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Poincaré inequalities on graphs

Matteo Levi1∗, Federico Santagati2†, Anita Tabacco2‡ and Maria Vallarino2§

Abstract

Every graph of bounded degree endowed with the counting measure satisfies a local version
of Lp-Poincaré inequality, p ∈ [1,∞]. We show that on graphs which are trees the Poincaré
constant grows at least exponentially with the radius of balls. On the other hand, we prove
that, surprisingly, trees endowed with a flow measure support a global version of Lp-Poincaré
inequality, despite the fact that they are nondoubling measures of exponential growth.

1 Introduction and notation

The doubling condition and the validity of (some form of) Poincaré inequality have been proved
to be natural assumptions to develop analysis on noncompact manifolds, Lie groups, infinite graphs,
and more generally on metric spaces. See [7, 9] and the references therein for an overview on the
topic.

These assumptions, however, seem to be often too restrictive: in many concrete situations,
indeed, the two conditions may be verified to hold only locally. On the other hand, the family of
locally doubling metric measure spaces supporting a local Poincaré inequality is expected to be wide
enough to comprise many of the concrete examples of metric space it is common to work with, and
it might be considered folklore that the local version of these assumptions should often be enough
to develop (local) analysis.

In this note we focus on infinite graphs. First, we give a simple proof of the fact that every
graph of bounded degree endowed with the counting measure (more general, any measure uniformly
bounded away from zero and infinity) satisfies a local version of Lp-Poincaré inequality, for any
p ∈ [1,∞]. This result is probably folklore, the proof being based on a quite standard reasoning;
we include it for the lack of precise references in the literature. We show that in the case of trees
the constant appearing in the Poincaré inequality that we prove, which grows exponentially with
the radius, is optimal. In particular, the global Poincaré inequality is not satisfied on trees with
degree strictly larger than 2 endowed with the counting measure. On the other hand, we will show
that flow measures, which are a natural family of nondoubling measures of at least exponential
growth on trees, satisfy the global version of Poincaré inequality on trees, hence proving to be
better behaved than the counting measure in this context. To the best of our knowledge, there
are no other examples in the literature of global Poincaré inequalities on metric measure spaces of
exponential growth. Our result might pave the way to the study of global Lp-Poincaré inequalities

2020 Mathematics Subject Classification: 05C63; 05C05; 05C21; 26D10; 30L15.
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on nondoubling metric spaces: as far as we know, weighted global Poincaré inequalities have been
considered on some nondoubling setting of polynomial growth (see for example [6]).

Let us now introduce some piece of notation in order to describe more precisely the content of
this note. Let X be an infinite, locally finite, connected, and undirected graph. We identify X
with its set of vertices and we write x ∼ y whenever x, y ∈ X are neighbors, namely, when they
are connected by an edge. We denote by deg(x) the number of neighbors of x. We say that the
graph X has bounded degree b + 1 if deg(x) ≤ b + 1, for some b ≥ 1 and every x ∈ X. A path of
length n ∈ N connecting two vertices x and y is a sequence {x0, x1, . . . , xn} ⊂ X, with no repeated
vertices, such that x0 = x, xn = y, and xi ∼ xi+1 for every i = 0, . . . , n− 1. The distance d(x, y) is
defined as the minimum of the lengths of the paths connecting x and y. For any x ∈ X and r ≥ 0,
the ball of radius r and center x is Br(x) = {y ∈ X : d(x, y) ≤ r}. For every subset E of X the
diameter of E is diam(E) = sup{d(x, y) : x, y ∈ E}.

We say that a subset E of X is quasiconvex if for every couple of vertices x, y in E there exists
a path contained in E connecting x and y of length ≤ 2 diam(E). This is the same as asking that
E is quasiconvex as a metric space (see for instance [7, 10]) with the metric induced by the ambient
space X. Examples of sets which are quasiconvex in any graph are all the geodesically convex sets,
as well as balls (which, on a general graph, might not be geodesically convex). Observe that on
trees, which are connected graphs without cycles, the notion of quasiconvex set coincides with the
notion of connected set; indeed, each connected set in a tree is geodesically convex, since every path
is a geodesic.

