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Abstract
In the last few years, the technological advancement of wearable cameras has led to an increasing interest in egocentric
(first-person) vision, thanks to its ability to capture activities from the user’s perspective with applications in a variety of
different tasks, from human-object interaction to action prediction and anticipation. In contrast, continuous head movement,
variations in lighting conditions and differences in the way humans complete the same task represent a source of bias that
strengthens the coupling between the model’s predictions and the training domain, affecting its ability to generalize to
new environments. Several Domain Adaptation (DA) techniques have been proposed to make models more robust. Among
these, Unsupervised Domain Adaptation (UDA) combines labeled source data and unlabeled target data to close the gap
between different domains. However, real-world applications require more flexibility, as target samples are often scarce,
unrepresentative or even private. Test Time Adaptation (TTA) appears to be a viable solution to these issues, with adaptation
performed directly at test time under the simple assumption that input samples provide clues on the actual distribution of the
target domain which could be used to improve predictions. With TTA, models undergo multiple adaptation steps at test time
by minimizing an adaptation loss on target data and updating normalization statistics. This work provides a comparative
analysis of multiple adaptation techniques on the EPIC-Kitchens dataset. Experiments indicate strong accuracy improvements
over the unadapted baselines, suggesting that TTA effectively improves model performance in dynamic environments.
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1. Introduction
In recent years, applications of deep learning to com-
puter vision have spread to countless tasks, from image
classification and object detection, to action recognition
and video generation. Recently, the availability of light
and cheap wearable cameras has made first-person video
recording much more accessible, marking the birth of
egocentric vision. The first-person perspective opens up
new opportunities for a more in-depth study of how hu-
mans interact with the world, paving the way for more
human-aware robots. In this work, we focus on Ego-
centric Action Recognition (EAR), addressing one of the
main issues that make this task challenging on egocentric
videos.

Model predictions tend to be deeply correlated with
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the surrounding environment, a problem known as do-
main shift, that may lead to sharp performance drops as
the environment changes. On one hand, this motivated
the search for additional sources of information, such
as audio and optical flow, that are unevenly affected by
these variations and can integrate complementary in-
sights. On the other hand, even multiple modalities may
not be sufficient when the gap between the data used for
training (source) and the new samples (target) becomes
too large. With Unsupervised Domain Adaptation (UDA),
the model learns how to adapt to the target domain as
part of the training process. UDA assumes that the target
samples are available at training time but, depending on
the application, this data may not yet exist or may be
private. In addition, training must be repeated for each
new domain, a serious limitation in terms of required
computing power and time. Domain Generalization (DG)
faces the same problem from a different perspective that
does not require access to the target data during train-
ing. The goal of DG is to produce models that generalize
better by learning the same concepts across multiple do-
mains. Although the resulting models are more robust,
variations in the data distribution are so ubiquitous and
subtle in egocentric vision that effective generalisation
is difficult to achieve. Even though UDA is not realistic
in the egocentric setting, the idea of adapting models to
the target samples is powerful.

In this work, we address the application of Test Time
Adaptation (TTA) to egocentric vision. TTA moves this
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adaptation process to the test phase, under the simple
assumption that input samples provide clues on the actual
distribution of the target domain which could be used to
improve predictions. Compared to UDA, TTA allows for
continuous adaptation which is suitable for the dynamic
nature of egocentric vision.

The TTA methods addressed in this work can be di-
vided in two groups: backpropagation free and loss based
methods. The former are based uniquely on the update of
the parameters of the network that do not require gradi-
ent updates, like the normalization statistics of the Batch
Normalization layers of the network. Updates of the
normalization statistics ensure that the activation maps
within the internal layers of the network remain in the
usual range seen during training. The second group, loss-
based methods, are based on the minimization of a loss
function computed over the model predictions or on the
intermediate outputs of the network. This work provides
an overview of these TTA methods with applications on
action recognition and on optical flow estimation.

