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Optimal Intervention in Non-Binary Super-Modular Games

Sebastiano Messina1, Giacomo Como1, Stephane Durand2, and Fabio Fagnani1

Abstract— We study intervention design problems for gen-
eral finite non-binary super-modular games. The considered
interventions consist in constraining or incentivizing the players
to play actions above designed lower bounds, with a cost for
the system planner that is a separable increasing function of
such bounds. We study the intervention of minimum cost for
which a best response learning algorithm leads the system to its
greatest Nash equilibrium. We show that, if the utility functions
are unimodal, then the optimal intervention problem can be
reformulated in terms of improvement paths, leading to a low
complexity distributed iterative algorithm for its solution.

Index Terms— Network games; super-modular games; net-
work intervention; optimal targeting; equilibrium selection.

I. INTRODUCTION

A fundamental problem in multi-player game theory is the
design of optimal intervention policies capable of steering
the system towards a desirable configuration. Examples are
taxes or subsidies in economic models, prices and tolls in
transportation systems, incentives in social activities [1].

An important family of games are super-modular games
[2], modeling strategic complementarities [3]. Their appli-
cations include modeling of social and economic behaviors
like adoption of a new technology, participation to an event,
provision of a public good effort. Super-modular games are
typically endowed with multiple Nash equilibria that admit a
Pareto ordering and the problem of the minimal effort needed
to push the system from a lower to a greater equilibrium is
natural and relevant in all these applicative contexts.

For binary super-modular games, various intervention
problems have been proposed and studied in the literature.
The binary case includes the popular linear threshold model
[4] for which optimal seeding problems have been studied.
In particular, [5]–[7] study the problem of targeting a fixed
number K of agents so that, if activated, they yield the
maximal possible expansion of the contagion. In [8], [9]
the complementary problem of the determination of the
minimum number of agents that, if activated, will lead to
a full cascade (target set selection) is instead considered
together with variations of it where the intervention is instead
modeled as a modification of the threshold. In [10], the
target set selection problem is instead considered for general
binary super-modular games. In the literature cited above,
it is proven that all these problems are NP-complete and
various algorithms are proposed for approximating solutions.
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This paper studies intervention problems in finite non-
binary super-modular games that drive the players to the
highest Nash equilibrium and, in particular, it extends to
such context a low complexity algorithm proposed in [10]
to approximate optimal interventions for the binary case. We
are not aware of previous similar analysis of the literature. A
related contribution is [1] where the authors, for the case of
quadratic games with continuous sets of actions, consider an
intervention problem on the marginal individual utilities with
the purpose of maximizing social welfare under a bounded
cost. While the results proposed by the authors also apply
for non super-modular games (e.g., public good games), the
mechanism of their intervention is quite specific and their
solution uses the explicit expression of the Nash equilibrium
that depends linearly on the marginal utilities.

In this paper, we model the intervention on a finite non-
binary super-modular game as the imposition of a lower
bound on the action chosen by the various players. We
consider the optimization problem of finding the minimum
cost intervention (for general cost functions) for which in
such restricted game an asynchronous best response dynam-
ics leads to the maximum Nash equilibrium. This model is
a natural generalization of the seeding problem considered
in the binary case [8]–[10] and we show that it can be
interpreted in economic applications as interventions with a
fixed incentive (granted if a player maintains its effort above
some prescribed level).

The main contribution of our paper is twofold. First, we
individuate a crucial unimodality property of utility functions
that, together with super-modularity, allows to establish an
equivalence between the existence of best response paths and
that of basic improvement paths where actions never decrease
and modifications are of minimal size. This new property is
always trivially verified in the binary case, while we show
that this is not the case for larger action sets. Under super-
modularity and unimodality we are then able to extend the
algorithm proposed in [10] to this more general setting.

We conclude this section with a brief outline of the paper.
In Section II, the intervention problem considered is formal-
ized, all relevant concepts are introduced and a basic example
is presented. Section III focuses on a fundamental property of
the games considered, the equivalence between reachability
of the maximum configuration through best response paths
and the reachability through weak improvement paths of
minimal size step. Section IV presents an iterative algorithm
modeled as a reversible Markov chain that is proven to
converge to the desired optimal intervention. Section V
contains some simulation results. The paper ends with a
conclusion section.