Any nonnegative function µ on X induces a measure on X; with slight abuse of notation, for any
subset E ⊆ X, we set µ(E) =

∑
x∈E µ(x). In particular, we denote by | · | the counting measure,

i.e., |E| is the cardinality of E.
A measure µ is said to be locally doubling if for any R > 0 there exists a constant D(R) such

that for any 0 ≤ r ≤ R

µ(B2r(x)) ≤ D(R)µ(Br(x)), for every x ∈ X . (1)

For any 1 ≤ p < ∞, we denote by Lp(X,µ) the space of functions f : X → C such that the

norm ∥f∥Lp(X,µ) =
(∑

x∈X |f(x)|pµ(x)
)1/p

is finite, and by L∞(X,µ) the space of function such

that ∥f∥L∞(X,µ) = supx∈X |f(x)| < ∞.
For every function f : X → C we define the length of the gradient of f as the function |∇f | :

X → R defined by

|∇f |(x) =
∑
y∼x

|f(x)− f(y)|, x ∈ X.

This is a standard notion for analysis on graphs and it plays the role that the upper gradients
defined in [10] play in analysis on metric spaces.

We say that (X,µ) satisfies a local Lp-Poincaré inequality, p ∈ [1,∞], if for any R > 0 there
exists a positive constant Pp(R) such that for any function f : X → C and any quasiconvex set E
of diameter 0 ≤ 2r ≤ R it holds

∥f − fE∥Lp(E,µ) ≤ Pp(R)r∥|∇f |∥Lp(E,µ), (2)

where fE = 1
µ(E)

∑
x∈E f(x)µ(x).

In case the constant Pp(R) may be made independent of R, we say that (X,µ) satisfies a global
Lp-Poincaré inequality. More precisely, (X,µ) satisfies a global Lp-Poincaré inequality, p ∈ [1,∞],
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if there exists a positive constant Pp such that for any function f : X → C and any quasiconvex
set E of diameter 2r it holds

∥f − fE∥Lp(E,µ) ≤ Ppr∥|∇f |∥Lp(E,µ). (3)

Notice that when E is a ball, (2) and (3) are the standard local and global Lp-Poincaré inequal-
ities studied in the literature [2, 3, 5, 15, 16].

In Section 2, we prove an Lp-estimate for f − fE expressed in terms of the Lp-norm of |∇f |
for every function f and every quasiconvex set E on a graph X endowed with measures positively
bounded from below (see Theorem 2.1). As a consequence, we prove a local Lp-Poincaré inequality
for quasiconvex sets on every infinite graph endowed with a measure positively bounded from below
and above (see Corollary 2.3). The counting measure is obviously included in this class of measures.

In Section 3 we discuss the optimality of the results of Section 2. First, we prove that the
assumption on the quasiconvexity of the set E in Theorem 2.1 cannot be weakened by simply as-
suming that E is connected. Next, we show that also the assumption on the boundedness from
below of the measure cannot in general be dropped by exhibiting an appropriate example (see Ex-
ample 3.2). Moreover, we prove that the growth of the constant involved in the local Lp-Poincaré
inequality, which may be exponential with respect to the radius of the balls, is optimal in the case
when p = 1,∞ for a suitable class of trees which includes the homogeneous tree. It is worth men-
tioning that a similar discussion on the exponential growth of the constant was carried out on the
so called ax+ b groups in [1].

Surprisingly, in the last section we are able to prove a global Lp-Poincaré inequality for quasi-
convex sets and for flow measures on infinite trees, a class of measures introduced in [13] (see (10)
for the precise definition). This represents a further evidence that these measures, despite being
nondoubling, of exponential growth and not positively bounded from below nor from above, are
very well behaved with respect to analysis on trees.

