
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An optimal Gauss-Markov approximation for a process with stochastic drift and applications / Ascione, Giacomo;
D'Onofrio, Giuseppe; Kostal, Lubomir; Pirozzi, Enrica. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. -
ISSN 0304-4149. - 130:11(2020), pp. 6481-6514. [10.1016/j.spa.2020.05.018]

Original

An optimal Gauss-Markov approximation for a process with stochastic drift and applications

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.spa.2020.05.018

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.spa.2020.05.018

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982562 since: 2023-09-28T19:31:12Z

Elsevier



An optimal Gauss-Markov approximation for a process
with stochastic drift and applications

Giacomo Ascionea, Giuseppe D’Onofriob, Lubomir Kostalc, Enrica Pirozzia,∗

aDipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi
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Abstract

We consider a linear stochastic differential equation with stochastic drift. We

study the problem of approximating the solution of such equation through an

Ornstein-Uhlenbeck type process, by using direct methods of calculus of vari-

ations. We show that general power cost functionals satisfy the conditions for

existence and uniqueness of the approximation. We provide some examples

of general interest and we give bounds on the goodness of the corresponding

approximations. Finally, we focus on a model of a neuron embedded in a sim-

ple network and we study the approximation of its activity, by exploiting the

aforementioned results.

Keywords: Stochastic differential equations; Optimality conditions; Shot

noise; Neuronal models

1. Introduction

For more than a century stochastic differential equations (SDEs) have played

a key role in the description of fluctuating phenomena belonging to different

areas of applied mathematics ([1],[2]). Here, we consider the following SDE
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in which the drift is characterized by a stochastic process z(t) independent of

W (t):

dX(t) = [a(t)X(t) + z(t)]dt+ σdW (t), X(0) = x0 (1)

where a, z, σ, x0 are chosen to guarantee existence and uniqueness of the strong

solution of the equation. These equations are of interest in many applications.

In mathematical finance stochastic volatility is used to model option pricing to

represent that volatility varies with respect to strike price and expiry ([3],[4]).

In time series analysis the stochastic trend is used in a difference equation. This

is a discrete counterpart of the SDE (1) ([5]). In computational neuroscience

they model networks of interacting neurons in the presence of random synaptic

weights ([6], [7], [8]). The present work also stems from neuronal modeling (see

[9], [10], [11], [12], [13], [14], [15]): one can model the membrane potential of a

neuron through a stochastic process V (t) solving

dV (t) =

(
−V (t)− VR

θ
+ z(t)

)
dt+ σdW (t), V (0) = v0

where VR is the resting potential, θ is the characteristic time constant of the

neuron and z(t) is a process representing the collection of the stimuli the neuron

under consideration receives from other neurons or from its own activity.

In the first part of this paper we study some features of the solution X(t) of5

Equation (1). Since the process X(t) depends on z(t), it can be non Markov

and/or non Gaussian. This work is mainly focused on obtaining an optimal

(in a sense that will be specified later) Gauss-Markov (GM) approximation of

the process X(t). This approximation strategy enables one to use the extensive

theoretical results on GM processes (see for instance [16, 17, 18, 19]). Indeed,10

finding a good approximating GM process with a small approximation error

allows one to use the integral equation approach to study the first passage time

of the approximating process in place of the actual one.

To find the “best” approximating GM process we look for the minimizer of a

general cost functional J , here usually a L2 functional, among all Ornstein-15

Uhlenbeck type processes.
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To do that, we solve the minimization problem in a very general setting.

Using results of calculus of variations, we show that the minimizer exists and it

is unique inside the aforementioned class, requiring relatively mild conditions.

Moreover, the Euler-Lagrange equation and the transversality condition of the20

approximation problem are obtained. The proofs are generalizations in a prob-

abilistic setting of the main tools of the theory of Direct Methods of Calculus

of Variations (see [20]), referring in particular to the relaxation of a problem.

The Euler-Lagrange equation and the transversality condition are instead found

by using an approach that is typical to the Classical Methods of Calculus of25

Variations (see [21]). In particular we consider, in the familiy of all suitable

cost functionals, power costs that are shown to satisfy the needed assumptions.

Power costs represent the integral mean power error of the approximation. For

instance, the second power cost is the integral of mean square error of approxi-

mation, whose minimizer gives a continuous-time version of a least mean square30

approximation.

Some examples are given in the cases in which z(t) is a step function, a

Poisson process, a compound Poisson process, a shot noise, a Brownian motion

or an Ornstein-Uhlenbeck process. Finally, we propose a stochastic neuronal

model for the description of the firing activity of a neuron subject to the inputs35

coming from other neurons. Our example corresponds to the case in which z(t)

is a shot noise, that is to say z(t) =
∑M
i=1 βiR(t−T i) where T i are i.i.d. random

variables, distributed as a given variable T with P(T < 0) = 0, independent of

W (t), βi are i.i.d. random variables independent of (T i)i∈N and W (t) and R

is the response function, such that R(t) = 0 ∀t < 0. The stochastic nature of40

the drift in the model equation is due to the stochastic behavior of the inputs

received from the other neurons that occur randomly in time and in space

(see for instance [22, 15, 23, 24]). In a theoretical context, we can adopt a

specified distribution function for T i and βi whereas in the application context

a distribution function may be one of the unknowns of the problem. This case45

is investigated in Section 5. We stress that, although used here in the neuronal

modeling context, the results obtained about the approximation are completely
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general for equations like (1). The paper is structured as follows:

• In Section 2 we introduce the target equation and the approximation prob-

lem;50

• In Section 3 we describe the problem in a more general setting and prove

some sufficient and necessary conditions for existence and uniqueness of

the approximation;

• In Section 4 we provide some examples of general interest;

• In Section 5 we construct a simple neuronal model and we use the previous55

results to find the approximating Gauss-Markov process for the membrane

potential;

• Finally, in Section 6 we summarize the work and we give some concluding

remarks.

2. The linear equation and the OU class60

2.1. The linear equation

Let (Ω,F ,P) be a probability space endowed with the (completed) natural

filtration {Ft}t≥0 of the standard Brownian motion {W (t), t ≥ 0}. Let us

consider the following stochastic differential equation in a time interval [0, T ],

for a fixed T < +∞,

dX(t) = [a(t)X(t) + z(t)]dt+ σdW (t), X(t) = x0 (2)

with z(t) stochastic process adapted to {Ft}t≥0 such that its sample paths be-

long to L1(0, T ), a ∈ L1(0, T ) a damping rate, and σ > 0. Let us denote by

L0(Ω, {Ft}t≥0;L1(0, T )) the space of the stochastic processes adapted to

{Ft}t≥0 with sample paths a.s. in L1(0, T ) and by Lp(Ω, {Ft}t≥0;L1(0, T )),65

for some p ≥ 1, the space of the stochastic processes adapted to {Ft}t≥0 with

sample paths a.s. in L1(0, T ) such that E[|z(t)|p] < +∞. For simplicity we will

assume z(t) to be independent from W (t). In the examples the function a will
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be a negative constant.

Since Eq.(2) is a linear equation, one can ensure the existence of a unique strong70

solution (see for instance [1]). In particular one has the following result:

Proposition 2.1. The map S : L0(Ω, {F t}t≥0;L1(0, T )) → L0(Ω;L0(0, T ))

given by

S z(t) = eA(t)x0 + σeA(t)

∫ t

0

e−A(s)dWs + eA(t)

∫ t

0

z(s)e−A(s)ds,

where

A(t) =

∫ t

0

a(s)ds,

is an injection that associates z ∈ L0(Ω, {Ft}t≥0;L1(0, T )) to the unique strong

solution of Equation (2).

The well-posedness of S, i.e. existence and uniqueness of the strong solution,

follows from [1, Theorem 2.5 and 2.13]. Later we will prove that S is an injection.

Given a generic z(t) ∈ L0(Ω, {F t}t≥0;L1(0, T )), we can split the process X(t) =

S z(t) in two parts. Indeed, if we set

Y (t) = eA(t)x0 + σeA(t)

∫ t

0

e−A(s)dWs, Z(t) = eA(t)

∫ t

0

z(s)e−A(s)ds (3)

we have

X(t) = Y (t) + Z(t). (4)

In particular Y (t) is an Ornstein-Uhlenbeck process independent of Z(t). Its

mean and covariance are given by

E[Y (t)] = eA(t)x0, Cov(Y (t), Y (s)) = σ2eA(t)+A(s)

∫ min{t,s}

0

e−2A(u)du. (5)

On the other hand, if z(t) is a Riemann-integrable Gaussian process (for in-

stance if it admits continuous sample paths), then Z(t) is also Gaussian and75

independent of Y (t). By Equation (4) we conclude that, in such case, X(t) is a

Gaussian process. In general X(t) could be neither Markov nor Gaussian.

Let us state this easy Lemma.
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Lemma 2.2. Let z ∈ L1(Ω, {Ft}t≥0;L1(0, T )) such that E[z(t)] ∈ L1(0, T ).

Then

E[Z(t)] = eA(t)

∫ t

0

E[z(s)]e−A(s)ds, ∀t ∈ [0, T ]. (6)

Moreover, if z ∈ L2(Ω, {Ft}t≥0;L1(0, T )) is such that D[z(t)] = E[(z(t) −

E[z(t)])2] ∈ L1(0, T ), then

Cov(Z(t), Z(s)) = eA(t)+A(s)

∫ t

0

∫ s

0

Cov(z(u), z(v))e−A(u)−A(v)dudv. (7)

The proof follows from the application of Fubini’s theorem.

The previous Lemma, together with the independence of Z(t) and Y (t) and80

Equation (4), gives us the following Proposition.

Proposition 2.3. If z ∈ L2(Ω, {Ft}t≥0;L1(0, T )) is such that D[z(t)] ∈ L1(0, T )

then

E[X(t)] = eA(t)

(
x0 +

∫ t

0

E[z(s)]e−A(s)ds

)
.

and, for s ≤ t

Cov(X(t), X(s)) = eA(t)+A(s)×

×
[
σ2

∫ s

0

e−2A(u)du+

∫ t

0

∫ s

0

Cov(z(u), z(v))e−A(u)−A(v)dudv

]
.

2.2. The OU(a, σ, x0) class

A particular solution of (2) is achieved when z(t) is a degenerate stochastic

process (i.e. a deterministic function). Indeed, for a function f ∈ L1(0, T ) let

us consider the equation

dXf (t) = [a(t)Xf (t) + f(t)]dt+ σdW (t), X(0) = x0. (8)

The solution map S can be still used, since we can consider

L1(0, T ) ⊂ L0(Ω, {F t}t≥0;L1(0, T )) by identifying any deterministic function

f ∈ L1(0, T ) with the constant stochastic process f(ω) = f for any ω ∈ Ω.