II. PROBLEM FORMULATION

A. Finite supemodular unimodal games

We consider finite strategic form games with player set
V = {1, ..., n}, where n ≥ 2. Every player i in V chooses
her action xi from a nonempty finite set Ai ⊆ R. We denote
by X =

∏
i∈V Ai the strategy profile space. Given a strategy

profile x in X and a player i, we indicate with x−i the
strategy profile of all players but i. Every player i is endowed
with a utility function ui : X → R, so that

ui(x) = ui(xi,x−i) (1)

denotes the utility of player i when she plays action xi
while the rest of the players play x−i. A game is formally
identified by the triple Γ = (V, {Ai}, {ui}). The best
response correspondence for a player i is the set-valued map

Bi(x−i) = argmax
a∈Ai

ui(a,x−i) , (2)

while B+i (x−i) = maxBi(x−i) denotes the maximal best
response. The set of pure strategy Nash equilibria is

N = {x ∈ X | xi ∈ Bi(x−i) ∀i ∈ V} .

For every player i in V , we denote by mi = minAi

and Mi = maxAi, respectively, her minimal and maximal
actions: for every non-maximal action xi < Mi (respectively,
non-minimal action xi > mi), we define x+i = min{y ∈
Ai : y ≥ xi}, (x−i = max{y ∈ Ai : y ≤ xi}). We equip
the strategy profile space X with the standard partial order

x ≥ y ⇐⇒ xi ≥ yi ∀i ∈ V , (3)

Then, m = (m1,m2, . . . ,mn) and M = (M1,M2, . . . ,Mn)
are respectively the least and the greatest strategy profiles.

We consider super-modular games as per the following.
Definition 1: A game is super-modular if

ui(xi,x−i)− ui(yi,x−i) ≥ ui(xi,y−i)− ui(yi,y−i) ,

for every two strategy profiles x ≥ y and player i in V .
It is well-known [2] that, for every finite super-modular

game, the maximal best response of every player i is mono-
tonically non-decreasing, i.e.,

x−i ≥ y−i =⇒ B+i (x−i) ≥ B+i (y−i) , (4)

and the set of Nash equilibria N is nonempty and it admits
a least element and a greatest element.

In fact, we shall restrict to finite super-modular games that
satisfy the following additional property.

Definition 2: A game is unimodal if the function xi 7→
ui(xi,x−i) is unimodal for every player i and strategy profile
x−i, i.e., if there exists bi in R such that xi 7→ ui(xi,x−i) is
non-decreasing for xi ≤ bi and non-increasing for xi ≥ bi.

Example 1: For a nonnegative square matrix W = (Wij)
in Rn×n

+ and a vector a = (ai) in Rn, consider the game
where every player i = 1, . . . , n has nonempty finite action
set Ai ⊆ R and utility

ui(x) = aixi −
1

2
x2i + xi

∑
j 6=i

Wijxj . (5)

This game is super-modular, since, for every two actions xi
and yi in Ai such that zi = xi − yi ≥ 0,

ui(xi,x−i)− ui(yi,x−i) = aizi −
x2i − y2i

2
+ zi

∑
j 6=i

Wijxj

is a nondecreasing function of the strategy profile x−i. This
game is also unimodal, since the map xi 7→ ui(xi,x−i) =
bixi − x2i /2, where bi = ai +

∑
j Wijxi, is non-decreasing

for xi ≤ bi and non-increasing for xi ≥ bi.
Such games can be interpreted as quantized versions of

the quadratic games with strategic complements that are
typically studied when the action sets are all (intervals of) the
real line [11]–[14]. They are used, e.g., to model scenarios
where n ≥ 2 individuals in a social network (whose structure
is captured by the matrix W ) can engage in some common
activity (e.g., study, partnership) at various levels of efforts,
represented by her action set Ai. If she chooses to engage at
level xi, she bears a cost x2i /2 and enjoys a direct (network
independent) utility aixi. Moreover, individuals benefit from
engagement in the common activity by their neighbors in
social network, as captured by the pairwise terms Wijxixj
in the utility (5).

