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Abstract—Estimating the State of Health (SOH) of batteries
is crucial for ensuring the reliable operation of battery systems.
Since there is no practical way to instantaneously measure it at
run time, a model is required for its estimation. Recently, several
data-driven SOH models have been proposed, whose accuracy
heavily relies on the quality of the datasets used for their training.
Since these datasets are obtained from measurements, they are
limited in the variety of the charge/discharge profiles.

To address this scarcity issue, we propose generating datasets
by simulating a traditional battery model (e.g., a circuit-
equivalent one). The primary advantage of this approach is the
ability to use a simulatable battery model to evaluate a potentially
infinite number of workload profiles for training the data-driven
model. Furthermore, this general concept can be applied using
any simulatable battery model, providing a fine spectrum of
accuracy/complexity tradeoffs. Our results indicate that using
simulated data achieves reasonable accuracy in SOH estimation,
with a 7.2% error relative to the simulated model, in exchange
for a 27X memory reduction and a ≈2000X speedup.

Index Terms—Battery modeling, digital twin, automotive

I. INTRODUCTION

The accuracy of onboard State of Health (SOH) estima-
tion in Battery Management Systems (BMS) is essential for
ensuring the safety and reliability of battery systems of a
battery-powered device, and in particular for Electric Vehicles
(EVs). As there is no practical physical way to instantaneously
measure the SOH, such tracking inevitably requires a model.
The literature about SOH models is extremely vast, including
electrochemical, equivalent circuits, semi-empirical, analytical,
and statistical models [1]. More recently, on the wave of
the Machine Learning (ML) hype, a new category of data-
driven models has emerged, in which a set of instantaneously
measurable battery parameters (typically, voltage, current, and
temperature) relative to a charge or discharge session of a
battery is labeled with corresponding SOH values calculated
at session’s end [2]. These labeled measures are then used as
a dataset to train appropriate ML models [3], [4]. Data-driven
models essentially solve the two main drawbacks of traditional
models: (i) they are more general, as models for different
battery types can be naturally obtained by training them with
measurements on different devices, thus also covering variabil-
ity aspects; and (ii) they do not require any kind of simulation,
thus resulting in significant reductions in time and space com-
plexity when deploying the model on resource-constrained de-
vices (i.e., no need for a large amount of simulation operations
to estimate battery dynamics and/or for a simulation engine).

On the other hand, the quality of data-driven models is
strongly dependent on the size and the variety of the dataset.
As these datasets are obtained by experimental measurements,
it is materially unfeasible to provide an acceptable coverage
of the design space: datasets are generated at specific
working conditions, determined by the application domain,
and in limited time, thus restricting the variety of explored
charge/discharge/rest patterns, discharge current profiles, and
load currents. Last but not least, such a large exploration space
should possibly be repeated on multiple battery instances in
order to account for the intrinsic variability of the devices. The
consequence is that datasets obtained by measurements are by
definition very accurate, but accuracy is guaranteed only in the
few points of the experiment space that have been measured.

The key motivation of this paper is to fundamentally
swap this asymmetry, i.e., to sacrifice some accuracy while
extending the coverage of the design space. We propose to
use measurements (possibly much fewer than those required
to generate the whole dataset) to build a simulatable battery
model that incorporates the desired effects. This model can
then be used to generate arbitrarily large datasets, which will
serve as the training set for constructing more lightweight
and flexible data-driven models.

Several are the advantages of this approach:
• Exploration of virtually unlimited data points: once

the battery model is built, any kind of current and/or tem-
perature workload can be simulated to generate as many
data points as needed, at a lower cost and in less time than
would be required for experimental measurement setups;

• Tunable accuracy/complexity tradeoff: depending on
the quality of the available measurement data, more or
less accurate battery models can be built, providing a
flexible range of datasets for the data-driven model;

• Possibility of model combination: multiple types of
battery models can be built [1]) and integrated to cover
different aspects of battery dynamics, increasing the com-
prehensiveness of the final battery model;

• The final SOH model is still a data-driven SOH
model: its execution does not require simulation and it
is essentially a callable function of “live” parameters that
can be deployed on a target resource-constrained device.

