]. As a consequence, the pressure node variables
refer to relative pressure between supply and return line on these nodes,
rather than to absolute values. The pumping power which depends
therefore on the product between mass flow rate and the pressure
difference between supply and return on the plant node is redefined
as the product between mass flow rate and plant node pressure in the
equivalent network model. A simple quantitative example is shown in
Fig. 5 to better explain how this method works. The example presents a
network with three nodes, where the pressure drops on all the branches
is set to 1 bar. The absolute pressure supplied by the first node is 8 bar,
while the return pressure on the same node is 6 bar. By converting the
network to the equivalent one, where the return line pressure drops are
summed to the supply line ones, it can be observed that the new node
pressure values correspond to the pressure differences between supply
and return line on the same nodes. Consequently, the pumping cost of
the network, which is for the first time period according to scenario 𝑠1
is defined as:

𝐶𝑠1
𝑝𝑢𝑚𝑝𝑖𝑛𝑔 =

𝑛𝑦∕2
∑

𝑖=1

𝐺𝑝𝑁ℎ𝑡1 ∗ (1 + 𝑖𝑛𝑐𝑟𝑠1)𝑖 ∗ 𝑐𝑠1𝑒𝑙
𝜌 ∗ 𝜂𝑝𝑢𝑚𝑝

(16)

here 𝐺𝑝𝑁ℎ𝑡1 is the variable that defines the product between the
ass flow rate at peak load, the pressure on the central node and the

nitial number of full load hours, while 𝜌 and 𝜂𝑝𝑢𝑚𝑝 refer to the water
ensity, assumed constant, and the efficiency of the pump. Similarly
he pumping cost for the second time period, if scenario 𝑠1 occurred
uring the first time period and scenario 𝑠2 for the second one, it is
efined as:

𝑠1,𝑠2
𝑃𝑢𝑚𝑝𝑖𝑛𝑔 =

𝑛𝑦
∑ 𝐺𝑝𝑁ℎ𝑡2,𝑠1 ∗ (1 + 𝑖𝑛𝑐𝑟𝑠2)𝑖−𝑛𝑦∕2 ∗ 𝑐𝑠1𝑒𝑙

𝜌 ∗ 𝜂
(17)
𝑖=𝑛𝑦∕2+1 𝑝𝑢𝑚𝑝
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where 𝐺𝑝𝑁ℎ𝑡2,𝑠1 is the variable that indicates the product between the
mass flow rates at peak load and the number of full load hours at the
end of the first time period according to scenario 𝑠1.

2.4.3. Residual value of the assets
The assets with a residual life-time at the end of the second time

period are the pipes, the energy transfer stations and the centralized
chillers installed in the second decision stage. The market value is
therefore evaluated as the half of these investment cost, corrected by
the actualization coefficient, as expressed in Eq. (18).

𝐴𝑠𝑠𝑒𝑡𝑠𝑣𝑎𝑙𝑢𝑒 =
𝑃 𝑖𝑝𝑖𝑛𝑔𝑡2,𝑠1 + 𝑐𝑜𝑠𝑡𝑡2,𝑠1𝐸𝑇𝑆 + 𝐶ℎ𝑖𝑙𝑙𝑡2,𝑠1𝐷𝐶

2
∗ 1
(1 + 𝑟)𝑛𝑦∕2

(18)

2.5. Constraints

The model presents capacity, mass balance and pressure balance
constraints. They are described in detail in the following subsections.

2.5.1. Mass balance constraints
Constraints (19)–(21) ensure that mass balance is respected for

chiller, user and inner nodes respectively.
𝐸
∑

𝑗
𝑎𝑐𝑒𝑛𝑡𝑟,𝑗 ∗ 𝐺𝑡(,𝑠1)

𝑗 + 𝐺𝑐𝑒𝑛𝑡𝑟𝑡(,𝑠1) = 0 ∀𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1 (19)

𝐸
∑

𝑗
𝑎𝑢,𝑗 ∗ 𝐺𝑡1

𝑗 + 𝐺𝑒𝑥𝑡,𝑢 ∗ 𝑦𝑡(,𝑠1)𝑢 = 0 ∀𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1, 𝑢 ∈ 𝑈 (20)

𝐸
∑

𝑗
𝑎𝑣,𝑗 ∗ 𝐺𝑡(,𝑠1)

𝑗 = 0 ∀𝑣 ∈ 𝑉 , 𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1 (21)

where the apex 𝑡(, 𝑠1) is used to generalize the apices 𝑡1 and 𝑡2, 𝑠1
elative to first and second stage variables. This is done to avoid
ewriting the equations twice and to ease the readability of the paper.
he generic term 𝑎𝑖𝑗 , present in the three equations, refers to the
lement of the incidence matrix that tells if the node 𝑖 is an inlet or
n outlet for branch 𝑗. The subscripts 𝑐𝑒𝑛𝑡𝑟, 𝑢 and 𝑣 refer to the index

relative to the chiller node, the generic user node and the generic inner
node.