B. Intervention optimization

We consider interventions on finite super-modular uni-
modal games as restrictions of the various action sets.
Specifically, for a vector h in X , to be referred as an
intervention vector, we consider the game Γ(h) where the
action set for player i is restricted to {xi ∈ Ai |xi ≥ hi}.
Hence, in particular, Γ(m) = Γ coincides with the original
(unrestricted) game. We notice that the original game Γ is
super-modular and unimodal if and only if so is the restricted
game Γ(h) for every intervention vector h in X . To every
intervention we associate a separable cost

C(h) =
∑
i

ci(hi) , (6)

where, for every player i in V , ci : Ai → R+ is a non-
decreasing cost function such that ci(mi) = 0.

We then focus on the problem of determining a minimum
cost intervention vector h such that the best response dy-
namics on the restricted game Γ(h) globally converges to
the greatest strategy profile M, as formalized below.

Definition 3: For an intervention vector h in X :
(i) a tuple of strategy profiles (x(k))0≤k≤l is a BR-path

from y to z if x(0) = y, x(l) = z, and for every
0 ≤ k < l there exists a player ik in V such that

x
(k+1)
ik

∈ Bik(x
(k)
−ik) , x

(k+1)
−ik = x

(k)
−ik ;

(ii) a BR+-path is a BR-path such that

x
(k+1)
ik

∈ B+ik(x
(k)
−ik) , 0 ≤ k < l ;

(iii) a strategy profile x in X is M-attracted in Γ(h) if there
exists a BR-path in Γ(h) from x to M;

(iv) an intervention h is sufficient if every x in X (h) is
M-attracted in Γ(h).



We then study the optimal intervention problem

min
h∈O

C(h) (7)

where O denotes the set of sufficient interventions and let

O∗ = argmin
h∈O

C(h) (8)

denote the set of minimum cost sufficient interventions.
Remark 1: Given an intervention vector h in X , consider

a discrete-time asynchronous best response dynamics where
at every instant a uniform random player updates her action
to a best response in the restricted game Γ(h), choosing
such best response uniformly at random in case of non-
uniqueness. If the intervention h is sufficient, then from every
profile x in X (h) there exists a BR-path leading to M, so
that with probability one M will be reached in finite time.

Example 1 (continued): Consider the game with utilities
(5) and assume that the action sets Ai are such that mi = 0
and ai ∈ Ai for all i. Assume that a feasible intervention
consists in granting to each player i an extra utility λi ≥ 0
whenever xa ≥ hi. In other words, the players experiment a
modified utility function ũi(x) = ui(x)+λi1[hi,Mi](xi). The
goal of the system planner is then to find a pair of vectors
(λ,h) for which every configuration x is M-attracted and
the cost for the planner

∑
i λi is minimized.

We now show that this problem can be formulated as (7).
First, a straightforward computation shows that

λi = ci(hi) =
1

2
[hi − ai]2+ (9)

is the minimum value for which ui(hi,x−i) ≥ ui(xi,x−i)
for every xi ≤ hi and every x−i. We call Γ̃(h) the game
equipped with utility functions ũi with this specific value
for λi and no restriction on the action sets and we compare
it with the game Γ(h) with restricted action sets previously
introduced. We notice that for configurations x ≥ h, the
two games are equivalent, in the sense that best response
sets are always equal. This implies that if h is a sufficient
intervention vector for Γ(h), then every configuration x is
M-attracted also for Γ̃(h). Indeed, by construction, starting
from any initial configuration there exists a BR-path in Γ̃(h)

leading to a configuration x ≥ h and from x the same BR-
path that leads to M in Γ(h) also leads to M in Γ̃(h).

Conversely, suppose that h is such that every configuration
x is M-attracted in Γ̃(h). If we start from x ≥ h, any BR-
path in Γ̃(h) from x to M will pass through profiles x(k) ≥
h, hence it will also be a BR-path in Γ(h).