Our results show that using data obtained from the chosen
simulation models [5], we achieved an error of about 7%
with respect to the SOH data while reducing memory usage
by 27X and speeding up calculations by ≈2000X.



II. BACKGROUND AND RELATED WORK

A. Battery Aging
Battery aging is the effect of (i) calendar aging (Lcal),

reflecting battery intrinsic degradation when in rest conditions
as an effect of temperature, State of Charge (SOC), and elapsed
time; and (ii) cycle aging, representing capacity loss during
each charge/discharge cycle (Lcyc), depending on average
values of current I , SOC, cell temperature T and Depth of
Discharge (DoD, i.e., difference between final and initial SOC)
[6]–[8]. Overall capacity loss (LC) is thus the sum of a global
term for calendar aging plus the sum of the degradation in each
cycle [9]:

LC(t, SOC,DoD, I, T ) =

Lcal(t, SOC, T ) +

N∑
i=1

Lcyc(Ii, SOCi, DoDi, Ti) (1)

where N represents the number of charge/discharge cycles,
SOC and T are average over an interval of length t in Lcal,
and refer to each individual cycle i in Lcyc. State-of-the-art
models for Lcal and Lcyc leverage either the similarities of
fatigue process of materials subjected to cyclic loading [6] or
incorporate electro-chemical properties of the charge/discharge
process [9]. It is outside the objective of this work to provide
further details about the models themselves; an exhaustive
overview of these models is available in [10].

B. Data-Driven SOH Estimation
The relative simplicity of casting the estimation of the SOH

as the problem of building a predictive model has spurred a
number of datasets available online [11] and a vast literature
about models [3].

The approaches used to estimate SOH differ in two key
aspects: how SOH is measured and the ML model used for
estimation.

Concerning the former aspect, SOH is measured either in
terms of the loss of capacity (which is more typical) or in
terms of the increase of the internal resistance. For the latter
aspect, conversely, the spectrum of options is definitely much
wider: models range from various types of Neural Networks
(NNs, feed-forward or recurrent ones) to simpler models
like random forests, Support Vector Machines (SVMs), or
Bayesian networks. Many of these approaches claim to
estimate capacity or resistance with high accuracy, making
them promising candidates for SOH estimation.

However, as emphasized by the authors of [3], comparing
different approaches and establishing reference models is
challenging. One reason is the quality of the datasets. As a
matter of fact, most of these datasets are too limited in size.
Besides the obvious impact that small datasets have on the
accuracy of data-driven models (in particular NNs), there is
also the problem of the variety of the dataset points. As they
are obtained from lab measurements, there are some intrinsic
limitations in generating some specific data points (e.g., very
low load currents, which will require prohibitive runtimes)
and are susceptible to measurement errors and noise.

III. PROPOSED METHODOLOGY

A. Workflow of the Proposed Methodology

Our idea is to use the datasets mentioned in the former
section (or possibly a small portion thereof) to build a full-
fledged, simulatable battery model including the SOH together
with the entire battery dynamics, and then use this simulatable
model to generate additional data points, that become the
training set for a higher quality SOH data-driven model.

Figure 1 sketches the envisioned flow to implement this
approach.
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Fig. 1: Conceptual flow of the proposed methodology

The flow starts (Ê) with an available set of battery data,
which typically includes measurements collected at various
operating conditions and can be generated afresh or obtained
from public datasets. While datasheets can be used to obtain
battery information, they generally result in poorer accuracy
in the construction of the model [12].

Battery datasets are then used to identify the parameters
of a battery model (hereafter the simulation model), which
tracks (at least) the desired target quantity (in our case, SOH).
Depending on the type of model, an appropriate procedure
is followed for the identification of the model parameters
[12]–[14]. Section III-B elaborates on the requirements for
the simulation model, and Section III-C surveys the main ones
available in the literature that comply with these requirements.