We remark that the Poincaré inequalities that we prove, and to which we address simply as Lp-
Poincaré inequalities, are indeed (p, p)-strong Poincaré inequalities. The term strong here refers to
the fact that the integral on the right-hand side of (2) is taken on the same set than the integral on
the left-hand side, and not on an enlarged set. The specification (p, p), instead, denotes a difference
with another class of inequalities, the (1, p)-Poincaré inequalities (see for example [11, Equation
(8.1.1)]). These are, for instance, the Poincaré inequalities treated in [7, 10] in the generality of
metric measure spaces. We point out that the L1-Poincaré inequalities that we prove imply the
corresponding (1, p)-Poincaré inequalities for every p > 1, while in general they are not enough to
imply Lp-Poincaré inequalities for any p > 1. Nevertheless, as previously described, for the cases
under study, we obtain Lp-Poincaré inequalities for every p ∈ [1,∞].

(Local) Poincaré inequalities combined with the (local) doubling condition, are a standard tool
to obtain (local) Harnack inequalities both in continuous and discrete settings (see [4, 5, 14, 16]). In
particular, it would be interesting to combine the global Poincaré inequalities for trees endowed with
nondoubling flow measures that we obtain in Section 4 with a suitable substitute of the doubling
condition for a family of connected subsets of the tree (see [13]) to get global Harnack inequalities
and estimates of the heat kernel of flow Laplacians. This seems to be a challenging problem and it
will be object of further investigation.

Along the paper, we use the standard notation f1(x) ≲ f2(x) to indicate that there exists
a positive constant C, independent of the variable x but possibly depending on some involved
parameters, such that f1(x) ≤ Cf2(x) for every x. When both f1(x) ≲ f2(x) and f2(x) ≲ f1(x)
are valid, we will write f1(x) ≈ f2(x).
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2 Bounded measures on graphs

Let X be an infinite, locally finite, connected, and undirected graph. For every α > 0 we denote
by Mα the class of measures positively bounded from below by α, namely, µ ∈ Mα if µ(x) ≥ α for
every x ∈ X. We underline that the counting measure belongs to M1.

The proof of next theorem is based on the following standard observation (see for instance, for
the case p = 2, [3] or [12, Proposition 8.3.1]): for every x, y ∈ X and every p ∈ [1,∞),

|f(x)− f(y)|p ≤ |γxy|p−1
∑

z∈γxy

|∇f |(z)p, (4)

where γxy is a path connecting x and y and |γxy| its length. Indeed, let γxy = {xi}ni=0, where
x0 = x, xn = y and xi ∼ xi+1, i = 0, ..., n− 1. Then,

|f(x)− f(y)| ≤
n−1∑
i=0

|f(xi)− f(xi+1)| ≤
∑

z∈[x,y]

|∇f |(z),

and (4) follows by Hölder’s inequality.

Theorem 2.1. Let E ⊂ X be a finite quasiconvex set with diam(E) = 2r, p ∈ [1,∞], and f be any
function on X. Then, for any α > 0 and for every µ ∈ Mα,

∥f − fE∥Lp(E,µ) ≤
(
µ(E)

α

)1/p

(4r)1−1/p∥|∇f |∥Lp(E,µ). (5)

Proof. Since E is quasiconvex, for x, y ∈ E we can choose the path γxy in (4) to have length smaller
or equal than 2 diam(E). Then, for p ∈ [1,∞) and x ∈ E, by Jensen’s inequality and (4) one has

|f(x)− fE |p ≤
( 1

µ(E)

∑
y∈E

|f(x)− f(y)| µ(y)
)p

≤ 1

µ(E)

∑
y∈E

|f(x)− f(y)|p µ(y)

≤ (4r)p−1

µ(E)

∑
y∈E

∑
z∈γxy

|∇f |(z)p µ(y).

(6)

In particular, for every x ∈ X we have

|f(x)− fE | ≤
1

µ(E)

∑
y∈E

∑
z∈γxy

∥|∇f |∥L∞(E,µ) µ(y) ≤ 4r∥|∇f |∥L∞(E,µ),

which proves the theorem for p = ∞. For p ∈ [1,∞), instead, one obtains from (6) that

|f(x)− fE |p ≤ (4r)p−1
∑
z∈E

|∇f |(z)p.