Thus we have that

Xf (t) = S f(t) = eA(t)x0 + σeA(t)

∫ t

0

e−A(s)dWs + eA(t)

∫ t

0

f(s)e−A(s)ds.
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By using Equation (4), we have that Z(t) is a deterministic function, hence

it does not play any role in the auto-covariance function of Xf , which is now

determined by (5). Xf is Gaussian since it is a sum of independent Gaussian85

processes and Markov property is ensured by the fact that is solution of (8).

Now we define the class of processes of the form Xf = S f for some f ∈ L1(0, T ).

Definition 2.1. The Ornstein-Uhlenbeck class OU(a, σ, x0) is defined as

OU(a, σ, x0) :=
{
X ∈ L2(Ω, {F t}t≥0, L

1(0, T )) : ∃f ∈ L1(0, T ), X = S f
}
.

We will denote Xf ∈ OU(a, σ, x0) to state that Xf = S f .

As already mentioned in the introduction, a Gauss-Markov process is easier

to handle than processes of the form S z(t) for general z ∈ L0(Ω, {F t}t≥0;L1(0, T )),90

and many existing tools and results about these processes can be exploited. Thus

it is interesting to understand how can we best approximate a general solution

of (2) with a process Xf ∈ OU(a, σ, x0).

2.3. The approximation problem

Let us consider a process z(t) ∈ L0(Ω, {Ft}t≥0;L1(0, T )) and let us introduce

a cost functional J on the classOU(a, σ, x0), defined, for anyXf ∈ OU(a, σ, x0),

as

J [Xf ] = E

[∫ T

0

J(t, |X(t)−Xf (t)|)dt+ Φ(|X(T )−Xf (T )|)

]
, (9)

for some functions J(t, x) and Φ(x), where X = S z. The cost functional J

represents the mean cost we are going to pay for approximating the process X

with a process Xf ∈ OU(a, σ, x0). The function J will be used to represent the

running cost of the approximation, while Φ is the final cost. To find the best

approximation means that we want to find a process X̃ ∈ OU(a, σ, x0) such that

J [X̃] = min
Xf∈OU(a,σ,x0)

J [Xf ].

By using the definition of the solution map S in Proposition 2.1 and Equation

(4), one obtains

|X(t)−Xf (t)| = |Z(t)− F (t)|

7



where

F (t) = eA(t)

∫ t

0

f(s)e−A(s)ds.

This means that actually

J [Xf ] = E

[∫ T

0

J(t, |Z(t)− F (t)|)dt+ Φ(|Z(T )− F (T )|)

]
.

Let us now consider the space of absolutely continuous functions on [0, T ] (see

[25, Sections 6.4 and 6.5]), i.e.

AC([0, T ]) :=

{
F ∈ C0([0, T ]) : ∃f ∈ L1(0, T ), F (t) = F (0) +

∫ t

0

f(s)ds ∀t ∈ [0, T ]

}
and let us define the map I : L1(0, T ) → A = {F ∈ AC([0, T ]) : F (0) = 0}

such that

I f(t) = eA(t)

∫ t

0

f(s)e−A(s)ds.

This map is a bijection between L1(0, T ) and A since it associates f ∈ L1(0, T )

to the unique Caratheodory solution (see [26, Theorem 1.1 and 2.1 of Section

2]) F of the Cauchy problemF
′(t) = a(t)F (t) + f(t) t ∈ (0, T ),

F (0) = 0.

On the other hand for any F ∈ A we have

I−1 F (t) = F ′(t)− a(t)F (t). (10)

For any process z ∈ L0(Ω, {F t}t≥0;L1(0, T )) we have, by Equation (4), S z =

Y + I z. The fact that I is a bijection proves the injectivity of S. More-

over, S : L0(Ω, {F t}t≥0;L1(0, T )) → S(L0(Ω, {F t}t≥0;L1(0, T ))) is bijective

and OU(a, σ, x0) ⊂ S(L0(Ω, {F t}t≥0;L1(0, T ))).

Now we can define a new functional directly on A (that we will still denote

with J ) that is the composition of the functional J , the map I and the inverse

solution map S−1 on OU(a, σ, x0), and is given by

J [F ] = E

[∫ T

0

J(t, |Z(t)− F (t)|)dt+ Φ(|Z(T )− F (T )|)

]
,

8



for F ∈ A. Being the maps S and I bijections, finding the minimizer F̃ of J in

A gives us the best approximating process X̃ = S I−1 F̃ ∈ OU(a, σ, x0).

We can study these kind of cost functionals as particular cases of the more

general cost functional

J [F ] = E

[∫ T

0

J(t, Z(t), F (t))dt+ Φ(Z(T ), F (T ))

]
.

In particular, we want to find a F̃ ∈ A such that

J [F̃ ] = min
F∈A
J [F ].

In the following section we show that under some hypotheses this problem ad-95

mits a unique solution and we find some necessary conditions that will be the

main tools to actually find the minimizer F̃ ∈ A.

3. Optimality conditions and existence of the solution of the approx-

imation problem

3.1. The main result100

Let us state the problem in its full generality. Let us consider the stochastic

process Z(t) ∈ L0(Ω, {Ft}t≥0;L1(0, T )) with a.s. continuous paths and let us

define the probability measure flow µt = L[Z(t)] where L[X] denotes the law of

a random variable X. Fix T ≥ 0 and define

RT = [0, T ]× R .

For any measurable set A ⊆ RT define the section At = {x ∈ R : (t, x) ∈ A}

for fixed t ∈ [0, T ]. Then let us define the set function µ as follows

µ(A) =

∫ T

0

µt(At)dt ∀A ⊆ RT measurable . (11)

It is not difficult to check that µ is a measure.

One can also show that for any measurable function f : RT → R we have∫
Ω

f(t, z)µ(dzdt) =

∫ T

0

∫
R
f(t, z)µt(dz)dt =

∫ T

0

E[f(t, Z(t))]dt. (12)

9



Consider now the functions

J : (t, z, x) ∈ RT × R 7→ J(t, z, x) ∈ R and Φ : (z, x) ∈ R×R 7→ Φ(z, x) ∈ R

(13)

and define the functional J : AC([0, T ])→ R as

J [F ] = E

[∫ T

0

J(t, Z(t), F (t))dt+ Φ(Z(T ), F (T ))

]
. (14)

We want to solve the following problem:

find arg min
F∈A
J [F ] (15)

where the admissible set is defined as

A = {F ∈ AC([0, T ]) : F (0) = 0}.

We will consider the following assumptions, that we will explain while proving

the main result:

A1 There exists a function F ∈ A such that J [F ] < +∞;

A2 The functions J(t, z, x) and Φ(z, x) defined in (13) are non-negative for

any (t, z, x) ∈ RT × R;105

A3 For fixed (t, z) ∈ RT the map x 7→ J(t, z, x) is in C1;

A4 For any compact set K ⊂ R there exists a function ΨK(t, z) ∈ L1(RT ;µ)

such that ∣∣∣∣∂J∂x (t, z, x)

∣∣∣∣ ≤ ΨK(t, z), ∀x ∈ K;

A5 For fixed z ∈ R the map x 7→ Φ(z, x) is in C1;

A6 For any compact set K ⊂ R there exists a function ΘK(z) ∈ L1(R;µT )

such that ∣∣∣∣∂Φ

∂x
(z, x)

∣∣∣∣ ≤ ΘK(z) ∀x ∈ K;

A7 For any fixed t ∈ [0, T ], the map x 7→ E[J(t, Z(t), x)] is strictly convex,

decreasing as x→ −∞ and increasing as x→ +∞;

10



A8 There exist two constants α,M > 0, a function h ∈ L1(0, T ) and an

exponent p > 1 such that for any t ∈ [0, T ] and x ∈ R with |x| > M

E[J(t, Z(t), x)] ≥ α(h(t) + |x|p);

A9 The map x 7→ E[Φ(Z(T ), x)] is proper or constant;110

A10 The map x 7→ E[Φ(Z(T ), x)] is convex;

A11 The function

(t, x) 7→ E[J(t, Z(t), x)]

is in C2(RT \ N ), where N ⊂ RT is such that Z := {t ∈ [0, T ] : ∃x ∈

R, (t, x) ∈ N} is at most finite, and

∂2

∂x2
E [J(t, Z(t), x)] > 0

for any (t, x) 6∈ N ;

A12 The function

η(t) = −
∂2

∂x ∂t E[J(t, Z(t), F (t))]
∂2

∂x2 E[J(t, Z(t), F (t))]
(16)

belongs to L1(0, T ), where F (t) is a solution of

E
[
∂J

∂x
(t, Z(t), F (t))

]
= 0 ∀t ∈ (0, T ),

defined for t ∈ I ⊃ [0, T ] \ Z, where Z is at most a finite set;

A13 It holds true that

E
[
∂J

∂x
(0, Z(0), 0)

]
= 0;

A14 Given a∗ the (unique) solution of

E
[
∂J

∂x
(T,Z(T ), x)

]
= 0

then it also holds

E
[
∂Φ

∂x
(Z(T ), a∗)

]
= 0.

11



Although numerous, these assumptions are not so strict, neither unusual, as we

will see later. Indeed, we will show that an important family of cost functions115

(the power costs) satisfies all the assumptions, depending on the regularity of

the process Z(t).Now we state the main result of the paper.

Theorem 3.1. Under assumptions A1 − A14, there exists a unique solution

F ∗ ∈ A of (15) and it is the unique solution of Equations

E
[
∂J

∂x
(t, Z(t), F ∗(t))

]
= 0 ∀t ∈ (0, T ) (17)

and

E
[
∂Φ

∂x
(Z(T ), F ∗(T ))

]
= 0. (18)

From a probabilistic point of view by Equations (17) and (18) we are asking

for F ∗(t) to be, on average, a critical point of the running cost J(t, Z(t), x) and

the final cost Φ(Z(T ), x). Furthermore, under our assumptions, one can show

that Equation (17) can be also written as

∂

∂x
E[J(t, Z(t), F ∗(t))] = 0,

that is to say that F ∗(t) is also a critical point of the mean of the running cost.

The same holds for the final cost.