Once the simulation model is built, an exhaustive set of
synthetic traces is generated in a Design-of-Experiment (DoE)
step (Ë), exercising as many points as possible in the space of
the model inputs. For each of these design points, a simulation
of the battery model is run to yield one output trace (Ì).

Finally each trace generated by the simulation model is used
for training the SOH ML model (hereafter the data-driven
model, Í). Section III-D will describe the various options for
the data-driven models and their impact on a BMS. If the
format of the traces Ê and Ì are the same, we can use a mix
of real (measured) and simulated (model-driven) traces to train
or test the model (Ä). This step is not explicitly depicted in
the flow, but it showcases the flexibility of the approach.



B. General Requirements for Battery Simulation Models

The need for a simulatable model raises the issue of
identifying a common interface of the model, defining the
requirements in terms of modeled quantities. The general
interface used in our framework is shown in Figure 2.

Load current
Battery current

ModelAmbient

Temperature
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Storage time

Fig. 2: General interface of the battery simulation model.

The inputs of the models are the independent variables that
represent the external conditions under which the battery is
used, and must be measurable at runtime. Inputs are load
(charge/discharge) current, ambient temperature, and total stor-
age time (needed for calendar aging). Notice that although
the general aging model (Equation 1) contains the number of
cycles N , this is not strictly required as an input of the battery
model; N can in fact be simply obtained from the dataset by
using the timestamp of each data point: a new cycle is counted
anytime we complete a charge/discharge sequence.

The outputs of the model are typically arbitrary and can
include a range of quantities typical of most public datasets
[11]. However, two constraints must be considered. Firstly,
traces generated by the battery model in Ì must be labeled,
meaning that they must include a label that represents SOH,
so that the traces can be used to train the ML battery model
effectively. Secondly, if possible, the simulation model traces
should follow the same format of the datasets used in Ê. This
will allow the synthetic dataset to be used as an extension
of the original dataset for training and/or testing the resulting
data-driven battery model, thereby enabling a wider scenario.
Finally, it is worth emphasizing the importance of temperature
in modeling SOH and highlighting the distinction between
ambient and battery temperature. If the model is chosen
carefully, it will include a thermal model that, based on
the electrical quantities and the external temperature, can
accurately predict the battery’s internal temperature. However,
if the thermal model is not available, a rough approximation
is to use the ambient temperature as a proxy for the internal
temperature (the dashed line). This is essential because SOH
is highly sensitive to temperature.

C. Choice of the Battery Simulation Model

The requirements implied by the model interface defined
in the previous section might result in a possible difficulty in
our approach. Fortunately, models with these characteristics
are available in the literature [15], with different ranges of
accuracy and complexity. Electrochemical models represent
the chemical reactions as differential equations [16], but they
are too complex to be executed on board in real-time. Circuit-
equivalent models like [17], [18] require an RC network solver

or a state-space computation environment and may result in
being very heavy; improving their performance on the other
hand implies a reduction in accuracy. Kalman filters are a good
compromise: they allow to specify an error bound and, being
an iterative process, they tend to reduce the estimation error
to zero [19].

For the aforementioned reasons, we chose the Kalman filter-
based simulation model of [5] as a reference for this work
(Figure 3). This pre-defined model is designed to describe a
27Ah battery and uses Simscape to represent both the thermal
and electrical dynamics of the battery. The model reproduces
capacity fading due to thermal cycling and uses an unscented
Kalman filter to estimate battery SOC and internal resistance
based on values of voltage, current and internal temperature
at runtime. These estimates are then used as inputs of a SOH
estimation block built with measurement-based lookup tables.

Fig. 3: Adopted battery model based on Kalman filters.

D. Choice of the Battery Data-Driven Model

The last step of the flow is the training of a data-driven
model on the dataset generated by the simulatable model. The
proposed flow is independent of the target data-driven model:
in principle, any type of regressor can be embedded in the
“ML Model” block of Figure 1, ranging from a simple linear
model to a complex deep NNs: this offers a much finer-grain
tradeoff between accuracy and computational complexity than
traditional physics-based models.