This shows that the optimal intervention problem for this
example is equivalent to the minimization problem (7) with
a cost function

C(h) =
∑
i∈V

ci(hi)

III. PROPERTIES AND EQUIVALENT FORMULATION

In this section, we propose an equivalent description of
the optimal intervention problem that will allow us to design
a low complexity algorithm for its solution. Throughout, we
assume we have fixed a finite super-modular unimodal game.

The following fact shows that in the description of the
M-attracted profiles we can always restrict to BR+-paths.

Proposition 1: Consider a finite super-modular game. For
a strategy profile x, the following conditions are equivalent:

(i) there exists a BR-path from x to M;
(ii) there exists a BR+-path from x to M.

Proof: Notice first that by definition (ii)⇒(i).
(i)⇒(ii): Consider a BR-path (x(k))0≤k≤l from x to M

and construct a new path (y(k))0≤k≤l with y(0) = x and
y
(k+1)
ik

= B+ik(y
(k)
−ik), y(k+1)

−ik = y
(k)
−ik , for every 0 ≤ k < l.

Clearly, (y(k))0≤k≤l is a BR+-path, so that we are only left
to show that y(l) = M. We prove by induction that

y(k) ≥ x(k) , ∀0 ≤ k ≤ l . (10)

Clearly, y(0) = x = x(0). Moreover, if y(k) ≥ x(k) for some
0 ≤ k < l, then, (4) and x(k+1)

ik
∈ Bik

(
x
(k)
−ik
)

imply that

y
(k+1)
ik

= B+ik
(
y
(k)
−ik
)
≥ B+ik

(
x
(k)
−ik
)
≥ x(k+1)

ik
,

so that y(k+1) ≥ x(k+1). This proves (4). For k = l, we get
M ≤ x(l) ≤ y(l) ≤M, thus completing the proof.

This yields an important consequence on the structure of
the set of M-attracted profiles, stated in the following result.

Corollary 1: If x is M-attracted, then every y ≥ x is
M-attracted.

Proof: By virtue of Proposition 1, there exists a BR+-
path (x(k))0≤k≤l from x to M. Consider now the BR+-path

y(0) = y , y
(k+1)
ik

= B+ik
(
y
(k)
−ik
)
, ∀0 ≤ k < l .

Inductively, using the monotonicity of B+i as we did above,
we prove that y(k) ≥ x(k) for every k. Hence y(l) = M.

A different type of path is defined below where modifica-
tions are constrained to be monotonic and of minimum step
and we only require that utilities do not decrease.

Definition 4 (weakly Improvement path): For a finite
game Γ, a tuple of strategy profiles (x(k))0≤k≤l is a weakly
Improvement path (wI-path) from the strategy profile x to
the strategy profile z if x(0) = x, x(l) = z and, for every
0 ≤ k < l there exists ik in V such that x(k+1)

−ik = x
(k)
−ik and

x
(k+1)
ik

= (x
(k)
ik

)+ , uik
(
x(k+1)

)
≥ uik

(
x(k)

)
. (11)

Observe that, in contrast to BR-paths, for every interven-
tion vector h, wI-paths from any x ≥ h remain the same in
the restricted game Γ(h).

The following technical result builds on the unimodality
assumption and will be instrumental to our future derivations.

Lemma 1: Consider a finite super-modular unimodal
game and a strategy profile x in X . If there exists a player
i such that xi < Mi and ui(xi,x−i) ≤ ui(x+i ,x−i), then

B+i (x−i) ≥ x+i .
Proof: Unimodality implies that a 7→ ui(a,x−i) is

necessarily non-decreasing on the set {a ∈ Ai | a ≤ x+i }.
This implies that the highest best response must necessarily
belong to the set {a ∈ Ai | a ≥ x+i }.



The following result shows that M-attractivity can be
studied through weak Improvement paths.

Proposition 2: For a finite super-modular unimodal game
and a strategy profile x, the following are equivalent:

(i) there exists a BR-path from x to M;
(ii) there exists a wI-path from x to M.