The proof of Theorem 3.1 will be given in Subsections 3.2, 3.3, and 3.4. The120

proof is structured as follows:

• First, in Subsection 3.2 we find necessary optimality conditions in terms of

Equations (17) and (18), which are the Euler-Lagrange equation and the

Transversality Condition of the function J (see for instance [21, Chapter

2]), by using Assumptions A1−A6;125

• In Subsection 3.3, to obtain an existence result, we need to relax the

problem, in the spirit of Calculus of Variations (see for instance [20, Sec-

tion 1.4]), by introducing a more general functional on a more general

admissible set. For the relaxed functional we are able to prove lower semi-

continuity and then existence of the minimizer, by using Assumptions130

A1−A9;

12



• In Subsection 3.4 we show that exactly one of the minimizers belong to

the admissible set A and thus it is a minimizer of the original problem,

by using the whole set of Assumptions and completing the proof of the

Theorem.135

3.2. Necessary optimality conditions

In this section we perform the first step of our plan. Indeed, by using As-

sumptions A1−A6 we will prove that any minimizer of J in A solves Equations

(17) and (18). These equations will be the main tools to actually find a min-

imizer for J . We have the following optimality conditions, by means of the140

Euler-Lagrange equation and the transversality condition. The proof follows

the ideas of [21, Theorem 2.1 Part 1], adapted to our case.

Theorem 3.2. Under Assumptions A1 − A6, let F ∗ ∈ A be a solution of the

problem (15). Then F ∗ is solution of Equations (17) and (18).

Proof. Let us first observe that if F ∗ ∈ A is a minimizer for J , then, by As-

sumption A1, J [F ∗] < +∞. In particular

E

[∫ T

0

J(t, Z(t), F ∗(t))dt

]
< +∞

and thus
∫ T

0
J(t, Z(t), F ∗(t))dt < +∞ almost surely. In particular we can use

Fubini’s theorem to obtain

J [F ∗] =

∫ T

0

E[J(t, Z(t), F ∗(t))]dt+ E[Φ(Z(T ), F ∗(T ))]

=

∫ T

0

∫
R
J(t, z, F ∗(t))µt(dz)dt+

∫
R

Φ(z, F ∗(T ))µT (dz)

=

∫
Ω

J(t, z, F ∗(t))µ(dzdt) +

∫
R

Φ(z, F ∗(T ))µT (dz).

First of all, let us fix ϕ ∈ C∞c ((0, T )) and define F ∗ε (t) = F ∗(t) + εϕ(t). Since

ϕ(T ) = 0, then we have that

J [F ∗ε ] = E

[∫ T

0

J(t, Z(t), F ∗(t) + εϕ(t))dt+ Φ(Z(T ), F ∗(T ))

]
.

13



Now observe that since ϕ ∈ C∞c ((0, T )), then F ∗ε → F ∗ uniformly as ε→ 0. In

particular let us consider a tubular neighbourhood of F ∗, i.e.

Qδ = {(t, x) ∈ [0, T ]× R : x ∈ [F ∗(t)− δ, F ∗(t) + δ]}

and a compact set K ⊂ R such that Qδ ⊆ [0, T ] × K. Then there exists a

ε0 such that for ε ∈ (−ε0, ε0) the couples (t, F ∗(t) + εϕ(t)) ∈ Qδ and then

F ∗(t) + εϕ(t) ∈ K. Hence we have, by Assumption A4,

|J(t, Z(t), F ∗(t) + εϕ(t))| ≤ |J(t, Z(t), F ∗(t) + εϕ(t))− J(t, Z(t), F ∗(t))|

+ |J(t, Z(t), F ∗(t))|

≤ ΨK(t, Z(t))|ϕ(t)|+ |J(t, Z(t), F ∗(t))|.

Taking the mean and then integrating with respect to time in the right hand

side we have, by Equation (12),∫ T

0

E[|ΨK(t, Z(t))||ϕ(t)|+ |J(t, Z(t), F ∗(t))|]dt

≤ ‖ϕ‖L∞(0,T )

∫
Ω

|ΨK(t, z)|µ(dzdt) +

∫
Ω

|J(t, Z(t), F ∗(t)|µ(dzdt) < +∞.

In particular we can use Fubini’s theorem to obtain

E

[∫ T

0

|ΨK(t, Z(t))||ϕ(t)|+ |J(t, Z(t), F ∗(t))|dt

]
< +∞

and then ΨK(t, Z(t))ϕ(t) + J(t, Z(t), F ∗(t)) is almost surely in L1(0, T ). This

implies that J(t, Z(t), F ∗(t)+εϕ(t)) is almost surely in L1(0, T ) and in particular

J [F ∗ε ] =

∫
Ω

J(t, z, F ∗(t) + εϕ(t))µ(dzdt) +

∫
R

Φ(z, F ∗(T ))µT (dz).

Consider the function g : ε ∈ (−ε0, ε0) 7→ J [F ∗ε ] and observe that it admits a

minimum in ε = 0. Let us show that g is in C1. To do this, let us consider the

function

h : (t, z, ε) ∈ RT × (−ε0, ε0) 7→ J(t, z, F ∗(t) + εϕ(t))

such that

g(ε) =

∫
RT

h(t, z, ε)µ(dzdt) +

∫
R

Φ(z, F ∗(T ))µT (dz)

14



and observe that, J(t, z, x) being a C1 function in x by Assumption A3, we have

∂h

∂ε
(t, z, ε) =

∂J

∂x
(t, z, F ∗(t) + εϕ(t))ϕ(t)

and in particular ∣∣∣∣∂h∂ε (t, z, ε)

∣∣∣∣ ≤ ‖ϕ‖L∞ ΨK(t, z)

thus we have a uniform (with respect to ε) L1 bound on the derivative of h. By

differentiation under the integral sign we have that g ∈ C1 and

g′(ε) =

∫
Ω

∂J

∂x
(t, z, F ∗(t) + εϕ(t))ϕ(t)µ(dzdt)

=

∫ T

0

E
[
∂J

∂x
(t, Z(t), F ∗(t) + εϕ(t))

]
ϕ(t)dt.

Now, by Fermat’s theorem, we know that g′(0) = 0 and then, by the fact that

we arbitrarily chose ϕ ∈ C∞c (0, T ),∫ T

0

E
[
∂J

∂x
(t, Z(t), F ∗(t))

]
ϕ(t)dt = 0 ∀ϕ ∈ C∞c ((0, T )). (19)

By Fundamental Lemma of Calculus of variation (see [20, Theorem 3.40]), Equa-

tion (19) implies

E
[
∂J

∂x
(t, Z(t), F ∗(t))

]
= 0 ∀t ∈ (0, T ).

Now let us choose again ϕ ∈ C∞c ((0, T ]). Working as before on J [F ∗ε ], by using

also Assumption A6 (since ϕ(T ) 6= 0) we have

J [F ∗ε ] =

∫
Ω

J(t, z, F ∗(t) + εϕ(t))µ(dzdt) +

∫
R

Φ(z, F ∗(T ) + εϕ(T ))µT (dz).

As done before, let us introduce a function g(ε) = J [F ∗ε ] and let us define the

function

k(z, ε) = Φ(z, F ∗ε (T ))

to obtain

g(ε) =

∫
Ω

h(t, z, ε)µ(dzdt) +

∫
R
k(z, ε)µT (dz).

Now let us show that g is in C1(−ε0, ε0). To do that, we only need to work

with k. We have, by Assumption A5,

∂k

∂ε
(z, ε) =

∂Φ

∂x
(z, F ∗(T ) + εϕ(T ))ϕ(T )

15



and then ∣∣∣∣∂k∂ε (z, ε)

∣∣∣∣ ≤ ϕ(T )ΘK(z).

Thus we can differentiate under the integral sign, obtaining

g′(ε) =

∫ T

0

E
[
∂J

∂x
(t, Z(t), F ∗(t) + εϕ(t))

]
ϕ(t)dt+

+ E
[
∂Φ

∂x
(Z(T ), F ∗(T ) + εϕ(T ))

]
ϕ(T ).

By using Fermat’s Theorem, we have g′(0) = 0 and then∫ T

0

E
[
∂J

∂x
(t, Z(t), F ∗(t))

]
ϕ(t)dt+ E

[
∂Φ

∂x
(Z(T ), F ∗(T ))

]
ϕ(T ) = 0.

However, we already proved that E
[
∂J
∂x (t, Z(t), F ∗(t))

]
= 0, hence, since we

have arbitrarily chosen ϕ ∈ C∞c ((0, T ])

E
[
∂Φ

∂x
(Z(T ), F ∗(T ))

]
ϕ(T ) = 0, ∀ϕ ∈ C∞c ((0, T ])

from which we finally obtain

E
[
∂Φ

∂x
(Z(T ), F ∗(T ))

]
= 0.

145

Remark 3.3. Let us observe that Assumption A1 is a non-triviality assumption,

to avoid functionals of the form J ≡ +∞. Assumption A2 is used instead to

avoid the case inf J = −∞. Concerning Assumptions A3−A6, they are typical

Assumptions of C1 regularity and integrability of the local Lipschitz constant.

3.3. Existence of a minimizer for a relaxed problem150

Now we introduce a relaxed problem. Indeed, we are not able to prove

directly existence of the minimizer in the admissible set A. Hence we will

“enlarge” this set and extend the functional in order to prove an existence

result. This relaxation technique is typical of direct methods of Calculus of

Variations (see [20]). From now on we will split the functional J in two parts

I1[F ] = E

[∫ T

0

J(t, Z(t), F (t))dt

]
I2[F ] = E[Φ(Z(T ), F (T ))]

16



such that J [F ] = I1[F ] + I2[F ].

As we will see, the problem is in the I1 functional, since we are only able to

prove weak lower-semicontinuity of this functional on the space Lp(0, T ), which

is quite larger than A. The proof of the next Lemma mimics the one of [20,

Theorem 3.20].155

Lemma 3.4. Consider p ≥ 1 and suppose we have a sequence Fn ∈ Lp(0, T ),

a function F ∈ Lp(0, T ) such that Fn ⇀ F in Lp. If x 7→ E[J(t, Z(t), x)] is

convex ∀t ∈ (0, T ), then

lim inf
n
I1[Fn] ≥ I1[F ].

Proof. First of all, let us observe that since J is continuous in x, then if Fn → F

in Lp we have, by Fatou’s Lemma,

lim inf
n
I1[Fn] = lim inf

n
E

[∫ T

0

J(t, Z(t), Fn(t))dt

]

≥ E

[∫ T

0

lim inf
n

J(t, Z(t), Fn(t))dt

]
= I1[F ]

so in particular I1 is strong lower semicontinuous.