We focus on a scenario in which SOH estimation must be
implemented on a low-power Microcontroller (MCU), possibly
hosted in the BMS, to enable onboard SOH estimation. To
achieve this, we selected two lightweight data-driven models:
(i) a Gradient Boosted Tree (GBT) regressor, i.e., an ensemble
of decision trees selected for its very fast prediction consisting
of a small number of branching operations [20], and (ii) a
Multi-Layer Perceptron (MLP), i.e., a simple fully-connected
neural network appropriate for dealing with pre-aggregated
features. These models are just examples to prove the flex-
ibility of our proposed approach, and the most suitable data-
driven model should be selected based on the desired SOH
estimation accuracy and the constraints of the target platform.

1) Model Training: The training dataset is populated from
the raw samples of battery current (I), voltage (V ), and
temperature (T ) generated by the simulation model at the
frequency fs that we expect onboard measurements to occur
(fs = 1 Hz in our experiments, but this highly depends on the



time constants of the considered system). The ML regressors
are then trained on 12 statistical features of I , V and T ,
aggregated over a time-window of configurable duration W
(2 hours in our experiments): mean, variance, min, and max
of each quantity. Given that we target deployment on a highly-
constrained, low-performance MCU, we avoid more complex
features (e.g., Skewness or Kurtosis)

since the computational cost for their calculation could
outweigh the resulting accuracy improvement. Given that
windows have a constant duration, it is not necessary to
include also the elapsed time.

ML models are trained to predict ∆SOH = SOHinitial −
SOHfinal in each window,

normalized to [0:1] for numerical stability. The training
loss function for both models is the Mean Squared Error
(MSE) between their prediction and the ∆SOH estimated by
the simulation model. Note that the raw SOH prediction can
be recovered by de-normalizing and accumulating predictions
over consecutive windows (1 multiplication and 1 sum per
window).

2) Model Space Exploration: A large number of de-
sign points can be obtained by (1) exploring model hyper-
parameters, and (2) selecting model features. Concerning
hyperparameters exploration, we vary the number of estimators
(decision trees) of the GBT and their maximum depths in the
sets [5, 10, 20, 50, 100, 200] and [1, 2, 3, 4, 5, 10, 30,
50] respectively, for a total of 48 configurations. Similarly,
we consider 42 MLP variants, with 1 to 2 hidden layers of
sizes in [4, 8, 16, 32, 64, 128]. We explore these options with
grid search and 50/20/30% train/validation/test split to obtain
a Pareto-frontier in the MSE vs. execution time and MSE vs.
memory occupation spaces. For the MLP, we use the Adam
optimizer with a batch size of 64 and a learning rate of 0.001,
training for 50 epochs. The remaining hyper-parameters are
kept at the default values of the respective training libraries
(see Section IV-A).

A selection of the best feature set, down to a minimum of 3
features, is applied by using a Recursive Feature Elimination
(RFE) algorithm. Thus, the grid search described above is
repeated 10 times, once for each feature sub-set, resulting in
a total of 480 GBT and 420 MLP models being evaluated.

Since the deployment of such a large number of model
variants would be impractical, we use simple mathematical
models in the exploration phase to estimate the time/energy
and memory complexity of each point.

For time and energy estimation, we count the operations
required for the two steps involved when using the model:

• Feature Extraction: Since all considered features
can be extracted with O(Nsamples) operations, where
Nsamples = W

fs
is the number of samples in a window,

we estimate feature extraction time as W
fs
·Nf , where Nf

is the number of features.
• Model Evaluation: MLP evaluation cost is obtained by

counting the total number of multiply-and-accumulate
(MAC) operations, while GBT cost is obtained by count-
ing the number of branch operations.

Since both phases consist mainly of arithmetic operations
(with no division), we use the above two time quantities
also as proxies of energy consumption: this is reasonable
as the exploration relies on relative comparisons and it is
architecture-independent, so we can reasonably assume that
the energy cost is roughly equivalent to the execution time
times the average power cost of an arithmetic operation.

With these models, we note that feature extraction time is
one or two orders of magnitudes higher than model evaluation
time, especially for GBTs.

