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Online Learning of Wheel Odometry Correction for Mobile Robots
with Attention-based Neural Network

Alessandro Navone', Mauro Martini', Simone Angarano! and Marcello Chiaberge'

Abstract— Modern robotic platforms need a reliable localiza-
tion system to operate daily beside humans. Simple pose estima-
tion algorithms based on filtered wheel and inertial odometry
often fail in the presence of abrupt kinematic changes and wheel
slips. Moreover, despite the recent success of visual odometry,
service and assistive robotic tasks often present challenging
environmental conditions where visual-based solutions fail due
to poor lighting or repetitive feature patterns. In this work,
we propose an innovative online learning approach for wheel
odometry correction, paving the way for a robust multi-source
localization system. An efficient attention-based neural network
architecture has been studied to combine precise performances
with real-time inference. The proposed solution shows remark-
able results compared to a standard neural network and filter-
based odometry correction algorithms. Nonetheless, the online
learning paradigm avoids the time-consuming data collection
procedure and can be adopted on a generic robotic platform
on-the-fly.

I. INTRODUCTION

Wheel odometry (WO) and inertial odometry (IO) are the
simplest forms of self-localization for wheeled mobile robots
[1]. However, extended trajectories without re-localization,
together with abrupt kinematic and ground changes, drasti-
cally reduce the reliability of wheel encoders as the unique
odometric source. For this reason, visual odometry (VO) has
recently emerged as a more general solution for robot local-
ization [2], relying only on the visual features extracted from
images. Nonetheless, service and assistive robotics platforms
may often encounter working conditions that forbid the usage
of visual data. Concrete scenarios are often related to the
lack of light in indoor environments where GPS signals are
denied, as occurs in tunnels exploration [3], [4] or in assistive
nightly routines [5], [6], [7]. Repetitive feature patterns in
the scene can also hinder the precision of VO algorithms, a
condition that always exists while navigating through empty
corridors [8] or row-based crops [9]. Therefore, an alternative
or secondary localization system besides VO can provide a
substantial advantage for the robustness of mobile robot nav-
igation. Wheel-inertial odometry is still widely considered a
simple but effective option for localization in naive indoor
scenarios. However, improving its precision in time would
extend its usage to more complex scenarios. Previous works
tackle the problem with filters or simple neural networks, as
discussed in Section [[-A] Learning-based solutions demon-
strate to mitigate the odometric error at the cost of a time-
consuming data collection and labeling process. Recently,
online learning has emerged as a competitive paradigm to
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Fig. 1. Diagram of the proposed approach. Red blocks and arrows refer
to the online training phase, blue ones to the model inference stage, and
ones to the odometric input data.

efficiently train neural networks on-the-fly avoiding dataset
collection [10]. In this context, this work aims at paving the
way for a learning-based system directly integrated into the
robot and enabling a seamless transition between multiple
odometry sources to increase the reliability of mobile robot
localization in disparate conditions. Figure [T| summarizes the
proposed methodology schematically.

A. Related Works

Several studies have explored using machine learning
techniques to estimate wheel odometry (WO) in mobile
robotics applications. Approaches include different feed-
forward neural networks (FFNN) [11], of which, in some
cases, the output has been fused with other sensor data
[12], and long short-memory (LSTM) NN, which have
been applied to car datasets [13]. These approaches show
a promising improvement in WO accuracy, which is crucial
for mobile robotics applications.

Many works have focused on using Inertial Measurement
Unit (IMU) data in mobile robots or other applications,
such as person tracking using IMU data from cell phones
[14]. One system was improved by implementing a zero-
velocity detection with Gate Recurrent Units (GRU) neural
network [15]. Another study used an Extended Kalman Filter
(EKF) to estimate positions and velocities in real-time in
a computationally lightweight manner [16]. Additionally,
a custom deep Recurrent Neural Network (RNN) model,
IONet, was used to estimate changes in position and ori-
entation in independent time windows [17]. Some studies
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used a Kalman Filter (KF) to eliminate noise from the
accelerometer, gyroscope, and magnetometer sensor signals
and integrate the filtered signal to reconstruct the trajectory
[18]. Another KF approach has been combined with a Neural
Network to estimate the noise parameters of the filter [19].