Now, if lim infn I1[Fn] = +∞ the theorem is trivial. Suppose then lim infn I1[Fn] =

C < +∞ and suppose we are working with a subsequence (that, for the ease

of the reader, we will still call Fn) such that limn I1[Fn] = C. Fix ε > 0 and

observe that there exists a νε such that for n ≥ νε we have I1[Fn] ≤ C+ε. Now,

by Mazur’s Theorem [20, Theorem 3.9] we know that there exists a sequence of

integers {mµ}µ∈N with mµ ≥ νε and for each µ ∈ N a vector aµ ∈ Rmµ−νε with∑mµ−νε
i=1 aiµ = 1 such that, if we pose

Gµ =

mµ∑
i=1

aiµFi+νε ,

we have Gµ → F in Lp. However, by convexity of E[J(t, Z(t), x)] in x (by also

using Fubini’s theorem) we have

I1[Gµ] ≤
mµ∑
i=1

aiµI1[Fi+νε ] ≤ C + ε.

17



Taking the lim inf on µ, from the strong lower semi-continuity, we have

I1[F ] ≤ lim inf
µ→+∞

I1[Gµ] ≤ C + ε

Finally, we can send ε→ 0 to conclude.

The latter result shows us that if we want to use an approach via minimizing

sequences to find a minimizer, we can do this by substituting Lp(0, T ) for some

p ≥ 1 to A. However, Lp functions are not defined on single points, thus for

any F ∈ Lp(0, T ), F (T ) is not well-defined. Hence we need to split the action

of I1 and I2, the first on Lp(0, T ), the second simply on R. From now on, our

admissible set will be composed of couples (F, a) where F ∈ Lp(0, T ) and a ∈ R.

Let us define the relaxed admissible set

Ãp = {(F, a) ∈ Lp(0, T )× R}

and the relaxed functional

J̃ [(F, a)] = I1[F ] + I2[a]

for (F, a) ∈ Ãp. Then the relaxed problem is given by

find arg min
(F,a)∈Ãp

J̃ [(F, a)]. (20)

Now we can move to the next step, that is proving that the relaxed problem

(20) admits a solution.

Lemma 3.5. Under Assumption A1−A9, Problem (20) admits a solution.

Proof. Let us first consider the case in which x 7→ E[Φ(Z(T ), x)] is a proper

map. If inf(F,a)∈Ãp J̃ [(F, a)] = +∞, the solution is trivial. Thus let us suppose

inf(F,a)∈Ãp J̃ [(F, a)] = L ≥ 0. Let us then consider a sequence (Fn, an) ∈ Ãp
such that limn J̃ [(Fn, an)] = L. In particular we can suppose that

J̃ [(Fn, an)] < L+ 1, ∀n ∈ N .

First of all, we have that

I1[Fn] = E

[∫ T

0

J(t, Z(t), Fn(t))dt

]
< L+ 1.

18



By Fubini’s Theorem we have that∫ T

0

E[J(t, Z(t), Fn(t))]dt < L+ 1.

Now let us define Mn = {t ∈ [0, T ] : |Fn(t)| > M}. By using Assumption A8

we have

α

(∫
Mn

h(t)dt+

∫
Mn

|Fn(t)|pdt
)
≤

≤
∫
Mn

E[J(t, Z(t), Fn(t))]dt ≤

≤
∫ T

0

E[J(t, Z(t), Fn(t))]dt < L+ 1

and then∫
Mn

|Fn(t)|pdt < L+ 1

α
−
∫
Mn

h(t)dt ≤ L+ 1

α
+ ‖h‖L1(0,T ) . (21)

At the same time we have∫
[0,T ]\Mn

|F (t)|pdt ≤ TMp. (22)

Thus we have, by summing Equations (21) and (22)

‖Fn‖pLp(0,T ) <
L+ 1

α
+ ‖h‖L1(0,T ) + TMp, ∀n ∈ N

and then, by Banach-Alaoglu theorem [27, Theorem 3.16] (and the fact that Lp

is reflexive [27, Theorem 4.10]), there exists a F ∈ Lp(0, T ) such that (up to a

subsequence) Fn ⇀ F in Lp.

Moreover, by the weak lower-semicontinuity of I1 we have

I1[F ] ≤ lim inf
n
I1[Fn].

Now, we also have that

E[Φ(Z(T ), an)] ≤ L+ 1, ∀n ∈ N

thus, since x 7→ E[Φ(Z(T ), x)] is a proper map by Assumption A9, there exists

M > 0 such that |an| ≤ M . Thus there exists a ∈ R such that (up to a
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subsequence) an → a. Moreover, we have that for any n ∈ N, posing K =

[−M,M ]

Φ(Z(T ), an) ≤ 2MΘK(Z(T )) + Φ(Z(T ), a1)

hence we can use dominated convergence theorem to conclude that

lim
n
I2[an] = I2[a].

Finally, we have that

J̃ [(F, a)] = I1[F ] + I2[a] ≤

≤ lim inf
n∈N

I1[Fn] + lim
n
I2[an] =

= lim inf
n
J̃ [(Fn, an)] = L.

If the map x 7→ E[Φ(Z(T ), x)] is constant, the term in Φ is actually a dummy160

term and it is useless in the minimization problem. Hence we can neglect it and

the statement still holds true.

Remark 3.6. We did not use A7 but only the fact that for any fixed t ∈ [0, T ]

the map x 7→ E[J(t, Z(t), x)] is convex. The final formulation of A7 is needed

to guarantee that if (F, a) and (F̃ , b) are solutions, then F = F̃ in Lp(0, T ).165

Let us also recall that, with the same strategy used before, we can show the

following necessary optimality conditions for the minima of the relaxed problem.

Lemma 3.7. Let (F ∗, a∗) ∈ Ãp be a solution of the problem (20). Then, under

assumptions A1−A6,

E
[
∂J

∂x
(t, Z(t), F ∗(t))

]
= 0 for almost all t ∈ (0, T ) (23)

and

E
[
∂Φ

∂x
(Z(T ), a∗)

]
= 0. (24)

3.4. Gain of regularity

The solutions we found for the relaxed problem at this stage cannot be used

for the original problem:170

20



• F ∗ ∈ Lp(0, T ) while we want it in AC;

• F ∗(T ) is not well-defined, but, even if it were, we are not sure that, in any

case, F ∗(T ) = a∗.

For these reasons we have to show that we can gain regularity of the solution,

in the sense that we can find a solution F ∗ of the relaxed problem (20) that is175

more regular than simply Lp(0, T ) for some p ∈ (1,+∞).

First of all, let us show that, under our assumptions, the first part of the solution

F ∗ is unique and continuous, while a∗ can only vary in an interval.

Lemma 3.8. Under Assumptions A1−A10, there exists a unique F ∗ ∈ Lp(0, T )

and a unique interval I ⊆ R such that for any a∗ ∈ I the couple (F ∗, a∗) ∈ Ãp is180

a solution of the problem (20). Moreover F ∗ admits a continuous modification

in [0, T ] for which the equation (23) holds for any t ∈ [0, T ].

Proof. Since the map x 7→ E[Φ(Z(T ), x)] is convex by Assumption A10, we know

that

argminx∈R E[Φ(Z(T ), x)] must be a convex set, hence, being non-empty by the

previous theorem, it must be an interval I. Moreover the strict convexity of the

map x 7→ E[J(t, Z(t), x)] given by Assumption A7 ensures that the minimizer

F ∗ ∈ Lp(0, T ) (that exists by the previous theorem) is unique.

Concerning the continuity, fix t0 ∈ [0, T ] and consider tn → t0 such that tn are

points for which Equation (23) is satisfied. We obviously have

lim
n→+∞

E
[
∂J

∂x
(tn, Z(tn), F ∗(tn))

]
= 0.

Now observe that there exists a subsequence of F ∗(tn) that converges to lim infn F
∗(tn).

In particular, taking the limit on such subsequence, we have, by Assumption

A3,

E
[
∂J

∂x
(t0, Z(t0), lim inf

n
F ∗(tn))

]
= 0.

In the same way, we also have

E
[
∂J

∂x
(t0, Z(t0), lim sup

n
F ∗(tn))

]
= 0.
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Now, since x 7→ E[J(t, Z(t), x)] is strictly convex for any t ∈ [0, T ], we know

that x 7→ E
[
∂J
∂x (t, Z(t), x)

]
is injective, thus for any t ∈ [0, T ] the equation

E
[
∂J

∂x
(t0, Z(t0), x)

]
= 0 (25)

admits a unique solution and then lim infn F
∗(tn) = lim supn F

∗(tn). We

have shown that limn F
∗(tn) is well-defined. Now let us observe that be-

ing x 7→ E[J(t, Z(t), x)] decreasing as x → −∞ and increasing as x → +∞,185

limn F
∗(tn) 6= ±∞ by Assumption A7. Thus we have limn F

∗(tn) ∈ R. Now let

us distinguish two cases. If t0 ∈ [0, T ] is one of the point in which the necessary

condition (23) is already satisfied, we have, by uniqueness of the solution of

Equation (25), F ∗(t0) = limn F
∗(tn) and then F ∗ is continuous in t0.

If t0 is not one of these points, we can modify F ∗ on t0 in such a way that190

F ∗(t0) = limn F
∗(tn). Being the set of t0 ∈ [0, T ] for which the necessary con-

dition is not satisfied a zero-measure set, we can conclude that F ∗ admits a

continuous modification in [0, T ].

It is still not enough: we do not want F ∗ to be simply continuous, but abso-

lutely continuous. However, under our hypotheses we do not only obtain that F ∗195

is absolutely continuous, but we can exploit its derivative (almost everywhere).

Lemma 3.9. Under Assumptions A1−A12, let (F ∗, a∗) be a solution of (20).

Then F ∗ ∈ AC[0, T ].