2. Related Works
Video Domain Adaptation The goal of Unsuper-
vised Domain Adaptation (UDA) is to learn how to bridge
the domain gap between a source labeled domain and a
non-annotated target domain directly from data. UDA
in video tasks focuses on the alignment of the temporal
dimension across different domains [1, 2], on exploiting
complementary information between different modali-
ties [3] and on learning invariant representations across
domains and modalities [4, 5]. The objective of DG is to
learn predictive functions that are more robust to out-of-
distribution data, using multiple source domains during
training but without accessing target data. In this context,
RNA-Net [6] introduces a loss to align the feature norms
of different modalities. VideoDG [7] aligns the temporal
relations between different frames across domains.

Test Time Adaptation Test Time Adaptation (TTA)
defers the adaptation phase to test time. Previous works
focused on updating the statistics of the normalization
layers with those of the target samples [8, 9]. Authors
of [10] introduce an auxiliary task that is jointly trained
with the main task during training, and finetuned on the
target data during the test phase. ViTTA [11] aligns the
statistics of different temporal augmentations of the same
video to those seen during training. T3A [12] computes
pseudo-prototypes for each class label and classifies sam-
ples based on the distance from these prototypes.

Table 1
Comparison of several Domain Adaptation approaches.

Training phase Testing phase
Source Target Target Online

UDA 3 3 - 3
DG 3 - - 3
TTA - - 3 3

3. Method
The goal of TTA is to update the predictive hypothesis
learned by the model at test time, directly on the test data.
Unlike UDA and DG, TTA does not require a training
process with access to source and target data (Table 1).
As labels are not available for the target domain, it is
assumed that the two label spaces coincide. In addition,
the absence of target labels limits the number of tech-
niques that can be applied to improve the quality of the
model assumptions. TTA approaches can be classified
into two main categories, depending on whether or not
they require gradient updates through backpropagation.

The first approach is based on updating the Batch Nor-
malization statistics collected by the model at training
time. Replacing normalization statistics collected on the
training data with online estimates of the target data has
been shown to improve the robustness of the model in
presence of covariance shift [8]. The second approach,
loss-based methods, use gradient updates on the model.
Among these methods, class losses improve the quality of
the predictions, e.g. by optimizing some side properties
of the class distribution produced by the model, like its
entropy. Feature level losses attempts to adapt the model
by operating on its intermediate outputs.

3.1. Batch normalization
The first class of methods for TTA derives from the as-
sumption that domain shift primarily results in a devia-
tion from the batch normalization statistics collected at
training time. A natural solution is to replace the running
statistics of the normalization layers with the mean and
variance of the target samples [8, 9]. These update en-
sure that the output of the normalization layers remains
in the same range encountered at training time, as this
is the only portion of the input space explored during
training and model behavior may become unpredictable
outside this region. The authors of [13] propose 𝛼-BN
to mix the source and target statistics, to reduce the dis-
crepancy between source and target activations without
moving too far from the activations seen during training.
For each BN layer 𝑖, a new set of normalization statistics
(�̃�(𝑖), �̃� (𝑖)) is computed as a weighted average of the old



estimates and the new running estimates:

�̂�(𝑖) = (1 − 𝛼)�̂�(𝑖) + 𝛼𝔼(𝑥𝑡)

�̂� (𝑖) = (1 − 𝛼)�̂� (𝑖) + 𝛼√var(𝑥𝑡),
(1)

where 𝛼 ∈ [0, 1] controls the balance between the old
and new statistics. This method does not require back-
propagation and can be easily combined with the other
adaptation techniques.

3.2. Loss-based TTA
Entropy Minimization (ENT) The entropy of a prob-
ability distribution measures the uncertainty of its out-
comes. In a classification task, it is preferable for the
model to produce predictions with very low entropy as
higher entropy indicates confusion in the predictive func-
tion learned by the model. A natural solution might be
to update the network weights along the direction that
minimizes the entropy of the predictions, as an effort to
strengthen the network’s confidence and obtain more
clear decision boundaries.