Proof: (i)⇒(ii). Because of Proposition 1, we can
assume that there exists a BR+-path (y(k))0≤k≤l from x
to M. Define a new path (x(k))0≤k≤l with x(0) = y(0) and

x
(k+1)
ik

= max
{
y
(k+1)
ik

, x
(k)
ik

}
, x

(k+1)
−ik = x

(k)
−ik , (12)

for 0 ≤ k < l, where ik is such that y(k+1)
−ik = y

(k)
−ik . Notice

that x(k) ≥ y(k) for 0 ≤ k ≤ l. Now, observe that

uik(x
(k+1)
ik

,y
(k)
−ik) ≥ uik(x

(k)
ik
,y

(k)
−ik) . (13)

Indeed, when x
(k+1)
ik

= x
(k)
ik

, (13) trivially holds true as
an equality, whereas when x

(k+1)
ik

= y
(k+1)
ik

, (13) holds
true since y(k+1)

ik
= B+ik(y

(k)
−ik) is a best response to y

(k)
−ik .

Equations (13) and (12) and super-modularity yield

0 ≤ uik(x
(k+1)
ik

,y
(k)
−ik)− uik(x

(k)
ik
,y

(k)
−ik)

≤ uik(x
(k+1)
ik

,x
(k)
−ik)− uik(x

(k)
ik
,x

(k)
−ik) ,

for 0 ≤ k < l. This shows that (x(k))0≤k≤l satisfies all
the requirements for a weakly improvement path, except for
possibly the first equation in (11), as it could still be the
case that x(k+1)

ik
> (x

(k)
ik

)+. If so, we consider the actions
a1 = (x

(k)
ik

)+ < a2 = a+1 < · · · < ar = x
(k+1)
ik

, and
interpolate the sequence of profiles from x(k) to x(k+1) with
the subsequence x(k,s) with 1 ≤ s ≤ r such that x(k,s)ik

= as

and xk,s
−ik = x

(k)
−ik for all s. Notice that, by the unimodality

assumption, necessarily a 7→ uik(a,x
(k)
−ik) is non decreas-

ing in the interval [x
(k)
ik
, x

(k+1)
ik

], namely uik(xk,s+1) ≥
uik(xk,s) for every 1 ≤ s < r. If we carry on such an
interpolation for every k for which x

(k+1)
ik

> (x
(k)
ik

)+, we
finally obtain a wI-path leading from x to M.

(ii)⇒(i). Consider a wI-path (x(k))0≤k≤l from x to M
and define a new path (y(k))0≤k≤l with y(0) = x(0) and

y
(k+1)
ik

= B+ik(y
(k)
−ik) , y

(k+1)
−ik = y

(k)
−ik , ∀0 ≤ k < l .

By construction, (y(k))0≤k≤l is a BR+-path and we only
need to prove that y(l) = M. This will directly follow from
the fact that y(k) ≥ x(k) for every k. This last condition
is proven by induction again, first noticing that is trivially
true for k = 0. Then, assume it to be true for some k, then
monotonicity of B+ik implies that

y
(k+1)
ik

= B+ik(y
(k)
−ik) ≥ B+ik(x

(k)
−ik) (14)

Since x
(k+1)
ik

= (x
(k)
ik

)+ and uik(x(k+1)) ≥ uik(x(k)),
Lemma 1 implies that B+ik(x

(k)
−ik) ≥ x

(k+1)
ik

. This and (14)
imply that y(k+1) ≥ x(k+1), thus proving the claim.

The following conclusive result gives a simpler character-
ization of the set of sufficient interventions and constitutes
the basis for the algorithm proposed in the next section.

Corollary 2: For a finite super-modular unimodal game
Γ, the set of sufficient interventions can be characterized as

O = {h ∈ X | ∃ a wI-path from h to M} (15)
Proof: (⊇) If there exists a wI-path from h to M,

then, by Proposition 2, there exists a BR-path from h to M
in Γ(h). From Corollary 1, we deduce that all profiles x in
X (h) are M-attracted in Γ(h) so that h ∈ O. (⊆) If h ∈ O,
then there exists a BR-path from h to M in Γ(h). Then, by
Proposition 2, there exists also a wI-path from h to M.