2.5.2. Capacity constraints
Constraint (22) ensures that no more than a pipe diameter is se-

lected for each pipe.
𝑀
∑

𝑚
𝑥𝑚,𝑡(,𝑠1)𝑗 ≤ 1 ∀𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1 (22)

Constraint (23) defines the variable 𝑧𝑡2,𝑠1𝑗 . It is equal to one if a pipe is
installed in the second stage. Otherwise, it is forced to be null.
𝑀
∑

𝑚
𝑥𝑚,𝑡2,𝑠1𝑗 = 𝑧𝑡2,𝑠1𝑗 ∀𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1 (23)

Constraint (24) indicates that in the first time period the mass flow
rate in every pipe must not be larger than the maximum allowed by
the selected diameter. The maximum mass flow rate indeed depends
on the diameter and on the velocity limit, which is assumed equal to
1.5 m/s, coherently with ASHRAE standards [17].
𝑀
∑

𝑚
𝐺𝑚𝑎𝑥𝑚 ∗ 𝑥𝑚,𝑡1𝑗 ≥ 𝐺𝑡1

𝑗 ∀𝑗 ∈ 𝐸 (24)

The capacity constraint must be respected also for the second time
period variables, but two different situations may arise:

• the pipe installed in the first stage can work also for the second
time period

• capacity of the pipe installed in the first stage is not sufficient
8

In the second situation, the capacity problem is solved by adding a
parallel pipe on the same branch. The mass flow rate is therefore
divided in two pipes. It is assumed that the pipe installed in the first
stage is exploited to the maximum capacity. This means that the mass
flow rate that flows in there is the maximum admissible, while the
remaining stream flows in the new installed pipe. This hypothesis is
not optimal, but it allows to minimize the size of the new pipes to
be installed. Constraint (25) ensures that the mass flow rate in every
branch in the second time period must respect the total capacity of the
pipes installed.

𝑀
∑

𝑚
𝐺𝑚𝑎𝑥𝑚 ∗ 𝑥𝑚,𝑡1𝑗 +

𝑀
∑

𝑚
𝐺𝑚𝑎𝑥𝑚 ∗ 𝑥𝑚,𝑡2,𝑠1𝑗 ≥ 𝐺𝑡2,𝑠1

𝑗 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1

(25)

Constraint (26) ensures that the mass flow rate flowing in the new pipe
does not exceed its maximum capacity.

𝐺𝑑𝑖𝑓𝑓 𝑠1
𝑗 −

𝑀
∑

𝑚
𝐺𝑚𝑎𝑥𝑚 ∗ 𝑥𝑚,𝑡2,𝑠1𝑗 ≤ 0 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1 (26)

where 𝐺𝑑𝑖𝑓𝑓 𝑠1 is the mass flow rate that flows in the new pipe.
Constraint (27) is a big-M constraint that forces 𝐺𝑑𝑖𝑓𝑓 𝑠1 to be equal
to the difference between 𝐺𝑡2,𝑠1

𝑗 and the maximum mass flow rate that
can flow in the pre-existing pipe if a new pipe is installed in the second
stage.

−𝐺𝑑𝑖𝑓𝑓 𝑠1
𝑗 +𝐺𝑡2,𝑠1

𝑗 −
𝑀
∑

𝑚
𝑥𝑚,𝑡1𝑗 ∗ 𝐺𝑚𝑎𝑥𝑚 ≤ (1− 𝑧𝑡2,𝑠1𝑗 ) ∗ 𝐵 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1

(27)

where B is a sufficiently large number.
Constraints (28) and (29) fix a lower bound on the size of the chiller

to install in the first and second stage. It is specified that it should be at
least equal to 80% of the sum of demand peaks. This is reasonable since
it is unlikely that all users have a demand peak in the same instant. It
is therefore assumed that there is a diversity factor of 80%.

𝑆𝑖𝑧𝑒𝑡1𝑐𝑒𝑛𝑡𝑟 ≥ 0.8 ∗ 𝐺𝑐𝑒𝑛𝑡𝑟𝑡1 ∗ 𝑐𝑝 ∗ 𝛥𝑇 (28)

𝑆𝑖𝑧𝑒𝑡1𝑐𝑒𝑛𝑡𝑟 + 𝑆𝑖𝑧𝑒𝑡2,𝑠1𝑐𝑒𝑛𝑡𝑟 ≥ 0.8 ∗ 𝐺𝑐𝑒𝑛𝑡𝑟𝑡2,𝑠1 ∗ 𝑐𝑝 ∗ 𝛥𝑇 ∀𝑠1 ∈ 𝑆1 (29)

Individual chillers have a smaller life-cycle equal to 15 years, hence
in the second stage new chillers must be installed for buildings not
connected to the network. The size of individual chillers is instead
defined by constraint (30).