Proof. By the Implicit Function Theorem (see [28, Theorem 3.2.1]) we know

that η(t) defined in Equation (16) of Assumption A12 is actually the derivative

of F ∗(t) where it is defined. In particular let us denote Z = {t1, . . . , tn}, t0 = 0,

tn+1 = T and Ij = (tj−1, tj) for j = 1, . . . , n + 1. For any j = 1, . . . , n + 1

and t ∈ Ij we have η(t) = dF∗

dt (t) and, being η continuous in such interval,

F ∗ ∈ C1(Ij) for any j = 1, . . . , n + 1. Fix a j ∈ {1, . . . , n + 1}. Let us observe

that for any ε > 0∫ tj−ε

tj−1+ε

η(s)ds = F ∗(tj − ε)− F ∗(tj−1 + ε)
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thus, by the dominated convergence theorem (being η in L1) and by the conti-

nuity of F we have, by taking ε→ 0,∫ tj

tj−1

η(s)ds = F ∗(tj)− F ∗(tj−1). (26)

Moreover, if we consider t ∈ Ij we can show in the same way that∫ t

tj−1

η(s)ds = F ∗(t)− F ∗(tj−1). (27)

Now let us consider t ∈ [0, T ]. If t = tj for some j = {1, . . . , n+ 1} we have, by

Equation (26),∫ tj

0

η(s)ds =

j∑
k=1

∫ tk

tk−1

η(s)ds =

j∑
k=1

F ∗(tk)− F ∗(tk−1) = F ∗(tj)− F ∗(0).

Otherwise there exists j ∈ {1, . . . , n+ 1} such that t ∈ Ij and we have, by both

Equations (26) and (27),

∫ t

0

η(s)ds =

j−1∑
k=1

∫ tk

tk−1

η(s)ds+

∫ t

tj−1

η(s)ds =

=

j−1∑
k=1

F ∗(tk)− F ∗(tk−1) + F ∗(t)− F ∗(tj−1) = F ∗(t)− F ∗(0).

Thus, for any t ∈ [0, T ], we have

F ∗(t) = F ∗(0) +

∫ t

0

η(s)ds

concluding the proof.

Remark 3.10. Let us stress that Assumption A11 can be lightened by asking200

instead that ∂2

∂x2 E[J(t, Z(t), F ∗(t))] > 0 except for a set Z that is at most finite.

Now, for F ∗ to be in A, we only need to ask that F (0) = 0 and F (T ) ∈

I, where I is the optimal interval for I2. This is done by introducing the

Assumptions A13−A14.

Lemma 3.11. Under Assumptions A1 − A14, (15) admits a unique solution205

F ∈ A.
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Proof. Let us consider first the relaxed problem. Thus we have that there

exists a unique function F ∈ Lp(0, T ) and an interval I ⊆ R such that for any

a ∈ I the couple (F, a) ∈ Ãp is solution of (20). By Lemma 3.8 we know that

F ∈ C0([0, T ]). Moreover, by Lemma 3.9 we know that F ∈ AC([0, T ]). By

Assumption A13 and uniqueness of the solution of equation (25) we have that

F (0) = 0, hence F ∈ A. Finally, we have that F (T ) is the unique solution of

(17) for t = T and then, by Assumption A14,

E
[
∂Φ

∂x
(Z(T ), F (T ))

]
= 0.

Being the map x 7→ E[Φ(Z(t), x)] convex, the map x 7→ E
[
∂Φ
∂x (Z(T ), x)

]
is

increasing and then F (T ) ∈ I. Thus the couple (F, F (T )) is solution of the

relaxed Problem (20) and then F is solution of Problem (15). Uniqueness follows

from the fact that for each t > 0, Equation (23) admits a unique solution.210

This last Lemma ends the proof of Theorem 3.1. The only thing we have to

observe is that by implicit function theorem and Assumptions A11 − A12, we

know that Equation (17) admits a unique solution that, in such case, has to be

the minimizer we are looking for.

3.5. Power cost functionals215

Let us give a practical example. We want to solve the approximation problem

of Section 3 for some particular cost functions. By power cost functionals we

mean functionals J p induced by Φ constant and, for a fixed p ≥ 2, for any

t ∈ [0, T ] and Xf ∈ OU(a, σ, x0),

Jp(t, |X(t)−Xf (t)|) = |X(t)−Xf (t)|p. (28)

We can show the following result that will be useful in the applications.

Proposition 3.12. Let us fix p > 2 and suppose that

i The process z ∈ Lp(Ω, {Ft}t≥0;L1(0, T ));

ii The function t 7→ E[|z(t)|p] belongs to L1(0, T ).
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iii z(t) > 0 almost surely for any t ∈ (0, T ];220

iv ∂
∂t E[|x− Z(t)|p−2(x− Z(t))] is continuous.

Fix Φ ≡ C for some constant C ≥ 0 and let Jp be as in Equation (28). Then

the Problem (15) with running cost function (28) and constant final cost admits

a unique solution Fp ∈ A. The same holds if Φp(X(T ) − Xf (T )) = |X(T ) −

Xf (T )|p.225

If p = 2, then, under hypotheses i and ii, for Φ ≡ C or Φ2(X(T ) −Xf (T )) =

|X(T )−Xf (T )|2 and J2 defined as before, there exists a unique F2 ∈ A solution

of (15).

Proof. Without loss of generality, let us always suppose that C = 0. As function

of (t, z, x) ∈ RT × R we have, by Equation (28),

Jp(t, z, x) = |z − x|p.

Let us also denote the respective functional as J p. By definition of Z(t) in

Equation (3) and Jensen’s inequality we have

E[|Z(t)|p] ≤ epA(t)

∫ t

0

E[|z(t)|p]e−pA(s)ds

and in particular, since the right-hand side is continuous, we have that E[|Z(t)|p] ∈

L1(0, T ). Let us now check the hypotheses of Theorem 3.1.230

A1 This is verified for F ≡ 0, since J p[F ] =
∫ T

0
E[|Z(t)|p]dt < +∞;

A2 This hypothesis is verified by definition of Jp and Φ;

A3 For any fixed (t, z) ∈ RT the map x 7→ Jp(t, z, x) belongs to C1 and

∂Jp
∂x

(t, z, x) = p|x− z|p−2(x− z);

A4 Let x ∈ [−K,K] and observe that∣∣∣∣∂Jp∂x (t, z, x)

∣∣∣∣ = p|x− z|p−1 ≤ p2p−2(Kp−1 + |z|p−1) =: ΨK(z).

Since E[|Z(t)|p−1] is well defined and belongs to L1(0, T ) (by Hölder’s

inequality), we have that ΨK(z) ∈ L1(RT ;µ).
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A5,A6 These are obvious since Φ ≡ 0;235

A7 The map x 7→ E[J(t, Z(t), x)] is strictly convex, decreasing as x → −∞

and increasing as x → +∞ since the function J(t, z, x) has these proper-

ties;

A8 Observe that we have

|x|p = |x− z + z|p ≤ 2p−1(|x− z|p + |z|p)

hence

|x− z|p ≥ 21−p|x|p − |z|p.

Thus we can conclude that

E[Jp(t, Z(t), x)] ≥ 21−p(|x|p − 2p−1 E[|Z(t)|p]),

where 2p−1 E[|Z(t)|p] belongs to L1(0, T );

A9,A10 These hypotheses are obviously satisfied by Φ ≡ 0;240

A11 Let us observe that

∂2

∂x2
Jp(t, z, x) = p(p− 1)|x− z|p−2.

Let us fix x0 ∈ R, δ > 0 and distinguish three cases. If p ≥ 3 then p−2 > 1

and we have

p(p− 1)|x− z|p−2 ≤ p(p− 1)2p−2(|x|p−2 + |z|p−2) ≤

≤ p(p− 1)2p−2(max{|x0 − δ|p−2, |x0 + δ|p−2}+ |z|p−2)

∀x ∈ [x0 − δ, x0 + δ].

If 2 < p < 3 and xz ≥ 0 we have (since the function |x|p−2 is concave if

restricted to (−∞, 0] or [0,+∞))

|z|p−2 = |z − x+ x|p−2 ≥ 2p−3(|x− z|p−2 + |x|p−2)

thus in this case

p(p− 1)|x− z|p−2 ≤ p(p− 1)(23−p|z|p−2 − |x|p−2) ≤ p(p− 1)23−p|z|p−2.
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If 2 < p < 3 and xz < 0 then we can suppose x > 0 and z < 0. In this

case

p(p− 1)|x− z|p−2 = p(p− 1)|x+ |z||p−2

≤ p(p− 1)(|x|+ |z|)p−2

≤ 2p−2p(p− 1)(max{|x|, |z|})p−2

≤ 2p−2p(p− 1)(max{|x0 − δ|, |x0 + δ|, |z|})p−2 ∀x ∈ [x0 − δ, x0 + δ].

The same holds for x < 0 and z > 0. Finally, for p = 2 we have p(p −

1)|x− z|p−2 = 2. By using these estimates and the estimate in hypothesis

A4, we can differentiate under the integral sign, obtaining

∂2

∂x2
E[Jp(t, Z(t), x)] = p(p− 1)E[|x− Z(t)|p−2] ≥ 0.

Let us observe that, by Remark (3.10), we actually need to show that

E[|Fp(t)− Z(t)|p−2] = 0 at most in a finite set, where Fp(t) is the unique

solution of

E
[
|x− Z(t)|p−2(x− Z(t))

]
= 0 t ∈ (0, T ), (29)

that is Equation (17) in this case. Let us first consider the case in which

p > 2. Since, by iii, z(t) > 0 for any t ∈ [0, T ] almost surely, Z(t) > 0 for

any t in (0, T ] almost surely. In such case, Fp(t) cannot be negative for

all t ∈ [0, T ] thus maxt∈[0,T ] Fp(t) > 0. Then we have, recalling Equation

(29),

0 = E[|Fp(t)− Z(t)|p−2(Fp(t)− Z(t))] < E
[
|Fp(t)− Z(t)|p−2Fp(t)

]
< max
t∈[0,T ]

Fp(t)E
[
|Fp(t)− Z(t)|p−2

]
.

For p = 2 we have instead

∂2

∂x2
E[J2(t, Z(t), x)] = 2 > 0,

without using iii.
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A12 For p > 2, let us observe that

∂2

∂x ∂t
E[Jp(t, Z(t), x)] = p

∂

∂t
E[|x− Z(t)|p−2(x− Z(t))].

Since, by iv, we have that ∂
∂t E[|x − Z(t)|p−2(x − Z(t))] is continuous in

t ∈ [0, T ], we can observe that the function

ηp(t) =
∂
∂t E[|Fp(t)− Z(t)|p−2(Z(t)− Fp(t))]

(p− 1)E[|Fp(t)− Z(t)|p−2]

is continuous in [0, T ], thus is in L1(0, T ).

The case p = 2 is simpler. We have that Equation (29) becomes

E[Z(t)− F2(t)] = 0

thus we know that

F2(t) = E[Z(t)]. (30)

By Fubini’s theorem we know that

E[Z(t)] = eA(t)

∫ t

0

E[z(s)]e−A(s)ds.