ℓ𝑒𝑛𝑡(y) = −1
𝑛
∑
𝑖
∑
𝑐
𝑦𝑖,𝑐 log 𝑦𝑖,𝑐 (2)

Minimization of prediction entropy does not guarantee
the best solution, as the model may become even more
radicalized on incorrect predictions or produce always
the same prediction.

Information Maximization (IM) Information Maxi-
mization (IM) mitigates the detrimental effect of the en-
tropy loss in the presence of an unbalanced test dataset by
enforcing diversification in the model predictions. The
IM loss ℓ𝑖𝑚 is defined as the sum of the average entropy
of the predictions 𝑦𝑖,⋅ and the negative entropy of the
average prediction ̃𝑝.

ℓ𝑖𝑚(y) = −1
𝑛

𝑛
∑
𝑖=1

𝐶
∑
𝑐=1

𝑦𝑖,𝑐 log 𝑦𝑖,𝑐 +
𝐶
∑
𝑐=1

̃𝑝𝑐 log ̃𝑝𝑐, (3)

where 𝑛 is the batch size and 𝐶 the number of classes. The
first reduces the uncertainty of the predictions, while the
second ensures that they remain globally different to
avoid the pitfalls of entropy minimization alone.

Minimum Class Confusion (MCC) Minimum Class
Confusion (MCC) loss [14] targets a reduction of the pair-
wise class confusion of the model predictions, i.e. the sit-
uation in which a sample is ambiguously classified into
two different classes class 𝑐𝑖 and 𝑐𝑗 with an equally high
probability. The degree of pairwise confusion between
two classes 𝑖 and 𝑗 is measured using a similarity func-
tion, e.g. the dot product, of the predictions 𝑦⋅,𝑖 and 𝑦⋅,𝑗,

which represent the probabilities that the samples in the
current batch belong to classes 𝑖 and 𝑗, respectively. More
compactly, this is equivalent to computing a confusion
matrix defined as:

C𝑖,𝑗 = y𝑇⋅,𝑖𝑊𝑖𝑖y⋅,𝑗. (4)

where 𝑊𝑖𝑖 controls the contribution of each sample to
give more importance to those with a low entropy, i.e.
higher confidence. This coefficient is computed as:

𝑊𝑖𝑖 =
𝑛(1 + exp(−ℍ(y𝑖,⋅)))

∑𝑛
𝑖=1(1 + exp(−ℍ(y𝑖,⋅)))

, (5)

where 𝑛 is the batch size and ℍ(y𝑖,⋅) is the entropy of
the predictions. To rebalance the contributions of the
different classes, the C is row normalized and the loss is
defined as the sum of all the off-diagonal entries of the
matrix:

ℓ𝑀𝐶𝐶 = 1
𝐶

𝐶
∑
𝑖=1

𝐶
∑
𝑗≠𝑖

C𝑖,𝑗. (6)

Indeed, the confusionmatrix should be ideally close to the
identity matrix, indicating low between-class confusion
and strong prediction confidence.

Relative Norm Alignment (RNA) The Relative
Norm Alignment (RNA) loss [6] tackles the norm-
unbalance problem in the target domain by re-balancing
the contributions of the different modalities during the
testing phase [15]. Since RNA is an unsupervised loss, its
formulation can be trivially extended to the TTA setting:

ℓ𝑅𝑁𝐴 = (
𝔼[ℎ(𝑋𝑚1)]
𝔼[ℎ(𝑋𝑚2)]

− 1)
2

(7)

where 𝑋𝑚1 and 𝑋𝑚2 are the features extracted from two
different modalities 𝑚1 and 𝑚2 and ℎ(⋅) is the usual L2
norm.

3.3. Beyond Action Recognition
Optical flow is a robust modality for action recognition
but its computation is expensive [16]. Several approaches
have been proposed to solve the optical flow estimation
task directly from data [17, 18] with real-time perfor-
mance [17] and may be suitable for online EAR [19]. A
EAR pipeline could integrate rough estimates of the opti-
cal flow at test time, while still relying on more expensive
algorithms for training. However, this introduces a gap
in the distribution of the optical flow seen during train-
ing, compared to the test phase. In this work, we evaluate
TTA techniques to adapt existing models to the optical
flow estimated with different approaches and to improve
the estimation process itself.