Several neural network architectures have been proposed
to predict or correct IO odometry over time. For example,
a three-channel LSTM was fed with IMU measurements to
output variations in position and orientation and tested on a
vehicle dataset [20]. Another LSTM-based architecture mim-
ics a kinematic model, predicting orientation and velocity
given IMU input data. Studies have investigated the role of
hyper-parameters in IO estimation [21].

Sensor fusion of wheel encoder and IMU data is a com-
mon method for obtaining a robust solution. One approach
involves fusing the data with a Kalman Filter, which can
assign a weight to each input based on its accuracy [22]. A
Fully Connected Layer with a convolutional layer has been
employed for estimating changes in position and orientation
in a 2D space over time in an Ackermann vehicle, along with
a data enhancement technique to improve learning efficiency
[23]. Additionally, a GRU RNN-based method has been
proposed to compensate for drift in mechanum wheel mobile
robots, with an in-depth fine-tuning of hyper-parameters to
improve performance [24].

B. Contributions

In this work, we tackle the problem of improving wheel-
inertial odometry by learning how to correct it online with an
efficient artificial neural network. At this first stage, the study
has been conceived to provide the robot with a more reliable,
secondary odometric source in standard indoor environments
where the working conditions for VO can temporarily vanish,
as in the case of robots for domestic night surveillance
or assistance. The main contribution of this work can be
summarized as:

e A novel online learning approach for wheel-inertial
odometry correction which allows avoiding complex
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Architecture of the proposed model. The batch dimension is omitted for better clarity.

trajectory data collection and can be directly included
in a ROS 2 system;

o An efficient model architecture to preserve both easy
online training and fast inference performance.

Nonetheless, a validation dataset of sensor data has been
collected with the robot following different trajectories to
conduct extensive experiments and comparisons with state-
of-the-art offline methods.

II. METHODOLOGY
A. Problem Formulation

The position of a robot at time ¢ referred to the starting
reference frame Ry can be calculated by accumulating its
increments during time segments d¢. The time stamp n refers
to the generic time instant ¢ = ndt. The state of the robot x,,
is defined by the position and orientation of the robot, such
as:

XTL - (mn7yn79n)T; (1)

where (Z,,y,) is the robot’s position in the 2D space and
0, is its heading angle. Given the state, it is possible to
parametrize the transformationT(’ matrix from the robot’s
frame R,,, to the global frame Ry. Its first two columns
represent the axes of the robot frame, and the last one is
its position with respect to the origin.

The robot employed to develop this work is equipped with
an IMU, which includes a gyroscope and an accelerometer,
and two wheel encoders. Therefore, u,, is defined as the
measurement array referred to instant n, i.e.:
’ 2)
where (v;,v,) are the wheels’ velocities, (,,7) are the
linear accelerations and (Gr,ﬁy,ﬁz) are the angular veloc-
ities. The input U,, to the proposed model consists in the
concatenation of the last NV samples of the measurements
U, = (W), Ugp_1),--- ,u(n,N))T. At each time sample, the
state is updated as a function of the measurements f(U,):
first, the change of the pose 6 = f(U,) of the robot

U, = (vl,vr,éﬂ'y,é,(‘)m,Qy,Gz)



is estimated, relative to the previous pose X,_1. Then, the
updated state is calculated, given the transformation matrix
obtained before, as:

ﬁn = infl H f(Un) = ngn_l)(;f(ny (3)
where the operator BH symbolizes the state update.

B. Neural Network Architecture

As formalized in the previous section, the prediction of
X, € R? from U, € RT*C is framed as a regression
problem. The architecture we propose to solve this task is
inspired to REMNet [25], [26], though it uses 2D convolu-
tions instead of the original 1D convolutional blocks (Figure
[2). This modification aims at exploiting temporal correlations
without compressing the channel dimension throughout the
backbone. In particular, we keep the channel dimension C
separated from the filter dimension F'. In this way, the first
convolutional step with kernel (K, 1) and F filters outputs
a low-level feature map f; € RTXC*F Then, a stack of
N Residual Reduction Modules (RRM) extracts high-level
features while reducing the temporal dimension 7. Each
RRM consists of a residual (Res) block followed by a
reduction (Red) module:

RRM (z) = Red(Res(x)) 4

The Res block comprises a 2D convolution with kernel K x 1
followed by a Squeeze-and-Excitation (SE) block [27] on the
residual branch. The SE block applies attention to the chan-
nel dimension of the features with a scaling factor learned
from the features themselves. This operation improves the
representational power of the network by enabling it to per-
form dynamic channel-wise feature recalibration. First, the
block applies average pooling to dimensions 7" and C. Then,
it reduces the channel dimensionality with a bottleneck dense
layer of F'/R units. Finally, another dense layer restores the
original dimension and outputs the attention weights. After
multiplying the attention mask for the features, the result is
used as a residual and added to the input of the residual
block. The Red block halves the temporal dimension by
summing two parallel convolutional branches with a stride
of 2. The layers have kernels K x 1 and 1 x 1, respectively, to
extract features at different scales. After N RRM blocks, we
obtain the feature tensor f € RT*CxF/ 2N, which is flattened
to predict the output through the last dense layer. We also
include a dropout layer to discourage overfitting.

C. Training Procedure

The goal of this work consists of learning the positioning
error of the robot using wheel odometry. Nonetheless, it is
important to remark that, nowadays, visual-inertial odometry
(VIO) is a standard approach on robotic platforms. This work
does not aim to propose a more precise localization system
but to learn wheel-inertial odometry as a second reliable
localization algorithm available whenever visual approaches
fail.

We exploit a basic VIO system on the robot for the only
training process since it enables a competitive online learning
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Fig. 3. Infinite-shaped trajectories estimated by different methods. The
data are collected during a total navigation time of about 60s.

paradigm to train the model directly on the robot. Batch
learning, the most used training paradigm, requires all the
data to be available in advance. As long as the data are
collected over time, the proposed method consists in training
the network in a continuous way when a batch of N data is
available. This approach has been tested extensively in [28],
demonstrating a negligible loss in accuracy compared to the
batch-learning paradigm.

The proposed model’s training consists of two main steps,
which are repeated as long as new data are available. First,
a batch of IV elements is collected, respectively, the input
of the network U,, and the expected output dz. Then, an
update step is carried out using an SGD-based optimizer
algorithm adopting a Mean Absolute Error loss function,
which does not emphasize the outliers or the excessive noise
in the training data.

III. TESTS AND RESULTS

In this section, the proposed approach is tested through
extensive experimental evaluations. The model presented in
Section has been trained with an incremental learning
method and a classical batch training approach. Results
obtained with a simple FFNN model and a standard local-
ization solution based on an EKF are also discussed in the
comparison. For this sake, both training processes have been
accomplished on the same dataset, and all the tests have been
executed on the same test set.

A. Experimental Setting

The dataset used for the experiments was collected in a
generic indoor environment. The employed robotic platform
was a Clearpath Jackaﬂ a skid-steer driving four-wheeled
robot designed for indoor and outdoor applications. All the
code was developed in a ROS 2 framework and is tested on
Ubuntu 20.04 LTS using the ROS 2 Foxy distro.

Since an indoor environment was considered, the linear
velocity of the robot was limited to 0.4m/s and its angular

Ihttps://clearpathrobotics.com/
jackal-small-unmanned-ground-vehicle/
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Fig. 4. Absolute error of position and orientation of different methods
during the test performed on a subset of infinite-shaped trajectories. The
considered subset is the same as figure EI

velocity to 1rad/s. The data from the embedded IMU and
wheel encoders were used as inputs to the model. According
to these assumptions, we used the robot pose provided by
an Intel Realsense T265 tracking camera as ground truth.
As the testing environment is a single room, the precision
of the tracking camera is guaranteed to provide a drift of
less than 1% in a closed loop patfﬂ All the data have been
sampled at 1/0t = 25H z.

The data were collected by teleoperating the robot around
the room and recording the sensor measurements. For the
training dataset, the robot has been moved along random
trajectories. For the test dataset, critical situations when
the skid-steer drive robot’s odometry is known to lose the
most accuracy were reproduced, such as tight curves, hard
brakings, strong accelerations, and turns around itself. The
obtained training dataset consists of 156579 samples; 80%
have been used for training and 20% for validation and
hyperparameter tuning. The test dataset consists of 61456
samples.