Thus we have, since F2(t) = eA(t)
∫ t

0
f2(s)e−A(s)ds,

f2(s) = E[z(s)] (31)

which is uniquely defined since the map I is a bijection. Finally, since we

have
d

dt
E[Z(t)] = a(t)E[Z(t)] + E[z(t)]

and then

∂2

∂x ∂t
E[(x− Z(t))2] = −2(a(t)E[Z(t)] + E[z(t)]),

we get

η(t) = a(t)E[Z(t)] + E[z(t)]

that is continuous in [0, T ] and then in L1(0, T ).
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A13 Since Z(0) = 0 we have

E
[
∂Jp
∂x

(0, 0, 0)

]
= 0.

A14 This hypothesis is obviously satisfied since Φ ≡ 0.

The proof of Assumptions A4,A5 for Φp are analogous to the ones for Jp, while

A9, A10 and A14 follow from the structure of Φp.245

The previous example shows that our result includes, as a special case, the

well-known fact that the expected value minimizes the mean square error. More-

over, in this case it is easy to obtain a bound on the minimum in terms of the

variance of z(t). Indeed we have

J 2[E[Z(t)]] = E

[∫ T

0

(Z(t)− E[Z(t)])2dt

]
=

∫ T

0

D[Z(t)]dt.

However we have by Jensen’s inequality

D[Z(t)] ≤ e2A(t)

∫ t

0

D[z(s)]e−2A(s)ds =: d2(t) (32)

thus we have

J 2[E[Z(t)]] ≤
∫ T

0

d2(t)dt.

In particular, if d2 ∈ L1(0,+∞), we have that the minimum approximation

error J 2[E[Z(t)]] is bounded for T → +∞.

One can obtain also a point-wise estimate on the distance between the processes,

given by

E[|X(t)−Xf (t)|2] ≤ d2(t). (33)

Let us recall that, despite Problem (15) admits a unique solution, the relaxed

Problem (20) could still admit more than a solution. For instance, if we consider

the functional J2 induced by J2 and Φ ≡ 0, Problem (15) admits F2(t) = E[Z(t)]

as unique solution, while Problem (20) admits (F2(t), a) as solution for any

a ∈ R. On the other hand, if Φ is strictly convex, then also the relaxed Problem250

(20) admits a unique solution. This is the case of the functional J2,2 induced

by J2 and Φ2(x, z) = |x − z|2. Indeed Problem (15) admits F2(t) = E[Z(t)]
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as unique solution and Problem (20) admits (F2(t), F2(T )) as unique solution.

Finally, let us observe that if Assumption A14 is not satisfied, then the Problem

(20) could admit a solution while (15) could not. Indeed, if we consider the255

funcitonal J2,3 induced by J2 and Φ3(x, z) = |x − z|3, Problem (20) admits

as unique solution (F2(t), F3(T )), while Problem (15) admits a unique solution

if and only if F2(T ) = F3(T ), otherwise there are no absolutely continuous

functions that satisfies simultaneously Equations (17) and (18).

4. Examples260

In order to provide some examples of application of Theorem 3.1, in par-

ticular of Proposition 3.12, let us consider Eq. (2) with a(t) ≡ −θ for some

θ > 0. Let us study the optimal approximation for some particular choices

of z(t). In particular we will denote with X(t) the original process and with

Xp(t) the optimal Gauss-Markov approximation with respect to the power cost

functional J p. In the examples we will consider the approximations X2(t) and

X4(t). Let us recall that, by Proposition 3.12, F2(t) = E[Z(t)] while Equation

(29) for p = 4 becomes

F4(t)3 − 3F4(t)2 E[Z(t)] + 3F4(t)E[Z(t)2]− E[Z(t)3] = 0. (34)

Let us also recall that the approximating process Xp(t) solves the SDE

dXp(t) = [a(t)Xp(t) + fp(t)]dt+ σdW (t), Xp(0) = x0 (35)

where

fp(t) = I−1Fp(t) = ηp(t)− a(t)Fp(t). (36)

F4(t) is, by Theorem 3.1 and Proposition 3.12, the unique zero of Equation (34).

Thus we can evaluate it numerically by using bisection method. We will not

have explicit expression of X4(t) in the following examples.
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4.1. A single shot as a drift.

Let

z(t) =

0 t < T

1 t ≥ T

where T ∼ Exp(λ) with λ 6= θ, 2θ. To ensure that z(t) is adapted to the

filtration {F t}t≥0 we have to ask for T to be a Markov time with respect to

that filtration. By definition of Z(t) in Equation (3), we have

Z(t) =
(1− e−θ(t−T ))

θ
χ[T ,+∞)(t), (37)

where χ[T ,+∞)(t) is the indicator function of the (stochastic) interval [T ,+∞).

Let us in particular observe that Z(t) is a Markov process. Moreover, by using

Proposition 2.1 (or Equation (4)) we have

X(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +
(1− e−θ(t−T ))

θ
χ[T ,+∞)(t).

Let us also observe that

f2(t) = E[z(t)] = 1− e−λt,

hence we obtain

F2(t) = I f2(t) =
1− e−θt

θ
− e−λt − e−θt

θ − λ
. (38)

Finally, X2(t) is obtained by solving Equation (35), thus we have

X2(t) = S f2(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +
1− e−θt

θ
− e−λt − e−θt

θ − λ
.

Observing that

D[z(t)] = (1− e−λt)− (1− e−λt)2

we have, by Equation (32),

d2(t) =
e−λt((λ− 2θ)e−λt + 2θ − 2λ) + λe−2θt

2(θ − λ)(2θ − λ)
. (39)

It is not difficult to check that d2 ∈ L1(0,+∞) thus J 2[X2] is uniformly bounded265

by ‖d2‖L1(0,+∞). To evaluate X4(t), we need F4(t), solution of Equation (34).
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In Figure 1, on the left, we plot some sample trajectories of X(t), X2(t) and

X4(t), with the same realization of the white noise process. In particular to

plot X4(t) we solved numerically Equation (34) to obtain F4(t). In Figure 1, on

the right, we plot a simulated curve of the function t 7→ E[(X(t)−X2(t))2] and270

we compare it to the bound d2(t) given in Equation (39). We observe that as t

increases, the simulated error and the bound tend to coincide and go to 0. The

fact that the error should go to 0 can be also observed from Figure 1 on the

left, since as t increases the trajectories of X2 and X overlap. This is due also

by the nature of Z(t) in Equation (37), which goes to 1/θ as t increases and275

so does its mean, thus leaving the stochastic part only to Y (t) that is common

between X2 and X.
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0

1

0 1 2 3 4 5
t

X(t)
X2(t)
X4(t)

0.00
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d2(t)
E(X(t) − X2(t)2)

Figure 1: Left: sample paths of X(t), X2(t) and X4(t) for the Single shot example. The

trajectories are obtained by using Equation (4) and simulating separately Y (t) (which is

common for the three processes), Z(t) (from Equation (37)), F2(t) (from Equation (38)) and

F4(t) (solving numerically Equation (34)). The parameters are chosen to be θ = 1.5, λ = 2,

σ = 1 and X0 = 0, with discretization time interval ∆t = 10−3.

Right: comparison between the simulated pointwise mean square error (of the approximation

of X(t) via X2(t)) and its bound d2(t) from Equation (39). The parameters are chosen to be

θ = 1.5, λ = 2, σ = 1 and X0 = 0, with discretization time interval ∆t = 10−3. To obtain

E[(X(t)−X2(t))2], N = 104 trajectories have been simulated.

These simulations and the following ones are made by using the software environment R [29].

4.2. A Poisson process as drift.

Let z(t) = N(t) be the stochastic drift process with N(t) a Poisson process

with parameter λ adapted to the filtration {F t}t≥0. In this case one has f2(t) =
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E[z(t)] = D[z(t)] = λt. By definition of Z(t) in Equation (3) we have

Z(t) = e−θt
∫ t

0

N(s)eθsds =

+∞∑
i=1

1− e−θ(t−T i)

θ
χ[T i,+∞)(t),

where last equality follows from N(t) =
∑+∞
i=1 χ[T i,+∞)(t) with T i the jump

times of the process N(t), hence, from Proposition 2.1 we have that

X(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +

+∞∑
i=1

1− e−θ(t−T i)

θ
χ[T i,+∞)(t).

The process X2(t) is obtained by solving (35) with f2(t) = λt, obtaining

X2(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +
λt

θ
− λ

θ2
(1− e−θt).

Concerning the upper bound for the punctual L2 distance, we have, by Equation

(32),

d2(t) =
λt

2θ
− λ

4θ2
(1− e−2θt).

This time, d2 does not belong to L1(0,+∞). However, it is not difficult to

check that there exists a constant C2 > 0 such that J 2[X2] ≤ C2T
2 for T large280

enough.

4.3. A Compound Poisson process as drift.

Let z(t) =
∑N(t)
i=1 Ji be the stochastic drift process where N(t) is a Poisson

process adapted to the filtration {F t}t≥0 with parameter λ > 0 and {Ji}i∈N
is a sequence of i.i.d. random variables, distributed as a given variable J ∈

L2(P), which are also independent from N(t). Let us also suppose that Ji are

measurable with respect to F t for any t > 0 and for any i ∈ N. By definition of

Z(t) in Equation (3) we have

Z(t) =

+∞∑
i=1

Ji
1− e−θ(t−T i)

θ
χ[T i,+∞)(t),

where T i are the jump times of the process z(t), hence, by Proposition 2.1, we

have

X(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +

+∞∑
i=1

Ji
1− e−θ(t−T i)

θ
χ[T i,+∞)(t).
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The process X2(t) is then obtained by solving Equation (35) with f2(t) =

λtE[J ]:

X2(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +
λtE[J ]

θ
− λE[J ]

θ2
(1− e−θt).

Moreover, since D[z(t)] = λtE[J2], we have, by Equation (32),

d2(t) =
λE[J ]t

2θ
− λE[J2]

4θ2
(1− e−2θt).

As for the case of the Poisson process, also in this case there exists a constant

C2 > 0 such that J 2[X2] ≤ C2T
2 for T large enough.