Since µ(z) ≥ α for any z ∈ X, we obtain∑
x∈E

|f(x)− fE |pµ(x) ≤
µ(E)

α
(4r)p−1

∑
z∈E

|∇f |(z)pµ(z).
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Remark 2.2. Analyzing the proof of Theorem 2.1, it is not difficult to observe that for p = 1 the
assumption on the quasiconvexity of the set E may be replaced by the weaker request that E is
connected. On the other hand, we will show in Section 3 that for p ∈ (1,∞] the assumption that
E is connected is not sufficient for Theorem 2.1 to hold. Similarly, when p = ∞, it is not necessary
to require the positive boundedness from below of the measure. Nevertheless, in the next section
we will prove that such request cannot be dropped when p < ∞.

For every finite β > 0, we denote by Mβ the class of positive measures bounded from above by
β, namely, µ ∈ Mβ if µ(x) ≤ β for every x ∈ X. For every 0 < α ≤ β, we set Mβ

α = Mα ∩Mβ . It
is worth mentioning that M1

1 uniquely consists of the counting measure.
We remark that if the graph X has bounded degree, then measures in Mβ

α are locally doubling.
Indeed, suppose that deg(x) ≤ b+1 and let µ ∈ Mβ

α. Then, for every x ∈ X and r ≥ 0, |Br(x)| ≤ 3br

and therefore, for every R ≥ r,

µ(B2r(x))

µ(Br(x))
≤ β

α

|B2r(x)|
|Br(x)|

≤ β

α
|B2r(x)| ≤

β

α
3b2R =: D(R).

On the other hand, graphs which have no bounded degree cannot support locally doubling measures.
To see this, suppose that µ is a positive locally doubling measure on a graph X. For any x ∈ X,

D(1/2)µ(x) ≥ µ(B1(x)) ≥
∑
y∼x

µ(y) ≥ deg(x)µ(y),

where y ∼ x is such that µ(y) ≤ µ(y) for every y ∼ x. By exploiting the locally doubling condition
again,

µ(y) ≥ µ(B1(y))

D(1/2)
≥ µ(x)

D(1/2)
.

Combining the above inequalities, it follows that for every x ∈ X,

deg(x) ≤ D(1/2)2.

The following corollary shows that for measures in the class Mβ
α on graphs of bounded degree,

we have a local Lp-Poincaré inequality for quasiconvex sets.

Corollary 2.3. Suppose that X has bounded degree b + 1. Fix R > 0 and let E ⊂ X be a
quasiconvex set with diam(E) = 2r ≤ R, p ∈ [1,∞], and f be any function on X. Then, for every
0 < α ≤ β < ∞ and µ ∈ Mβ

α, (X,µ) satisfies the Lp-Poincaré inequality (2), i.e.,

∥f − fE∥Lp(E,µ) ≤ Pp(R)r∥|∇f |∥Lp(E,µ),

with Pp(R) = 4

(
3
βbR

4α

)1/p

.

Proof. If x ∈ E, then E ⊆ BR(x), so that

µ(E) ≤ µ(BR(x)) ≤ 3βbR.

If r < 1 the result is trivial, so we can suppose r ≥ 1. Then the result directly follows from Theorem
2.1.
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Remark 2.4. We remark that, for p = ∞, the conclusion of Corollary 2.3 coincides with that of
Theorem 2.1. In particular, in this case, there is no actual need to assume any boundedness of the
measure, nor bounded degree of the graph; the local L∞-Poincaré inequality for quasiconvex sets
holds for any graph and any measure.

We mention that a global inequality related to (2) was obtained in [3] for α = β = 1 in the case
p = 1, 2, under the additional assumption that the counting measure is globally doubling.

3 Optimality of Theorem 2.1

The scope of this section is to discuss the optimality of Theorem 2.1 under different aspects. First
we will prove by means of an example that for p > 1, in general, the assumption of quasiconvexity
on E cannot be replaced by the weaker assumption of being connected. Next, we prove that for
measures which are not positively bounded from below the local Lp-Poincaré inequality may fail.
Finally, we prove that for p = 1,∞ the constant in formula (5) is optimal when E is a ball, X is a
tree and µ ∈ Mβ

α.