𝑆𝑖𝑧𝑒𝑡(,𝑠1)𝑖𝑛𝑑,𝑢 = 𝐺𝑒𝑥𝑡𝑢 ∗ (1 − 𝑦𝑡(,𝑠1)𝑢 ) ∗ 𝑐𝑝 ∗ 𝛥𝑇 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆1 (30)

2.5.3. Pressure drop constraints
Constraint (31) defines the variable 𝑌 𝑡(,𝑠1)

𝑗 as the inverse of fluid
dynamic resistance per unit of mass flow rate. In order to avoid values
equal to zero, the variable is forced to be equal to 1, if no pipe is
installed on the branch 𝑗.

𝑌 𝑡(,𝑠1)
𝑗 = 1 +

𝑀
∑

𝑚
𝑥𝑚,𝑡(,𝑠1)𝑗 ∗ ( 1

𝑅𝑚
𝑗
− 1) ∀𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆1 (31)

Constraint (32) links the pressure drop variables with the relative
pressures at inlet and outlet nodes of every branch.

𝛥𝑝𝑡(,𝑠1)𝑗 =
𝐼
∑

𝑖
𝑎𝑖𝑗 ∗ 𝑝𝑡(,𝑠1)𝑖 ∀𝑗 ∈ 𝐸, 𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1 (32)

The pressure drops in the first time period are defined with the follow-
ing non-linear equation:

𝛥𝑝𝑡1 = 𝐺𝑡12∕𝑌 𝑡1 ∀𝑗 ∈ 𝐸 (33)
𝑗 𝑗 𝑗
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Fig. 5. Quantitative example on the equivalent network method.
For the second time period, due to the possible presence of multiple
pipes in parallel on the same branch, it is selected the highest pressure
drop. This is guaranteed by constraints (34)–(36).

𝛥𝑝𝑡2,𝑠1𝑗 ≥ 𝐺𝑑𝑖𝑓𝑓 𝑠1
𝑗

2∕𝑌 𝑡2,𝑠1
𝑗 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1 (34)

𝛥𝑝𝑡2,𝑠1𝑗 ≥
𝑀
∑

𝑚
(𝐺𝑚𝑎𝑥𝑚2 ∗ 𝑅𝑚

𝑗 ∗ 𝑥𝑚,𝑡1𝑗 ) ∗ 𝑧𝑡2,𝑠1𝑗 ∀𝑗 ∈ 𝐸, 𝑠 ∈ 𝑆1 (35)

𝛥𝑝𝑡2,𝑠1𝑘 ≥ 𝐺𝑡2,𝑠1
𝑗

2
∕𝑌 𝑡1

𝑗 ∗ (1 − 𝑧𝑡2,𝑠1𝑗 ) ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1 (36)

If no pipe is installed in the second decision stage, constraints (34) and
(35) indicate only that 𝛥𝑝𝑡2,𝑠1𝑗 is greater than zero. The pressure drop
is therefore computed considering that the whole mass flow rate flows
in the pre-existing pipe. On the other hand, if a pipe is installed in the
second decision stage, the right hand side of constraint (36) is forced
to be equal to zero.

The non-linearities in constraints (33) and (34) have been handled
by means of the cutting plane method, as done in a previous work by
Neri et al. [52]. Since they are convex expressions for positive values of
𝑌 𝑡1
𝑗 and 𝑌 𝑡2,𝑠1

𝑗 , they can be linearized by solving the problem iteratively
and adding the following new constraints at each iteration.

𝛥𝑝𝑡1𝑗 ≥ 2 ∗
𝐺𝑡1
𝑗
′

𝑌 𝑡1
𝑗

′ ∗ 𝐺𝑡1
𝑗 −

𝐺𝑡1
𝑗
′2

𝑌 𝑡1
𝑗

′2
∗ 𝑌 𝑡1

𝑗 ∀𝑗 ∈ 𝐸

(37)

𝛥𝑝𝑡2,𝑠1𝑗 ≥ 2 ∗
𝐺𝑑𝑖𝑓𝑓 𝑠1

𝑗
′

𝑌 𝑡2,𝑠1
𝑗

′ ∗ 𝐺𝑑𝑖𝑓𝑓 𝑡1
𝑗 −

𝐺𝑑𝑖𝑓𝑓 𝑠1
𝑗

′2

𝑌 𝑡1
𝑗

′2
∗ 𝑌 𝑡1

𝑗 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1

(38)

where the apex ′ refers to the solution of the previous iteration.
Constraint (35) is linearized by using the technique to linearize the

product of binary variables. Auxiliary variables 𝑥𝑧𝑚,𝑠1𝑗 are therefore
introduced to substitute the product between 𝑥𝑚,𝑡1𝑗 and 𝑧𝑡2,𝑠1𝑗 . Moreover
the following constraints are introduced to guarantee that this equality
is respected.