The model hyperparameters have been tuned by perform-
ing a grid search using a batch learning process, considering
a trade-off between accuracy and efficiency. In the identified
model, we adopted F' = 64 filters, N = 2 reduction modules,
and a ratio factor R = 4. Kernel size K = 3 is used for all
the convolutional layers, including the backbone. The input
dimensions were fixed to 7" = 10 and C' = 8. The former
corresponds to the number of temporal steps, and it has been
observed how a higher value appears to be superfluous. In
contrast, a lower value leads to performance degradation. The
latter value, C, corresponds to the number of input features,

Zhttps://www.intelrealsense.com/
tracking-camera-t265/
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Fig. 5. Histograms of the SE error in position and orientation in section
B of the test set.

i.e., sensor measurements as described in

We adopted Adam [29] as the optimizer for the training.
The exponential decay rate for the first-moment estimates
is fixed to 1 = 0.9, and the decay rate for the second-
moment estimates is fixed to S = 0.999. The epsilon factor
for numerical stability is fixed to ¢ = 10~8. The optimal
learning rate 1) was experimentally determined as 1x10~* for
batch learning. Conversely, the incremental learning process
showed how a value of 7 = 7 x 1075 avoided overfitting
since the data were not shuffled. In both learning processes,
a batch size of B = 32 was used.

B. Evaluation Metrics

To evaluate the performance of the proposed model, two
different metrics were used [30]:

o Mean Absolute Trajectory Error (m-ATE), which aver-
ages the magnitude of the error evaluated between the
estimated position and orientation of the robot and its
ground truth pose in the same frame. Sometimes, it can
lack generalization due to possible error compensations
along the trajectory.

o Segment Error (SE), which averages the errors along all
the possible segments of a given length s, considering
multiple starting points. It is strongly less sensitive to
local degradation or compensations than the previous
metrics.

C. Quantitative Results

The proposed method was tested by training the neural
network from scratch using the stream of sensor data in
real-time, brought by the ROS 2 topics. The data were first
collected in mini-batches of 32 elements. After completion,
backpropagation is performed on the model to update all
the weights. The data stream is recorded to provide the
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TABLE I
PERFORMANCE COMPARISON ON THE DIFFERENT TEST SCENARIOS AND THE OVERALL TEST SET WITH THE RESPECTIVE STANDARD DEVIATION.

WHEN TRAINED WITH BATCH LEARNING, THE PROPOSED ARCHITECTURE PERFORMS BETTER THAN THE FFNN PROPOSED IN [23]. IF TRAINED

ONLINE, IT OUTPERFORMS THE COMMON EKF-BASED LOCALIZATION METHOD AND ACHIEVES THE RESULTS OF THE MODEL TRAINED OFFLINE.

Test Duration [s] Method m— ATE(g ,y[m] m — AT Eg[rad] SE(5,)[m] SEg[rad]
EKF 0.692 + 0.213 0.821 £ 0.334 0.099 +0.043  0.069 + 0.032
A 998 Online Learning 0.292 + 0.098 0.118 £ 0.079 0.071 £ 0.038  0.020 + 0.013
Batch Learning 0.208 + 0.061 0.084 £ 0.072 0.062 +0.039  0.013 +0.010
FENN [23] 0.354 +0.124 0.326 £ 0.125 0.063 +0.036  0.027 £ 0.012
EKF 1.118 £ 0.586 0.380 £+ 0.126 0.096 + 0.041  0.052 £ 0.030
B 663 Online Learning 0.330 £ 0.081 0.117 £ 0.097 0.079 £ 0.042 0.017 £ 0.015
Batch Learning 0.197 £ 0.059 0.067 £ 0.030 0.051 +0.034 0.011 %+ 0.009
FFNN [23] 0.513 +0.223 0.38 £0.181 0.057 £ 0.034 0.022 +0.011
EKF 0.572 + 0.207 0.343 £0.174 0.088 +0.045 0.049 + 0.034
C 302 Online Learning 0.270 £ 0.104 0.112 £ 0.053 0.081 +0.043 0.033 £ 0.030
Batch Learning 0.178 £+ 0.095 0.086 £ 0.062 0.047+£0.031 0.019 +0.016
FFNN [23] 0.326 + 0.102 0.183 £ 0.058 0.050 +0.031  0.019 £+ 0.013
EKF 0.738 + 0.385 0.553 £+ 0.338 0.094 +0.043  0.058 + 0.033
Online Learning 0.292 + 0.100 0.115 £ 0.075 0.076 = 0.041  0.023 £ 0.021