TTA for optical flow estimation Optical flow mod-
els are typically trained on synthetic datasets [20], which
may result in noisy estimates in real-world scenarios. In
this section, we propose a loss function inspired by [21] to
align the boundaries of the estimated optical flow to the
visual edges of the objects in the frame. For horizontal
edges, the loss is defined as:

ℓ𝑠𝑚𝑜𝑜𝑡ℎ,𝑥 =
1
𝑛
∑
𝑖

exp (−𝜆
3
∑
𝑐
| 𝜕𝐼

(1)
𝑐
𝜕𝑥

|) | 𝜕𝑉
𝜕𝑥

| , (8)

while an equivalent loss is defined for vertical edges.

4. Experiments
All experiments proposed in this work were conducted
on the EPIC-Kitchens-55 dataset [22], following the ex-
perimental protocol defined by [4], which restricts its
analysis to the three largest kitchens in terms of number
of labeled samples, hereafter referred to as D1, D2 and D3.
Samples are annotated using one of eight verb classes.
Unless otherwise specified, models are pre-trained using
RNA-Net [6] on two source domains 𝐷𝑖 and 𝐷𝑗 and tested
on a possibly different target domain 𝐷𝑘. Accuracy is av-
eraged across of all unique combinations 𝐷𝑖, 𝐷𝑗 ⟶ 𝐷𝑘.

Input Five clips are uniformly sampled from the video,
each consisting of 16 frames adjacent RGB frames and
16 optical flow frames, with stride 2. The visual sam-
ples are augmented using random crops, scale jitters and
horizontal flips. RGB and Flow feature extractors use
an I3D model [23]. Audio is processed from chunks of
1.28-seconds, converted into a log-spectrogram and fed
to a BN-Inception model [24]. Features are then fed to a
classifier and the outputs of different clips are averaged
to compute the final predictions.

Adaptation protocol The target data set is processed
in batches of 32 action samples, each consisting of 5 clips.
Clips are adapted according to their index within each
sample and an adaptation step is performed for each
group to update the model parameters, i.e. the first clips
are processed, then the second ones and so on. Once
all the clips have been processed, the model is evaluated
over the same 5 clips and the predictions are averaged.

4.1. Do we need Time Time Adaptation?
Table 2 reports the Top-1 accuracy for seen and unseen
domains, highlighting the dramatic drop in performances
when evaluating on the latter. It must be noted that not
all the modalities behave the same. RGB is clearly the
worst because of its dependence on visual appearances.
Audio is the most robust modality, even though the drop

Table 2
Top-1 accuracy (%) of RNA-Net [6] on training domains (seen)
and new domains (unseen).

Top-1 Acc. (%)
Seen domains Unseen domains Difference

RGB 53.86 36.64 -17.22
Flow 61.00 50.53 -10.47
Audio 52.34 43.32 -9.02

is still quite significant while optical flow has the best
accuracy in both configurations.

4.2. Test Time Adaptation
Experiments using BN updates and class losses indi-
cate that different modalities exhibit quite different be-
haviours after one adaptation step (Table 3). RGB is the
worst modality in terms of domain shift, but it improves
significantly up to +2.91 percentage points with IM loss.
The updates are fairly consistent between the different
losses. The only exception is Audio, which suffers a
drop in accuracy regardless of the adaptation technique.
The adaptation phase may be repeated more than once

Table 3
Top-1 accuracy (%) after one adaptation step on unseen do-
mains. Best in bold, second best underlined.