𝑥𝑧𝑚,𝑠1𝑗 ≥ 𝑥𝑚,𝑡1𝑗 + 𝑧𝑡2,𝑠1𝑗 − 1 ∀𝑗 ∈ 𝐸,𝑚 ∈ 𝑀, 𝑠1 ∈ 𝑆1 (39)

𝑥𝑧𝑚,𝑠1𝑗 ≤ 𝑥𝑚,𝑡1𝑗 ∀𝑗 ∈ 𝐸,𝑚 ∈ 𝑀, 𝑠1 ∈ 𝑆1 (40)

𝑥𝑧𝑚,𝑠1𝑗 ≤ 𝑧𝑡2,𝑠1𝑗 ∀𝑗 ∈ 𝐸,𝑚 ∈ 𝑀, 𝑠1 ∈ 𝑆1 (41)

Constraint (36) is linearized in two steps. The expression, is indeed
similar to that of constraints (33) and (34), which are linearized with
the cutting plane method. However, the expression includes also the
product with a binary variable. An auxiliary variable 𝐺𝑧𝑡2,𝑠1𝑗 is therefore
introduced to substitute the product between 𝐺𝑡2,𝑠1 and 𝑧𝑡2,𝑠1. Moreover
9

𝑗 𝑗
the following constraints are added in order to guarantee that this
equality is satisfied.

𝐺𝑧𝑡2,𝑠1𝑗 ≥ 𝐺𝑡2,𝑠1
𝑗 + 𝐺𝑚𝑎𝑥 ∗ 𝑧𝑡2,𝑠1𝑗 − 𝐺𝑚𝑎𝑥 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1 (42)

𝐺𝑧𝑡2,𝑠1𝑗 ≤ 𝐺𝑡2,𝑠1
𝑗 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1 (43)

𝐺𝑧𝑡2,𝑠1𝑗 ≤ 𝐺𝑚𝑎𝑥 ∗ 𝑧𝑡2,𝑠1𝑗 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1 (44)

Finally, constraint (36) was linearized with the cutting plane method
as shown in (45):

𝛥𝑝𝑡2,𝑠1𝑗 ≥ 2 ∗
𝐺𝑧𝑡2,𝑠1𝑗

′

𝑌 𝑡1
𝑗

′ ∗ 𝐺𝑧𝑡2,𝑠1𝑗 −
𝐺𝑧𝑡1𝑗

′2

𝑌 𝑡1
𝑗

′2
∗ 𝑌 𝑡1

𝑗 ∀𝑗 ∈ 𝐸, 𝑠1 ∈ 𝑆1 (45)

The final model is completely non-linear and can be therefore solved
iteratively with a linear solver, such as Gurobi or CPLEX. The stopping
criteria used to terminate the iterations is the error in the evaluation
of relative pressure on the central node, with a tolerance of 100 Pa.

2.5.4. Pumping energy
The cost function includes also pumping costs, defined in Eqs. (16)

and (17). These depend on the variables 𝐺𝑝𝑁ℎ𝑡1 and 𝐺𝑝𝑁ℎ𝑡2,𝑠1, which
represent the product between the mass flow rate flowing in the net-
work, the pressure at central node and the number of full load hours.
They are therefore defined through non-linear relations and need to be
linearized.

𝐺𝑝𝑁ℎ𝑡1 = 𝑝𝑡1𝑐𝑒𝑛𝑡𝑟 ∗
𝑈
∑

𝑢
𝐺𝑒𝑥𝑡𝑢 ∗ 𝑁ℎ𝑡1𝑢 ∗ 𝑦𝑡1𝑢 (46)

𝐺𝑝𝑁ℎ𝑡2,𝑠1 = 𝑝𝑡2,𝑠1𝑐𝑒𝑛𝑡𝑟 ∗
𝑈
∑

𝑢
𝐺𝑒𝑥𝑡𝑢 ∗ 𝑁ℎ𝑡1𝑢 ∗ (1 + 𝑖𝑛𝑐𝑟𝑠1)𝑛𝑦∕2 ∗ 𝑦𝑡2,𝑠1𝑢 (47)

where 𝑁ℎ𝑡1𝑢 is the initial number of full load hours for building 𝑢 in
year 0. These variables depend on the product between continuous and
binary variables, hence they can be linearized by introducing additional
variables 𝑢𝑝𝑡1𝑐𝑒𝑛𝑡𝑟 and 𝑢𝑝𝑡2,𝑠1𝑐𝑒𝑛𝑡𝑟 that substitute these products. Moreover the
following additional constraints must be added as well to ensure that
𝑢𝑝𝑡(,𝑠1)𝑐𝑒𝑛𝑡𝑟 is equal to the product 𝑦𝑡(,𝑠1)𝑢 ∗ 𝑝𝑡(,𝑠1)𝑐𝑒𝑛𝑡𝑟 .