Concerning memory, we estimate the cost of an MLP
configuration as the number of bytes required to store the
network weights and the two largest activation buffers [21].
For the GBT, we count the bytes required to store the ensemble
data structure and the input feature buffer [20].

While simplified, these models are effective in preserving
complexity rankings among different configurations, especially
for simple hardware like an MCU. On the other hand, using
them allows us to perform the entire training and hyper-
parameters search process in less than 4 hours on a laptop.

IV. EXPERIMENT RESULTS

A. Experiment Setup

We train data-driven models using the Scikit-Learn and
Keras Python libraries for GBT and MLP respectively. As
the target embedded device, we consider the ultra-low-power
RISC-V MCU PULPissimo [22], onto which we deploy both
GBTs and MLPs using optimized libraries written in C.
For GBTs, we leverage an in-house implementation similar
to the one described in [20] for random forests, whereas
for the MLPs we use a single-core version of the PULP-
NN library [21]. Time and energy results refer to a 22nm
realization of PULPissimo working at 205.1 MHz [22].

B. Dataset Generation

Simulation data is generated by configuring the model of [5]
with the default parameters. We run a set of simulations,
each lasting a maximum of 1,000 hours, or until battery SOH
reaches 0. Each simulation uses either a different temperature
or a different current profile. Specifically, we consider ambient
temperature values in the [10◦C : 40◦C] range with a step of
5◦C. We stimulate the battery model with constant, square-
wave, and “random walk” load current profiles for both charge
and discharge cycles, with values ranging from ±0.25A to
±2A. Each current pulse in a random walk has a duration
of ≈1 minute, whereas square waves have a period of ≈30
minutes. Combining these conditions, we obtained 110 simu-
lations that, once aggregated in non-overlapping windows of
length W = 2 hours, gave us 17,842 samples.

We split those data into training, validation, and test sets
with 50/20/30% proportions for all our experiments. Impor-
tantly, the split is performed at the simulation level (i.e., not
at the window level), meaning that windows belonging to
the same simulation cannot be simultaneously present, for
instance, in the training and test sets. This is the most realistic
scenario, since in order to perform well, the data-driven models
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Fig. 4: Pareto-fronts obtained from the hyper-parameters exploration of data-driven models

must learn to extrapolate the ∆SOH for different simulation
conditions w.r.t. those seen during training.

Notably, this setup would allow us to easily generate more
data, for example conducting an error analysis to identify the
T and I conditions in which our GBT/MLP models perform
worse and enhancing the dataset accordingly.

C. Pareto Analysis

Figure 4 shows the results of model space exploration for
data-driven models. The x-axes of the two plots report the
time/energy and memory estimated cost respectively, accord-
ing to the models of Sec. III-D, whereas the y-axis reports
the ∆SOH MAE with respect to the simulation model, in
percentage. In both charts, each dot/triangle refers to one
MLP/GBT hyper-parameter and input features configuration,
and the blue/red points highlight the respective Pareto fronts.

Tuning models configurations, we obtain Pareto-optimal
solutions spanning a 4x range in estimated time/energy and
more than 2 order of magnitudes in memory occupation, with
MAEs ranging between 7% and 14%. GBT models achieve
superior results in terms of error vs. time/energy trade-off, but
have higher estimated memory than MLPs. This demonstrates
the flexibility achievable by selecting from the rich spectrum
of data-driven model architectures.

Table I reports the detailed results of the extremes of the
two Pareto curves. Namely, for each model type, we report the
configuration achieving the lowest error (-E suffix), the lowest
estimated time (-T), and the lowest estimated memory (-M).
Note that the latter two coincide with the MLP. Besides the
precise number of features, the hyper-parameter setting, and
the MAE, we also report two additional error metrics, i.e., the
Mean Squared Error (MSE) and the R2 score. These results
show that both hyper-parameter tuning and feature selection
are important to find optimal data-driven model configurations.