4.4. A Shot Noise as drift.285

Let M be a L2(P) random variable with positive integer values measurable

with respect to F t for any t > 0, {βi}i∈N i.i.d. L2(P) random variables inde-

pendent of M , measurable with respect to F t for any t > 0, and distributed

as β and {T i}i∈N i.i.d. almost surely positive absolutely continuous random

variables that are Markov times with respect to {F t}t≥0, distributed as a fixed

random variable T and independent of the βi and M . Moreover, let us consider

a function R(t) (called response function) such that R(t) = 0 for any t < 0. Let

us denote by pT (t) the probability density function of T . Let us consider the

stochastic process z(t) =
∑M
i=1 βiR(t − T i) as drift process. In this case Z(t),

by Equation (3), is given by

Z(t) = e−θt
M∑
i=1

βi

∫ t

0

R(s− T i)eθsds (40)

and then the process X(t), by Equation (4),

X(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs + Z(t).

Now let us recall that

f2(t) = E[z(t)] = E[M ]E[β]ϕ(t),

where

ϕ(t) = E[R(t− T )] =

∫ t

0

R(t− s)pT (s)ds = (R ∗ pT )(t). (41)
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Solving Equation (35) we get

X2(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs + e−θt E[M ]E[β]

∫ t

0

ϕ(s)eθsds. (42)

Finally, since

D[z(t)] = E[β]2ϕ2(t)(D[M ]− E[M ]) + E[M ]E[β2]Ψ(t),

where

Ψ(t) = E[R2(t− T )] = (R2 ∗ pT )(t), (43)

we obtain, from Equation (32),

d2(t) = e−2θt E[β]2(D[M ]−E[M ])

∫ t

0

ϕ2(s)e2θsds+E[M ]E[β2]e−2θt

∫ t

0

Ψ(s)e2θsds.

(44)

Let us observe that if M is distributed as a Poisson random variable with pa-

rameter λ, then D[M ]− E[M ] = 0 and we have

d2(t) = λE[β2]e−2θt

∫ t

0

Ψ(s)e2θsds.

An interesting case is given by R(t) = e−
t
τ 1[0,+∞)(t). In the neuronal modeling

context, a process z(t) of this kind goes under the name of shot noise. It plays

a key role in the description of neuronal networks dynamics as described in the

next section.

4.5. A Brownian motion as drift.290

Let z(t) = W̃ (t) + λt where W̃ (t) is a Brownian motion adapted to {F t}t≥0

and independent of W (t), and λ ≥ 0. By definition of Z(t) in Equation (3) we

have

Z(t) = e−θt
∫ t

0

(W̃ (s) + λs)eθsds

that solves the equation

dZ(t) = (−θZ(t) + W̃ (t) + λt)dt, Z(0) = 0.

By Proposition 2.1 we have

X(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +
λt

θ
− λ

θ2
(1− e−θt) + e−θt

∫ t

0

W̃ (s)eθsds.
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Since f2(t) = E[z(t)] = λt, solving (35), we have

X2(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +
λt

θ
− λ

θ2
(1− e−θt).

Note that X2 is the same as the approximant we obtain in the Poisson case.

However, since D[z(t)] = t, we have, by Equation (32),

d2(t) =
t

2θ
− 1− e−2θt

4θ2

which is independent of λ > 0. Thus if λ > 1, the upper bound given by d2(t)

is stricter than the one in the Poisson process case; vice-versa if λ < 1.

Concerning X4, in general, if hypothesis iii of Proposition 3.12 does not hold,

one could check if Equation (34) admits a triple zero only for an at most finite

set of t ∈ [0, T ]. However, the case of a Gaussian drift term is particular since295

we can show the following Proposition:

Proposition 4.1. If z(t) is a Riemann-integrable Gaussian process and hy-

potheses i and ii of Proposition 3.12 for p = 2n for some n ∈ N hold, then

Problem (15) with running cost J2n and constant final cost, or final cost Φ2n,

admits a unique solution F2n = F2.300

Proof. Let us first observe that if z(t) satisfies hypotheses i and ii of Proposition

3.12 for p = 2n, then it satisfies the same hypotheses for p = 2. Moreover, being

z(t) a Riemann-integrable Gaussian process, also Z(t) is a Gaussian process.

Now let us observe that Equation (29) for p = 2n becomes

E[(Z(t)− F2n(t))2n−1] = 0. (45)

Let us add and subtract E[Z(t)] in the left-hand side of Equation (45) to achieve

E[(Z(t)− F2n(t))2n−1] = E[(Z(t)− E[Z(t)] + E[Z(t)]− F2n(t))2n−1]

=

2n−1∑
i=0

(
2n− 1

i

)
E[(Z(t)− E[Z(t)])2n−1−i](E[Z(t)]− F2n(t))i

=

2n−1∑
i=1

(
2n− 1

i

)
E[(Z(t)− E[Z(t)])2n−1−i](E[Z(t)]− F2n(t))i

+ E[(Z(t)− E[Z(t)])2n−1].

(46)
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However, being Z(t) Gaussian, we have E[(Z(t) − E[Z(t)])2n−1] = 0 and then

Equation (46) becomes

E[(Z(t)− F2n(t))2n−1] =

2n−1∑
i=1

(
2n− 1

i

)
E[(Z(t)− E[Z(t)])2n−1−i](E[Z(t)]− F2n(t))i

=

2n−2∑
i=0

(
2n− 1

i+ 1

)
E[(Z(t)− E[Z(t)])2n−2−i](E[Z(t)]− F2n(t))i+1

= (E[Z(t)]− F2n(t))

2n−2∑
i=0

(
2n− 1

i+ 1

)
E[(Z(t)− E[Z(t)])2n−2−i](E[Z(t)]− F2n(t))i.

(47)

Thus, substituting the result of Equation (47) in Equation (45) we get

(E[Z(t)]−F2n(t))

2n−2∑
i=0

(
2n− 1

i+ 1

)
E[(Z(t)−E[Z(t)])2n−2−i](E[Z(t)]−F2n(t))i = 0

whose solution is given by F2n(t) = E[Z(t)] = F2(t), concluding the proof.

Hence the processes X2 and X4 (and any X2n for n ∈ N) coincide in the

case of a Gaussian drift.

Finally, let us observe that even in this case J 2[X2] can grow at most quadrat-

ically with respect to the time horizon T .305

4.6. An Ornstein-Uhlenbeck process as drift.

Let z(t) = U(t) be the stochastic drift process with U(t) the OU process

solution of the following SDE

dU(t) = −λU(t)dt+ σUdW̃ (t), U(0) = U0

where U0, σU , λ ∈ R with λ 6= θ.

In this case we have, by Equation (3),

Z(t) = e−θt
∫ t

0

U(s)eθsds,

that is solution of

dZ(t) = (−θZ(t) + U(s))ds,
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and, by Prop 2.1 and Equation (4),

X(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs + Z(t).

Recalling that f2(t) = E[z(t)] = e−λtU0 we have X2(t), by solving Equation

(35), as

X2(t) = e−θtx0 + σe−θt
∫ t

0

eθsdWs +
U0

θ − λ
(e−λt − e−θt).

Since we also have

D[z(t)] =
σ2
U

2λ

(
1− e−2λt

)
we obtain, by Equation (32),

d2(t) =
σ2
U

4λθ
(1− e−2θt) +

σ2
U

4λ(θ − λ)
(e−2λt − e−2θt).

Let us observe that in such case the mean cumulative error of approximation is

asymptotically bounded by a constant, i.e.

J 2[X2(t)]

T
≤ σ2

U

4λθ
+
σ2(θ − λ)

8λ2θ2T
+
σ2
U (2θ − λ)

8λθ2(θ − λ)

e−2θT

T
− σ2

U

8λ2(θ − λ)

e−2λT

T
=: D2(T ),

where limT→+∞D2(T ) =
σ2
U

4λθ , thus J 2[X2] can grow at most linearly with

respect to the time horizon.

4.7. Numerical results

J2[X2] J2[X4] J4[X2] J4[X4]

Single Shot 0.04809342 0.07091437 0.005860227 0.003705015

Poisson 7.268493 7.437058 50.80439 49.55527

Compound Poisson 3.612515 3.957901 16.41228 14.52411

Brownian Motion 3.619208 3.619208 12.40195 12.40195

Ornstein-Uhlenbeck 0.1985489 0.1985489 0.02649128 0.02649128

Table 1: Numerical evaluation of J i[Xj ] for i = 2, 4 and j = 2, 4 for the considered examples.

We considered six examples of possible choices for the drift. In the first

four cases the resulting process X is not Gaussian, while in the last two it is.
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For each example (except the Shot Noise case), we evaluate numerically the

quantities J i[Xj ], for i = 2, 4 and j = 2, 4. J 2 is the integral mean square

error of approximation of X with the process Xj , while J 4 is the integral mean

fourth-power error of approximation of X with the process Xj . In general we

expect, from Theorem 3.1, J i[Xj ] ≥ J i[Xi] for i = 2, 4, j = 2, 4 and i 6= j. As

shown in Table 1, this inequality holds strictly in the first three cases, while it

is an equality on the last two (in bold in Table 1). This latter fact is justified

by Proposition 4.1, since X2 = X4 for Gaussian drifts. To obtain each quantity,

we used the formula

J i[Xj ] =

∫ T

0

E[|Z(t)− Fj(t)|i]dt

to avoid the simulation of the whole trajectories of the processes X(t), X2(t) and310

X4(t), which could lead to numerical errors. While F2(t) is known explicitly,

F4(t) has been obtained by solving numerically Equation (34). Since (34) is a

simple polynomial equation, we used for each t the bisection method to evaluate

F4(t), with a precision of 10−15. We set θ = 1.5, λ = 2, X0 = 0, U0 = 1, σ = 1,

σU = 1. In the compound Poisson case, we used J ∼ Exp(λJ) with λJ = 2.315

The simulation time step is ∆t = 10−3 and the time horizon T = 5. For each

example 104 sample paths have been produced.

The case of the Shot Noise will be discussed in the next section.

5. A model of a neuron embedded in a neuronal network

In this section we will focus on an application of Theorem 3.1 to neuronal

modeling described by the linear Equation (2).

In particular, we are interested in the dynamics of a neuron embedded in a

network of M ∈ N neurons. We assume that the neuron under study receives

impulses from the other neurons, whenever they fire for the first time. We say

that a neuron fires when its membrane potential exceeds a critical value: after

the crossing, the value of the membrane potential is reset to its resting state

and the dynamics starts anew. This process generates an electrical impulse
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V1 V2 V3 · · · VM

V

Figure 2: Schematization of the neuronal model in Section 5

that is transferred to the neurons that are connected to it. For this reason

the membrane potential can be modelled as a leaky RC circuit with a drift

characterizing the input stimuli. The membrane potential of each neuron of the

network is then modelled by the following stochastic differential equation:

dV (i) =
(
−θiV (i) + µi

)
dt+ σidWi V (i)(0) = v0,i, (i = 1, . . . ,M), (48)

where 1/θi > 0 is the characteristic time of the membrane, µi is a constant320

injected stimulus and σi determines the amplitude of the baseline noise.