𝑢𝑝𝑡(,𝑠1)𝑐𝑒𝑛𝑡𝑟 ≥ 𝑦𝑡,(𝑠1)𝑢 ∗ 𝑝𝑚𝑖𝑛 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1 (48)

𝑢𝑝𝑡(,𝑠1)𝑐𝑒𝑛𝑡𝑟 ≥ 𝑝𝑡(,𝑠1)𝑐𝑒𝑛𝑡𝑟 + 𝑦𝑡(,𝑠1)𝑢 ∗ 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑎𝑥 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1 (49)

𝑢𝑝𝑡,(𝑠1)𝑐𝑒𝑛𝑡𝑟 ≤ 𝑦𝑡,(𝑠1)𝑢 ∗ 𝑝𝑚𝑖𝑛 + 𝑝𝑡,(𝑠1)𝑐𝑒𝑛𝑡𝑟 − 𝑝𝑚𝑖𝑛 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 , 𝑠1 ∈ 𝑆1 (50)

2.6. Rigid model formulation

In the model described in the previous section, it was assumed that
in the second stage new pipes can be installed in the same branches
where there already pipes installed in the first stage. The model there-
fore allows to have multiple pipes in parallel in the same branch. This
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Fig. 6. Buildings peak loads.

assumption may not be applicable in reality, since there may not be
enough space in the ground to install additional pipes close to the
existing ones. Hence, a variant formulation has been implemented as
well, in which it is avoided the installation of more than one pipe in the
same branch of the network. This variant of the original model will be
defined from now on as ‘‘rigid model’’, since compared to the previous
one guarantees less flexibility. Indeed, due to the different constraints,
the network can be enlarged installing new pipes, but the flow capacity
of existing branches cannot be increased in the second decision stage.

3. Case study

Both versions of the model have been tested on a case study repre-
senting the topology of an existing district heating network connecting
108 buildings in an Italian residential neighbourhood, whose peak
cooling loads are reported in Fig. 6. Although it refers to the topology
of a district heating network, it represents a realistic application of a
district cooling network in Mediterranean areas. Indeed, the shape of a
district heating network would be similar to the one of a district cooling
system in the same area, since both are designed and built under the
same urban limitations. Fig. 7 shows the topology and the position
of buildings and the centralized chiller. The network is characterized
by 304 nodes and 303 branches. Moreover, the size of the circles in
the figure is proportional to the volume of the buildings. The cooling
demand of these buildings has been computed by means of a model for
transient simulations and the resulting total cooling power required by
all buildings is 9.4 MW. In the model it is assumed that the peak power
does not increase, hence the yearly demand increases because of a rise
in the number of operational hours. The objective of the model is to
find which users shall be connected immediately to a district cooling
system while taking into account the possible future expansion of the
network.

4. Results

In this section are presented the main results obtained by applying
the two model formulations to the case study. In the first part the
results relative to the flexible formulation are presented, while the
ones obtained with the rigid model are presented in a subsection. The
flexible model converged after 22 h using a 2.10 GHz Intel(R) Xeon(R)
Gold 6230R CPU. Fig. 8 shows the network that should be installed
immediately, result of the decisions to be taken at 1st stage. It should
be connected to 40 buildings, with a total capacity of 4.77 MW. In the
second stage, depending on the scenario, the network can remain as
it is or be enlarged. Depending on the scenario, in the second decision
stage the network can remain unchanged or be expanded in 23 different
ways. Fig. 9 shows few of the possible network enhancements in the
second stage with piping details. It should be noted that since in the
10
Fig. 7. Topology of case study.

Fig. 8. Optimal first stage network design.

second stage in some branches an additional pipe has been installed,
the ones reported in the figure refer to equivalent pipe sizes. These
correspond to the size of pipes that have a flow area equal to the total
one.

These results evidence that it is more convenient to install a smaller
network at the initial stage and to enlarge it in the future, if conditions
are good enough (e.g. higher cost of electricity and larger increase
rate of cooling demand). This allows to reduce the risks related to the
uncertainties. Indeed it is avoided the realization of a larger investment
from the beginning, that could result non convenient, if cooling demand
or electricity price does not increase in the future. In fact, if a larger
network is built already from the first stage and the cooling demand
does not increase or the electricity cost is lower than expected, the
higher initial investment costs would not be compensated by sufficient
operation savings. As a consequence, the total costs would be larger
than the ones obtained by realizing a smaller network and installing
individual cooling systems in the remaining buildings.

Fig. 10 compares the solution obtained with the stochastic approach
and two obtained deterministically considering the scenarios with the
lowest(lowest cost of electricity, lowest increase rate of cooling de-
mand, lowest capital cost of individual chillers, highest capital cost
of centralized chillers) and highest potential(highest cost of electricity,
highest increase rate, highest capital cost of individual chillers, lowest
capital cost of centralized chillers) of district cooling. The graph shows
how these solutions behave in the different scenarios. The three curves
do not have the same profile, since moving from a scenario to another
one may have a positive impact on a solution, while a negative or
negligible one on the others. Moreover, in order to make the graph
more readable, the scenarios are sorted to give a monotonic stochastic
curve.