The following example shows that unimodality is neces-
sary for the above result to hold true.

Example 2: Consider the 2-player 3-action game with
Ai = {−1, 0, 1} for i = 1, 2 and utilities

ui(xi, x−i) = −xi + 2x2i + xix−i, i = 1, 2

A direct check shows that the two possible BR-paths are
(0, 0) → (−1, 0) → (−1,−1) and (0, 0) → (0,−1) →
(−1,−1), showing that (0, 0) is not (1, 1) attracted. How-
ever, (0, 0)→ (1, 0)→ (1, 1) is a wI-path leading to (1, 1).

IV. A DISTRIBUTED ALGORITHM FOR MINIMUM
SUFFICIENT INTERVENTIONS

This section proposes a simple provably convergent iter-
ative algorithm to compute sufficient interventions of min-
imum cost. It is an extension of an algorithm proposed in
[10] in the special case of binary super-modular games and
it is based on the characterization of O in Corollary 2. This
suggests the possibility that minimum sufficient interventions
may be searched for by starting from the greatest strategy
profile M and iteratively following backwards a wI-path.

Assume we have fixed a finite super-modular unimodal
game and non-decreasing cost functions ci : Ai → R. We
put di(xi) = ci(x

+
i )− ci(xi) for xi < Mi and di(Mi) = 0.

We now introduce a family of discrete-time Markov chains
(Zε

t )t≥0 on the strategy profile space X , parameterized by
a scalar ε in [0, 1]. We will then prove that, for 0 < ε ≤ 1,
the Markov chain (Zε

t )t≥0 is time-reversible and that, as
ε vanishes, its stationary distribution concentrates on the
family of minimum cost sufficient interventions.

The dynamics of the Markov chain Zε
t are described as

follows: at every time t = 0, 1..., given that Zε
t = x, a player

i is chosen uniformly at random from the whole player set V
and she selects at random a direction to follow (up or down)
with probability 1/2. If she chooses to go down, then
• if ui(x−i ,x−i) > ui(xi,x−i), then Zε

t+1 = Zε
t ;

• if ui(x−i ,x−i) ≤ ui(xi,x−i), then

(Zε
t+1)i = (Zε

t )−i , (Zε
t+1)−i = (Zε

t )−i .

On the other hand, if she chooses to go up, then
• if ui(x+i ,x−i) < ui(xi,x−i), then Zε

t+1 = Zε
t ;

• if ui(x+i ,x−i) ≥ ui(xi,x−i), then Zε
t+1 = Zε

t with
probability 1− εdi(xi), whereas

(Zε
t+1)i = (Zε

t )+i , (Zε
t+1)−i = (Zε

t )−i ,

with probability εdi(xi).



For a strategy profile x ∈ X , let

n+(x) = {i ∈ V : ui(x
+
i ,x−i) ≥ ui(xi,x−i)}

n−(x) = {i ∈ V : ui(xi,x−i) ≥ ui(x−i ,x−i)}

and

αε(x) =
1

2n

 ∑
i∈n+(x)

εdi(xi) + |n−(x)|


Then, the transition probabilities of this Markov chain are

P (ε)
x,y =


1/2n if y =

(
x−i ,x−i

)
and ui(y) ≤ ui(x)

εdi(xi)/2n if y =
(
x+i ,x−i

)
and ui(y) ≥ ui(x)

1− αε(x) if y = x

0 otherwise .
(16)

We first make some considerations in the special case
ε = 0. Notice that, in this case, only transitions from higher
to lower actions are allowed, hence the Markov chain Z

(0)
t

always converges to an absorbing state. We define

Z =
{
x ∈ X | P

(
∃t0 ≥ 0 : Z

(0)
t0 = x|Z(0)

0 = M
)
≥ 0
}
(17)

to be the set of all states that are reachable by the Markov
chain Z(0)

t when started from M. We have the following.
Proposition 3: Consider a finite super-modular unimodal

game and let Z be the set defined in (17). Then O = Z .
Proof: By definition, x ∈ Z if and only if there

exists a tuple of strategy profiles (y(k))0≤k≤l, such that
y(0) = M,y(l) = x, and for every 0 ≤ k < 1 there
exists ik such that y

(k+1)
−ik = y

(k)
−ik , y(k+1)

i = (y
(k)
ik

)−, and
uik(y(k+1)) ≤ uik(y(k)). Notice that this is equivalent to
say that the reversed path

(
x(k)

)
0≤k≤l with x(k) = y(l−k)

for 0 ≤ k ≤ l is a wI-path from x to M. By Corollary 2
this is equivalent to x ∈ O.