D. Deployment Results

Figure 5 reports the results of deploying all Pareto-optimal
models from Figure 4 on PULPissimo, thus replacing the cost
estimates with actual latency and memory (data plus code)

TABLE I: Extremes of the Pareto-curve.
GBT

Model # Feat. # Trees Max Depth MAE [%] MSE [%] R2

GBT-E 11 50 5 7.15 0.96 0.729
GBT-T 3 5 2 13.92 2.87 0.182
GBT-M 4 5 1 14.00 3.14 0.107

MLP
Model # Feat. # Layers Hidden Size MAE [%] MSE [%] R2

MLP-E 10 3 128 7.16 0.93 0.736
MLP-T 4 3 8 11.86 2.04 0.420
MLP-M 4 3 8 11.86 2.04 0.420

measures on the target. The detailed deployment results for
the extremes of the MLP and GBT Pareto fronts (same models
of Table I) are also reported in the first six rows of Table II,
in terms of the number of clock cycles, latency, total memory
occupation, and energy consumption per regression.

In order to compare the time and memory costs of our
data-driven models against those incurred by deploying a
simulation-based model on-device, we compiled our ground
truth reference from [5] to a binary executable through the
Simulink coder toolbox. We targeted a laptop-class CPU
(Apple M1 Pro), since [5] turned out to be impossible to
compile for our RISC-V embedded target, as the Simulink
coder relies on pre-compiled, x86-only support libraries, and
the memory required by this model exceeds the 512kB L2
available on the target.

To perform a fair comparison, we also compiled our lowest-
MAE data-driven model (GBT-E) for the M1 Pro, using the
C-based library of [20]. The results are presented in the
two rows marked with † in Table II. The last row estimates
the figures of the simulation model on PULPissimo by re-
scaling the simulation model results on M1 Pro to the RISC-
V, using the ratio of the results obtained by GBT-E on the
two platforms as proportionality factors. The corresponding
latency and memory values are also represented as light-blue
dots in Figure 5.

The results demonstrate the flexibility of a data-driven
approach: we obtain configurations with latency, energy, and
memory values that vary approximately by a factor of 3 (e.g.,
from 25ms/0.94µJ to 68ms/2.6µJ per regression and from 13.1
to 39.5 kB), with corresponding MAE values ranging from 7.2
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Fig. 5: Deployed data-driven models and comparison with the simulation-based model.

TABLE II: Deployment Results.
Model MAE [%] Cycles Latency [ms] Memory [kB] Energy [µJ]
GBT-E 7.15 140·103 0.68 39.46 2.6
GBT-T 13.92 51·103 0.25 13.26 0.94
GBT-M 14.00 58·103 0.28 13.06 1.04

MLP-E 7.16 122·103 0.6 15.38 2.36
MLP-T 11.86 58·103 0.28 13.54 1.01
MLP-M 11.86 58·103 0.28 13.54 1.01

Simulation-model Comparison
GBT-E† 7.2 560·103 0.20 49.15 n.a.
Simul.† 0 127·107 395 1343.49 n.a.

Simul.∗ 0 31 ·106 1377 1078.57 n.a.
† Results collected on Apple M1 Pro
∗ Results scaled from those on Apple M1 Pro

to 14%. Considering that we use a window of 2 hours as input
to the models, the energy consumption values obtained by the
data-driven solutions can be considered completely negligible.

Furthermore, on the M1 Pro CPU, our lowest error model
pays a 7.2% MAE in exchange for a striking 2,000X reduction
in latency and 27X reduction in memory, with respect to
directly executing a simulation-based SOH model. The latter,
when scaled to the RISC-V platform, would require more than
1s to execute, implying a much higher energy overhead and
more than 1MB of total memory, which would exceed the
available space on most embedded microcontrollers.

V. CONCLUSIONS

Data-driven models are the most suitable option for a digital
twin of a battery to be hosted on-board a BMS, but their
fidelity strongly depends on the quality of the training dataset.
We have shown that it is possible to use a simulation model
to generate an arbitrarily large dataset in a much smaller time
than that required by datasets obtained through measurements.
As results showed, this option also allows a tradeoff between
model accuracy and model execution time or memory.
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