It can be observed that the stochastic solution is the most robust, as
it tends to work well for all possible scenarios, while the other two
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Fig. 9. Subset of possible second stage network designs in different scenarios.
Fig. 10. Comparison between stochastic and deterministic solutions.
11
Fig. 11. Net Present Value and payback time analysis.
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Fig. 12. Influence of the different parameters on the results.
tend to be optimal only in few cases. In particular, in the solution
Deterministic 1, which was obtained considering the scenario with the
lowest potential for district cooling, the total cost is lower compared
to the stochastic solution, only in scenarios characterized by a lower
cost of electricity and cooling demand. In particular, in the scenario
characterized by minimum cost of electricity, cooling demand, cost of
individual chillers and maximum cost of centralized chillers, this solu-
tion is 24% less expensive than the stochastic one. On the other hand,
in scenarios with larger values of electricity cost and cooling demand,
the total cost can be up to 29% larger than the one obtained with the
stochastic solution. The solution Deterministic 1 is characterized by the
highest range of overall cost variation. In this solution all the buildings
are cooled individually and no network is installed. As a consequence
this solution provides the lowest overall costs in the scenarios with
lower electricity costs and cooling demand. However, for scenarios with
larger electricity cost and higher increase rate of cooling demand, the
total costs of this solution are the highest, compared to the other two
solutions, due to larger operating costs. On the other hand, the solution
Deterministic 2 is the one with the lowest magnitude of cost variation,
due to the larger network installed, which increases the capital costs,
while reducing the operating ones thanks to the larger efficiency of
district cooling compared to individual chillers. This solution tends to
work slightly better than the stochastic one in scenarios characterized
by higher district cooling potential. In the best case, this solution is 10%
less expensive than the stochastic one. However, in scenarios where
district cooling is less convenient, the cost can be up to 33% larger
compared to the stochastic solution. Indeed, due to the higher number
of buildings connected to the network, capital costs are larger, but the
savings achievable by district cooling are lower and not sufficient, when
electricity cost and cooling demand are lower.

The expected value of the cost function, evaluated for the three
different solutions in all possible scenarios is reported in Table 3. As
a consequence, the stochastic solution is, on average, up to 5% less
expensive than a deterministic one. Fig. 11 shows the expected net
present value and payback time for the stochastic and Deterministic
12
Table 3
Expected value of cost function evaluated with the different solutions.

Solution Expected value of cost fun. [Me]

Stochastic(flexible) 12.63
Deterministic 1 13.28
Deterministic2 13.19
Stochastic (rigid) 12.68

2 solutions. Solution Deterministic 1 was not included in the analysis
since it corresponds to the case where all the buildings are cooled indi-
vidually and no district cooling network is installed. The analysis has
been carried out considering that the district cooling utility sells chilled
water at a price that is dependent on the scenario and corresponds to
the cost the users would pay if they installed individual cooling systems.
It can be observed that the expected payback time of the stochastic
solution is 25 years, while for the solution Deterministic 2 is 28 years. In
addition, the final expected value of net present value of the stochastic
solution is 58% larger, with an initial capital investment 54% lower.

4.1. Impact of parameters uncertainty

In this subsection it is analysed how the uncertainty of the different
parameters influences the optimal solution. Fig. 12 shows the number
of buildings connected in the second stage(including the ones already
connected in the first stage), as a function of the uncertain parameters
that are revealed after the first time period.

4.1.1. Electricity cost
The electricity cost has a strong impact on the results. Among the

eighteen scenarios with an electricity cost of 0.10 e/kWh, in fifteen of
these, no further buildings shall be connected in the second stage. More-
over, in the other three scenarios, only one new building is connected
in the second stage. On the other hand, if the electricity cost is equal
to 0.3 e/kWh, in 50% of the cases more than twenty-three buildings
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Fig. 13. Combined impact of electricity cost and cooling demand.

should be connected in the second stage. Lastly, with an electricity cost
of 0.5 e/kWh, in half of the scenarios more than 30 new connections
should be added in the second decision stage.

4.2. Capital cost of centralized chillers

Among the eighteen scenarios with a capital cost of centralized
chillers equal to 250 e/kW, in ten of these more than 43 additional
buildings shall be connected in the second stage. On the other hand,
with a cost of 416 e/kW this happens only in four scenarios. With a
capital cost of 600 e/kW, in 50% of the cases, one new building would
be connected at most.

4.3. Capital cost of individual chillers

Among the twenty-seven scenarios with a capital cost of individual
chillers equal to 400 e/kW, in seventeen of these, no additional build-
ings shall be connected to the network in the second stage. On the other
hand, in twelve cases, more than ten buildings shall be connected. If
this cost is equal to 600 e/kW, in twelve cases, more than 43 buildings
shall be connected in the second stage.

4.4. Yearly demand increase

In thirteen of the eighteen scenarios in which cooling demand does
not increase during the first time period, no new buildings shall be
connected in the future. In 56% of the scenarios in which the yearly
demand increase rate is equal to 3% in the first time period, at least
ten new buildings must be connected to the network in the second
stage. Lastly, in nine out of the eighteen scenarios characterized by an
increase rate of 4% during the first period, more than 30 new buildings
shall be connected in the second stage.