Overall 2458

Batch Learning 0.195 + 0.076 0.081 £ 0.062 0.054 +0.036  0.014 +0.012
FFENN [23] 0.377 + 0.160 0.285 + 0.145 0.057 £ 0.034 0.023 £ 0.012

aforementioned training dataset, which was later used
to evaluate other methods. The results of the methods are
compared to different state-of-the-art solutions, which are 1)
the same network trained with a traditional batch learning, ii)
a feedforward neural network, as in [23], and iii) an Extended
Kalman Filter based method, which can be considered one
of the most common wheel-inertial odometry estimators.
All the models were evaluated offline using a test set
composed of 19 sequences of various lengths, comprised
between 60s and 280s, which aim to recreate different
critical situations for wheel inertial odometry. In particular,
the sequences can be separated into three main trajectory

types:

e Type A, comprises round trajectories which do not allow
fortunate error compensation during the time. Therefore,
they may lead to fast degradation of the estimated pose,
and especially of the orientation.

e Type B comprises an infinite-shaped trajectory. This
test allows partial error compensations, but possible
unbalanced orientation prediction may lead to fast
degradation of the position accuracy. A partial sequence
of type B trajectories are shown in Figure 3]

e Type C comprises irregular trajectories, including hard
brakings and accelerations, and aims to test the different
methods’ overall performance.

Table [I| presents the numeric results of the different
tests, considering the proposed model (Online Learning) and
the selected benchmarks. All the leaning-based approaches
show a significant error reduction compared to the EKF
results, which can be considered a baseline for improvement.
Considering both the neural network architectures trained
offline, the proposed convolutional one achieves an average
improvement of 73.5% on the position m — ATFE, ,) and

85.3% on the orientation m — AT Ey. In comparison, the
FFNN model achieves 49.0% and 48.4%, respectively. The
Segment Error improves in both cases: the proposed model
improves by 42.6% on the position SE, ,y and 75.8% on
the orientation SFy. The FENN architecture improves by
39.3% and 60.3%, respectively.

Compared with the EKF baseline, the online learning
model shows almost the same improvement as batch learn-
ing. The improvement on the m-ATE equals 60.4% on the
position and 79.2% on the orientation. The Segment Error
also appears to be lower, showing an improvement of 19.1%
on position and 60.3% on orientation. The observed differ-
ence between the two training paradigms is an acceptable
trade-off between the slight loss of accuracy of the online
training compared to the batch training and the possibility
of training the model without a pre-collected dataset.

Figure [5] reports the histograms of the distribution of the
Segment Errors, in position and orientation, respectively,
for test scenario B. It emerges how learning-based methods
achieve, on average, a smaller error than the EKF method.
Figure [ shows the error trend during time related to the
trajectory of figure [3] It is evident how the batch-trained
and online-trained models perform similarly to the other
methods.

D. Latency Evaluation

Since all the training and inference processes are tested
online, firm real-time performance is needed to avoid missing
data for training or producing late odometry data. The trained
neural network has been converted into a TensorFlow Lite
float32 model, which allows the development of models on
edge devices and performs inference on CPU devices. Using
the Jackal’s Board computer, based on an i3-4330TE @
2.4 GHz chip, a mean odometry estimation time of 4 ms



was achieved on 100 measurements, which is 10% of the
sampling frequency of 25 Hz. The training process on an
external PC with 32-GB RAM on a 12*"-generation Intel
Core i7 @ 4.7 GHz took an average time of 25 ms per
batch, considering 100 measurements.

IV. CONCLUSIONS

This paper introduces an online learning approach and
an efficient neural network architecture for wheel-inertial
odometry estimation in mobile robots from raw sensor data.
The online training paradigm does not need a pre-collected
dataset and allows fine-tuning the performance of the model
over time, adapting to environmental changes. Moreover, the
proposed model’s reduced dimension allows training and fast
inference on a low-resources robotic platform on-the-fly.

Future works may include developing a collaborative
system based on integrating multiple odometry sources with
a seamless transition to constantly guarantee accurate local-
ization data to the robot.
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