Example 3.1. Referring to Figure 1, consider the infinite connected graph X with vertex set
labelled by N2 and the following proximity rule: (j1, k1) ∼ (j2, k2) if and only if (i) |j1 − j2|+ |k1 −
k2| = 1 or (ii) k1 = k2 odd, j1, j2 ≤ k1 and |j1 − j2| ≥ 4.

For any E ⊂ X and p ≥ 1, let ∥ · ∥Lp(E) denote ∥ · ∥Lp(E,|·|). Define the sequence of sets
Ek = {(j, k) ∈ X : j ≤ k}, k ∈ 2N. It is clear that Ek is connected, 1 ≤ diam(Ek) ≤ 3 and
|Ek| = k + 1.
Consider the function f : X → C such that f(j, k) = j, for every (j, k) ∈ X. The average of f on
Ek, with respect to the counting measure, is equal to

fEk
=

1

k + 1

∑
(j,k)∈Ek

f(j, k) =
1

k + 1

k∑
j=0

j =
k

2
.

It follows that, for 1 < p < ∞,

∥f − fEk
∥pLp(Ek)

=

k∑
j=0

∣∣∣∣j − k

2

∣∣∣∣p = 2

k/2∑
j=0

jp ≈ kp+1,

and

∥f − fEk
∥L∞(Ek) = max

j=0,..,k

∣∣∣∣j − k

2

∣∣∣∣ = k

2
.

Moreover, for (j, k) ∈ Ek, |∇f |(j, k) = |j − (j − 1)| + |j − (j + 1)| = 2 if j ̸= 0, and ∇f(0, k) = 1.
Therefore, ∥|∇f |∥L∞(Ek) = 2 and for 1 < p < ∞,

∥|∇f |∥pLp(Ek)
≈

k∑
j=0

1 = k + 1.

Altogether, for any 1 < p ≤ ∞,

∥f − fEk
∥Lp(Ek)

|Ek|1/p diam (Ek)
1−1/p∥|∇f |∥Lp(Ek)

≈ k1−1/p → ∞, as k → ∞,

contradicting (5).
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Figure 1: A portion of the graph X. Proximity rule (i) defines the grid, while (ii) introduces the
curved edges.

We now exhibit a graph endowed with a measure which is not positively bounded from below
on which the Lp-Poincaré inequality fails for 1 ≤ p < ∞.

Example 3.2. Let X = Z endowed with the measure

µ(j) =


1

|j|
if j ̸= 0,

1 otherwise.

Consider the sequence of sets Ek = [−k, k] ∩ Z and define f(j) = j. It is clear that fEk
= 0 for

any k ≥ 1. Moreover, µ(Ek) ≈ log k and diam(Ek) = 2k + 1 for any k ≥ 2. A simple computation
shows that for any 1 ≤ p < ∞,

∥f − fEk
∥Lp(Ek,µ) = ∥f∥Lp(Ek,µ) =

( k∑
j=−k

|j|p−1

)1/p

≈ k.

Moreover,

∥|∇f |∥Lp(Ek,µ) ≈
( k∑

j=1

1

|j|

)1/p

≈ (log k)1/p,
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for any k ≥ 2. It follows that

∥f − fEk
∥Lp(Ek,µ)

µ(Ek)1/pdiam(Ek)1−1/p∥|∇f |∥Lp(Ek,µ)

≈ k1/p

(log k)2/p
→ ∞, as k → ∞.

We now discuss the optimality of the constant in Theorem 2.1 on trees. Let T be a tree such
that deg(x) ≥ 2 for every x ∈ T . For any couple of points x0 ∼ y0 ∈ T , we define the triangle of
height r ∈ N and root [x0, y0] to be the set T0 = {x ∈ T : d(x, x0) = d(x, y0)− 1 ≤ r}. The base of
T0 is intended to be the set of points of T0 at distance r from x0.