4.4.1. Combined impact of electricity cost and cooling demand increase rate
In Fig. 13 shown a heat map that presents the combined impact

of electricity cost and cooling demand increase rate is shown. The
values reported in the heat map table, represent the median number
of total buildings connected in the second stage (including the ones
already connected in the first stage), in all scenarios characterized by
those values of electricity cost and cooling demand increase rate. Both
parameters have a large impact. In particular, highest differences are
observed when varying the increase rate of cooling demand. However,
if electricity cost is minimum, the network would remain as it is
regardless of the cooling demand increase. The same applies, if cooling
demand does not increase during the first time period, regardless of the
electricity cost.
13
Table 4
Parameters used for model validation.

Parameter Value

Demand increase rate 4%
Electricity cost 0.15 e/kWh
Cost of individual chillers 600 e/kW
Cost of centralized chillers 250 e/kW

Fig. 14. Pipe capacity: comparison with ASHRAE.

Fig. 15. Network that should be installed from the beginning according to rigid model
version.

4.5. Model validation

In order to validate the model, ASHRAE guidelines [53] have been
compared to the results of a deterministic scenario, with the character-
istics reported in Table 4. In Fig. 14 the mass flow rates flowing in each
pipe have been compared with the reference ones reported by ASHRAE.
From the figure it can be observed that for smaller diameters, the model
tends to have similar results. For diameters larger than 150 mm, the
differences are higher and the model tends to select larger diameter for
the same mass flow rate. However, these differences may depend on the
different parameters used for the analysis, such as the piping costs. In
addition, the model for the same mass flow rate, may select a different
diameter, depending on the pipe position in the network. Indeed some
branches are more critical than others, as they are needed to connect
the plant to the farthest buildings. Larger pressure differences can be
admissible on the pipes outside of the critical path as far as they do
not influence the supply pressure requirements. As a consequence, in
these branches, smaller diameters can be installed, allowing to reduce
capital costs, without increasing pumping costs. In general, the model
is coherent with ASHRAE guidelines, although being more conservative
in the choice of diameters.
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Fig. 16. Second stage network designs for different scenarios according to rigid model.
4.6. Rigid model

In this part are presented the results obtained with the rigid version
of the model, in which it is avoided the installation of new pipes in
the second stage in the same branches where there are already pipes
installed previously in the first stage. Fig. 15 shows the network that
should be installed from the beginning according to this model. The
topology is similar to the one of the previous model, but 50 buildings
would be connected from the beginning, ten more with respect to the
flexible formulation. However, in this case, the number of possible
enhancements in the second stage is equal to seventeen, six less with
respect to the flexible model formulation. Six of these are shown in
Fig. 16.

Compared to the more flexible model, in this case the number
of users connected in the second stage is sensibly lower. Indeed the
maximum amount of connected buildings is 64, while in the flexible
version it is 99.
14
Fig. 17 shows the topology of a network that represents the in-
tersection of the networks obtained by the two models. This network
therefore connects only the buildings that are connected in both so-
lutions. In Figs. 17(a) and 17(b) the branches are coloured on the
base of the diameter selected in the first stage by each model. It can
be observed that for most of the edges, the diameter is the same in
the two solutions. However, in some branches, rigid model selected a
larger diameter. This is also shown more clearly in Fig. 17(c), where
the branches in which the rigid model selects a larger diameter are
highlighted. Indeed, the rigid model selects larger pipes, since no future
pipe modifications are considered. In the subnetwork common to both
solutions, the average pipe diameter selected by the rigid model is
158 mm, while the average one selected by the flexible model is
150 mm. The expected value of the cost obtained by the rigid model
formulation is shown in Table 3 and is 0.4% higher than the one found
previously. Hence, a greater flexibility would guarantee slightly larger
savings.
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Fig. 17. Comparison of diameter selection between rigid and flexible model solutions.
4.7. Impact of residual value of equipment

All previous results have been obtained by considering a positive
cash flow due to the remainder life of equipment. Indeed, theoretically
equipment that did not complete its life-time, can be used for new
projects, such as a renovation of the district cooling system. However,
it is also difficult to estimate the real residual value of partially worn-
out parts. In this section, the results obtained by considering a null
residual value of the equipment at the end of project life are presented.
Fig. 18 shows the optimal first stage network obtained by the flexible
model formulation. The initial number of connected users would be 44,
10% more than when considering residual value in the cost function.
Depending on the scenario, the network can remain as it is or be
enhanced in three different ways at the second decision stage, as shown
in Fig. 19.

Fig. 20 shows the distribution of the number of new connections
added in the second stage according to the scenarios. It can be ob-
served that if no residual value of equipment is taken into account,
the maximum number of new buildings connected in the second stage
would be 13, while it would be 59, if residual value is considered in the
cost function. Moreover, only in 6 cases out of 54, the network would
be enhanced in the second stage, if residual value is not included in
the cost function. If this is taken into account, the network would be
expanded in the second stage, in 29 scenarios out of 54.