Unfortunately, the absorbing states of the chain Z
(0)
t are

in general not in O∗ so that running such Markov chain is
not useful for our purposes. We now analyze the perturbed
Markov chain Zε

t for ε > 0, starting with a technical lemma.
Lemma 2: Consider a discrete-time Markov Chain Zt on

X with transition matrix P such that:
(a) if x 6= y differ in more than one entry or are such that

y−i = x−i and yi /∈ {x−i , x
+
i }, then Px,y = 0;

(b) if x 6= y are such that y−i = x−i and yi = x+i , then

Px,y = Py,xε
di(xi) .

Then Zt is reversible with respect to the invariant distribution

µx ∝ ε
∑

i ci(xi) , x ∈ X .
Proof: For x 6= y such that y−i = x−i and yi = x+i ,

µy

µx
=
εci(x

+
i )

εci(xi)
= εdi(xi) =

Px,y

Py,x
.

For all other x 6= y, we have Px,y = Py,x = 0. Hence, we
have that µxPxy = µyPyx for all x and y in X .

Theorem 1: Consider a finite super-modular unimodal
game. For ε > 0, the Markov chain Zε

t with transition
probabilities (16):

(i) keeps the set Z invariant;
(ii) is time-reversible and ergodic on the set Z;

(iiii) has stationary probability distribution

µ(ε)
x = ε

∑
i ci(xi)/Kε, x ∈ Z (18)

where Kε =
∑

x∈Z ε
∑

i ci(xi).
Proof: (i) Let x in Z be strategy profile that is reachable

from the profile M by the Markov chain Z
(0)
t and let y

in X be a strategy profile such that P (ε)
x,y > 0. We need

to prove that y belongs to Z . If y =
(
x−i ,x−i

)
for some

player i ∈ V such that ui(y) ≤ ui(x), then it follows that
0 ≤ P (ε)

x,y = 1/2n and then P 0
x,y = 1/2n > 0, thus implying

that the strategy profile y belongs to Z .
On the other hand if y =

(
x+i ,x−i

)
for some player i

in V we argue as follow. Since x in Z is a strategy profile
reachable by the Markov chain Z

(0)
t from the profile M,

we can find a sequence of profiles
(
x(k)

)
k=0,...,l

such that
x(0) = M and xl = x and P 0

x(k−1),x(k) > 0 fo 1 ≤ k ≤ l.
From (16), this is equivalent to

x(k) = ((x
(k−1)
ik

)−,x
(k−1)
−ik ) and uik(x(k)) ≤ uik(x(k−1))

Let s in {1, ..., l} be such that is = i and consider
(z(k))0≤k<1 such that z(k) = x(k) for k ≤ s − 1 and
z(k) = (x

(k+1)
i )+,x

(k+1)
−i ) for k ≥ s. Notice that

z(k) =
(

(x
(k+1)
i )+,x

(k+1)
−i

)
=

(
(x

(k+1)
i )+, (x

(k)
ik+1

)−,x
(k)
−i,−ik+1

)
=

(
(x

(k)
i )+, (x

(k)
ik+1

)−,x
(k)
−i,−ik+1

)
=

(
(x

(k)
ik+1

)−, (x
(k)
i )+,x

(k)
−i,−ik+1

)
=

(
(x

(k)
ik+1

)−, z
(k−1)
−ik+1

)
=
(

(z
(k−1)
ik+1

)−, z
(k−1)
−ik+1

)
Using this relation and the super-modularity property,

0 ≤ uik+1
(x(k))−uik+1

(x(k+1)) ≤ uik+1
(z(k−1))−uik+1

(z(k))

for every k ≥ s − 1. This implies that P 0
z(k−1),z(k) > 0 for

every 1 ≤ k < l. Since z(l−1) = ((x
(l)
i )+,x

(l)
−i) = y, this

proves that the strategy profile y belongs to Z .
(ii) It follows from Lemma 2 that