Proposition 3.3. Let T be a tree such that 2 ≤ deg(x) ≤ b + 1 for every x ∈ T , 0 < α ≤ β < ∞
and µ ∈ Mβ

α. Then, for every ball B ⊂ T with diam(B) = 2r and p ∈ [1,∞], there exists a function
f such that

∥f − fB∥Lp(B,µ)

∥|∇f |∥Lp(B,µ)
≳ Cp(B,µ), (7)

where Cp(B,µ) = µ(B)1/p for every p ∈ [1,∞) and C∞(B,µ) = r.

Proof. Let B = Br(x0) ⊂ T . Consider two points x1, x2 ∼ x0 and let T1, T2 be the two disjoint
triangles of height r − 1 and roots, respectively, [x1, x0], [x2, x0]. Clearly T1, T2 ⊂ B. Define f on
B as

f(x) =


d(x, x0) if x ∈ T1,

−Cd(x, x0) if x ∈ T2,

0 otherwise,

and extend f on T by imposing f(x) = f(y) if x ∼ y on the remaining vertices. We choose

C =

∑
x∈T1

d(x, x0)µ(x)∑
x∈T2

d(x, x0)µ(x)
,

so that fB = 0. Observe that ∥f∥L∞(B,µ) = rmax{1, C} and ∥|∇f |∥L∞(B,µ) ≤ (b + 1)max{1, C}.
Thus,

∥f∥L∞(B,µ)

∥|∇f |∥L∞(B,µ)
≥ r

b+ 1
,

which is (7) for p = ∞.
We now focus on the case p ∈ [1,∞). We claim that for every triangle T0 there exists a triangle

T ′ ⊂ T0, whose base is contained in the base of T0, such that µ(T ′) ≈ µ(T0 \ T ′), with constants
depending only on α, β and b. If the above claim holds, we are done.

Indeed, it is easy to see that B \ {x0} can be decomposed as the union of at most b + 1
disjoint triangles {Ti}ni=1 with roots [xi, x0], where xi ∼ x0, and height r − 1. Since µ(x0) ≤ β
and n ≤ b + 1, it is clear that there exists at least one triangle Tj among them with measure
µ(Tj) ≳ µ(B). Now, by the aforementioned claim, we can choose a triangle T ′ ⊂ Tj with root
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[x′, y′] such that µ(T ′) ≈ µ(Tj \ T ′). Clearly µ(T ′) ≈ µ(Tj) ≈ µ(B). We conclude by defining f on
B by

f(x) =


1 x ∈ T ′,

−µ(T ′)/µ(Tj \ T ′) x ∈ Tj \ T ′,

0 otherwise;

and we extend f on T by defining f(x) = f(y) if x ∼ y on the remaining vertices. It is obvious
that fB = 0, and ∑

x∈B

|f(x)|pµ(x) ≈ µ(B).

Moreover, |∇f |(x) = 0 unless x = xj , x0, x
′, y′, in which case

|∇f |(x) ≈ 1 +
µ(T ′)

µ(Tj \ T ′)
≈ 1.

It follows that for every p ∈ [1,∞)

∥f − fB∥Lp(B,µ)

∥|∇f |∥Lp(B,µ)
≳ µ(B)1/p,

which is inequality (7).
It remains to prove the claim. Let T0 be a triangle of height r and, for every integer n ∈ [1, r],

let Tn be the triangle of height r − n of maximal measure among those contained in Tn−1. Let n
be the minimum integer for which

µ(Tn)

µ(T0 \ Tn)
≤ 2.

We can assume that r is large enough so that the above inequality is actually satisfied for some
n ∈ [1, r] (indeed, if r is small there is nothing to prove). We have µ(Tn) ≤ 2µ(T0 \ Tn) and, on the
other hand,

µ(T0 \ Tn) ≤ µ(T0 \ Tn−1) + bµ(Tn) + β

<
1

2
µ(Tn−1) + bµ(Tn) + β

≤ 1

2
(bµ(Tn) + β) + bµ(Tn) + β ≤ 3

2

(
b+

β

α

)
µ(Tn).

The claim is proved and the proof is completed.

We underline that when deg(x) ≥ 3 the term Cp(B,µ) = µ(B)1/p has exponential growth with
respect to the radius of B since µ(B) ≥ α2r if B = Br(x0) for some x0 ∈ T and r ∈ N.