Adaptation Top-1 Acc. (%)

RGB

- 36.64
ENT 39.49 (+2.85)
MCC 39.51 (+2.87)
IM 39.55 (+2.91)

Flow

- 50.53
ENT 52.84 (+2.31)
MCC 52.88 (+2.35)
IM 52.83 (+2.30)

Audio

- 43.32
ENT 42.87 (-0.45)
MCC 42.83 (-0.49)
IM 42.80 (-0.52)

RGB+Flow
- 51.34
RNA 53.64 (+2.30)

RGB+Audio
- 51.07
RNA 52.27 (+1.20)

before producing the final predictions. Although multi-
step adaptation may not be realistically applicable due to
the increased latency, it is interesting from a theoretical
point of view to analyze the robustness of the adaptation
techniques and the adaptability of the different modal-
ities. Table 4 shows that RGB+Flow is quite robust to
multi-stage adaptation, while the accuracy of RGB+Audio
decreases rapidly, as also shown in Fig. 1.



Table 4
Comparison of class losses on top-1 accuracy after 5 steps.
Best in bold, second best underlined.

Top-1 Acc. (%)
Adaptation 1 step 5 steps

RGB+Flow

- 51.36
ENT 53.63 (+2.29) 53.35 (+1.99)
MCC 53.66 (+2.32) 53.40 (+2.04)
IM 53.57 (+2.23) 53.27 (+1.93)

RGB+Audio

- 51.07
ENT 52.25 (+1.18) 51.80 (+0.73)
MCC 52.54 (+1.47) 52.11 (+1.04)
IM 52.21 (+1.14) 51.41 (+0.34)

Comparison with UDA TTA is much more limited
compared to UDA as it exploits only a small batch of tar-
get data to adapt the model. On the other side, this allows
TTA to adapt the model more specifically for the current
batch. Therefore, the adaptation steps are based on a
very narrow view of the target domain, as all updates are
discarded once a new batch of data is available. The com-
bination of RNA-Net and the proposed TTA techniques
outperforms state-of-the-art methods on both RGB-Flow
and RGB-Audio (Table 5).

Table 5
Comparison with state-of-the-art methods. Best in bold, sec-
ond best underlined.

Adaptation Top-1 Acc. (%)

RGB+Flow

Source Only 45.87
STCDA [5] (UDA) 51.20
RNA-Net [6] (Multi-DG) 51.34
Our (MCC, 4 steps) 53.85

RGB+Audio

Source Only 45.87
MM-SADA [4] (UDA) 47.75
RNA-Net [6] (Multi-DG) 51.07
Our (MCC, 1 step) 52.54

Figure 1: Accuracy gains over multiple adaptation steps.

Table 6
Effect of TTA on action recognition using estimated optical
flow. The estimated optical flow is denoted as F†.

Adaptation Top-1 Acc. (%)
Flow - 50.53

Flow† - 25.04
IM, 1 step 32.15

Figure 2: Effect of TTA on optical flow estimation.

FlowFormer [18] FlowFormer [18] + TTA

TTA for real-time Optical Flow estimates Amodel
trained on the optical flow computed using the TV-L1
algorithm [16] experience a pronounced performance
drop when testes on the estimated optical flow produced
by PWC-Net [17], as the accuracy drops from 50.53% to
25.04%. Since TTA has proven to be a viable approach
to improve model accuracy in the presence of domain
shift, we explore the applicability of TTA to reduce this
drop (Table 6). The best TTA approach, 1 step of IM and
BN updates, is able to effectively bridge part of the gap
between the two sources, recovering more than 7%.

TTA for Optical Flow Estimation Figure 4.2 shows
the effect of the L1 smoothness loss on the optical flow
frames estimated by FlowFormer [18]. Adaptation is per-
formed online, e.g. without resetting the model after
each batch, using batch size 1 and learning rate 0.0001.
The FlowFormer model was pretrained on the Sintel
dataset [20]. The output of FlowFormer [18] is clean
but still exhibits noisy edges and imperfections. With
TTA, the estimated flow becomes more sharp and clean.

5. Conclusion
Experiments indicate strong performance drops when
models are tested on unseen domains. TTA is able par-
tially cover this gap and to further increase the accuracy
of DGmodels, improving by a significant margin over the
best state-of-the-art UDA models when the models are
evaluated on unseen domains. Furthermore, TTA demon-
strates promising results when applied to the optical flow
estimation task and is able to reduce the performance
drop experienced by EAR models when tested with the
optical flow estimated by real-time approaches.
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