ε
∑

i ci(xi)P (ε)
x,y = ε

∑
i ci(yi)P (ε)

y,x (19)

for every two strategy profiles x and y in X . This implies that
Zε
t is time-reversible with respect to the stationary distribu-

tion (18). Since the transitions that have positive probability
for Z0

t have also positive probability for Zε
t , all profiles in Z

can be reached from the profile M by the Markov chain Zε
t .

Moreover, (19) implies that a transition probability P
(ε)
x,y is

positive if and only if the reverse transition P (ε)
y,x is positive.

This implies that M is reachable from any other profile in
Z and thus we conclude that Zε

t is ergodic on Z .
(iii) Ergodicity and (19) imply that, for every ε > 0, the

unique stationary distribution of Zε
t on Z is (18).



Fig. 1: Minimum cost of sufficient intervention, for Erds-
Rnyi random graphs E(n, p) with p = 4n−1 log n.

Corollary 3: Consider a finite super-modular unimodal
game and, for ε > 0, let µ(ε) the Markov chain Zε

t with
transition probabilities (16). Then,

lim
ε→0

µ(ε)
x =

{
1/|O∗| if x ∈ O∗
0 if x /∈ O∗ .

Proof: As ε vanishes, µ(ε) converges to a uniform dis-
tribution on the set argminx∈Z

∑
i ci(xi), which coincides

with O∗, as we know from Proposition 3 that Z = O.

Theorem 1 and Corollary 3 suggest a simple iterative
stochastic algorithm for (7): for small ε > 0, simulate (Zε

t )
starting with (Zε

t ) = M and keep track of the minimum
cost intervention encountered thus far. In fact, Theorem 1(i)
ensures that Zε

t is a sufficient intervention for all t ≥ 0,
while Theorem 1(iii) and Corollary 3 ensure that in the long
run Zε

t will be close to O∗ with high probability. Of course,
the speed of convergence of Zε

t determines the efficiency of
the proposed algorithm. However, anytime the algorithm is
halted, it returns a sufficient intervention.

V. NUMERICAL SIMULATIONS

In this section, we present some numerical simulations of
the algorithm proposed in Section IV. Specifically, we apply
our algorithm to the game presented in the Example 1 of
Subsection II-B with n players, action set Ai = {0, 1, ..., s}.

First we consider the Erds-Rnyi random graph E(n, p)
with n nodes where undirected links between pairs of nodes
are present with probability p, independently from one
another. We consider the regime p = 4 logn

n , leading to a
sparse graph that nevertheless remains connected with high
probability as n grows large. The cost considered is (9).

We run Zε
t with ε = 0.01. Fig. 1 reports the minimum

cost encountered in T = 100n2 steps for s = 2, 5, 10.
Clearly, a fundamental parameter of our algorithm is the

number of steps T . In Fig. 2 we report the evolution of
the algorithm. The input to our model is an ego-network G,
that is a model of social network formed by an individual,
the ego, and all the people with whom the ego has a social
connection. The center node u of the ego-network (i.e., the
“ego”) is included in G, so that G consists of node u’s friends
(the “alters”). We have run the simulation 1000 times and
plotted the average cost of the profile found so far.

Fig. 2: Cost on the Facebook ego network, with n = 334
and action set A = {0, 1, ..., 9}, averaged over 1000 runs.

VI. CONCLUSION

We have formulated an optimal intervention problem for
super-modular games with finite action set and proposed
a low-complexity iterative algorithm for its solution. Two
interesting research directions include the extension to super-
modular games with continuous action sets and the study of
optimal intervention problems for public good games where
an external planner aims to maximize the total engagement.
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[14] A. Calvó-Armengol, E. Patacchini, and Y. Zenou. Peer effects and
social networks in education. Review of Economic Studies, 76:1239–
1267, 2009.