We now apply the previous proposition in order to deduce an optimal Poincaré inequality for
p = 1 and p = ∞ on a suitable class of trees, which includes the homogeneous tree endowed with
the counting measure.
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Theorem 3.4. Let T be a tree such that 2 ≤ deg(x) ≤ b+ 1 for every x ∈ T . Fix 0 < α ≤ β < ∞
and let µ ∈ Mβ

α be a measure on T such that, for every ball B ⊂ T with diam(B) = R, µ(B) ≈ h(R)
where h : N → R is a given function. Then, if p ∈ [1,∞], the following inequalities hold

∥f − fB∥Lp(B,µ) ≲ h(R)1/pR1−1/p∥|∇f |∥Lp(B,µ). (8)

Moreover, if p = 1,∞, the previous inequalities are optimal, i.e., there exists a function g such that

∥g − gB∥Lp(B,µ)

∥|∇g|∥Lp(B,µ)
≳ h(R)1/pR1−1/p, p = 1,∞. (9)

Proof. Since µ(B) ≈ h(R), Theorem 2.1 implies (8) and, in the case p = 1,∞, Proposition 3.3
yields (9).

4 Flow measures on trees

In this section we prove a global Lp-Poincaré inequality on connected sets for a tree endowed
with a so called flow measure, to be defined soon. What is remarkable here, with respect to the
results of Section 2, is that we are able to promote the inequality from local to global, despite the
fact that the measure is not required to be bounded above nor below, and in principle may not
even be locally doubling. Moreover, it is not required for the tree to have bounded degree.

Let us briefly introduce the setting and discuss the above comments. We let T be a tree
such that deg(x) ≥ 2 for every x ∈ T . Fix a point o ∈ T , which we call the origin, and a
half-infinite geodesic o = x0, x1, x2, . . . . We denote by ℓ(x) the level of the vertex x, which is
defined by ℓ(x) = limn→∞(n− d(x, xn)). For each vertex x, let p(x) be its only neighbor such that
ℓ(p(x)) > ℓ(x) and let s(x) be the set of the remaining neighbors. We define a partial order relation
on T according to which x ≥ y if and only if y is closer to x than to p(x).

In this context, we say that µ : T → R+ is a flow measure if

µ(x) =
∑

y∈s(x)

µ(y), for every x ∈ T. (10)

Observe that flow measures are not necessarily in the class Mβ
α. Indeed, the most standard

example of flow on a homogeneous tree, that is, on a tree where deg(x) = q for some integer q ≥ 2
and every vertex x, is the canonical flow, µ(x) = qℓ(x), which can be arbitrarily large as well as
arbitrarily close to zero. It is also clear from this example that flows are typically nondoubling,
since the canonical flow measure of a ball centred at o of radius r ∈ N on the homogeneous tree is
approximately qr. It is also possible to construct flow measures which are not even locally doubling;
indeed every flow measure (on any tree) such that the ratio µ(x)/µ(y), with y ∈ s(x), is not bounded
above and below uniformly on the tree is not locally doubling. For a proof of this fact and a more
thorough discussion on flow measures and their properties we refer the reader to [13, Proposition
2.2].

The conservation property (10) characterizing flows is equivalent to Kirchhoff’s current law: the
total current received by a vertex must equal the total current released by the vertex. Flows have
remarkable properties from the harmonic analysis point of view. Indeed, in [8] the authors develop
a Calderón–Zygmund theory on a homogeneous tree endowed with the canonical flow and, in [13],
this theory is adapted to general trees endowed with any locally doubling flow measure.
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We define the difference operator acting on functions f : T → C as

df(x) = f(x)− f(p(x)).

Observe that for any f : T → C and x ∈ T, |df(x)| ≤ |∇f |(x).

Theorem 4.1. Let E ⊂ T be a connected set with diam(E) = 2r, p ∈ [1,∞] and f any function
on T . Then, for every flow measure µ, (T, µ) satisfies the Lp-Poincaré inequality (3) with Pp = 4,
i.e.,

∥f − fE∥Lp(E,µ) ≤ 4r∥|∇f |∥Lp(E,µ).