Concerning the embedded neuron, we assume that the stimuli it receives

can be described by a function that is exponentially decreasing in time, with

a characteristic time 1/λ > 0 (suppose for simplicity that λ 6= θ). The initial

amplitude of each stimulus is stochastic, represented by a family of i.i.d. ran-

dom variables {βi}i≤M . The stochastic differential equation that describes the

dynamics of this neuron is of shot noise type:

dV =

(
−θV +

M∑
i=1

βie
−λ(t−T i)χ[0,+∞)(t− T i)

)
dt+ σdW, V (0) = v0, (49)

where T i is the first firing time of the i-th neuron of the network. In Figure 2 we

have a schematization of this model. Equations (48) and (49) are the classical

Itô stochastic differential equation for the stochastic diffusion Leaky Integrate

and Fire (LIF) model (see, for instance, [22, 15, 30]). In particular, Equation
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(49) admits a stochastic drift of the form

z(t) :=

M∑
j=1

βie
−λ(t−T i)χ[0,+∞)(t− T i), (50)

where we suppose that {βi}i≤M and {T i}i≤M are i.i.d. and independent of each

other. This is the driving term of the stimulus that neuron under study V re-

ceives from the first-layer neurons Vi (see Figure 2). All the other smaller inputs

and changes in the environment are summarized by the Brownian noise. With

the independence assumption we are supposing that the M neurons described

by the processes {Vi}i≤M are not communicating. This is a reasonable assump-

tion: such physiological behaviour is common in the synaptic organization of

the sensory neurons. An example of such behaviour is given by the sensory

neurons of the olfactory bulb: such neurons are homogeneous and, neglecting

eventual ephaptic coupling (which in general is insufficient to stimulate an ac-

tion potential), independent from each other until their axons form a spherical

structure named glomerulus, which carries all of such stimulus and is connected

to the mitral cell [31, 32, 33]. Another example of this behaviour is given by the

photoreceptors of the retina, which are independent from each other and only

linked to the retinal horizontal cell [33, 34].

z(t) in Equation (50) is an example of shot noise with response function given

by

R(t) = e−λtχ[0,+∞)(t). (51)

Let us then observe that, by Equation (40), with the choice of R given by (51),

we get

Z(t) =
1

θ − λ

M∑
i=1

βi(e
−λ(t−T i) − e−θ(t−T i))χ[0,+∞)(t− T i)

and then, by solving Equation (49), we obtain

V (t) = e−θtv0 + σe−θt
∫ t

0

eθsdWs

+
1

θ − λ

M∑
i=1

βi(e
−λ(t−T i) − e−θ(t−T i))χ[0,+∞)(t− T i).
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Now we consider some choices for the distribution of the first firing times T i,

as proposed in the literature, and we show the corresponding approximating

processes V2.325

5.1. The Exponential Case.

Let us suppose that T is an exponential random variable (see, e.g., [17])

with parameter ν. By definition of ϕ(t) in Equation (41), of Ψ(t) in Equation

(43), and the choice of the response function R(t) as in Equation (51), we get

ϕ(t) =
ν

ν − λ
(e−λt − e−νt), Ψ(t) =

ν

ν − 2λ
(e−2λt − e−νt) (52)

and then, by using Equation (42), we get

V2(t) = e−θtv0 + σe−θt
∫ t

0

eθsdWs +
M E[β]ν

ν − λ

(
e−λt − e−θt

θ − λ
− e−νt − e−θt

θ − ν

)
.

Moreover, by using Equation (44), we get

d2(t) = Mν

(
E[β2]

ν − 2λ

(
e−2λt − e−2θt

2(θ − λ)
− e−νt − e−2θt

2(θ − λ)

)
− E[β]2ν

(ν − λ)2

(
e−2λt − e−2θt

2(θ − λ)
− 2

e−(λ+ν)t − e−2θt

2θ − λ− ν
+
e−2νt − e−2θt

2(θ − ν)

))
,

with limt→+∞ d2(t) = 0. Moreover, d2 ∈ L1(0,+∞), thus the approximation

error J 2[V2] is bounded by ‖d2‖L1(0,+∞).

5.2. The Gamma Case.

Gamma distribution is also a popular choice for the interspike interval dis-

tribution (see, e.g., [11]). Let us consider T as a Gamma random variable with

rate ν > 0 and shape parameter α > 0, i.e T ∼ Γ(ν, α). By definition of ϕ(t) in

Equation (41), of Ψ(t) in Equation (43), and the choice of the response function

R(t) as in Equation (51), we get

ϕ(t) =

(
ν

ν − λ

)α
e−λtγ(α, (ν − λ)t)

Γ(α)
, Ψ(t) =

(
ν

ν − 2λ

)α
e−2λtγ(α, (ν − 2λ)t)

Γ(α)
,

(53)

where γ(α, t) is the lower incomplete Gamma function

γ(α, t) =

∫ t

0

sα−1e−sds.
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J2[V2] J2[V4] J4[V2] J4[V4]

Exponential Case 26.8471 27.67105 61.20081 58.75134

Gamma Case 26.4166 27.65103 52.46327 49.15484

No Assigned Distribution 4.387099 4.396086 4.311031 4.315560

Table 2: Numerical evaluation of J i[Vj ] for i = 2, 4 and j = 2, 4 for the considered examples

of Subsections 5.1 and 5.2. The parameters are chosen as: θ = 1/10 ms−1, λ = 1 ms−1,

ν = 1/15 ms−1, σ = 1mV ms−1/2, α = 2, v0 = 0mV, M = 10. βi are chosen to be uniformly

distributed in (0.5mV, 1.5mV). Last example is obtained without assuming any assigned

distribution on T i, but simulating Equation (48) for i = 1, . . . , 10 with µi = 6mV ms−1,

σi = 1mV ms−1/2, θi = 1/10 ms−1, v0,i = 0mV and T i is the first passage time of Vi through

the threshold Vth = 20mV. The time horizon is fixed at T = 10ms while the simulation time

step is ∆t = 10−2ms. For each evaluation N = 104 sample paths have been produced and

F4(t) is obtained for each t by solving equation (34) via bisection method with a precision of

10−15.

By using Equation (42), we get

V2(t) = e−θtv0 + σe−θt
∫ t

0

eθsdWs

+
M E[β]να

λ− θ

(
e−θt

(ν − θ)α
γ(α, (ν − θ)t)− e−λt

(ν − λ)α
γ(α, (ν − λ)t)

)
.

d2(t) can be obtained from Equation (44) by using ϕ(t) and Ψ(t) given in330

Equation (53). The expression is omitted here due to its length, but one can

show that limt→+∞ d2(t) = 0 and d2 ∈ L1(0,+∞), thus J 2[V2] is bounded by

‖d2‖L1(0,+∞). In Table 2 we show some numerical evaluations of J i[Vj ] for

i = 2, 4 and j = 2, 4. As expected from Theorem 3.1, we have J i[Vj ] > J i[Vi]

for i 6= j.335

6. Concluding remarks

In this work we studied the problem of approximating solutions of linear

SDEs with stochastic drift by using Ornstein-Uhlenbeck type processes, as in-

troduced in Section 2. In particular, in Section 3, we showed sufficient and

necessary conditions for existence and uniqueness of an optimal approximation340
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(with respect to a suitable, but general, cost functional). Moreover, in Sub-

section 3.5, we show that a wide class of cost functionals (i.e. the power cost

functionals with p ≥ 2) satisfies Theorem 3.1.

In Section 4, these results have been applied to some examples that are of in-

terest in the classical literature. Some specific features of the approximations345

are highlighted in such examples. For instance, for the simplest example in

Subsection 4.1, we plot the simulated sample paths for X, X2 and X4 in Figure

1, on the left. On the right of Figure 1 we also plotted the pointwise mean

square error E[|X(t) − X2(t)|2] together with its bound d2(t). The examples

in Subsections 4.2, 4.3 and 4.5 exhibit the same (eventually up to some con-350

stant) approximating process with respect to the quadratic cost, highlighting

the exclusive dependence on the mean of the drift in such case. However, the

performance of the approximation is strictly related to the variance of the pro-

cesses describing the drift. In Subsection 4.6 we also provided an upper bound

for a temporal-mean of the mean-square error, showing in this case that such355

mean is bounded by a constant. It is actually easy to show that this behav-

ior appears every time the function d2(t) is in L∞(R), equivalently if the drift

process concentrates around its asymptotic mean. Moreover, in Subsection 4.5

we proved that for Gaussian drift terms the approximations X2 and X2n for

any n ∈ N coincide. In Subsection 4.7 we compare the behaviour of J 2 and360

J 4 on X2 and X4 for the examples of Section 4, giving both a confirmation of

Theorem 3.1 and some quantitative information on the approximation error.

Finally, the example in Subsection 4.4 is of interest in the frame of neuronal

modeling. Indeed, we provide a model for a single neuron embedded in a neu-

ronal network in Section 5. In such case, we specialize the response function of365

the shot noise process and we study the approximation of the membrane poten-

tial process. Indeed, as we did for Section 4, we evaluated the approximation

errors J 2 and J 4 on the processes V2 and V4 under some suitable assumptions

on the spiking times of the first layer of neurons V (i) and finally without any

assumptions on them, by simulating the whole network.370

The novelty of our findings is that in our case no hypotheses of ergodicity of the
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process ([35],[36],[37]) is asked, nor we use slow-fast dynamic techniques ([38],

[39]), nor we increase asymptotically the number of neurons as in the mean field

theory approach ([6],[40], [7], [41], [42]).

If on one hand the lack of assumptions on the drift process makes the result375

very general, on the other hand our approach does not easily lead to explicit

solutions, since Equation (17) could be impossible to solve in closed form and

numerical evaluations are needed.

The study of the approximation problem with a stochastic time horizon, de-

pending eventually on the process itself, as, for instance, first passage times380

through some fixed thresholds, will be the subject of future studies.

Acknowledgements

We thank the anonymous reviewers whose comments have greatly improved

this manuscript. This research is partially supported by MIUR - PRIN 2017,

project Stochastic Models for Complex Systems, no. 2017JFFHSH, by Gruppo385

Nazionale per il Calcolo Scientifico (GNCS-INdAM), by Gruppo Nazionale per
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