5. Discussion

The results showed that it is more convenient to start with a smaller
district cooling network and to enhance it in the future. In this way, the
district cooling network can be enlarged if the demand or the electricity
cost increases. At the same time, this solution limits the risks related to
the possible future decrease of district cooling potential, by lowering
the initial investment costs with the installation of a smaller network.
From the analysis of the impact of the uncertainty on the optimal
15
Fig. 18. Initial network layout if residual value is not taken into account.

solution, it can be deduced that all the parameters affect the results.
However, the electricity cost and the evolution of cooling demand are
the ones with the highest impact. The comparison of the stochastic
model with other deterministic approaches proved that the latter work
better only if few specific scenarios occur, while on average they tend
to provide 5% more expensive solution and three years larger payback
time. Concerning the rigid model formulation, it proved to guarantee
less flexibility, due to the impossibility to increase the flow capacity,
by adding new pipes in the second stage in the same branches. Indeed,
the number of possible network modifications is much lower with
respect to the flexible formulation. In addition, the maximum number
of users connected in the second solution is 35% smaller than in the
first one. Moreover, the rigid model tends to install larger pipes from
the beginning in order to be able to connect additional buildings in the
second stage. The impact of the rigid formulation in terms of expected
value of the cost function is limited to 0.4%.
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Fig. 19. Possible network enhancement in the second stage if no residual value of equipment is considered.
Regarding the residual value of asset at the end of project life, if
this is not taken into account in the cost function, the model tends
to select a slightly wider network from the beginning. However, in
89% of the scenarios the network is not expanded in the second stage.
Indeed, installing new pipes, substations or chillers in the second stage
would mean using them for only half of their life if the residual value is
not taken into account. Hence, the achievable operation savings would
not be large enough to compensate the additional capital investment.
The only scenarios in which the investment of new district cooling
equipment is compensated by operation savings in the second time
period, are the ones characterized by the highest potential of district
cooling with respect to individual cooling. This result testifies that the
value and the use of assets at the end of project life has a strong impact
on the solution, influencing both first and second stage decisions.

6. Conclusion

In this paper a novel two-stage stochastic programming model for
the design optimization of district cooling systems is presented. The
optimization model is based on the mixed integer linear programming
paradigm and all non-linear constraints have been linearized. The
objective of the model is to determine the optimal initial design of
a district cooling network and the future expansion for each possible
scenario. The model optimizes the set of users to be connected both
(a) immediately and (b) in the future on the base of the scenario
conditions. A case study characterized by a neighbourhood of 108
buildings was used to test the tool. From the results it emerged that 40
buildings should be connected in the first design stage. In the second
stage, depending on the scenario, the network can be either unchanged
or enlarged in 23 different ways connecting up to 99 buildings. An
analysis on the impact of the uncertainty was also performed. Among
all parameters, electricity cost and increase rate of cooling demand
are the ones that most influence the optimal solution. In particular, it
was found that in 83% of the scenarios characterized by the lowest
value of electricity cost, the network does not change in the second
16
Fig. 20. Impact of residual value of equipment on second stage decisions.

stage. Moreover, the impact of the stochastic approach was assessed by
evaluating the cost under all possible scenarios and comparing it with
other deterministic solutions. The two-stage stochastic programming
model proved to be more robust than the others and, on average, it
allows to reduce total costs by 5% with respect to deterministic meth-
ods that do not take into account uncertainty. In addition, stochastic
model solution is characterized by three years lower payback time and
58% higher net present value. An alternative less flexible formulation
of the model, called ‘‘rigid formulation’’, has been implemented as well,
in which the installation of multiple pipes in the same branches of
the network (in order to increase flow capacity) is not allowed. The
results showed, that the expected value of the solution obtained with
this model is 0.4% larger than the one obtained with more flexible
constraints. Moreover, the rigid model tends to install larger pipes and
connect more buildings from the beginning, while less recourse actions
are taken in the second stage. Lastly, it was analysed the impact of
introducing or removing from the cost function the residual value of
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assets at the end of project life. If this is not taken into account, in
89% of the cases, the model would not connect new buildings in the
second stage, since the new installed equipment would be used for
only part of their life-time and the achievable savings would not be
large enough to compensate the supplementary capital investment. The
developed models can be suitable to support decision makers in the dif-
ferent design phases of district cooling systems. Indeed, these systems
should operate for a large time-horizon, where most of parameters are
uncertain and could sensibly change in the long period. These models
by taking into account the uncertainty of different parameters select a
robust network design that can eventually be modified in the future,
if conditions become more convenient for district cooling technology.
At the same time, the robust network design allows to mitigate the
risks related to a decrease of district cooling potential. The developed
models enhance the potential of district cooling by properly handling
the investment risks in the design phase. Future studies should take into
account also the design and operation optimization of district cooling
networks with thermal energy storage. In particular, the impact of
uncertain electricity tariff on the optimal size of chillers and storages
shall be investigated. In addition, future studies should focus on the
optimal integration with other energy technologies, such as district
heating systems or waste heat and solar energy through absorption
chillers under different scenarios.
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