Proof. Let E ⊂ T be a finite connected set with diam(E) = 2r. It is easy to see that

sup
x∈E

|{z ∈ E : z ≥ x}| ≤ 2r. (11)

Denote by xE the vertex with maximum level in E. Then, we have that

|f(x)− fE | ≤
∑
y∈E

( ∑
xE≥z≥x

|df(z)|+
∑

xE≥z≥y

|df(z)|
)
µ(y)

µ(E)

≤ 2∥df∥L∞(E,µ) sup
x∈E

|{z ∈ E : z ≥ x}

≤ 4r∥df∥L∞(E,µ).

Passing to the supremum and using that |df | ≤ |∇f |, we get the desired inequality when p = ∞.
Assume now p ∈ [1,∞). By applying Jensen’s inequality, we get that∑

x∈E

|f(x)− fE |pµ(x) =
∑
x∈E

∣∣∣∣∑
y∈E

(f(x)− f(y))
µ(y)

µ(E)

∣∣∣∣pµ(x)
≤

∑
x∈E

∑
y∈E

|f(x)− f(y)|p µ(y)

µ(E)
µ(x)

≤
∑
x∈E

∑
y∈E

( ∑
xE≥z≥x

|df(z)|+
∑

xE≥z≥y

|df(z)|
)p

µ(y)

µ(E)
µ(x).

Then, since (a + b)p ≤ 2p−1(ap + bp) for any a, b ≥ 0, by Hölder’s inequality, (11) and Fubini’s
Theorem we obtain ∑

x∈E

∑
y∈E

( ∑
xE≥z≥x

|df(z)|+
∑

xE≥z≥y

|df(z)|
)p

µ(y)

µ(E)
µ(x)

≤ 2p(2r)p/p
′ ∑
x∈E

∑
xE≥z≥x

|df(z)|pµ(x)

= 2p(2r)p/p
′ ∑
z∈E

|df(z)|p
∑

E∋x≤z

µ(x)

≤ 2p(2r)p/p
′+1

∑
z∈E

|df(z)|pµ(z).

In the last line we have used that, for a flow measure,
∑

E∋x≤z µ(x) ≤ µ(z)diam(E). Since |df | ≤
|∇f |, the above inequalities imply the desired result.
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Remark 4.2. Observe that a flow measure is a volume measure, in the sense that there exist an
edge weight ωxy = ωyx that is nonzero if and only if x ∼ y and such that

µ(x) =
∑
y∈T

ωxy.

In the case of a flow, one should choose

ωxy =

{
1
2 min{µ(x), µ(y)} x ∼ y,

0 otherwise.

In the context of weighted graphs, in place of the length of the gradient |∇f | it often appears the
quantity

|∇f |2(x) =
(∑

y∼x

ωxy

µ(x)
|f(x)− f(y)|2

)1/2

,

which is the right notion of (modulus of the) gradient for the probabilistic Laplacian generated by
the transition probability p(x, y) = ωxy/µ(x). It is well known (see e.g. [2]) that |∇f |2 and |∇f |
are comparable quantities if the vertex degree is uniformly bounded and infx,y p(x, y) > 0. Both
the conditions are satisfied from any flow measure which is locally doubling, as a consequence of
[13, Proposition 2.2 and Corollary 2.3]. However, even for non locally doubling flows, it is easy to
see that, for any x ∈ T ,

|df(x)| ≤ 21/2|∇f |2(x).

Indeed,

1

21/2
|f(x)− f(p(x))| ≤ 1

21/2

( ∑
y∈s(x)

µ(y)

µ(x)
|f(x)− f(y)|2 + |f(x)− f(p(x))|2

)1/2

= |∇f |2(x).

It follows that the global Poincaré inequality proved in Theorem 4.1 transfers to the operator |∇|2.
Namely, for every function f on T , every p ∈ [1,∞] and every connected subset E of T with
diam(E) = 2r,

∥f − fE∥Lp(E,µ) ≲ r∥|∇f |2∥Lp(E,µ).
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